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Abstract 
The solution of the vibrating string problem is one of d’Alembert’s funda-
mental contributions to mathematics and physics. This problem, which at-
tracted the attention of many mathematicians, was solved in his general for-
mulation of the wave equation. Even nowadays, with so much technological 
progress in computer sciences and experimental methods, there are impor-
tant applications of wave equation: for example, guyed cables for structural 
purposes, vibrations in transmission lines and risers of offshore structures, 
guyed bridges, etc. It remains a very useful tool for these engineering problems.  
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1. Introduction 

The origin and the precise treatment of the vibrations of continuous systems can 
be found in the discovery of the basic law of elasticity by Hooke (1635-1703) in 
1660, in the Newton’s second law of motion (1687) and in the principles of dif-
ferential calculus by Leibniz (1646-1717). Newton’s second law is currently used 
to derive the mathematical model of the vibrating system. 

We can begin to briefly describe the history of the wave equation starting with 
Johann Bernoulli (1667-1748) when he solved the problem of the catenary which 
had been proposed by his brother Jacob, in 1691. Following these contributions, 
we emphasize the work of Brook Taylor (1685-1731) who presented in 1715 in 
his book Methodus incrementorum directa et inversa a discussion on vibrating 
strings, an interest which certainly appeared from music. Daniel Bernoulli 
(1700-1782), while living in St. Petersburg (1727-1733), studied the mechanics of 
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elastic bodies. He calculated the shape that an elastic line can assume under the 
action of forces. In this case, Bernoulli defined the natural frequencies and the 
vibration nodes of strings and showed that the motion of strings is composed of 
an infinite number of superposed harmonic vibrations (Bernoulli, 1740). 

Euler (1707-1783) also examined free vibrations of an elastic string without 
mass (Euler, 1749). In connection with the development of a solution of vibra-
tion string d’Alembert (1717-1783) developed his integration method for a sys-
tem of linear differential equations. In this context, Daniel Bernoulli established 
his famous theorem that the solution for the free vibration of strings can be de-
scribed by a trigonometrical series. The discussion between Euler, d’Alembert, 
and Daniel Bernoulli ran over a few decades, as we will see below. 

Later, Lagrange (1736-1813), showed how one can obtain a solution for that 
problem. He used a discrete mass model for string vibration, consisting of n 
masses joined by weightless strings. He solved the resulting system of n + 1 dif-
ferential equations where n tends to infinity to obtain the same functional solu-
tion as Euler did. Only in 1822 did Fourier (1768-1830) completely solve the 
problem in his “The Analytical Theory of Heat”, in which he proposed that any 
function could be written as an infinite sum of the sine and cosine trigonometric 
functions whose periods are integral divisors of the period of the original func-
tion (Fourier, 1822). 

2. D’Alembert’s Biographical Note 

D’Alembert was born on November 17, 1717, in Paris, and died on October 29, 
1783, also in Paris. He was abandoned by his parents on the steps of Saint Jean le 
Rond church, and adopted by an artisan family (Paty, 1993). Despite this, he re-
ceived a good education with the support of his biological father, Chevalier Des-
touches-Canon. With multiple influences on his education such as Jansenism, 
Malebranchism, and Cartesianism, mathematics drew his attention since the be-
ginning. 

He made his acquaintance with the new analysis and the calculus, studying 
Bernoulli’s work and Newtonian science. In 1739, he submitted his first work to 
the Academy of Science, followed by many others justifying his entrance to the 
Academy in 1741 as an “Associate adjunct astronomer”. Since the 1760’s he held 
a key position in the Academy of Sciences. 

He went through a period of almost twenty years of very intense work, culmi-
nating with the publication in 1743 of his Traité de dynamique, meaning the 
general theorem of dynamics or d’Alembert’s principle, a kind of unification of 
mechanics, publishing Traité d’équilibre et du movement des fluids the follow-
ing year, and in 1752 Essay d’une nouvelle theorie des resistances des fluides, in 
which hydrodynamics became a branch of mechanics. In 1745, he tackled the 
three-body problem within Newtonian gravitational theory. In 1749, Recherches 
sur la precession des equinoxes appeared, followed by Recherches sur points 
importants du systéme du monde, in 1754. 
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With all these works d’Alembert, Euler, and Clairaut before Lagrange (1736-1813) 
and Laplace (1749-1827), became the successors and followers of Newton in the 
eighteenth century in mechanics and astronomy (Paty, 2002). 

In 1747, in mathematics, d’Alembert created and developed a new branch of 
differential calculus, partial differential calculus, when he postulated a general 
solution for the wave Equation (Paty, 2002: pp. 237-258). 

In 1746, in his Reflexions sur la cause general des vents (1746-1747), he pre-
sented the first demonstration of the fundamental theorem of algebra, meaning 
that an algebraic equation of n degree has n possible roots real or imaginary. 

3. D’Alembert’s Solution of the Vibrating String Problem 

The concept of partial differential equation was introduced by d’Alembert in 
about 1740 to solve problems of continuous media. He recognized in this field a 
new area of differential and integral calculus. 

The first partial differential equation appeared in 1743 in his “Traité de Dy-
namique” and refers to oscillations of a suspended string, as follows (D’Alembert, 
1743): 

( ) 2 2dd d d dd d dy y s l s y s t − = − −                   (1) 

where s is the horizontal displacement, l the string length, t the time, and y the 
vertical displacement at time t from the equilibrium position, d represents diffe-
rential operations with respect to time t with s constant. 

The first integration of Equation (1) is found in the third part of “Réflexions 
sur la cause génerale des vents”, published by d’Alembert in 1747. He tried to 
integrate two differentials in the form d ds uα +β  and d d d du s A u sρα + υβ + +Ψ , 
where A and Ψ  are given functions of s and u, ρ and υ  are constants, and 
α  and β  unknown functions to be determined, such that the two forms are 
the total differential of functions z and υ , of u and s. 

D’Alembert used the integrability conditions proposed by Euler in 1740, as 
follows: 

d d d du sα = β  and d d d du sυ β = ρ α +ϕ  

where d d d dA s uϕ = − ψ  is a known function. Using this approach, d’Alembert 
tries to arrive at a first order system of two partial differential equations with re-
spect to the two unknown functions of α and β. The model (1) can be rewritten 
for small vibrations in the form: 

2 2 2 2d d d dy s y t=                        (2) 

The units are chosen such that the coefficient constant is equal to one. 
Assuming that ( ),y t s= ϕ  and putting d d dp t q sϕ = + , d d dp t s= α + υ  

and d d dq t s= υ +β , α = β , then 

( ) ( ) ( )d dp q t s+ = α + υ +  

( ) ( ) ( )d dp q t s− = α − υ −  

α ± υ  must be function of t s±  
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( )p q f t s+ = +  

( )p q g t s− = −  

where f and g are arbitrary functions. Then, one has the following relations: 

( ) ( ){ }1 2q f t s g t s= + − −                   (3) 

One further integration gives: 

( ) ( )y t s t s= ϕ + +ψ −                     (4) 

with two arbitrary functions ϕ  and Ψ . 
Introducing boundary conditions in (2), one has: 

0s =  and s a=  for fixed conditions. Thus, ( ) ( )t tΨ = −ϕ  and  
( ) ( )t a t aϕ + = ϕ − . 
The two arbitrary functions become only one as ϕ , which must be periodic 

with period 2a. 
The same solution obtained by d’Alembert was achieved by Brook Taylor in 

1747. In this case, y is the product of a sinusoidal function of s by a sinusoidal 
function of t. 

Euler used the findings of d’Alembert and remarks that the arbitrary functions ϕ  
and Ψ  are determined by the initial conditions: ( ) ( ) ( ) ( )s s s sϕ +Ψ − = ϕ −ϕ −  
which represents the initial form of the curve, while  

( ) ( ) ( ) ( )s s s s′ ′ ′ ′ϕ +Ψ − = ϕ −ϕ −  represents the initial velocities. 
After these developments, d’Alembert returned to Brook Taylor’s solution by 

introducing the method of separation of variables in a partial differential equa-
tion. He made the separation of variables in the solution and not in the equation, 
so that he wrote (D’Alembert, 1750): 

( ) ( ) ( ) ( )Δt s t s t sϕ + −ϕ − = ψ                  (5) 

introducing the functions ∆  and Ψ  of t and s, respectively. If the equations 
of motion are used, ∆  and Ψ  must be sinusoidal functions. 

Daniel Bernoulli came to debate the string vibration solution in 1753 stating 
that all kinds of possible motion are simple mode superposition, similar to what 
Brook Taylor proposed, but with any number of modes. In other words, the so-
lution proposed by Euler as a particular case actually a general solution in a form 
of a trigonometric series. 

In 1767, Euler stated that arbitrary functions which appear in partial differen-
tial equations must be general functions and cannot be defined by analytic for-
mulas. This point of view became dominant among mathematicians. Laplace, in 
1779, solved the vibrating string problem with another approach, using finite 
differences which correspond to a discrete problem. 

In the context of the history of differential and integral calculus, d’Alembert is 
also responsible for the method of separation of variables which would be de-
veloped by Fourier in his “The Analytical Theory of Heat”. Thus, d’Alembert 
tried a systematization of this new theory independent of physical applications. 
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4. Euler’s Short Intellectual Biography 

Leonhard Euler is undoubtedly the most important mathematician of the eigh-
teenth century. He was born in the vicinity of Basil, in northern Switzerland near 
the French border, on April 15, 1707, the son of Paul Euler and Margaret 
Bruchner. After first being taught by his father, Euler went to university at the 
age of thirteen, where he demonstrated a rare aptitude for mathematics. In addi-
tion, he studied with Jean Bernoulli and was directly influenced by Leibniz and 
Descartes (1596-1650), mainly in mathematics and philosophy. He received 
mechanical theory from Newton (1642-1727) mainly in mathematics and phi-
losophy (Oliveira, 2007). 

He adopted and used Leibniz’s mathematical theory for finite and infinitesim-
al quantities, as well as adopting Newton’s concept of force, but diverged with 
the latter in relation to the idea of absolute space. 

At seventeen he wrote a paper on the “Physical demonstration of sound”. This 
is the first noteworthy work of Euler which had a significant influence on re-
search into acoustics. 

When Euler was twenty-one, he was nominated by Daniel Bernoulli to the St. 
Petersburg Academy of Sciences. In 1733 he succeeded him as mathematician in 
that Academy. Here he improved integral calculus, developed the theory of tri-
gonometric and logarithm functions, and worked hard to simplify analytical ex-
pressions in mathematics. 

Probably because of his intense intellectual effort, Euler became partially blind 
in 1735. In 1741 Frederick the Great invited him to the Berlin Academy. He left 
Russia and stayed in Berlin for 25 years. During this period Euler produced a 
significant amount of scientific work. 

Euler and d’Alembert died in a truly short time between each other, in the fall 
of 1783. Their deaths marked the end of an eighteenth-century era. Euler was 
one of the most productive and brilliant mathematicians of all time, with pio-
neering work in many fields of pure and applied mathematics, mainly in diffe-
rential and integral calculus and its applications in mechanics and engineering. 
D’Alembert, in addition to being a great mathematician, can also be considered a 
philosopher, having earned a great reputation in science, especially in the field of 
analytical mechanics and in celestial mechanics, the two are similar. 

The correspondence between both attests that they both admired and res-
pected each other as brothers. In 1747, Euler wrote: “d’Alembert’s treatise on the 
movements of the moon is certainly of the greatest depth” (Euler, 1980: p. 266). 
Euler also recognized that d’Alembert had been more successful with planetary 
movements in a resistant medium than he was. D’Alembert, on the other hand, 
returns the praiseworthy comments by saying: “No one is deeper and more 
competent than Euler” (Euler, 1980: p. 288). 

This friendly behavior does not exclude their long disputes over the loga-
rithms of negative numbers or the theory of the vibrating string as we will see 
below. In 1757, this competition led to a rivalry separating them for a time. In 
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1763, the old friendship was finally restored (Knobloch, 2018). 
Euler’s main works: 

 Dissertatio physica de song (Basel, 1727). 
 Mechanica sive motus scientia analytice exposita (St. Petersburg, 1736, in 2 

Vols.). 
 Ennleitung in die arithmetik (1738, in 2 Vols.). 
 Tentamen novae theoriae musicae (1739). 
 Methodus inveniendi lineas curves maximi minimine proprictate gaudentes 

(Lausanne, 1744). 
 Theoria motuum planetarum et cometarum (Berlin, 1744). 
 Opuscula varii argumenti (1745-1751, in 3 Vols.). 
 Novae et carrectae tabulae ad loco lunae computanda (1746). 
 Tabulae astronomicae solis et lunae (ibid). 
 Introductio it analysin infinitorum (Lausanne, 1746, in 2 Vols.). 
 Scientia navalis seu tractatus de construendis ac dirigendis navi bus (St. Pe-

tersburg, 1749, in 2 Vols.). 
 Theoria motus lunae (Berlin, 1753). 
 Dissertatio de principio miniminae actionis uma cum examine objectionum 

cl. Prof. Koenigii (1753). 
 Institutiones calculi differentialis cum ejus usu in analysi intuitorum ac doc-

trina serierum (1755). 
 Constructio lentium objectivarum (St. Petersburg, 1762). 
 Theoria motus corporum solidorum seu rigidorum (1765).  
 Institutiones calculi integralis (St. Petersburg, 1768-1770, in 3 Vols.).  
 Lettres à une princesse d’Allemagne sur quelques sujets de physique et de 

philosophie (St. Petersburg, 1768-1772, in 3 Vols.). 
 Introduction to algebra (1770). 
 Dioptrica (1767-1771, in 3 Vols.). 
 Opuscula analytica (St. Petersburg, 1783-1785, in 2 Vols.). 

5. The Controversy between D’Alembert and Euler 

D’Alembert’s work was communicated to the Berlin Academy in 1747 (D’Alembert, 
1747). It created a great controversy between him and Euler. This intellectual 
dispute was over the nature of arbitrary functions which appear in the integra-
tion of partial differential equations. As mentioned above, the solution proposed 
by d’Alembert is given by the arbitrary functions in ( ) ( )y t s t s= ϕ + +ψ − . In 
order to satisfy the extremity conditions: in 0s =  and s a=  the string is 
fixed, which implies ( ) ( )s tϕ = −ψ  as well as ( ) ( )t a t aϕ + = ϕ − , such that the 
two arbitrary functions become one, ϕ , which must be periodic with a period 
2a. 

Euler criticized d’Alembert’s work pointing out that the two arbitrary func-
tions ϕ  and ψ  are determined by the initial conditions of the problem: 
( ) ( ) ( ) ( )s s s sϕ +ψ − = ϕ −ϕ −  which represent the initial form of the curve and 
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( ) ( ) ( ) ( )s s s s′ ′ ′ ′ϕ +ψ − = ϕ −ϕ −  the distributions of initial velocities. These 
conditions are of physical conditions and therefore, we cannot impose that ϕ  
must be a defined function by means of an analytical formula because nothing 
can guarantee that the initial state of the string has this type of regularity. Then, 
Euler is obliged to assume the arbitrary function ϕ , a defined function, not by 
means of a formula, but by a graphical representation, one curve “described by 
the free trace of a hand”. Since that the string is displaced from the equilibrium 
position without initial velocity, ′ϕ  is an even function and ψ  an odd one, 
with a period 2a.  

Euler indicates a geometrical construction that slows for a given t, starting 
from a graphical representation of ϕ , the graphical representation of  

( ) ( )y t s t s= ϕ + −ϕ −  to be obtained. He also considers the initial form of the 
string as a particular one, which is given by a trigonometric form as follows: 

( ) ( ) ( )sin sin 2 sin 3s a s a s aα π +β π + γ π               (6) 

where the vibration is a superposition of sinusoidal modes, in growing numbers 
of nodes similar to what was indicated by Daniel Bernoulli for suspended strings 
(Euler, 1750). 

For d’Alembert, Euler’s solution was inacceptable due to its generality, be-
cause differential calculus cannot be applied except to well defined functions ex-
pressed by analytical formulas and not by “mechanical” curves such as the one 
indicated by Euler. In his 1752 work, d’Alembert returns to Brook Taylor’s solu-
tion with the separation of variables in a partial differential equation. D’Alembert 
separated the variables in the solution and not in the equation, as we emphasized 
previously: 

( ) ( ) ( ) ( )t s t s t sϕ + −ϕ − = ∆ Ψ                    (7) 

with ∆  and Ψ  as functions of t and s, respectively. By applying this to the 
governing movement equations, we conclude that ∆  and Ψ  must be sinu-
soidal. 

Daniel Bernoulli entered the controversy in 1753 stating that all possible mo-
tions are mode superposition of the same type proposed by Taylor, but with any 
number of nodes (Bernoulli, 1755). In other words, this is the same proposed by 
Euler as a particular case, represented by a trigonometric series, in general. 
However, for Euler, an analytical expression like a trigonometric series deter-
mines a function, including its existence domain as periodic then transcendent, 
and cannot be, for instance, an algebraic function in the interval [ ]0,a ; a solu-
tion like this is necessarily particular (Euler, 1755). 

Although d’Alembert also considers this type of solution as a particular solu-
tion, in the second edition of his “Traité de Dynamique” (1758), he solved the 
partial differential equation of a suspended string by the separation of variables 
and superposition of vibration modes as follows:  

cos cos cosy As t n Bs t m Cs t r′ ′′= + + +             (8) 

where the coefficients , ,s s s′ ′′  (of s only) are calculated by ordinary differential 
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equations: 

( ) 2d d 1 dd dnS S s s S s− −                      (9) 

and the constants , ,n m r  are calculated by the limit conditions  
,d d , ,d dS S s S S s′ ′ , vanishing to 0s = ). Putting 0t = , one reads: 

y AS BS CS′ ′′= + + +                      (10) 

The young Lagrange, at that time only 23 years old, tried to reconcile part of 
Euler’s point of view with d’Alembert’s opinions. Like d’Alembert he considered 
that differential calculus can be applied only to functions defined by analytical 
formulas, but according to Euler the initial shape of the string is not expressed 
by this type of formula (Lagrange, 1759). He thus proposed not to use 
d’Alembert’s partial differential equations, but to integrate the equations of mo-
tion in a discrete case (lumped mass system connected by massless strings) and 
to limit the obtained solutions. For the discrete case, the system of equations is 
as follows: 

2 2
1 1d d 2i i i iy t y y y+ −= − +                   (11) 

where iy  is the ordinate of im . Lagrange introduced the functions d di iu y t=  
in order to obtain a 2n system of differential equations of the first order with re-
spect to the functions iy  and iu . To solve this system, Lagrange made a 
transformation to diagonalize it, using linear combinations of the form 

d di iM y t∑  and d di iN u t∑ , where the unknown functions iM  and iN  
are determined considering the conditions at the extremities, being expressed by 
trigonometric polynomials. Using the concept of limit from n to infinite masses, 
Lagrange transforms their finite additions into integrals, also considering that 
final formulas are identical to that obtained by d’Alembert and Euler with the 
arbitrary functions (determined by initial conditions), which could have the 
same generality required by Euler (Euler, 1765). It is important to emphasize 
that Lagrange’s formulas contain the correct expressions of Fourier’s coefficients 
of an arbitrary function, but Lagrange was reluctant to agree with this interpre-
tation. During his life, he was persuaded that only particular and regular func-
tions are represented by trigonometric series and this point of view would be the 
basis for his opposition to Fourier’s work on heat theory. 

The passage to limits made by Lagrange was criticized and this led to another 
method (Lagrange, 1762); this new method consisted of manipulating the string 
vibrating equation of the continuous case. Starting from the equation:  

2 2 2 2d d d dy t c y s=  (c constant), multiplying by Mds and integrating one ob-
tains: 

2 2 2 2d d d d d dy t M s c y s M s=∫ ∫                  (12) 

where M is a function to be determinate. A double integration by parts yields: 

( )2 2 2 2d d d d d d d d d dy t M s c y s M y M s y M s s= − +∫ ∫      (13) 

where the whole integrated part must vanish; this because M is zero at the string 

https://doi.org/10.4236/ahs.2020.94019


A. R. E. Oliveira 
 

 

DOI: 10.4236/ahs.2020.94019 237 Advances in Historical Studies 
 

extremities. Thus, one has: 
2 2 2 2d d d d d dy t M s c y M s s=∫ ∫                 (14) 

Lagrange adopts the condition 2 2d dM s kM=  (k is a constant); the 
right-hand side becomes: 

dck My s cks=∫                        (15) 

the previous equation is now:  
2 2d dS t ckS=                        (16) 

We thus have two ordinary differential equations to solve the calculation of M 
and S; the conditions at the string extremities for an infinite series for possible 
values to k; y is reconstructed with the corresponding values for S. In this me-
thod is the embryo of the idea of a “weak solution” for a partial differential equ-
ation. However, one had to wait a long time for its development; further this 
method led to the theory of distribution. 

In 1767 Euler published a paper about the arbitrary functions that appear in 
the integration of partial differential equations. He showed that arbitrary func-
tions should be taken in the more general sense, defined by curves traced freely 
by hand and not by functions defined by arbitrary formulas. This condition im-
plies that the methods of analysis should be extended to these general functions. 
Hence, Euler’s viewpoint was progressively established; in 1779, Laplace (Lap-
lace, 1782) solved the same problem of the vibrating string using Lagrange’s ap-
proach, by means of finite differences corresponding to the discretized problem 
and later by a passage to the limit. In other words, he adopts as a restriction of 
the problem that the tangents to the initial figure of the vibrating string be con-
tinuous. Yet, Condorcet (1743-1794) achieves the same conclusion using a par-
tial differential equation of order n, he adopted arbitrary functions to construct 
the solution with the condition that their derivatives are continuous until the 
order 1n −  (Condorcet, 1774). 

6. Final Remarks and Conclusion 

If we look at d’Alembert’s scientific trajectory, it is possible to visualize two dif-
ferent but inseparable aspects. One representing a search for the rationalization 
of physical phenomena and its laws which frequently follow a theoretical unifi-
cation based on fundamental principles of physical character. A second aspect is 
a critique highlighting the notions and conceptions that appear in his analyses. 
In addition, the privileged position that mathematics occupies. To d’Alembert 
among all scientific knowledge, mathematics is the nearest to pure reason be-
cause the nature of his object itself. In addition, mathematics shows the ways to 
achieve sureness with respect to reasoning (Paty, 1998). 

The theory of partial differential equations appears with d’Alembert as a new 
branch of differential and integral calculus; it solved many problems of conti-
nuum mechanics, with d’Alembert aware that he had created a new discipline 
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(Paty, 2001). He elaborated the initial studies and methods concerned with the 
integrability conditions of the differential forms; the skill and originality of his 
trajectory through calculus is remarkable. His study of the linear variation of va-
riables contains the idea of characteristics, which is a technique for solving par-
tial differential equations. It usually applies to first order differential equations, 
although from a more general point of view the characteristic method is valid for 
any hyperbolic partial differential equation. The method consists of reducing a 
partial differential equation to a family of ordinary differential equations over 
which the solution can be integrated from some initial data. 

D’Alembert discovers the introduction of arbitrary functions in the solution of 
equations initiating a famous controversy involving the concept and the domain 
of a function as a direct application to differential and integral calculus. He pro-
poses the method of separating variables which would be explored by Fourier in 
his theory of heat.  

The main contribution to the study of wave equation was made by 
d’Alembert, with important developments by Daniel Bernoulli, Lagrange, Lap-
lace and others, referred in this paper. The context of the controversy about the 
solution of the vibrating string made many important contributions to appear, 
enriching the subject. In addition, it is fundamental to emphasize the achieve-
ments made by Euler. He introduces new ideas to the first order equations, 
showing that these equations are not necessarily linear; he explores Legendre’s 
transformation and prepares the route for the notion of contact transformation 
(Nielsen, 2010). 

Therefore, a deep understanding of d’Alembert and Euler’s methods cannot 
be achieved without a geometric interpretation of the theory and remaining only 
in the plane of pure analytical manipulations. These geometric interpretations 
have become very strong in the present days. 
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