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Abstract 
Calculation of the interactive force between two horizontally stacked circular 
uniformly charged rings placed along the common vertical axis conducive to 
nonlinear oscillations under gravity has been addressed [1]. Although chal-
lenging, nonetheless the scope of the study limited to uniform charge distribu-
tions of the rings. Here we extend the analysis considering a charged ellipse 
with a nonuniform, curvature-dependent elliptic charge distribution exerting a 
force on a point-like charge placed on the vertical symmetry axis. Nonuniform 
charge distribution and its impact on various practical scenarios are not a 
common theme addressed in literature. Applying Computer Algebra System 
(CAS) particularly Mathematica [2], we analyze the issue on hand augmenting 
the traditional scope of interest. We overcome the CPU expensive symbolic 
computation following our newly developed numeric/symbolic method [1]. 
For comprehensive understanding, we simulate the nonlinear oscillations. 
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1. Introduction, Motivations and Goals 

Calculating the electric field of a uniform charge distribution on common geo-
metric objects such as circle, rectangle, square, rumbas, etc., among others along 
their vertical symmetry axis is trivial [3]. However, for instance calculating the 
field for objects with less symmetries e.g. an ellipse vs. a circle is challenging; in 
general, “less the symmetry challenging the issue.” In our particular instance, the 
nonuniform curvature breaks the symmetry. Having assumed this issue can be 
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addressed one might wonder about its practical applications. To this end moti-
vated with the outlined procedure [1], here we consider a scenario where a cur-
vature-dependent elliptic charge distribution interacts with a point-like charge 
resulting nonlinear oscillations. Figure 1 visually clarifies the issue on hand. 

The shown scenario in Figure 1 visually describes the issue on hand. A cur-
vature-dependent elliptic charge distribution makes an electric field. We focus 
only on the field along the vertical symmetry axis where a point-like massive 
particle of the same color as the ellipse is placed. Naturally, the massive, charged 
particle gets pulled under the gravity encountering a repulsive electric force via 
the elliptic charge. Theoretically, it is viable to visualize a situation that by ad-
justing the relevant physical parameters such as the charges and the mass of the 
particle on one hand and the geometrical parameters such as the size of the el-
lipse as well as the initial position of the point charge and its initial velocity make 
the aforementioned forces compatible resulting oscillations. And, therefore, it is 
the goal of this investigation to quantifying the characteristics of the oscillations 
conducive to stable vibrations, identifying amplitude, period and related relevant 
characters. It is also desired to compare the oscillations for different ellipses 
characterized by their respective eccentricities, henceforth, comparing the oscil-
lations of the elliptic charge distributions to a circular, uniform distribution. The 
latter would reveal the impact of the nonuniform vs. the uniform distribution. 
This article is composed of three sections. In addition to Sect. 1, Introduction, 
Motions and Goals in Section 2 we lay down the Mathematical formal develop-
ment of the issues on hand. This section also embodies computer codes. As 
mentioned, we have applied a Computer Algebra System (CAS), particularly 
Mathematica to carry out the needed symbolic and numeric computations. And 
hence, codes are crafted in Mathematica language. Interested readers may apply 
the codes producing our result.  

To begin with, the needed parameters are stored in the listed values1, units 
are all in SI, the values are feasibly practical.   

values1={k→9.109,q1→1.10−6,q2→2.10−6,a→2.,b→0.5,m→0.110−3,g→9.8}; 

The listing includes the electrostatic coupling constant, 9

0
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with 0∈  being the permittivity of vacuum, q1 is the charge on the ellipse. The 
loose point-like particle has a mass m and charge q2. The a and b are the semi 
major and minor lengths of the ellipse, respectively with implicit eccentricity 

2

1 be
a

 = −  
 

, 0.96e =  [4]. This large e indicates the ellipse is stretched along  

the major axis, x-axis, as opposed to the minor axis, y-axis. Numeric values of 
the axes have chosen such that a b  with an attempt magnifying the impact 
of the uneven charge distribution. In practice by enlarging the b the ellipse re-
shapes approaching a circle causing the uneven distribution runs to even, uni-
form distribution with well-known consequences such as e.g. electric field [3]. 
The values of the charges and the size of the ellipse although chosen arbitrarily  
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Figure 1. An ellipse with curvature-dependent elliptic charge distribution is 
clamped on a horizontal support with a point-like massive charge placed on its 
symmetry axis through the center. The ellipse and the charge are positively charged.  

 
is practical. However, the mass of the particle ought to be determined compati-
bly to fulfilling the objective of the search: oscillations. An ill-posed mass would 
cause catastrophe; the particle falls through the ellipse with no chance of return 
more on this in follow-up paragraphs.  

It is beneficiary quantifying the latter paragraph. The code below generates 
two ellipses and their associated curvatures.  

plotellipse1=ParametricPlot[{a Cos[θ],b Sin[θ]}/.values1,{θ,0,2π},AxesLabel 
->{"x","y"},GridLines->Automatic,PlotStyle->Black]; 

plotellipse2=ParametricPlot[{a Cos[θ],b Sin[θ]}/.values2,{θ,0,2π},AxesLabel 
->{"x","y"},GridLines->Automatic,PlotStyle->{Dashing[{0.01}],Black}]; 

plotEllipses21=Show[{plotellipse2,plotellipse1}]; 
plotcurature1=Plot[(a b)/((a Sin[θ])^2+(b Cos[θ])^2)3/2 1/2 (a+b)/.values1, 

{θ,0,2π},PlotRange->All,GridLines->{{0,1/2 π,π,3/2 π,2π},Automatic}, 
AxesOrigin->{0,0},Ticks->{{0,1/2 π,π,3/2 π,2π},Automatic},AxesLabel 
->{"θ(rad)","Curvature"},PlotStyle->Black]; 

plotcurature2=Plot[(a b)/((a Sin[θ])^2+(b Cos[θ])^2)3/2 1/2 (a+b)/.values2, 
{θ,0,2π},PlotRange->All,GridLines->{{0,1/2 π,π,3/2 π,2π},Automatic}, 
AxesOrigin->{0,0},Ticks->{{0,1/2 π,π,3/2 π,2π},Automatic},AxesLabel 
->{"θ(rad)","Curvature"},PlotStyle->{Dashing[{0.01}],Black}]; 

plotCurvature21=Show[{plotcurature2,plotcurature1}]; 
As shown in Figure 2 there is a one-to-one correspondence between the left 

and the right panels. As such, the solid elliptic curve on the left panel with sharp 
edges along the x-axis corresponds to high curvature values on the right panel at 
three polar angles, 0, π, and 2π with π radian cyclic repetition angle. Conversely, 
the soft curved segment of the ellipse at the edges of the minor axis corresponds 
to the low curvature on the right panel at two polar angles π/2, and 3/2 π with a 
π radian cyclic repetition polar angle. The same general feature holds for the 
dashed ellipse; however, the curvature values are less than the previous case due 
the smaller eccentricity.  

As the second step we focus characterizing the linear-charge density of the el-
lipse. Accordingly, we modify the basic definition of density incorporating the 
elliptic curvature, 

( )
( ) ( )( ) [ ]( ) [ ]( )

( )1
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Figure 2. Display of two different ellipses with eccentricities 0.96 (solid) and 0.80 
(dashed), respectively. The right panel is their corresponding curvatures.  

 
The denominator of the first term in (1) is the approximate length of the el-

lipse’s circumference [5]. The second term is the modeled elliptic curvature [4], 
with θ being the polar angle parametrizing the ellipse. The third term is an aver-
age value of the size of the ellipse, this is included making the dimension of [λ] = 
charge/length. Since λ ought to be normalized to the charge on the ellipse, q1 i.e. 

( ) 1d qλ θ =∫   with [ ]( ) [ ]( )2 2
d sin cos da bθ θ θ= +  we introduce a norma-

lization factor enforcing this characteristic. This factor for listed values1 is, 
normalizationFactor1=NIntegrate[1/(π(3(a+b)-√((3a+b)(a+3b)))) 1/2 (a+b) 

(a b)/((a Sin[θ])^2+(b Cos[θ])^2)3/2 √((aSin[θ])^2+(bCos[θ])^2))/.values1, 
{θ,0,2π}]; 

So that the normalized ( )λ θ  is, 
λ1[θ_]=1/normalizationFactor1 q1/(π(3(a+b)-√((3a+b)(a+3b)))) 
1/2 (a+b) (a b)/((a Sin[θ])^2+(b Cos[θ])^2)3/2; 
To evaluate the electric field of the charged ellipse along its vertical symmetry 

axis through the center at a height z we calculate first the electrostatic potential 
V(z) applying,  

( ) ( ) ( )
1 d

distance
V z k

z
λ θ= ∫  ,                  (2) 

where in (2) the ( ) [ ]( ) [ ]( )2 22distance cos sinz z a bθ θ= + + . Substituting the 
latter in (2) and the rest of the terms i.e. the above noted, λ(θ) and dℓ results an 
integral that Mathematica is incapable evaluating symbolically; this is a CPU ex-
pensive procedure. To overcome this issue, we apply our method introduced and 
outlined in [1]. In short, we introduce a numeric integrated value of (2) for a set 
of z-values. We then fit the output with a modeled analytic z-dependent function 
making the calculation of the electric field feasible according to ( )V z= −E ∇ . 
The Mathematica code accomplishing this is as follows (Figure 3). 

potentialintegrand1[z_,θ_]=λ1[θ]1/√(z^2+(aCos[θ])^2+(bSin[θ])^2) 
√((aSin[θ])^2+(bCos[θ])^2)/.values1; 

V1[z_]=Table[{z,NIntegrate[Evaluate[kpotentialintegrand1[z,θ]/.values1],
{θ,0,2π}]},{z,0,10,1}]; 

As shown, the potentials, V(z) beyond z = 4 m irrespective of the size of the 
ellipse, {a, b} are indistinguishable. There are differences at shorter heights. The  
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Figure 3. Dots are the numeric values of the Equation (2) for a set 
of z-values. The displayed lowest set in gray is the potential, V(z) for 
the circular ring with ϵ = 0. The top set is for the ellipse with 
eccentricity of 0.96. The middle set is for the ellipse with eccentrici-
ty 0.8. 

 
differences are not ignorable yet have common similarities. The lowest set de-
scribes the ring with the least potential. This sounds, because intuitively the ring 
has the largest size a = b = 2.0 corresponding to the largest distance(z). On the 
contrary the top data set has the strongest potential associated with the pinched 
ellipse with the shortest distance(z). The observed similarities lead to exploring 
one unique analytic model function fitting the data. It appears at smaller z’s the 
potential behaves as Gaussian and at far distances fall off exponentially. With 
these observed featured and with some trial and error we build the model accor-
dingly as: 

modelz1[z_]:=c1+d1z+e1e^(-f1z^2) 
fitV1z=FindFit[V1[z],modelz1[z],{c1,d1,e1,f1},z]; 
We then plot the data and the fitted modeled functions. 
plotfitdataz1=Plot[modelz1[z]/.fitV1z,{z,0,10},PlotStyle→Black,AxesOrigin 

→{0,0}]; 
Figure 4 displays the data and the modeled fitted analytic functions. As men-

tioned, the fitted functions are Gaussian, 
2

e z−  at short distances with extended 
tails at long distances with modified linear terms.  

Next, we apply the fundamental relationship, ( )V z= −E ∇  to calculate the elec-
tric field assisting to calculate the force, 2q=F E . These are coded accordingly, 

Efield1=-D[Evaluate[modelz1[z]/.fitV1z],{z,1}]; 
Eforce1=(q2/.values1)Efield1//Simplify; 

Figure 5 is the graph of these forces. 
As shown all three modeled functions have the same force value at the shorted 

height and do overlap indistinguishably at high heights. In the mediocre heights 
they reach a local maximum. The weakest of the three is the dashed curve and is 
the one associated with the circular ring as commented previously. Figure 5 
shows the impact of the uneven charge distribution which is one of our objec-
tives. The abscissa of the local maximum slides towards the center of the ellipse, 
nothing the larger the eccentricity the closer is the max to the center; this hasn’t 
been reported in literature!  
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Figure 4. Three fitted analytic functions and their asso-
ciated data. The plot heading is descriptive.  

 

 

Figure 5. The curves are labeled with consistencies of Fig-
ure 4. The plot heading is descriptive.  

 
Force axis in Figure 5 is calibrated in mN units. This gives a hint that what 

the mass range of the charged particle should be. With trial and error, we de-
termine an appropriate mass value; its value is embedded in the listing val-
ues1it is in the gram. With this insight we seek for the equilibrium position, 

electrostaticF mg= . Solving this equation yields the coordinate. 
Solve[Eforce1==mg/.values1,z] 
{{z→0.23},{z→3.4}} 
As shown, for the selected mass there are two associated equilibrium positions. 

This is meaningful because the force shown on Figure 5 has a local maximum. 
Consequently, any force graphed horizontally with an ordinance between the 
min and max force interests the force curve at two distinct points.  

Now we set up the equation of motion. Applying Newton’s force law, 
( )net mz t=F   with the standard notation that the supper double dots are the 

acceleration. The net electric m= −F F g . The needed code is, 
EquationOfMotion1=z1"[t]-(Eforce1/.z→z1[t])(1/m/.values1)+g/.values1; 
Numeric solutions of this equation with appropriately chosen initial condi-

tions are coded below. The initial position of the charged particle is set higher 
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than the equilibrium position and is dropped freely with initial zero speed.  
solEquationOfMotion1=NDSolve[{EquationOfMotion1==0,z1[0]==5., 

z1'[0]==0},z1[t],{t,0,10}]; 
The output is oscillatory as expected. Plots of oscillations are shown in Figure 

6. 
Figure 6 shows the initial position of three cases is set at z = 5 m. The freely 

dropped particle falls and oscillates along the z-axis. The minimum of the oscil-
lations irrespective of ϵ is about the same; 2.3 m with amplitude of 1.35 m. 
However, what distinguishes the cases is the period of oscillations. The circular 
ring with even distribution (dashed gray) has a longer period than the ellipses. 
This feature intuitively is understandable because the circular distribution exerts 
the weakest of the three forces naturally relaxing the oscillations.  

Having this information in hand we craft a code putting the charged particle 
in motion. Since the format of the journal does not allow showing the animation, 
we embed its snapshot. The interested reader capable of running Mathematic 
code may request for a copy of the code. The animation gives a fell how a nonli-
near oscillation behaves and what the impact of the nonuniform charge distribu-
tion is (Figure 7). 

 

 

Figure 6. Oscillations of the charged particle along the z-axis vs. time. 
The dashed curve associated with the circular ring, the black curve 
with the ellipse of ϵ = 0.96 and the gray with ellipse of ϵ = 0.8.  

 

 

Figure 7. A snapshot of the animation of the oscillating point charge. 
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2. Discussions and Conclusions  

With a few objectives, we proposed this investigating research project. The ob-
jectives stem from the interest in the nonlinear oscillations of physical pheno-
mena in conjunction with electrostatic related physics issues. To begin with we 
considered a charged ellipse. An ellipse has less geometric symmetries vs. a 
circle. And, naturally, the charge distribution on an ellipse inherits the same 
broken symmetries. In general, “the less the symmetry, the more the challenges.” 
Distribution of charge on an ellipse is a curvature-dependent, uneven function. 
We have overcome the challenges caused by this unevenness conducive calculating 
quantities such as electrostatic potential and electric field; these are seldomly 
discussed in scientific literature. Having calculated these quantities, we furthered 
the investigation by applying them to scenarios where a loose point-like charged 
particle oscillates. The uneven elliptic charge distribution creates peculiar elec-
tric field and consequently makes the oscillations nonlinear. The entire calcula-
tions in this work are carried out applying Computer Algebra System (CAS for 
short), specifically Mathematica. In occasions, the numeric aspect of the com-
putation surpassed the symbolic. For instance, evaluation of the electrostatic po-
tential due to the unevenness of the charge distribution is concluded applying 
semi symbolic-numeric approach, similar to what we reported [1]. By the same 
token, the differential equation associated with equation of motion of the loose 
charged particle conducive to nonuniform oscillations is carried out numerically. 
The article embodies all the computer codes so that the interested reader famili-
ar with Mathematic may produce our results. The codes are robust so that they 
may be adjusted for analyzing the “what if scenarios.” For the sake of complete-
ness, we also included a simulation of the oscillations. This is because for the 
sake of curiosity one wonders how an object oscillates nonlinearly! Graphs and 
plots of all the functions in this article are made applying Mathematica, for re-
producing these graphs interested readers may find [6] [7] resourceful.  
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