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Abstract 
In this paper, random matrix theory is employed to perform information se-
lection and denoising, and mean-realized variance-CVaR multi-objective 
portfolio models before (after) denoising are constructed for high-frequency 
data. The empirical study is conducted based on high-frequency data from 
stocks in the SSE 180 Index. Compared with the existing literatures, the main 
contribution of this paper is the introduction of both realized covariance ma-
trix and random matrix theory in multi-objective portfolio problem. The re-
sult shows that the use of the realized covariance matrix can reduce the loss of 
market information, and random matrix theory could help improve the qual-
ity of information contained in correlation matrix among assets. Under the 
denoised mean-realized variance-CVaR criterion, the new portfolio selection 
has better out-of-sample performance. 
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1. Introduction 

Mean-variance model (MV model) proposed by Markowitz (1952) opened a new 
chapter in modern portfolio theory, and subsequently many scholars are devoted 
to expand and deepen it. Kolm et al. (2014) summarized the development, chal-
lenges and future development directions. In Markowitz’s MV model, the mean 
and variance are used to measure average return and risk of asset portfolio re-
spectively. The calculation method of variance depends on characteristics of da-
ta. Based on the difference of frequency in data collection, data can be divided 
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into low-frequency data and high-frequency data. As we know, high-frequency 
trading data with short-time-span could reduce the loss of information in finan-
cial market. And it is easier to be obtained with the rapid development of tech-
nology. Therefore, the research on investment strategy based on high-frequency 
data becomes necessary and much significant. The realized variance can be cal-
culated by realized volatility proposed by Andersen & Bollerslev (1998). The li-
terature about realized volatility (variance) is rich, most of which are devoted to 
its modification, expansion and application in financial high-frequency data. 
Scholars also introduced realized (variance) covariance into asset allocation re-
search, e.g., Pooter et al. (2008), Yao (2010), Song & Hu (2017) and Yin (2016) 
etc. 

In the above portfolio study with realized variance, only one risk factor 
(variance) is considered. Since different risk measures describe different risk 
character of assets, scholars considered multiple measures to construct mul-
ti-objective portfolio optimization model. The earlier studies are mean-absolute 
deviation-skewness model and mean-variance-skewness model in Konno et 
al. (1993, 1995). Due to excellent properties of CVaR, Roman et al. (2007) 
constructed a mean-variance-CVaR model which could result in a more ba-
lanced portfolio. Further, Li et al. (2012) and Yu & Ma (2014) used this model 
to study China’s foreign exchange reserves and sovereign fund investment 
respectively. Gao et al. (2016) extended it to dynamic situations in financial 
market and Shi et al. (2019) considered optimal investment and reinsurance 
problem in continuous time. However, the data in above literatures is 
low-frequency data, and the situation of high-frequency data is ready to be 
explored. 

In addition, with the increasing complexity and diversity of financial markets, 
Laloux et al. (1999) and Plerou et al. (1999) first applied random matrix theory 
(RMT) to stock market, which demonstrated the existence of “noise” in asset 
correlation matrix and effect on portfolio strategy. Later, RMT is used in the 
study of financial risk management to improve information quality of financial 
market, for example Han et al. (2014), Xie et al. (2018), Bun et al. (2017) and 
Shen et al. (2019) etc. Li & Hong (2019) studied the stability of the network be-
fore and after “denoising” based on random matrix theory and effective frontier 
of portfolio under mean-variance model. 

In summary, this paper will construct mean-realized variance-CVaR portfolio 
model, and discuss the influence of denoising technology and realized cova-
riance on optimal multi-objective optimization strategy. The paper is organized 
as follows. Section 2 describes the related methods. Section 3 gives the datasets, 
empirical procedure and the out-of-sample performance of different portfolio 
strategies. Finally, Section 4 concludes the paper. 

2. Methods 

For convenience, we first give some notations. 
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1Σ : Realized covariance matrix 2Σ : Covariance matrix 

1Σ : Realized covariance matrix after denoising of 1Σ  2Σ : Realized covariance matrix after denoising of 2Σ  

1∆ : Diagonal matrix of realized standard deviation 2∆ : Diagonal matrix of standard deviation 

1C : Asset correlation matrix based on 1Σ  2C : Pearson Correlation Coefficient Matrix 

1C : Asset correlation matrix after denoising of 1C  2C : Asset correlation matrix after denoising of 2C  

2.1. Realized Covariance Matrix 

We consider the price process of an 1N ×  dimensional financial assets  
( ) ( ) ( )( )T

1 , , Nt P t P t=P 
, where ( )jP t  represents the price of the j asset at 

time t. The logarithm price vector is 

( ) ( ) ( )( )T

1log , , log Nq t P t P t=        .               (1) 

The return vector as follows: 

( ) ( ) ( ),t a a t a a+ = + −R q q .                   (2) 

Assume that time period from t to 1t +  is divided into m segments, and the 
rate of asset return on each segment is ( ) ( ) ( ),1 1t k m m t k m m+ = + −R q q , 

1,2, ,k m=  . So return matrix from time t to 1t +  is described as: 

( ) ( )( ), 1 1 ,1 , , ,1t t t m m t m m m+ = + +H R R .           (3) 

Therefore, the realized covariance matrix ( 1Σ ) can be defined as: 
T

1 , 1 , 1t t t tH H+ +Σ = ,                        (4) 

here the value of main diagonal element of realized covariance matrix is the rea-
lized variance of each asset. 

2.2. Random Matrix Theory Denoising 

2.2.1. Noise Detection 
A random matrix is expressed as: 

T1 AA
N

=Z ,                         (5) 

where A is an N L×  matrix which is composed of N uncorrelated random va-
riables with sequence length L, and each sequence obeys ( )0,1N  distribution. 
Based on Wigner (1951), for the window width ( )1Q L N= > , the predicted 
maximum and minimum eigenvalue of random matrix can be expressed as: 

2
max/min

1 11 2Z
Z Q Q

λ σ
 

= + ±  
 

,                   (6) 

where 2
Zσ  is the variance of Z , and 2 1Zσ =  for standardized matrix. 

Based on Kenett et al. (2009), eigenvalue Entropy (SE) of a random matrix is an 
effective tool to evaluate the information contained in the eigenvalue, as follows: 

( )

2 2
1 1

2 2
1

1 1

1 log
log

N j j j j

N N
j

j j j jj j

SE
N

λ λ λ λ

λ λ λ λ

− −

=
− −

    − −    = −  
   − −     

∑
∑ ∑

,       (7) 
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where λ  ( 1j jλ λ −> ) represents the eigenvalue of matrix. The smaller SE means 
less noise information, which shows more economic information is contained in 
eigenvalues, and vice versa. 

2.2.2. Denoising Method 
For an N N×  asset correlation matrix C ( 1C  or 2C ) 

TC EDE= ,                         (8) 

where D is a diagonal matrix formed by the eigenvalue { } 1

n
i i
γ

=
, and E is the ei-

genvector matrix of C. Let  

{ }min max| , , 1, ,Z Z
i iA i nγ γ λ λ = ∈ =  

, then A is the noise set. Here PG+ denoising 
method will be employed. All the elements of set A are replaced by 0 to construct 
the new diagonal matrix D . Then the denoised asset correlation matrix C  
( 1C  or 2C ) can be expressed as: 

TC EDE=  .                          (9) 

We set the diagonal element of C  to be 1 to ensure that  
( ) ( )Tr C Tr C N= = . 
As we know, the covariance matrix Σ  ( 1Σ  or 1Σ ) and the asset correlation 

matrix C ( 1C  or 2C ) satisfies the following relationship 
TCΣ = ∆ ∆ ,                         (10) 

where 1∆ = ∆  (or 2∆ ) represents the diagonal matrix formed by standard devi-
ation of each asset. So the Σ  after denoising could be obtained through the C . 

2.3. Mean-Realized Variance-CVaR Optimization Model 

Suppose that ( )T
1 2, , , NR R R=R   is the return vector of N assets, and 

( )T
1 2, , , Nx x x=x   is the weight vector. The variance of the cumulative return 

of portfolio is ( )T TVar M=x R x x , where M might be the realized covariance 
matrix 1Σ , the realized covariance matrix after noise reduction ( 1Σ ) or the co-
variance matrix after noise reduction ( 2Σ ). 

Based on Roman et al. (2007), we will study the following problem: 

( )

( )

T T

T

T

T

mi

1
0

n

s.t

, 1, ,

:

j

Var M

d

CVaR z

x j N

µ

=

=

=

=
≥ ∀ ∈

x R x x

x

x R

x




1

                  (11) 

where d represents the investor’s target return rate, z represents the control of 
CVaR, T 1=x 1  is the weight constraint for full investment, 0jx ≥  tells that 
no short-selling permitted. The specific determination of parameters d and z is 
shown in Appendix A. 

To show the impact of random matrix and realized variance on investment 
strategies, the following three optimization models are arranged in this paper, 
see Table 1. 
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Table 1. Optimization models. 

 Model Abbreviation Denoise M 

rmt
mrvc  Mean-Realized Variance-Model (denoise) MRVC (denoise) yes 1Σ  

mrvc  Mean-Realized Variance-CVaR Model MRVC no 1Σ  
rmt

mvc  Mean-Variance-CVaR model (denoise) MVC (denoise) yes 2Σ  

2.4. Model Evaluation 

The average return: 

Average return outE R x∗ ×=  ,                 (12) 

where outR  represents the out sample data, and x∗  represents the optimal in-
vestment weight. 

Omega Ratio (OR) is proposed by Keating & Shadwick (2002), defined as: 

( )( )
( )

1 d
OR

d

out

out

F x x E R x

F x x E R x
ε

ε

ε

ε

+∞ ∗

+∗
−∞

 − × − = =
 − × 

∫
∫

,            (13) 

where ( )F x  represents the cumulative distribution function of portfolio re-
turns and ε  is a specified threshold. Returns below the specific threshold are 
considered as losses and returns above as gains. For the convenience of calcula-
tion, 0ε =  is assumed (Clemente et al., 2019). The portfolio with the highest 
ratio will be preferred by an investor. 

3. Empirical Study 
3.1. Dataset Description 

The database is from Shanghai Stock Exchange 180 (SSE 180) Index, consisting 
of 180 stocks that best represent China’s A-Share Market. The five-minute re-
turn data of 120 stocks is collected from July 1, 2019 to August 10, 2019. And 
their five-minute logarithmic returns are calculated respectively. The data span-
ning from July 1, 2019 to July 31, 2019 is marked as in-sample data and the rest 
for out-of-sample data. 

3.2. Empirical Procedure 

The empirical study will be processed according to the following procedure. 
Step 1: calculating realized covariance matrix 1Σ  based on formula (1)-for- 

mula (4). 
Step 2: “noise” detection. The noise information in asset correlation matrix C 

( 1C  or 2C ) and random matrix Zwill be analyzed by eigenvalue entropy 
(SE)based on formulas (5), (6) and (7). 

Step 3: constructing the denoised covariance correlation Σ  ( 1Σ  or 1Σ ) ac-
cording to formulas (8), (9) and (10). 

Step 4: calculating the optimal asset weights under MRVC (denoise), MRVC 
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and MVC (denoise) based on model (11) respectively. 
(1) Assumed that pd  is the median of the average return of all assets, and the 

interval [ ]min max,d d  is determined by formulas from (14) to (18). d ∗  takes the 

1
6

, 2
6

, 3
6

 and 4
6

 quantile value of this interval respectively, denoted as 1d ∗ , 

2d ∗ , 3d ∗  and 4d ∗ . 

(2) Find the optimal weight jx∗  of assets under mean-variance model based 
on d ∗  in last step. 

(3) Based on the given d ∗  and *
jx , the interval 

,min ,max
,

d d
z z∗ ∗
 
   of z is de-

termined by formulas (19) and (20) for 0.01α = . The values of z is assumed to 

be the 1
4

, 2
4

, 3
4

 of quantile values of interval [ ]min max,d d  and 
,maxd

z ∗  re-

spectively, denoted as 1z
∗ , 2z∗ , 3z∗  and 4z∗ . 

(4) Problems of mrvc , rmt
mrvc  and rmt

mvc  with the given d ∗  and z will be 
solved through cvx toolkit in Matlab, which result in the optimal solution x∗ . 

Step 5: the in-sample optimal weight of assets with three models are ob-
tained from step 1 to step 4. Further, the average returns and OR values for 
out-of-sample dataset are calculated by formulas (12) and (13). 

3.3. Empirical Results 
3.3.1. Characteristic Analysis of Asset Correlation Matrix 
We calculate the asset correlation matrix C ( 1C  or 2C ), and further detect their 
noises based on Step 1 to Step 2, shown in Table 2 and Table 3. 

From Table 2, we find the maximum (minimum) eigenvalue 44.32 (0.01) of  
 

Table 2. Characteristic analysis of asset correlation matrix and random matrix. 

 Q(T/N) 
maxλ  minλ  ( )max

ZN λ≥
 

Noise 
% C RMT C RMT 

1C  9.2 44.32 2.43 0.01 0.19 12 24.19 

2C  9.2 20.84 1.77 0.25 0.45 7 73.33 

 
Table 3. SE of asset correlation matrix and random matrix. 

Asset correlation 
matrix 

Eigenvalues 
SE 

Asset correlation Corresponding random matrix 

1C  

A 0.001895 0.512808 

B 0.641649 0.641649 

2C  

A 0.003654 0.540436 

B 0.004707 0.710836 

Notes: the symbol “A” means that all eigenvalues are considered while “B” for removing the maximum 7 
eigenvalues. 
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matrix 1C  and its corresponding random matrix’s maximum (minimum) ei-
genvalue 2.43 (0.19) are greater (smaller) than 2C ’s maximum (minimum) ei-
genvalue 20.84 (0.25) and its corresponding random matrix’s maximum (mini-
mum) eigenvalue 1.77 (0.45). This tells us that matrix 1C  has smaller noise in-
terval. Meanwhile, compared 1C  with 2C , the percentage of noise in 1C  is 
smaller, which means that matrix 1C  contains more useful economic infor-
mation. 

It can be seen from Table 3 that the SE of the asset correlation matrix C ( 1C  
or 2C ) is much smaller than its corresponding random matrix, which means 
that C ( 1C  or 2C ) contains more economic information than its random ma-
trix. After removing the eigenvalues greater than max

Zλ  in 1C  and 2C  respec-
tively, SE rises sharply, which indicates that removing larger eigenvalues might 
reduce the information of asset correlation matrix. Therefore, we only replace 
eigenvalues less than 5 with 0 when PG+ method is used. 

3.3.2. Out-of-Sample Performance of Optimal Asset Allocation 
Based on Step 3 to Step 4 in Section 3.2, we can obtain the optimal investment 
strategy under each model with different parameters, and the average return and 
OR values are shown in Table 4. 

The following results could be found from Table 4. 
1) Under any different constraints ( ),d z∗  of means and CVaR, both average 

return and OR of MRVC (denoise) are higher than MVC (denoise), which 
means that the introduction of realized covariance matrix for high-frequency 
data can help much for more effective market information and more appropriate 
investment decision. 

2) Compared with MRVC model, the average return and OR of MVC (de-
noise) are improved mostly, which tells us that the use of random matrix can 
indeed improve the performance of investment portfolios to some extent. And 
the performance under MRVC (denoise) model is sensitive to the selection of 
parameters d ∗  and z. 

To further understand out-of-sample performance of each model under dif-
ferent parameter, we plot the cumulative return with the optimal portfolio 
weights, see Figure 1. 

From Figure 1 we can give the following conclusion. 
1) For any different ( ),d z∗ , MRVC (denoise) performs the best and MRVC 

worst. This shows that the combined use of realized covariance matrix and ran-
dom matrix theory in optimization model can better improve performance of 
portfolio. 

2) There is little difference among three models when the market fluctuates 
slightly in the early stage. However, MRVC (denoise) begins to highlight its su-
periority when the market fluctuates sharply. 

3) At a fixed return target, the superiority of MRVC (denoise) gradually in-
creases with the relaxation of constraint on risk CVaR. 
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Table 4. Out-of-sample performance of optimal investment strategy. 

1d ∗

 

 
1z∗

 2z∗

 3z∗

 4z∗

 

 Average return OR Average return OR Average return OR Average return OR 

mrvc  
−0.1456 0.6350 −0.1350 0.6762 −0.1227 0.7173 −0.1137 0.7483 

rmt
mrvc  

−0.1450 0.6329 −0.1240 0.6874 −0.1125 0.7246 −0.1043 0.7512 

rmt
mvc  

−0.1713 0.5884 −0.1708 0.5891 −0.1708 0.5893 −0.1707 0.5896 

2d ∗

 

 
1z∗

 2z∗

 3z∗

 4z∗

 

 Average return OR Average return OR Average return OR Average return OR 

mrvc  
−0.1174 0.7259 −0.1107 0.7492 −0.1146 0.7547 −0.1201 0.7585 

rmt
mrvc  

−0.1138 0.7332 −0.1037 0.7638 −0.1009 0.7777 −0.1025 0.6757 

rmt
mvc  

−0.1394 0.6699 −0.1335 0.675 −0.1365 0.6723 −0.1331 0.7827 

3d ∗

 

 
1z∗

 2z∗

 3z∗

 4z∗

 

 Average return OR Average return OR Average return OR Average return OR 

mrvc  
−0.1436 0.7645 −0.1450 0.7723 −0.1424 0.7856 −0.1372 0.7996 

rmt
mrvc  

−0.1252 0.7834 −0.1248 0.7990 −0.1197 0.8125 −0.1183 0.8202 

rmt
mvc  

−0.1324 0.7822 −0.1250 0.7825 −0.1271 0.7809 −0.1250 0.7826 

4d ∗

 

 
1z∗

 2z∗

 3z∗

 4z∗

 

 Average return OR Average return OR Average return OR Average return OR 

mrvc  
−0.2038 0.7667 −0.2012 0.7703 −0.1978 0.7759 −0.1950 0.7809 

rmt
mrvc  

−0.1864 0.7791 −0.1795 0.7831 −0.1776 0.7846 −0.1770 0.7851 

rmt
mvc  

−0.2013 0.7686 −0.1994 0.7714 −0.1998 0.7731 −0.1996 0.7751 

 

 
( )* *

1 1,d z           ( )* *
1 2,d z          ( )* *

1 3,d z  

https://doi.org/10.4236/jfrm.2020.94026


Y. J. Yang et al. 
 

 

DOI: 10.4236/jfrm.2020.94026 488 Journal of Financial Risk Management 
 

 
( )* *

1 4,d z        ( )* *
2 1,d z           ( )* *

2 2,d z  
 

 
( )* *

2 3,d z        ( )* *
2 4,d z           ( )* *

3 1,d z  
 

 
( )* *

3 2,d z        ( )* *
3 3,d z           ( )* *

3 4,d z  
 

 
( )* *

4 1,d z        ( )* *
4 2,d z           ( )* *

4 3,d z  
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( )* *

4 4,d z  
Figure 1. Cumulative return graph of investment period after (before) denoising. 

4. Conclusion 

This paper studies multi-objective investment strategy based on mean-realized 
variance-CVaR and random matrix theory for high-frequency data. Compared 
with Roman et al. (2007), the innovation of this paper is the introduction of co-
variance matrix and random matrix theory in optimization problem (Clemente 
et al., 2019). Compared with Li & Hong (2019), this paper considered CVaR and 
variance as factors of risk control simultaneously. To a certain extent, the new 
model can better deal with high frequency, noise and thick-tail characters of data 
in financial market. The empirical study found that the noise percentage in asset 
correlation matrix with realized covariance matrix is significantly reduced, and 
hence carries more effective information. The out-of-sample performance of 
MRVC (denoise) is significantly better than the other two models, which tells us 
that the use of realized covariance matrix and random matrix might help to im-
prove information quality and effectiveness of high–frequency data in invest-
ment problem. Because of the limitation of length, this paper only considers 
five-minute return data of 120 stocks, and the relationship between different 
high-frequency data, denoising effect, and covariance matrix estimator can also 
be a direction for future research. 
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Appendix A 

Based on Mean-Variance-CVaR model in Roman et al. (2007), 1CVaR α−  can be 
written as follow, 

1
1 1 1

1 1T N T

i j ij i i
i j i

CVaR p v x r v p y v zα α α

+

−
= = =

 
= − − + = + = 

 
∑ ∑ ∑ ,      (14) 

Thus formula (11) can be rewritten as 1 : 
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Here v is the value of 1VaR α− , ip  represents the probability of return rate 

xiR  at time i, 
1

N

xi j ij
j

R x r
=

= ∑ , ijr  represents the return rate of asset j at time i, 

and jµ  is the expected return rate of asset j. 

In order to ensure 1  has a feasible solution, d and z need to be within a cer-
tain range, that is, [ ]min max,d d d∈ , 

,min ,max
,

d d
z z z∗ ∗

 ∈   , where  
{ }min min var min cvarmax ,d d d= . min vard  is determined by 2 : 
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Solving the 3  to get 1
jx , thus 1

min var
1
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j j
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min cvard  is determined by: 
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Solving the 3  to get 2
jx , thus 2

min var
1
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j j
j

d x µ
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= ∑ . 

maxd  is determined by: 
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Solving 4  to get 3
jx , thus 3

max
1
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Here 
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z ∗  is determined by the model: 
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Solving 5  to get 4
jx  and 1v , thus 4
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Solving 6  to get 2v , thus *
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1 , ,j Nx x x=   is the optimal portfolio weight of the solution when the mean 

constraint is *
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=∑  in mean-variance model. 
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