
Open Journal of Applied Sciences, 2020, 10, 732-757 
https://www.scirp.org/journal/ojapps 

ISSN Online: 2165-3925 
ISSN Print: 2165-3917 

 

DOI: 10.4236/ojapps.2020.1011052  Nov. 27, 2020 732 Open Journal of Applied Sciences 
 

 
 
 

A Valorized Scheme for Failure Prediction 
Using ANFIS: Application to Train Track 
Breaking System 

Tse Sparthan1, Wolfgang Nzie1, Bertin Sohfotsing2, Tibi Beda3, Olivier Garro1 

1Department of Mechanical Engineering, National Advance School of Agro-Industrial Science, University of Ngaoundere,  
Ngaoundere, Cameroon 
2Department of Mechanical Engineering, University Institute of Technology Fotso Victor, University of Dschang, Dschang, Cameroon 
3Department of Physics, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon 

  
 
 

Abstract 
In the rolling stock sector, the ability to protect passengers, freight and ser-
vices relies on heavy inborn maintenance. Initiating an accurate model suita-
ble to foresee the change of attitude on components when operating rolling 
stock systems will assist in reducing lock down and favors heavy productivity. 
In that light, this paper showcases a suitable methodology to track degrada-
tion of components through the blinding of physic laws and artificial intelli-
gent techniques. This model used to foresee failure deterioration rate and re-
maining useful life (RUL) speculation is case study to showcase its quality and 
perfection, within which behavioral data are obtained through simulated 
models initiated in Mathlab. For feature extraction and forecasting issues, 
different neuro-fuzzy inference systems are designed, learnt and authenti-
cated with powerful outputs gained during this process. 
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1. Introduction 

The rolling stock industries are highly competitive, because the demand for 
railway transport is incomparable as it favors heavy means in transporting plen-
ty of freights and passengers within long or short distances. Safety and security 
are great challenges that face when operating them. In the rolling stock sector, 
the ability to protect passengers, freight and services relies on heavy inborn 
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maintenance strategy that focuses on the quality of the traintrack components. 
Since their design gives them alternative modes of working, it is difficult to fol-
low them up using human knowledge. Initiating an accurate model suitable to 
foresee the change of attitude on traintrack components during field work will 
assist in dropping luck down and favor heavy productivity rate. Prognostic refers 
to an estimate of time to failure and risk, within which one or more existing and 
future failure modes on an asset are governed [1]. This makes it inevitable dur-
ing preventive maintenance issues since it aims at eliminating dramatic luck 
down through RUL estimated and forecasting parameters. Prognostic is promi-
nently split as model, data driven, experience oriented and hybrid (the combina-
tion of more than one distinct method) [2]. But due to congestion of compo-
nents, inconsistency of field data, human comprehension extrapolated in prac-
tice, heavy attention on possible AI techniques to help prognostic issues are ex-
pected from technical and scientific viewpoints. 

The expected activity here is to establish a failure forecaster and an RUL esti-
mator that is consistent with issues of heavy field data, low cost, phase change of 
components and thus capable of directing prognostic activities on new and ex-
isting systems with human comprehension. These are negative motivations of 
the data and experience oriented methods especially when focused on new 
process line, as it grants an extra appreciation to model oriented methods as it 
focuses on fixed threshold data and physics of the system. 

During design, each train-track component is associated with one or more 
physics comprehension which favors the stability of forecasting the growing de-
terioration rate using model oriented methods even though in most cases major-
ity of component attitudes are nonlinear. To counter the nonlinearity issues, 
many authors have valoralised the use of AI ideas center on neural network, 
fuzzy logic, Markov Models, particle filtering and other genetic algorithms [3] 
[4]. Excessive usage of time during execution and as such lack of human com-
prehension due to their hidden attitude are their negative motivation when re-
lying on them. And thus the actual status of the system mostly relies on the past. 
Meaning a hybrid prognostic system that has the ability to deal with the past, 
present and future status of the system needs to be initiated. The hybrid neu-
ro-fuzzy inference system showcases a safe usage because of its accuracy and less 
time consumption even though it requires a heavy architecture. As a soft com-
puting tool, ANFIS showcases high standard in modeling input/output nonli-
near issues [5]. Moreover, none of the above authors has insisted on the use of 
ANFIS in estimating and to foresee RUL issues on train track components in 
short or long terms.  

A hybrid fault discovery and segregated unit that blind model oriented for 
proactive issues with ANFIS and data oriented for active validation was intro-
duced in [6]. The hybrid diagnoser not only showcases the robustness and ability 
to discover and extract multitudes of unpleasant scenarios but thus showcases a 
high selectivity and sensitivity attitude since it can answer rapidly when there is 
complex modification of the supposed system. But the view point of this paper is 
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centered on initiating a hybrid prognostic unit that will automatically deduce the 
RUL of traintrack or other process lines accurately and faster. The remains of 
this work entail: the philosophy of ANFIS to fault prognostic issues in section 
two, the proposed methodology established on failure degradation rate and RUL 
forecasting in section three, application of this new model in four, finally con-
clusion and future contributions in five.  

2. ANFIS for Fault Prognostics 

Neural networks favor precise timing and speed recognition, and are distin-
guished from static to dynamic when applied to nonlinear problems. 
Feed-Forward, Multi-Layer Perceptron, Radial Basis Function, General Regres-
sion Neural, Recurrent and Time Delay Neural Networks are identified. They 
face transparency issues as declaration of their results concern human compre-
hension because of their hidden attitude. The elimination of black box issues fa-
vors the use of fuzzy logic that uses excess timing and low quality output. To 
stabilize these two orderly learning systems, both of them are blind to form a 
neuro-fuzzy inference system (ANFIS) which discards their wrong issues and 
favors the good one. ANFIS used in RUL forecasting and future usage parame-
ters of any industrial devices are distinguished from Takagi Sugeno Kang (TSK) 
and Mamdani system. Figure 1 examines the attitude of a Sugeno system whose 
output is either a linear or constant quantity. Made of five layers, the TSK model 
constitutes an antecedent unit which performs fuzzification and If then rules 
combinations through the optimization of its membership function using gra-
dent decent methods in a backword manner. To round up, layer three serves as 
the unit for membership normalization, layer four for if then statement and 
lastly layer five for output computational aggregation. The learning in these lay-
ers is updated using least square methods in a forward manner [5].  

3. Methodology 
3.1. The Proposed Hybrid System 

In reality, the attitude of every engineering system differs even if they are go-
verned with identical or different physics laws. Maintenance strategies centered 
on lock down before reinstatement to normal status are no longer favoured be-
cause they don’t have the capacity to track the phase change of individual com-
ponent as time thus modifies [7]. To foresee the evolution of their various atti-
tudes during usage is aspiration of attentiveness for company owners, engineers 
and scientists. Developing a novel prognostic methodology which combines 
proactive and active status of traintrack systems is inevitable, because under-
standing the status of individual components during usage is cost effective as far 
as maintenance issues are concerned. Meaning, their sudden lock down can only 
be followed up directly through the knowledge of degradation centered on the 
attitude of the components, its purpose and external environmental factors 
which art as barriers for smooth operation. 
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Figure 1. Architecture of adopted ANFIS for forecasting [5]. 

 
This calls for an intelligent base maintenance tool that blind analytical models 

define by physics laws and long term history of the system demanding. However, 
when the knowledge of system components is known physical, prognostic issues 
are easily solved due to its flexibility of adapting on phase change situations and 
thus RUL component calculation and forecasting. Figure 2 is the segregated 
procedure that blind physics laws and AI techniques (ANFIS) to outperform 
failure estimation and RUL forecasting issues on complex, linear and nonlinear 
system. It is centered on quick failure discovery and extraction quantities favor-
able to track efficiently the rate of deterioration. Follow up and modeling the 
rate of deterioration strictly relies on quick discovery and analysis as they play 
good contributions in quantification and safe life forecasting. Even though many 
have focused on statistics and after failure data sets gained from field work, the 
presence of uncertainties in most cases weakens the quality of the data collected 
and as such pushes them to use physics laws. If during initiating a new train 
track system, we define the healthy state using physics Laws of each component, 
and secondly have the ability to store its historical information qualitatively 
during the usage phase of the said system, then a favorable time to failure tool is 
required to fight against sudden break down.  

Figure 2 segregates the automatic prognostic procedure in six unidentical 
modules for remaining safe life future recognition for engineering systems.  

Process recognition module: This brings forward a legit model of the said 
system under study considering the attitude of individual components, their 
missions and lastly external environmental parameters that affect the smooth 
running of the entire system. The module is segregated in three aspects within 
which a graphical model demonstrating how the entire attitude of system com-
ponents are inter related, the construction of a physics model either through 
mathematical or using soft computing tools designed, for real time analysis. 
Next is to extract detail the running data’s that characterizes the fair and unfair 
mission of the system through Component Individual Parameters Identification 
Strategy (system design hand book). Finally, identify and initiate within the sys-
tem model the degradation parameter influenced either by external environ-
mental issues or phase changes of the system components with respect to time 
evolution rate.  
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Figure 2. An automatic hybrid model for RUL prediction. 
 

Data development module: Since in recent cases, most systems are nonlinear 
and have a stochastic attitude during their usage phase, this module is segregated 
for active and proactive activities. For systems already in use with no informa-
tion provided by manufacturers, the system model is simulated in the absence of 
deterioration in order to quantify a threshold data. For new ones, the manufac-
turers must provide an input threshold data which defines the maximum and 
minimum rate of degradation. These threshold signals which define the quality 
of the system during operations is then used by the initiated predictor to derivate 
at every given instant the deterioration rate obtained under unstable conditions. 
The change obtained when the system is deterioration free and when it starts to 
deteriorate is considered as residual data within which they are further con-
sumed by the feature extraction module to develop residual estimated signals.  

Feature Extraction Module: This module is made of two post processing 
sections, which make it differ from literature. In the first case, feature extraction 
activities are centered on the unlike measured variables and their approximate 
called residual signal which carries reliable information necessary to estimate the 
rate of deterioration based on the input/output model of the system. The second 
case relies on signals obtain after a given period of operating the said system. 
The operational historical information acquired within a certain period store in 
the online storage module is sent back to the feature extraction module. Before 
then, all unpleasant data’s must be distinguished from fairly ones. New residual 
signals are obtained based on the comparison between the non-deteriorating and 
the deteriorating signals (Figure 3). The manufacturing of such module permit 
the elimination of data shortages or loss as forecasting is concerned during intel-
ligent maintenance practices on train track units. As an auto verification tool, 
the output of this module is linked to the ANFIS’s modeling units and the dis-
play module for model validation if necessary. Note that the quality of the resi-
dual signal in both situations relies on linear and nonlinear least squares algo-
rithms as threshold data are easily obtained from physics laws. 
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Figure 3. Internal view of feature extraction module. 

 
ANFIS Modeling Module: The ability of this module is strongly centered on 

the quality of the recommended signals obtained from the feature estimation 
module. Each ANFIS system Operates both in series and parallel (Figure 2): 
ANFISD&E identifies the type of degradation rate as they are designed to discover 
and extract faults irrespective of their mode of occurrences using an online 
damage estimator. Due to nonlinearity attitude, each component or subsystems 
will have its own damage signature which must be segregated at the early stage. 
ANFISRULE tracks and quantifies the rate of damage for each components or 
subsystems within a short interval directly. The damage value obtained at this 
stage corresponds to the amount of deterioration for the specific component. To 
foresee the remaining safe life of the said component or system, a long term fo-
recaster (ANFISRULP) which has the ability to predict until a predetermined value 
that corresponds to the threshold value defined in process recognition module is 
gained. ANFISRULP is recommended because it is difficult to have a genuine 
knowledge about the phase change of the system and thus, if their safe life values 
may meet their failure indicator index (Condition monitoring index) when 
needed. An advantage of segregating this module permits an accurate step by 
step monitoring of the traintrack system as each activity can be visualized by the 
operator. 

Display Module: The status of the train track system is outputed by this 
module. The output visualizes the good or break down scenarios. Each ANFI-
Soutput is connected to this module to interpret each condition. For damage to be 
localised, output shall indicate zero conditions for no degradation, one for poss-
ible detected degradation and finally the given component and its mode of de-
gradation (value). The damage phase change is thus estimated and visualized in 
this module using numerical values and linguistic rules for easy comprehension 
and understanding (good, fair and close to failure, complete damage) to define 
the mode at which the components are for quick maintenance interventions. 
The conditions of the system should be defined by the operator.  

https://doi.org/10.4236/ojapps.2020.1011052


T. Sparthan et al. 
 

 

DOI: 10.4236/ojapps.2020.1011052 738 Open Journal of Applied Sciences 
 

Online Storage Module: The output information of the systems attitude are 
collected on regular bases and stored online in the form of data’s. These real 
time signals that interpret and mitigate the status of the system are directly used 
as input signals in the feature extraction module after the system must have 
worked for a given period. The aim here is to verify the quality of the prognostic 
tool through comparism of the model oriented and the historical signal methods 
because the safe life parameter drops continuously as the rate of damage im-
prove. Thus the attitude of each component portray its own style of damage and 
requires a certain pattern to track its degradation rate.  

3.2. Manifestation of the Prognostic Procedure 

The quality and accuracy of damage management in rolling stock components 
rely on the manner of which their degradation rates are being monitored. Early 
failure discovery should occur from the first instance of degradation as they can 
be used in tracking and forecasting safe life of the system. However, the attitude 
of damage in train-track components differs and as such requires its own degra-
dation pattern. The proposed segregated prognostic approach is flexible as it fo-
cused on the given system and it damage parameter at a time. The mechanical 
failures in the rolling stock systems associate 44.7% to wheelset, 36.7% to brak-
ing and 18.6% to the chassis. Brake deterioration indirectly account for 75% of 
above 100% failures [8]. The braking operation is critical and must be monitored 
on countless bases. Estimating and foreseeing the safe life of its components 
during usage will reduce sudden failure and as such improve the safety of 
freights and passengers. Pressure drops within pipelines due to leaks and Loss of 
contact between the lining/disc under the effect of wear are the two mechanical 
failures encountered during braking. The next portion of this document show-
cases how the second failure mode uses wear as degradation parameter to track 
and monitor the safe life of the train braking operation affected by external im-
purities in the environment. Figure 4 is the full suggested model that uses ma-
terial removal as real time indicator to track damage of the rail vehicle lin-
ing/disc system. Feature extraction signals are segregated from model ( )1% ZUτ  
to data ( )2

% ZUτ  and physics/sensor ( )3
% ZUτ  oriented for ANFIS model va-

lidation and residual signals quality control.  

3.2.1. Process Recognition Module 
Breaking actions are inevitable since they are used for speed reduction or com-
plete stoppage of the train. Their safe operation and acoustic emission are cen-
tered on the contact condition within the disc and lining. Efficient braking is 
registered under dry contacts scenarios within which kinetic energy is trans-
formed to thermal energy. These phase changes lead to vibration, fatigue and 
thus removal of material due to thermal or mechanical stresses, unstable contact 
pressure/region, and temperature growth [9] [10] [11] [12]. Material removal 
increases the penetrating distance and as such influences the contact condition 
of the lining/disc. Figure 5, Figure 6 is an eyeshot and the suggested model of a  
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Figure 4. Full suggested ANFIS model for damage tracking of lining/disc system. 
 

 

Figure 5. Eyeshots of the high speed axel mounted lining/disc brake unit. 
 

 

Figure 6. Model of the high speed axel mounted disc brake. 
 
high speed axel mounted disc braking unit commonly used in the Cameron 
railway industry (CAMRAIL). They are made of a frictional ring and interco-
nected hubs. As compressed air arrives the brake chamber, the outword move-
ment of the piston closes the brake caliper and thus iterates the braking effect 
through the lining/disc contact. The axel receives and transfers consistently the 
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brake effect from the disc to its respective wheels in order to slow or stop the 
train. Many authors have invested their time both in theory and field evaluation 
of wear attitudes and their effect on rail, automobile and manufacturing indus-
tries. Issues on vibration, speed, cracks, brake forces, contact pressure, tempera-
ture, frictional coefficient related to material removal has been investigated un-
der dry and wet environment [13] [14] [15] [16] [17]. Their analysis segregates 
the brake lining/disc material removal during field operation in two categories 

Breaking actions are inevitable since they are used for speed reduction or 
complete stoppage of the train. Their safe operation and acoustic emission are 
centered on the contact condition within the disc and lining. Efficient braking is 
registered under dry contacts scenarios within which kinetic energy is trans-
formed to thermal energy, a model that uses energy perspectives to showcase the 
behavior and working mode of the braking lining/disc without the reality of 
worn. Secondly, models that bring together the rate of material removal, work-
ing parameters and energy generated during braking mode of the train without 
safe life tracking under different wear conditions. Even though these approaches 
provide high esteem knowledge about the attitude during field mode of the lin-
ing/disc, it is important to bring forth a model that can be used to investigate the 
rate of material removal and evaluate the safe life of engineering systems (lin-
ing/disc under different wear conditions: adhesive, abrasive and fatigue) and 
thus motion and environmental factors. Due to the continuous usage of the train, 
braking is performed both in the dry and wet scenarios. The wet condition in-
fluences it quality as the frictional coefficient reduces. The physics attitude that 
iterates the lining/disc dynamic contact scenario with time dependence under 
both conditions where; l d  lining/disc, dl  clearance between the lining and 
the disc before braking, ( )t∆  penetrating distance during applied and hold 
phase of the brakes, dlX  deflection due to viscoselastic nature of their material 
of construction (Equation (2)), dlϕ  is material removed during the apply and 
hold phase of the brakes (Equation (3)). The model equation thus integrate ex-
ternal factors (motion factor mρ  and environmental factor Eρ ).  

( ) ( ) ( ) ( )l ld l d dt X t t tϕ+ + = ∆                  (1) 

( ) ( )l r ld d cdlX t w P tφ δ ′= ; 

( )21
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dl
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d
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 −
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0 x y
m

r x y T

K x x
M x x M

ρ =
+

 and E H dR C mρ ′= +  

pC  contact pressure, rφ  Love displacement of the lining/disc [15], dlE  elas-
tic modules, dlH  material hardness, contact angle, TV  and crV  train initial 
sliding and critical braking velocities (highest damping effect of the lining), wα  
wheel radius, rα  and rβ  are the respective internal and external radius, 0V  
train initial sliding speed before brake is applied, fV  sliding speed after braking, 

xx  length of the rail road, yx  width of the rail road, TM  train mass, rM  
mass of the rail, 0K  stiffness of the rail road, HR  relative humidity, C′  lin-
ing factor and dm  dust particle, lρ  density. dlK  the wear coefficient of the 
lining/disc and thus used to segregate from abrasive (ab), adhesive (ad) and fa-
tigue (f) wear types (Equation (5)) [17].  
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With rI  wheel moment of inertia, dlϑ∆  volume of removed material for 
the lining or disc, ∂  degree of wear (0: no wear & 1: over wear), TW  the load, 

xL  train sliding distance, pr  plastic/sliding working ratio, dlµ  frictional 
coefficient, C and sγ∆  monotonic and shear strains, D is the Mansor constant, 

rω  train angula velocity, tb  braking time, mB  wheel frictional moment, fP  
piston force, refα  lining/disc contact radius. Practically, the lining/disc wear is 
stochastic and can be segregated in three scenarios: new, usage and failure. For 
new scenario (zero wear), Equation (1) iterates:  
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( )
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For usage and failure scenarios (material removal), Equation (1) iterates 
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  (7) 

In reality, Equation (4) iterates that there exist three kinds of material removal 
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attitude during usage phase. These attitudes can be blind to transform Equation 
(1) to a universal matrix model as; 

[ ] [ ][ ]A B P EU− =                          (8) 

( )
( )
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0 0
0 0
0 0

l d

l d

l d
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 ∆ − +
 = ∆ − + 
 ∆ − + 
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ϕ ϕ

ϕ ϕ

ϕ ϕ

 +
 

= + 
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[ ]T1 2 3c c cP P P P=  and ( ) ( ) T
c cx P t P t =  

  

where E is an identical 3 by 3 matrix, U the degradation matrix, P the output 
matrix and x the system state quantity gains after a time step differentiation of 
Equation (8) in first order (Equation (9)). 

( ) ( ) ( )c cHP t KP t t′+ = ∆                       (9) 

; 1r l dl dH wφ δ α β′= = =  

( ) ( ) ( ) ( );l E m c ld m dK K V t t tρ ρ ′= ∆ = ∆ −  


 

The actual attitude of the train lining/disc relies on the characteristic informa-
tion showcase in table one below. The lining constitutes Becorit B36 material 
and the disc of gray cast iron.  

3.2.2. Data Development Module 
The chiping of material affects the contact pressure and thus acts as a distur-
bance for uniform pressure build up between the lining/disc. During field opera-
tions, it is very difficult to deduce the contact pressure per contact point as the 
braking operation is very fast [15] The contact pressure is assumed to be uni-
form at every point along the lining/disc and as such influence the contact re-
gime to be in a non-variable situation (Table 1). 

Equation (9) can be resolved using ODE45 in Mathlab to gain the contact 
pressure evolution at every given velocity and time steps (Pc(t) and Pc(V)) Fig-
ure 7, where t is considered as the braking time of the train (t = bt). From Figure 
6, an increment in train speed directly affects the duration of slow down or 
complete stoppage. Though, once the contact pressure is calculated, the wear 
rate can be tracked under different wear scenarios using equation (1&4) as 
showcased in Figures 8-10.  

The stability and increment of the contact pressure differs under dry and wet 
braking and as such has a very high impact in evaluating the lining/disc wear 
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scenarios during field operations. When the lining/disc contact is dry, the con-
tact pressure required to slow/stop the train is small because the friction is high 
and almost constant (Figure 6), thus the rate of material removal from the lin-
ing/disc is drastically low and uniform. Under wet conditions, the frictional 
coefficient is low and unstable. Material removal in this case is high as the con-
tact pressure and distance required to stop/slow the rail vehicle is drastically in-
creased (Figures 8-10).  

 
Table 1. Actual system operational parameters [18]. 

Ref Designation Ref Designation Ref Designation 

dl  (1 × 2) mm rα  207 mm TV  340 mm 

rβ  297 mm refα  207 mm dH  195±5 HB 

0K  150.88 × 107 Nm xx  247 mm dE  103 GPa 

rM  56 kg/m TM  [600 to 1000] mm dρ  7155 kg/m3 

dm  20 μm C 1.705 × 104 kg de  110 mm 

HR  [20 to 90]% wα  2 dM  120 kg 

C′  1 TV  340 mm D 2 

lH  111±0 HB le  35 mm rI  14 kg/m2 

lE  2.6 GPa lM  30 kg mB  4.02 N/m 

lρ  2045 kg/m3     

 

 

Figure 7. Evolution of Pc (time, velocity) under dry and humid braking scenarios.  
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The average frictional coefficient thus relies on the status of the lining (mode 
of material removal). An increment in material removal of the lining reduces the 
average characteristics of the frictional coefficient even though the braking speed 
at the start is greatly influential as compare to the contact pressure. The presence 
of oxygen and moisture obtained from the environment at the start of braking 
act as a lubricant between the lining/disc dry contact, their rate of material re-
moval is very slow as the films created due to friction are generated to gain sta-
bility. 

 

 

Figure 8. Disc rate of material removal during dry and wet braking scenarios. 
 

 

Figure 9. Lining rate of material removal during dry and wet braking scenarios. 
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Figure 10. Lining and disc rate of material removal during dry and wet braking scenarios. 
 
The rate of material removal gradually reduces as the lining/disc contact 

pressure increases during dry braking scenarios and escalades in wet scenarios as 
contact pressure increases with velocity and over all brake time. The increment 
in train speed and contact pressure under wet braking scenarios accelerates the 
rate of wear between the lining/disc, due to heat increment within the process. 
The above issue makes the braking action delicate and difficult to manage in 
many field operation using human intelligences. To endure safe operating mode, 
a reliable tool that has the ability to discover, segregate and track the RUL of the 
lining/disc phase change using material removal as the damage entity is very 
important because the material used in constructing brake lining is designed to 
wear faster than that of the brake disc. 

3.2.3. Feature Development Module 
Feature is a familiar term used in the context of condition-based maintenance of 
industrial systems as it concerns failure discovery and extraction in one sector 
and failure speculation through the establishment of remaining useful life in the 
other sector. As diagnostic is a static segregation of fair from unfair scenarios on 
industrial system, the term prognostics is centered on an ongoing segregated 
change of attitude as time evolves in the same system. Setting apart as excerpted 
and first rated features, they watch, appraise and speculate the robustness of the 
system. It contributes in excerpting hidden information found in natural signals 
using significant techniques such as prognosability, monotonibility and trenda-
bility [19]. The choice of technique for feature first rating relies on the deteri-
orating attitude of the given component or system. Some practical applications 
may call for the blinding of more than one technique (hybrid) depending on the 
decrement or increment of the natural signal. Concerning our axis of orientation, 
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the monotonibility technique will be valorized as the attitude of deteriorating 
signal in Figure 9, Figure 10 is presented.  

The practical evaluation of degradation for most engineering components in 
contact relies on time interval of material removal and tiredness. Secondly each 
component of a system presents its own damage signature. These paradoxes 
make life difficult to manage fault segregation and the attitude of failure evolu-
tion. The quality of any deteriorating signature must center on high esteem fea-
tures obtained either from sensors or physics laws through residual information 
about the component or full system. As a dynamic and stochastic nature, the 
contact attitude of the lining/disc during field operation relies on high esteem 
signals to speculate their health conditions. The quality of the excerpt and first 
rated features is the aspiration of attentiveness. The drifting information gained 
through residual exploitation must partially be segregated from excerpted and 
first rated features in learning and testing categories.  

Features are excerpted in stages, residual signals are gained based on variation 
within threshold signatures and the signatures obtained as the system deteri-
orates over time. Reliable, operating, surrounding and motion data sets are the 
aspiration of concern in time domain. They include characteristics of the lin-
ing/disc braking; rate of material removal, train speed, contact pressure, braking 
time; relative humidity, dust, lining factor; loads evolution, stiffness, damping 
and distance travel. These data’s are merged in Equation (1) and redefined in 
Equations (8 & 9) to creates excerpted features based on the below remainder 
( % ZWτ  and % zUτ ) Equations (10 & 11). Where, the suffix 1,2,3z =  demon-
strate the method of interest (model or data oriented) nt  being the time incre-
ment for every n braking action of the rail vehicle.  

( ) ( ) ( )
( )

1% 100n n
ZW

n z

t t
t

t
τ +

  ∆ − ∆
= ∗    ∆  

               (10) 

( ) 1% 100n n
ZU

n z

t t
t

t
τ +

  −
=  


∗   
                  (11) 

First rating feature is the next vibrant issue to be addressed, as not all available 
features created at the excerpted stage is favorable to speculate system safe mode 
through deterioration signatures. To speculate the rate of material removal and 
balance safe mode of the lining/disc mounted on a CC2600 locomotive, Equa-
tion (12 & 13) grant the permission. They expresses an absolute reduc-
tion/increment on the first rated feature patterns as time escalates, with sℵ  the 
number of trips per time interval that the lining/disc under full usage is ob-
tained. After esteem extraction and first rating, the features are later segregated 
from learning and testing sets of information in the ratio (70:30). Learning fea-
tures are used to develop the speculating signatures, meanwhile the testing set of 
information are used to check the goodness of the learning signatures before 
practical approval. 
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3.2.4. ANFIS Modeling Module 
Based on the features gained after the excerpted and first rating stages, this 
module is segregated as ANFISZW: for the rate of material removal speculation 
and ANFISZU: for remaining safe life speculation of the lining and disc respec-
tively. For the case of ANFISZW, the speculated signature for the rate of material 
removal for the lining/disc is examined with Equations (14-15). These equations 
favor the calculation of the average rate of material removal and the corres-
ponding remainder gained from speculation using digital signatures. Equations 
(16-17) are used to investigate the remainder of the calculated signatures from 
the speculated ones in order to distinguish the safe mode of operating the lin-
ing/disc using ANFISZU. The digital signatures are concentrated on the average 
calculated time consumed or still to be consumed by individual components 
with the inconsistency rate of material removal (degradation signature). Figure 
11(a), Figure 11(b) is the lining/disc personal calculated damage signatures in-
vestigated from equation (17), with the safe operating time of individual com-
ponent calculated in time (seconds) domain and the rate of material removal 
(millimeters) respectively. From these signatures one can identify that the brake 
lining is designed to wear faster than the disc as their calculated safe modes dif-
fer from 67.4 × 104 s (8 years) for the lining, regarding 24.2 × 108 s (29 years) for 
the disc. Even though the degradation value for the lining (20 mm) is three times 
greater contrast to that of the disc (7 mm) on a single side of contact (Figure 4) 
while the safe life parameter drops continuously as the rate of damage improve. 
Where: Tm lining/disc maximum millage to cover when the train is under opera-
tions; Tu maximum millage already covered; Bs maximum braking distance per 
trip and Ts total braking point per trip. Table 2 below is the adopted parameters 
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used in our current situation as not all the railway networks and trips to be per-
formed by individual trains are the same. Let CC2600 locomotive rail vehicle on 
Douala-Yaoundé railroad network is valorised in these current exercises 
(TRANSCAM 1). 

ab ad f

dl
dl m

ϕ ϕ ϕ
ϕ

+ + 
∆ =  

 
∑                    (14) 

( )
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Calculated

l l
ZW

l

d d

d

ϕ ϕ
τ

ϕ

 ∆ − ∆
 = ∗
 ∆ 

   (15) 
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T T
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B T
 −
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          (17) 

 
Table 2. Adopted operating framework for the railroad.  

Ref. Tm(km) Tu(km) Bs(km) Ts ℵs 

Disc 1.1 million 
0 0.84 17 2 

Lining 80,000 

 

 

Figure 11. Calculated RUL for the CC2600 brake lining/disc. 
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Regarding the speculating rate of material removal (wear) for the lining/disc 
under manipulation, digital signals such as train speed, contact pressure and 
train braking duration were the aspiration of attentiveness in learning and au-
thenticating the accepted ANFISZW. Designed as a single input layer with three 
aspiring digital inputs, the model valorises bell-shaped membership functions as 
output linguistic information of the first layer. These types of membership func-
tions accept the nonlinearity attitude showcased during train braking (when the 
lining/disc are in contact). In practice, the contact pressure varies during braking 
and thus leads to inconstant rate of material removal for the lining/disc. During 
learning of the model, the attitude of these membership functions are inconstant 
as the main input values of the digital signals show cases a vagrant attitude in 
real time. The rules are linked and adjusted to their individual node through the 
addition of their firing strength in the second and third layers using the gradient 
decent edge near in a reverse manner. The aggregated output signal which is 
centered on the addition and multiplication of the first and second rules demon-
strate the forth layer, while the duty of the last layer is to aggregate a final output 
of the model using add-up features. 

The learning in these layers is updated using the least square edge near in a 
forward manner. The accepted ANFISZW structure used for speculating the rate 
of material removal for lining/disc at this stage was chosen by keeping down the 
remainder between calculated and speculated outputs. Made of three input sig-
nals and a single output, the structure showcases 78 hidden nodes after being 
leant. A total of 108 linear and 27 nonlinear criteria was gained using a series of 
5 learning pairs and 27 fuzzy precepts. Figures 12(a)-(d) are the dissimilar sig-
nificant behavior of the input signals in relative to the output, with velocity 
showcasing a very high influence on the rate of material removal under dry and 
wet conditions. The increment in velocity thus increases the braking time which 
is a key factor in managing railroad traffic as it thus increases the braking dis-
tances which is an object of minimization in railway traffic management in Ca-
meroon and other parts of the world. The vagrant braking distance in most cases 
leads to derailment and damage of railway infrastructures which affect the cost 
of production in this sector (the 2016 Eseka derailment in Cameroon). The 
learnt model was later authenticated using the percentage ratio of 70:30 for 
learning and authenticating signatures as mentioned above. Figure 13 is an ex-
tract of the model calculated output and speculated out with respect to its input 
signatures (Figures 12(a)-(d)). The rate of material removal under wet scenario 
showcases a very high significant digital signatures of (33.86 & 32.80; 13.92 & 
12.63) mm contrast to (17.74 & 16.27; 6.80 & 6.26) mm for dry and average sce-
narios. This significance is clear to understand that wet braking circumstances 
have a high impact in the design and maintenance phase of the lining and disc. 
The perfection of the speculated ANFISZW model for material removal was 
gained using Equations (17 & 20) as portrayed in Table 3, where ZWAτ , is the 
model perfection and S the number of digital signatures authenticated (S = 10). 
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The maximum remainders gained after ANFISZW speculation for the lining/disc 
are (7.33 & 9.99)% respectively, and thus its perfections are (95.59 & 94.11)% 
respectively.  

These shallow remainders are a clue that guarantees the goodness of the mod-
el between calculated and speculated output signatures in digital form. The qual-
ity of perfection for the initiated ANFISZW showcases the ability of speculating 
lining/disc material removal in real time. 

( )( )1
1 1 Reminder 100%ZWA ZWj

SSτ τ−
−

= − ∗∑             (18) 

 

 

Figure 12. Attitude of ANFISZW inputs variables: (a - b) for the lining dry and wet condition, (c - d) for the disc dry and wet con-
dition. 
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Figure 13. Authenticating calculated from speculated (ANFISZW) rate of material re-
moval for the lining/disc. 

 
Table 3. Characteristics of the suggested ANFISZW model perfection and error. 

Test 
index 

Pad Disc 

Calculated Predicted Error Accuracy Calculated Predicted Error Accuracy 

1.0 4.05 3.76 7.33 92.67 2.33 2.19 5.89 94.11 

2.0 5.82 5.47 5.96 94.04 3.30 2.85 9.99 90.1 

3.0 8.15 7.74 4.97 95.03 4.02 3.72 7.64 92.36 

4.0 10.82 10.08 6.82 93.18 4.83 4.40 8.91 91.09 

5.0 13.16 12.29 6.62 93.38 5.94 5.39 9.17 90.83 

6.0 15.68 14.72 6.16 93.84 6.73 6.10 9.35 90.65 

7.0 17.31 16.24 6.16 93.84 7.62 6.89 9.52 90.48 

8.0 19.17 18.29 4.61 95.39 8.68 7.97 8.16 91.84 

9.0 21.85 20.52 6.09 93.91 9.46 8.63 8.85 91.15 

10.0 25.66 24.53 4.41 95.59 10.36 9.45 8.82 91.18 

 
The speculation of the remaining useful life (ANFISZU) for the lining/disc is 

the next episode of attentiveness as it favors the smooth monitoring of the sys-
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tem by maintenance agents and rail vehicle operators. In line with the aspira-
tions of ANFISZW for material removal, ANFISZU integrates digital signals such 
as train speed, contact pressure and rate of material removal as input signatures 
for learning and authenticating of the model. The model is designed as a single 
input layer with three aspiring digital inputs signatures and valorised with 
bell-shaped membership functions. The duty of the last layer is to aggregate a 
final output of the model using add-up features. The learning in these layers is 
updated using the least square edge near in a forward manner. 

The accepted ANFISZU structure used for speculating the remaining useful life 
(RUL) for lining/disc at this stage was chosen by keeping down the remainder 
between calculated and speculated output signatures. Made of three input signals 
and a single output, the structure showcases 78 hidden nodes after being learnt. 
A total of 108 linear and 27 nonlinear criteria were gained using a series of 52 
learning pairs and 27 fuzzy precepts. Figure 14(a), Figure 14(b) are the dissi-
milar significant behavior of the input signatures in relative to the output, with 
the rate of material removal showcasing a very high influence on the safe mode 
for both lining and the disc. The braking velocity and contact pressure has a 
huge significance on the rate of material removal as mentioned above. For atten-
tiveness, the damage signature shall be centered on the rate of material removal 
and the duration of complete usage of the component in real time. This pheno-
mena is very important to freight trains and passenger coaches because they 
don’t have to holdout gravely in acute usage, as the braking system in general 
holds an important safety factor during train operation. The regular control of 
the lining/disc is undoubtedly critical every moment the operator or mainten-
ance agent are engaged in usage of the train. But unfortunately, it is not possible  
 

 

Figure 14. Attitude of ANFISZU inputs variables: (a) for the lining, (b) for the disc. 
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to make any customary declaration on when the required adjustment or full 
substitution, when they are fully worn out, and thus their service life respectively. 
These issues can be remedied through speculating their remaining safe life, 
which is the object of attentiveness in this episode. 

To speculate the RUL of the system, authenticating the learnt model (ANFISZU) 
is the object of attentiveness. The ability to make-out a forethought damaged 
threshold signature for speculating the ANFISZU model output is relevant using 
the percentage ratio of 70:30 for both scenarios one at a time. Figure 15 is an 
extract that showcases the model calculated output signatures from the specu-
lated output signatures in alignment with their input signatures (Figure 14(a), 
Figure 14(b)).  

 

 

Figure 15. Authenticating calculated from speculated (ANFISZU) RUL for lining/disc. 
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In general, awareness shows that the average calculated RUL and speculated 
RUL curve showcase a significant damage signature of the lining/disc under in-
vestigation as in real time exploitation with little remainder (Equation (21)). But 
specifically, the lining is designed to be replaced often as contrasted to the disc 
during usage; they are engaged under one or a combination of two wear scena-
rios with unique damage signature. Their RUL output calculated and speculated 
digital signatures differ (Table 4) with fatigue scenarios leading the trend. These 
digital signatures demonstrate how server continues follow up of the braking 
operation is necessary to the rolling stock industry as mechanical failures are 
concerned. The failure of the braking operations indirectly account to about 75% 
failures of the wheelset and chassis as under braking or over braking thus con-
tribute to surface initiative defects and fragments on the brake disc, pads and on 
wheels’ rail contacts 

To perfect the above speculated model for remaining useful life (ANFISZU), Eq-
uations (17 & 21) are considered with their results portrayed and interpreted in 
Table 5, where ZUAτ , is the model perfection and S the number of authenticated 
digital signatures (S = 10). The maximum remainders gained after ANFISZU spec-
ulation for the lining/disc are (9.98 & 6.37)%, and its perfections are (96.82 & 
96.37)% one at a time. These shallow remainders are a clue that guarantee the  

 
Table 4. Summary of lining/disc RUL under different type of material removal. 

Wear Type 

Pad Disc 

RUL × 104 (seconds) Maximum φl (mm) RUL × 108 (seconds)  Maximum φd (mm) 

Calculated speculated Calculated speculated Calculated speculated Calculated speculated 

Abrasive 66.60 65.64 19.80 19.68 21.00 20.20 7.0 6.97 

Adhesive 56.40 53.70 19.50 19.46 17.40 16.20 6.9 6.85 

Fatigue 47.70 46.90 19.30 19.28 14.90 14.00 6.8 6.76 

 
Table 5. Characteristics of the suggested ANFISZU model perfection and error. 

Test index 
PAD DISC 

Calculated Predicted Error Accuracy Calculated Predicted Error Accuracy 

5.0 62.72 60.73 3.18 96.82 23.94 23.07 3.63 96.37 

10.0 53.51 51.20 4.31 95.69 21.90 21.03 3.97 96.03 

15.0 44.87 42.87 4.45 95.55 18.87 18.00 4.30 95.70 

20.0 36.23 34.23 6.15 93.85 15.84 14.97 4.64 95.36 

25.0 27.59 25.59 7.61 92.39 12.81 11.94 4.98 95.02 

30.0 19.79 18.49 6.55 93.45 9.78 8.91 5.32 94.68 

35.0 8.60 7.57 8.14 91.86 4.55 3.98 5.66 94.34 

40.0 5.61 5.10 9.08 90.92 3.09 2.52 5.99 94.01 

45.0 1.48 1.33 9.98 90.02 1.12 0.86 6.33 93.67 

50.0 0.50 0.45 9.35 90.65 0.61 0.34 6.67 93.33 
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goodness of the model between calculated and speculated output signatures in 
digital form. Even though the quality of perfection showcases a decrement atti-
tude (Table 5) due to the stochastic nature of the lining/disc contact scenario 
when the brake is energised, the initiated ANFISZU showcases the goodness of 
speculating lining/disc remaining safe operating mode in real time interval after 
50 mode authentications as the safe life parameter drops continuously as the rate 
of damage improves. 

( )( )1
1 1 Reminder 100%ZUA ZUj

SSτ τ−
−

= − ∗∑              (19) 

3.2.5. Output Display and Online Storage Modules 
In practice, the storage and display modules are interconnected in a single elec-
tronic device. The main ideology of these modules is to segregate and safeguard 
the relevant operational input-output signatures required by the rail vehicle op-
erator and the maintenance agent for smooth observation of the lining/disc in 
digital and linguistic shapes. It shall constitute a display screen mounted on the 
dashboard of the rail vehicle and the control room of individual train stations for 
distance observations. Lastly, an online display features designed to track and 
observe the same attitude using hardware, software and wireless technologies. 
The type of output signatories shall include; 0 or 1 for possible degradation loca-
lization, 1 mml d ≥  for lining/disc penetrating distance; 0 mml dϕ ≥  for 
calculated, predicted and field recording rate of material removal digital signa-
tures (example in Table 2 & Table 3); RULc SpL L= , RULp SpL L≤  and 

RULc Sdd L= , RULp Sdd L≤  for calculated, predicted and field recording rate of 
safe operating mode of the lining/disc digital signatures (example in Table 3 & 
Table 4) with SpL  & SpL  the life span of the lining/disc one at a time; 

l ld DDdϕ ϕ   ≥     for the contrast between calculated and field recorded rate of 
material removals and [ ] [ ]RULc RULMB DD

L L≥  for the lining/disc remaining safe 
operating modes. The field recording output signatures are not presented here as 
the next episode of this research shall capitalize on the design and development 
of a failure discovery, extraction and degradation field recorder for real time 
alert and observation of the braking units as the rate of material removals and 
operational safe modes are concerned. With such effect, the remainder between 
the model oriented and data oriented ( MB DD≠ ) is not showcased in this sec-
tion and thus the accuracy of suggested methodology to failure diagnostic and 
forecasting is still to be fully guaranteed. Regarding the online storage, the ac-
quired analogues field recording signatures gained from interconnected sensors 
are transformed to digital signatures and stored online using iCloud technology. 
This shall be considered with reason being that the operating state of the lin-
ing/disc can be accessed by the operator, maintenance agent, company owners, 
researchers and academicians for further follow up and development of new 
theories in managing failures and repairs. The auto verification of the sensors 
and the monitoring device is required on the other hand, as their malfunctioning 
can also affect the attitude with which the system can be interpreted by the rail 
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vehicle activists.  

4. Conclusion 

This research episode has focused on the development of a suggested model for 
failure forecasting using artificial intelligence technology. The model has been 
segregated as failure forecaster for the rate of material removal (ANFISZW) and 
an estimator for the remanant useful (ANFISZU) working mode of the lining/disc. 
The rate of material removal and RUL under fatigue, adhesive and abrasive sce-
narios has been calculated during dry and wet braking conditions. The rate of 
material removal due to fatigue presents a very high trend contrast to adhesive 
or abrasive conditions. To ensure effective condition based maintenance, the 
speculated models were learnt and authenticate using natural threshold signa-
tures and unnatural attitudes of degradation signatures initiated during simula-
tion study. The quality and perfection of the suggested methodology has been 
achieved in accordance with the shallow remainder gained and the output after 
authentication. Regarding future authentication of this research, these results 
shall be used to develop an intelligent maintenance tool for active and proactive 
health management through data recording in the rolling stock industry. 
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