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Abstract 
The (180)3 third-order mixed sensitivities of the leakage response of a polye-
thylene-reflected plutonium (PERP) experimental benchmark with respect to 
the benchmark’s 180 microscopic total cross sections have been computed in 
accompanying works [1] [2]. This work quantifies the contributions of these 
(180)3 third-order mixed sensitivities to the PERP benchmark’s leakage re-
sponse distribution moments (expected value, variance and skewness) and 
compares these contributions to those stemming from the corresponding 
first- and second-order sensitivities of the PERP benchmark’s leakage response 
with respect to the total cross sections. The numerical results obtained in this 
work reveal that the importance of the 3rd-order sensitivities can surpass the 
importance of the 1st- and 2nd-order sensitivities when the parameters’ 
uncertainties increase. In particular, for a uniform standard deviation of 10% of 
the microscopic total cross sections, the 3rd-order sensitivities contribute 80% to 
the response variance, whereas the contribution stemming from the 1st- and 
2nd-order sensitivities amount only to 2% and 18%, respectively. Consequently, 
neglecting the 3rd-order sensitivities could cause a very large non-conservative 
error by under-reporting the response variance by a factor of 506%. The results 
obtained in this work also indicate that the effects of the 3rd-order sensitivities 
are to reduce the response’s skewness in parameter space, rendering the dis-
tribution of the leakage response more symmetric about its expected value. 
The results obtained in this work are the first such results ever published in 
reactor physics. Since correlations among the group-averaged microscopic 
total cross sections are not available, only the effects of typical standard devi-
ations for these cross sections could be considered. Due to this lack of corre-
lations among the cross sections, the effects of the mixed 3rd-order sensitivities 

How to cite this paper: Fang, R.X. and 
Cacuci, D.G. (2020) Third Order Adjoint 
Sensitivity and Uncertainty Analysis of an 
OECD/NEA Reactor Physics Benchmark: 
III. Response Moments. American Journal of 
Computational Mathematics, 10, 559-570. 
https://doi.org/10.4236/ajcm.2020.104031 
 
Received: October 18, 2020 
Accepted: December 6, 2020 
Published: December 9, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ajcm
https://doi.org/10.4236/ajcm.2020.104031
https://www.scirp.org/
https://doi.org/10.4236/ajcm.2020.104031
http://creativecommons.org/licenses/by/4.0/


R. X. Fang, D. G. Cacuci 
 

 

DOI: 10.4236/ajcm.2020.104031 560 American Journal of Computational Mathematics 
 

could not be quantified exactly at this time. These effects could be quanti-
fied only when correlations among the group-averaged microscopic total 
cross sections would be obtained experimentally by the nuclear physics 
community. 
 

Keywords 
Polyethylene-Reflected Plutonium Sphere, 3rd-Order Sensitivities, 1st-Order, 
2nd-Order and 3rd-Order Uncertainty Analysis, Microscopic Total Cross 
Sections, Expected Value, Variance and Skewness of Response Distribution 

 

1. Introduction 

The accompanying works [1] [2] have computed exactly and efficiently the (180)3 
= 5,832,000 third-order sensitivities of the leakage response, of the OECD/NEA 
subcritical polyethylene-reflected plutonium (acronym: PERP) metal fundamental 
physics benchmark [3], with respect to the benchmark’s 180 group-averaged mi-
croscopic total cross sections. This work presents the third-order uncertainty 
analysis of the PERP benchmark’s leakage response by using the results obtained 
in [2]. Specifically, the effects of the 3rd-order sensitivities on the PERP bench-
mark’s leakage response distribution moments (e.g., expected values, variance 
and skewness, etc.) in the space of parameters (microscopic total cross sections) 
will be quantified and compared with the contributions stemming from the cor-
responding 1st- and 2nd-order sensitivities, underscoring the importance of the 
3rd-order sensitivities. 

This work is organized as follows: Section 2 presents the expressions used for 
the 3rd-order uncertainty analysis of the PERP leakage response, which is derived 
from the general expressions for third-order uncertainty analysis conceived by 
Cacuci [4]. Section 3 presents the numerical results for the contributions of the 
3rd-order sensitivities to the leakage response distribution’s first three mo-
ments (i.e., expected value, variance and skewness) in the space of parameters 
(microscopic total cross section). The 3rd-order contributions are compared 
with the corresponding effects stemming from the 1st- and 2nd-order sensitivi-
ties. Section 4 concludes and highlights the important findings obtained in this 
work, which is the first third-order uncertainty analysis ever performed in reac-
tor physics. 

2. Expressions for Third-Order Uncertainty Analysis of the  
PERP Leakage Response 

Knowledge of the first-, second-, and third-order sensitivities is required to 
compute the following moments of the response distribution:  

1) Up to 3rd-order response sensitivities, the 1st-order moment (expected value) 
of a response kR  has the following expression [4]:  
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where ijρ  denotes the correlation coefficient between parameters iα  and jα , 
while iσ  denotes the standard deviation of the model parameter iα . 

2) Up to 3rd-order response sensitivities, the 2nd-order moment (covariance) of 
two responses ( ),kR R



 has the following expression [4]:  
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where ijt µ  and ijq µν  denote the triple-correlations and, respectively, the 
quadruple correlations among the respective parameters. 

3) The 3rd-order moment ( )3 , ,k l mR R Rµ  of three responses has the following 
expression [4]: 
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The 3rd-order sensitivities would produce terms on the right-side of Equation 
(3) which are higher than 4th-order in the parameters’ standard deviations and 
are therefore not included.  

The skewness, denoted as ( )1 Rγ  of a single response R, which indicates the 
degree of the distribution’s asymmetry with respect to its mean, is defined as 
follows [4]:  

( ) ( )
( )

3
1 3 2

var

R
R

R

µ
γ =

  
.                   (4) 

As has been discussed in [5], correlations among the group-averaged mi-
croscopic total cross sections are not available for the PERP benchmark under 
consideration. When such correlations are unavailable, the maximum entropy 
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principle (see, e.g., Ref. [6]) indicates that neglecting them minimizes the in-
advertent introduction of spurious information into the computations of the 
various response moments. Also, third- and fourth-order correlations for the 
group-averaged microscopic total cross sections are not available in the open li-
terature; therefore, the effects on the uncertainties they would induce in the lea-
kage response cannot be exactly quantified. In the absence of any information 
whatsoever regarding the triple correlations among the group-averaged micro-
scopic total cross sections, the most reasonable assumption (in the sense of in-
troducing the least amount of spurious information into the system, according 
to the maximum entropy principle [6]) is to set 0ijt µ ≡ , which would be rigo-
rously correct if the group-averaged microscopic total cross section were consi-
dered to be multivariate normally distributed quantities, even if correlated. For 
normally distributed parameters, the following relation also holds: 

ij ij i j i jq µν µν µ ν ν µρ ρ ρ ρ ρ ρ= + + .                  (5) 

When the group-averaged microscopic total cross sections are uncorrelated, 
the expected value of the leakage response has the following expression:  

( ) ( ) ( ) ( ) ( )2,0 ,
U U

t t
E L L E L= +      α                  (6) 

where the superscript “U” indicates contributions from uncorrelated parame-
ters, the subscript t indicates “total” cross section, and where the quantity 
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t
E L    is defined as follows: 
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In Equation (7), the quantity ,
g
t is  denotes the standard deviation associated 

with the parameter ,
g
t iσ . 

If the group-averaged microscopic total cross sections are uncorrelated and 
normally-distributed [which will be indicated by using the superscript “(U,N)” 
in the following equations], the expected value of the leakage response does not 
depend on the 3rd-order sensitivities and has the following expression:  
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When the group-averaged microscopic total cross sections are uncorrelated and 
normally-distributed, the variance of the leakage response of the PERP benchmark 
takes on the following particular form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), 1, , 2, , 3, ,
var var var var ,

U N U N U N U N

t t t t
L L L L= + +                 (10) 

where the first-order contribution term, ( ) ( )1, ,
var

U N

t
L   , to the variance 

( ) ( ),
var

U N

t
L    is defined as follows, 
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while the second-order contribution term, ( ) ( )2, ,
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U N
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and the third-order contribution term, ( ) ( )3, ,
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U N
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For uncorrelated and normally distributed microscopic total cross sections, 
the third-order moment, ( ) ( ),

3
U N

t
Lµ   , of the leakage response for the PERP 

benchmark takes on the following particular form:  
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Since the third-order correlations for the group-averaged microscopic total 
cross sections are not available, the contributions of the third-order sensitivities 
are neglected in Equation (14).  

The skewness, ( ) ( ),
1

U N

t
Lγ   , of a single response ( )L α , which indicates the 

degree of the distribution’s asymmetry with respect to its mean, is given by the 
following expression for uncorrelated and normally distributed parameters:  
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t t t
L LLγ µ=           .         (15) 

As Equation (14) indicates, if the 2nd-order sensitivities were unavailable, the 
third moment ( ) ( ),

3
U N

t
Lµ    and hence the skewness ( ) ( ),

1
U N

t
Lγ    of the lea-

kage response would vanish and the response distribution would by default be 
assumed to be Gaussian.  

3. Numerical Results for Third-Order Uncertainty Analysis  
of the PERP Leakage Response 

The effects of the first- and second-order sensitivities of the leakage response 
with respect to the microscopic total cross sections on the response’s expected 
value, variance and skewness have been quantified and documented in the pre-
vious works [5] [7]. In this work, the effects of the third-order sensitivities on 
the response’s variance and skewness are quantified by considering typical val-
ues for the standard deviations of the group-averaged microscopic total cross 
sections, and using these values together with the respective first-, second- and 
third-order sensitivities in Equations (6)-(15). The results thus obtained are pre-
sented in Table 1, considering uniform parameter standard deviations of 1% 
(very small), 5% (moderate), and 10% (large), respectively. 
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Table 1. Comparison of response moments for various relative standard deviations of the 
uncorrelated and normally-distributed microscopic total cross sections. 

Relative Standard Deviation 1% 5% 10% 

( )0L α  1.765 × 106 1.765 × 106 1.765 × 106 

( ) ( )2, ,U N

t
E L    4.598 × 104 1.149 × 106 4.598 × 106 

( ) ( ) ( ) ( ) ( )0, 2, ,U N U N

t t
LE L E L+=      α  1.811 × 106 2.914 × 106 6.363 × 106 

( ) ( )1, ,
var

U N

t
L    3.419 × 1010 8.549 × 1011 3.419 × 1012 

( ) ( )2, ,
var

U N

t
L    2.879 × 109 1.799 × 1012 2.879 × 1013 

( ) ( )3, ,
var

U N

t
L    1.308 × 1010 8.713 × 1012 1.308 × 1014 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

, 1, , 2, ,

3, ,

var var var

var

U N U N U N

t t t

U N

t

L L L

L

= +          

+   
 5.015 × 1010 1.083 × 1013 1.630 × 1014 

( ) ( ),

3

U N

t
Lµ    6.227 × 1015 3.892 × 1018 6.227 × 1019 

( ) ( ),

1

U N

t
Lγ    0.554 0.109 0.030 

 
As shown in Equations (9) and (14), the third-order sensitivities do not affect 

to the expected value ( ) ( ),U N

t
E L    and, respectively, the third-order moment 

( ) ( ),
3

U N

t
Lµ    when the parameters are uncorrelated and normally distributed. 

However, the third-order sensitivities do affect the values of the variances 

( ) ( )3, ,
var

U N

t
L    and ( ) ( ),

var
U N

t
L   , as well as the skewness ( ) ( ),

1
U N

t
Lγ   , as 

shown in Table 1. Note that the numerical values shown in Table 1 for the first- 
and second-order contributions to the response moments, namely, ( )0L α , 

( ) ( )2, ,U N

t
E L   , ( ) ( ),U N

t
E L   , ( ) ( )1, ,

var
U N

t
L   , ( ) ( )2, ,

var
U N

t
L    and 

( ) ( ),
3

U N

t
Lµ   , are the same as those presented in Table 25 from the previous 

work [5].  

3.1. Very Small (1%) Relative Standard Deviations for Total Cross  
Sections 

When the relative standard deviations of the uncorrelated microscopic total 
cross sections are very small (1%), the results presented in Table 1 show that 

( ) ( ) ( ) ( )2, , ,
2.5%

U N U N

t t
E L E L≈ ×       , which indicates the effects of the 2nd-order 

sensitivities through ( ) ( )2, ,U N

t
E L    to the expected response value ( ) ( ),U N

t
E L    

are negligibly small. The results presented in Table 1 also indicate that  

( ) ( ) ( ) ( )1, , ,
var 68% var

U N U N

t t
L L≈ ×       , ( ) ( ) ( ) ( )2, , ,

var 6% var
U N U N

t t
L L≈ ×       , and 

( ) ( ) ( ) ( )3, , ,
var 26% var

U N U N

t t
L L≈ ×       , which means that the 1st-order sensitivi-

ties contribute the most (namely: 68%) to the response variance, followed by the 
3rd-order sensitivities, which contribute about 26% to the response variance, 
while the 2nd-order sensitivities contribute only about 6% to the response va-
riance. Thus, for very small relative standard deviations (in this case: 1%), the 

https://doi.org/10.4236/ajcm.2020.104031


R. X. Fang, D. G. Cacuci 
 

 

DOI: 10.4236/ajcm.2020.104031 565 American Journal of Computational Mathematics 
 

contributions from the 1st-order sensitivities are significantly larger than those 
from higher order sensitivities.  

The effects arising solely from the 1st-, 2nd- and, respectively, 3rd-order sensi-
tivities of the leakage response on the standard deviations for the PERP leakage 
response on the uncertainties, are also compared to one another in Figure 1. 
Assuming that all the microscopic total cross sections are uncorrelated and 
have uniform relative standard deviations of 1%, Figure 1 presents results for 
the following quantities: 1) the PERP leakage response ( )0L α ; 2) the expected 
value ( ) ( ),U N

t
E L    of the PERP leakage response; 3) the standard deviation, 

( )1SD , for the PERP leakage response arising solely from the 1st-order sensitivi-
ties (in green); 4) the standard deviation, ( )2SD , for the PERP leakage response 
arising solely from the 2nd-order sensitivities; and 5) the standard deviations, 

( )3SD , for the PERP leakage response stemming solely from the 3rd-order sen-
sitivities. In Figure 1, the green-colored plots involve solely 1st-order sensitivi-
ties, while the red-colored plots depict the contributions from 2nd- and 
3rd-order sensitivities. The results presented in Figure 1 depict visually that 

( ) ( ) ( )1 3 2SD SD SD  , as established by the numerical results presented in Ta-
ble 1. 

As indicated in Table 1, all of the 1st-, 2nd- and 3rd-order sensitivities give 
rise to a positive response skewness, thus causing the response distribution to be 
asymmetrically “skewed” towards the “positive direction” from the response’s 
expected value ( ) ( ),U N

t
E L   . When only the 1st- and 2nd-order sensitivities are  

considered, it has been shown in [5] that ( ) ( ),
1 0.872

U N

t
Lγ =   . Including the 

contributions from the 3rd-order sensitivities yields ( ) ( ),
1 0.554

U N

t
Lγ =   , indi-

cating that the distribution of the leakage response in the space of parameters is 
more symmetrical in reality.  

3.2. Typical (5%) Relative Standard Deviations for Total Cross  
Sections 

Relative standard deviations between 5% to 10% are typical for the microscopic 
total cross sections for most of the nuclides tabulated in nuclear data banks. The 
third column of Table 1 presents results when considering a uniform relative 
standard deviation of 5% for the uncorrelated microscopic total cross sections of 
the isotopes included in the PERP benchmark. These results show that 

( ) ( ) ( ) ( )2, , ,
39%

U N U N

t t
E L E L≈ ×       , indicating the contributions from the  

2nd-order sensitivities to the expected response value have become comparable, 
for 5% relative standard deviations, to the computed leakage value ( )0L α , thus 
causing a significant shift, by about 40%, of the expected value for the leakage 
response ( ) ( ),U N

t
E L    by comparison to the computed value ( )0L α . As has 

been discussed in [5], the customary procedure of neglecting second (and higher) 
order sensitivities and considering that the computed value, ( )0L α , is the ac-
tual expected (i.e., mean) value of the distribution, would be about 40% in error 
for 5% relative standard deviations for uncorrelated total cross sections. 
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Figure 1. Comparison of ( ) ( )10L SD±α  (in green), ( ) ( ) ( ) ( ) ( ), 1 2 3, ,
U N

t
E L SD SD SD  ±   (in 

red), due to 1% standard deviations of the uncorrelated microscopic total cross sections. 
 

The results presented in the third column of Table 1 also indicate that 

( ) ( ) ( ) ( )1, , ,
var 8% var

U N U N

t t
L L≈ ×       , ( ) ( ) ( ) ( )2, , ,

var 17% var
U N U N

t t
L L≈ ×        and 

( ) ( ) ( ) ( )3, , ,
var 75% var

U N U N

t t
L L≈ ×       , which means that the first-, second- and 

third-order sensitivities contribute about 8%, 17% and 75%, respectively, to the 

response variance ( ) ( ),
var

U N

t
L   . The effects of the 1st-, 2nd- and 3rd-order sensi-

tivities on the quantities ( ) ( )10L SD±α  and ( ) ( ) ( ) ( ) ( ), 1 2 3, ,
U N

t
E L SD SD SD±   ,  

in conjunction with 5% standard deviations for the uncorrelated microscopic 
total cross sections, are illustrated in Figure 2. As illustrated in the figure, 

( ) ( ) ( )3 2 1SD SD SD> , which indicates that the contribution from the 2nd-order 
sensitivities have exceeded the contributions from the firs-order ones. As in the 
previously studied case of “1% uniform standard deviations,” the contributions 
from the third-order sensitivities remain dominant, being much larger than the 
contributions from either the 1st- or the 2nd-order sensitivities. Hence, neglecting 
the third-order sensitivities would cause a significant error in quantifying the 
standard deviation of the leakage response.  

The skewness ( ) ( ),
1 0.109

U N

t
Lγ =    remains positive for the “5% case” when 

the contributions of the 3rd-order sensitivities are included, but is smaller than 
the skewness obtained for the “1% case.” This comparison indicates that larger 
standard deviations for the uncorrelated microscopic total cross sections tend to 
reduce the skewness and therefore render the distribution of the leakage re-
sponse more symmetrical about the mean value ( ) ( ),U N

t
E L    in the parameter 

space. Notably, if the 3rd-order sensitivities were neglected when considering a 
uniform 5% relative standard deviation for the uncorrelated microscopic total 
cross sections, the skewness would take on the value ( ) ( ),

1 0.899
U N

t
Lγ =   , as 

shown in [5], which would be ca. 900% larger (erroneously) than the more ac-
curate result obtained by including the effects of the 3rd-order sensitivities.  

3.3. Large (10%) Relative Standard Deviations for Total Cross  
Sections 

The results obtained by considering a 10% uniform relative standard deviation 
for each of the uncorrelated microscopic total cross sections are presented in the  
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Figure 2. Comparison of ( ) ( )10L SD±α  (in green), ( ) ( ) ( ) ( ) ( ), 1 2 3, ,
U N

t
E L SD SD SD  ±   (in 

red), due to 5% standard deviations of the uncorrelated microscopic total cross sections. 
 
last column of Table 1. These results display the same trends as discussed in the 
previous subsection for the “5% case”, except that the respective trends are sig-
nificantly amplified by comparison to the corresponding results for the “5% 
case”. For the “10% case”, the following results are observed:  

( ) ( ) ( ) ( )1, , ,
var 2% var

U N U N

t t
L L≈ ×       , ( ) ( ) ( ) ( )2, , ,

var 18% var
U N U N

t t
L L≈ ×        and 

( ) ( ) ( ) ( )3, , ,
var 80% var

U N U N

t t
L L≈ ×       , which means that the contributions  

stemming from the third-order sensitivities to the response variance  
( ) ( ),

var
U N

t
L    are remarkably larger than the contributions stemming from the 

corresponding first- and second-order sensitivities. 
The 10% relative standard deviations in the parameters in conjunction with 

the 2nd-order sensitivities also cause a larger deviation of the leakage response’s 
expected value from its computed value: as shown in the last column of Table 1: 

( ) ( ) ( ) ( ) ( )2, , ,0260% 72%
U N U N

t t
LE L E L≈ × ≈ ×      α ; this result indicates that the 

second-order term is about 2.6 times larger than the computed leakage value 

( )0L α , contributing 72% of the expected value ( ) ( ),U N

t
E L    of the leakage 

response. 
For the “10% case”, the effects of the 1st-, 2nd- and 3rd-order sensitivities on the 

uncertainties of the leakage response and the expected value, i.e., ( ) ( )10L SD±α  
and ( ) ( ) ( ) ( ) ( ), 1 2 3, ,

U N

t
E L SD SD SD±   , are displayed in Figure 3, which clearly 

indicates that ( ) ( ) ( )3 2 1SD SD SD> . It is also important to note that the nega-
tive results displayed in the green-colored plots for ( ) ( )10L SD−α  and in the 
red colored plots for ( ) ( ) ( ), 3U N

t
E L SD−    in Figure 3, indicate that if the un-

correlated parameters are affected by relative standard deviations of 10%, the 
3rd-order Taylor series expansion of the response around the nominal parameter 
values (which underlies the mathematical expressions for computing response 
uncertainties that stem from parameter uncertainties) is an inadequate repre-
sentation of the response distribution. An investigation of the consequences of 
this observation is beyond the scope of this work but is currently underway. 

As shown in Table 1, the skewness for the “10% case” is smaller than the 
skewness for the corresponding “1% case” and/or “5% case”. Furthermore, it has 
been shown (for 10% standard deviations in uncorrelated microscopic total cross  
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Figure 3. Comparison of ( ) ( )10L SD±α  (in green), ( ) ( ) ( ) ( ) ( ), 1 2 3, ,
U N

t
E L SD SD SD  ±   (in 

red), due to 10% standard deviations of the uncorrelated microscopic total cross sections. 
 
sections) in [5] that if only the contributions stemming from the 1st- and 
2nd-order sensitivities are taken into account, the corresponding skewness is 
much larger than the skewness obtained when the contributions from the 
3rd-order sensitivities are also added in, namely: 1) ( ) ( ),

1 0.341
U N

t
Lγ =    with-

out the 3rd-order sensitivities, but 2) ( ) ( ),
1 0.030

U N

t
Lγ =    when all of the con-

tributions stemming from the 1st-, 2nd- and 3rd-order sensitivities are accounted 
for. This results again indicates that the distribution of the leakage response in 
the parameter space becomes more symmetrical about its expected value when 
the contributions from 3rd-order sensitivities are accounted for. 

It is important to emphasize that the results presented in Table 1 for 
( ) ( )3, ,

var
U N

t
L    considered the contributions from only 96,840 uncorrelated 

elements out of the total of the total 3180 5832000=  elements of the matrix of 
3rd-order sensitivities ( ) ( ),

3
, ,, , , , , 1, ,6; , , 1, ,30g g g

t j t k t l j k l g g gσ σ σ′ ′′ ′ ′′= = S . On 
the other hand, the results presented in [2] indicate that some of the excluded 
mixed 3rd-order relative sensitivities of the leakage response with respect to the 
microscopic total cross sections have large values. However, the effect of these 
large mixed third-order sensitivities on the uncertainties in the response distri-
bution cannot be considered since the corresponding correlations among the 
microscopic total cross sections are not available.  

4. Conclusions 

This work has quantified the contributions of the (180)3 third-order mixed sen-
sitivities, ,

3
, , , , ; , , 1, 1 ,, ,, 6 30g g g

t j t k t l j k lL g g gσ σ σ′ ′′ ′ ′′∂ ∂ ∂ ∂ ==    of the PERP 
benchmark’s total leakage response with respect to the benchmark’s 180 micro-
scopic total cross sections, to the benchmark’s leakage response moments (ex-
pected values, variance and skewness), and compared these contributions with 
those stemming from the corresponding first- and second-order sensitivities. 
The following conclusions can be drawn from the results reported in this work: 

1) The results shown in Table 1 indicate that the importance of the 3rd-order 
sensitivities increases with increasing uncertainties in the PERP benchmark’s 
microscopic total cross sections.  

2) The contributions of the 3rd-order sensitivities to the response’s variance 
surpass the contributions of the 1st-order and 2nd-order sensitivities to the re-
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sponse’s variance already for relatively small (ca. 5%) standard deviations for the 
uncertain cross sections. These effects are rapidly amplified as the uncertainties 
in the cross sections increase. In particular, for a uniform standard deviation of 
10%, the 3rd-order sensitivities contribute ca. 80% of the response variance 

( ) ( ),
var

U N

t
L   . By comparison, the first-order sensitivities contribute ca. 2%, 

while the second-order sensitivities contribute ca. 18% of the response variance 
( ) ( ),

var
U N

t
L   . Thus, neglecting the contributions stemming from the third-order 

sensitivities would cause a large non-conservative error by under-reporting the 
response variance by a factor of 506%.  

3) The 1st-, 2nd- and 3rd-order sensitivities all yield a positive response skew-
ness, indicating that the response distribution is asymmetrically “skewed” to-
wards values higher than the response’s expected value ( ) ( ),U N

t
E L   . When the 

relative standard deviations of the microscopic total cross sections are increased, 
the magnitude of the response skewness remains positive but decreases, indicat-
ing that the response distribution becomes more symmetrical around the re-
sponse’s expected value. 

4) The effects of the 3rd-order sensitivities are towards reducing the response 
skewness, thereby reducing the asymmetry of the leakage response distribution 
in the space of parameters (total cross sections); this effect is the more pro-
nounced the larger the parameter’s standard deviations. In particular, for a uni-
form relative standard deviation of 10% for the uncorrelated microscopic total 
cross sections, the skewness is ( ) ( ),

1 0.341
U N

t
Lγ =    when only the 1st- and 

2nd-order sensitivities are considered; however, when the 3rd-order sensitivities 
are also included, the magnitude of the skewness decreases to  

( ) ( ),
1 0.030

U N

t
Lγ   = . 

5) Since the actual correlations between the microscopic total cross sections 
for the PERP benchmark are unavailable, the effects of the mixed 3rd-order sen-
sitivities on the response moments (e.g., expected value, variance and skewness) 
are underestimated; the same is true of the effects stemming from the 1st- and 
2nd-order sensitivities. Therefore, it would be very important for future experi-
mental research to obtain values for the correlations that might exist among the 
various cross sections. Correlations among the total cross sections could provide 
significantly larger contributions to the response moments in addition to those 
stemming from the parameters’ standard deviations. 

6) Relative standard deviations of 10% in the total cross sections can produce 
unphysical values for the standard deviation of the response distribution, as dis-
played in Figure 3, which indicates that the 3rd-order Taylor series expansion of 
the response around the nominal parameter values (which underlies the mathe-
matical expressions for computing response uncertainties that stem from para-
meter uncertainties) is an inadequate representation of the response distribution. 
An investigation of the consequences of this observation is currently underway, 
commencing with the examination of the convergence properties of the series of 
higher-order sensitivities. 
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