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Abstract 
This study examines the kinetics of S. aureus and C. albicans adherence as it 
relates to HSV replication and corresponding dynamic display of shared re-
ceptors. HeLa cells infected for various times with HSV-1 gL86 or HSV-2 
333gJ-(MOI 50) were incubated with S. aureus ATCC 25923 or C. albicans 
yeast and CFU measured. Over time, S. aureus adherence to HSV-1 infected 
cells was relatively stable for 45 min then decreased to 0.8 of virus-free con-
trol, before cycling at 15-to-30 min intervals. In contrast, staphylococcal ad-
herence to HSV-2 infected cells proceeded at a more gradual rate, increasing 
to control levels at ~105 min before decreasing to a nadir at 165 min. Yeast 
adherence to HSV-1 infected cells remained relatively unchanged for the first 
75 min then increased 2-fold before returning to its original level. This pat-
tern is repeated over the next 90 min. While a similar pattern with C. albicans 
and HSV-2 was measured, it occurred more rapidly. Our model shows that 
while the interaction of both HSV-1 and HSV-2 with S. aureus is both dy-
namic and inhibitory, C. albicans interaction with HSV-2 is more permissive 
than HSV-1. However, the interaction of both microbes with HSV-infected 
cells in this model system appears to be independent of α5B1, CD36 and 
HSP60 viral-regulated receptor expression. These findings indicate that mi-
crobiome interactions across taxonomic kingdoms are more complex than 
previously thought. 
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1. Introduction 

The initiation of colonization by the microbiome requires cellular adherence as 
an essential first step. Herpes simplex viruses (HSV-1 and HSV-2) cause perma-
nent infections, and participate via asymptomatic shedding in not only per-
son-to-person transmission but auto-infection in nearly all humans [1] [2]. 
During auto-infection, whether as a result of asymptomatic or symptomatic in-
fection, the attachment, endocytosis and subsequent replication of the virus, 
causes differential receptor availability for other members of the microbiome [3] 
[4] [5]. Included amongst the high and low-affinity receptors that HSV-1 and 
HSV-2 can utilize for entry into cells are HSP60 (mitochondrial chaperonin) [6] 
[7], CD36 (platelet glycoprotein 4, fatty acid translocase (FAT)), and α5B1 (in-
tegrin and primary receptor for fibronectin) [6]. These receptors are shared by S. 
aureus and C. albicans, two pathogens that can persistently reside in the 
oro-nasopharynx with HSV. However, even though these co-shared receptors 
are present within the oro-nasopharynx there are distinct areas of colonization 
in hosts with natural teeth. One site shared by HSV-1/2 and C. albicans is the 
buccal and tongue mucosa [8]-[13]. In close proximity is the anterior nasal nares 
occupied by S. aureus [14]. This rather distinct separation in the colonization site 
is intriguing since S. aureus is isolated from oral specimens and adheres in vitro to 
buccal epithelial cells [15]. Despite this potential for HSV-candidal-staphylococcal 
colonization site overlap, S. aureus is only rarely isolated from normal buccal 
and tongue mucosa. This is interesting since S. aureus causes both gum and tis-
sue infections, including chronic gingivitis and periodontal abscess [16] [17]. In 
contrast, when abiotic surfaces are present, as in the case of denture wearers, S. 
aureus forms a robust biofilm on the denture surface along with C. albicans [18]. 
This difference in epidemiology, and in vivo cell tropism may reflect differences 
in receptor turnover during viral entry. Initial studies examining the interaction 
between herpesvirus, S. aureus and C. albicans demonstrated that at the end of 
the time period encompassing the viral entry process (180 min), herpesvirus dif-
ferentially regulates the interaction of S. aureus and C. albicans with HeLa 229 
cells [12] [19]. This interaction was dependent on both herpes virus type (HSV-1 
vs. HSV-2) and organism. HSV-1 and HSV-2 display differences in kinetics of 
cell binding and subsequent cell-cell-fusion [20] [21] [22]. A possible mechan-
ism that would explain our observation is receptor changes during virus infec-
tion. To determine if differential expression by HSV of shared receptors is the 
mechanism through which this viral pathogen affects subsequent biofilm forma-
tion, we measured S. aureus and Candida adherence over time relative to the 
display of shared receptors.  

2. Materials and Methods 
2.1. Microbial Strains and Handling  

HSV infection of HeLa cells is a well-defined viral replication system with early 
receptors and associated proteins defined. In addition, this system uses well 
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characterized genetically modified HSV-1&2 strains that, in HeLa cells, under-go 
the replicative cycle but HSV-1 progeny cannot infect other cells. Recombinant 
spread-deficient, entry and replication proficient strains from a single lot of ei-
ther HSV-1 (KOS) gL86 or HSV-2 (KOS) 333gJ-encoding a beta-galactosidase 
reporter activity were used as previously described [12] [19]. HSV entry into 
cells was confirmed by o-nitrophenyl-β-D-galactopyranoside (ONPG; Sigma) 
and 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal; Research Prod-
ucts International) assays, as previously described [23].  

C. albicans and S. aureus ATCC 25923 were maintained and cultured as pre-
viously described [12] [19]. Both organisms (−80˚C) were subcultured (37˚C; 18 
hr) for use onto either Sabouraud Dextrose agar or mannitol salts medium, re-
spectively. C. albicans yeast and S. aureus were prepared in Hanks Balanced Salts 
Solution (HBSS; 105 CFU/ml final concentration; 37˚C; Corning) immediately 
prior to use.  

2.2. Polymicrobic Biofilm Initiation  

The number of HeLa cell-associated S. aureus and C. albicans was determined as 
an indicator of biofilm initiation, as previously described [12] [19]. Briefly, HeLa 
229 cells (Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g/L glucose 
and L-glutamine, without sodium pyruvate; Mediatech; 10% heat-inactivated 
fetal bovine serum (FBS; VWR); gentamicin, 50 µg/ml; VWR) were grown over-
night in 96-well plates (4 × 104 cells/well; 85% final confluence) at 37 ˚C, 5% 
CO2. HSV-1 or HSV-2 at a multiplicity of infection (MOI) of 50 was added to 
washed cells (Opti-MEM with HEPES, sodium bicarbonate and L-glutamine; 
Gibco) then incubated for various times. After viral infection, the cells were 
washed once with PBS then HBSS before incubation with C. albicans or S. au-
reus (5:1 target to cell ratio; n = 24). After incubation (30 min; 37˚C; 5% CO2), 
cells were washed to remove unbound microbes (PBSx3) and lysed (RIPA, Life 
Technologies, 1:50 dilution; filter sterilized). The lysate (50 µl) was spread and 
plated onto mannitol salts and/or Fungisel agar to select for S. aureus and C. al-
bicans, respectively. Controls consisted of HSV-uninfected HeLa cells handled as 
described for virus-infected HeLa cells. For each experiment, there was a sepa-
rate control plate to confirm the viral MOI. In addition, maintenance of cell via-
bility (trypan blue dye exclusion) was performed over the course of infection. 
Buffer controls showed no change in either staphylococcal or candidal CFU/ml 
during the 30 min incubation period.  

2.3. Expression of HSV, C. albicans and S. aureus Co-Receptors 

HSV-1 and HSV-2 effect on expression over time of receptors shared with C. al-
bicans and S. aureus, i.e. HSP60 (mitochondrial chaperonin) [6] [7], CD36 (plate-
let glycoprotein 4, fatty acid translocase (FAT)), and α5B1 (integrin and primary 
receptor for fibronectin) [6] was determined by immunofluorescent microscopy 
imaging studies. Cells were infected with either HSV-1 or HSV-2, then washed 
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free of non-attached virus (PBSx3) and fixed (methanol). Cells were stained with 
FITC-conjugated Herpes Simplex Virus Type 1 + 2 gD antibody (OriGene), and 
4',6-diamidino-2-phenylindole (DAPI; Life Technologies) to stain for nucleus. 
Cellular receptor staining was performed using mouse anti-HSP60, -CD36, or 
-α5β1 primary antibody. Secondary antibody used was Alexa Fluor 594 goat an-
ti-mouse (Abcam). Fluorescence of cellular receptors was measured using 
ImageJ, and fluorescence was normalized to uninfected, virus-free control for 
each time point and sample (n = 40 total cells; 4 fields over 2 cover slips). In the 
absence of HSV, no receptor turnover was detected over the course of the assay. 

2.4. Statistical Analysis 

Each adherence time course (n = 24) was repeated once. Each imaging study was 
conducted twice. CFU were evaluated by analysis of variance (ANOVA; Graph-
Pad InStat 3.10 for Windows, GraphPad Software Inc.). Mean values were con-
sidered significantly different at p < 0.05. T-test between groups was used to de-
termine differences between fluorescence intensity as measured using ImageJ 
analysis.  

3. Results 
3.1. HSV-1 Regulation of Candida and S. aureus Adherence 

To control colonization of pathogens on mucosal surfaces it is important to de-
fine the polymicrobic interactions that can occur. To accomplish this, an exami-
nation of factors regulating adherence, the initial step in biofilm formation, are 
required. Over the time period tested which represents the entry stage of HSV, S. 
aureus adherence (n = 24) was reduced as compared to HSV-1 free controls 
(Figure 1(a) and Figure 1(c)). The level of HSV-1 inhibition of S. aureus adhe-
rence reached the level of significant adherence reduction around 120 - 135 min 
(p < 0.05) post-HSV-1 infection. After this point, adherence cycled over the next 
30 min returning to nearly control levels, before exhibiting significant reduction 
at 180 min. In contrast, yeast adherence (n = 24) to HSV-1 infected cells was rel-
atively unchanged for the first 75 min as compared to uninfected controls 
(Figure 1(b) and Figure 1(d)). However, levels significantly (p < 0.05) increased 
(2-fold) at 90 min before decreasing to its original level by 105 min, with the 
pattern repeated at 180 min. During this time period, there was no decrease in 
cell viability that would account for changes in microbial adherence.  

3.2. HSV-2 Regulation of Candida and S. aureus Adherence 

Staphylococcal adherence to HSV-2 infected cells was also inhibited (Figure 
2(a) and Figure 2(c)). The pattern of inhibition of S. aureus adherence by 
HSV-2 was immediate with a significant reduction (p < 0.05) by 15 min with 
adherence levels cycling to control levels between 75 to 150 min. The adherence 
level at 30 min was also similar to that of the staphylococcal control before de-
creasing to 0.65 of virus-free control at 165 to 180 min. The level of C. albicans  
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Figure 1. Kinetics of Staphylococcus aureus and Candida albicans adherence to HSV-1 infected HeLa 229 cells. HeLa 229 cells 
were infected with HSV-1 (KOS) gL-86 and co-incubated with (a) S. aureus or (b) C. albicans, for various time points. The adhe-
rence level of co-HSV-1 infection was normalized to (c) S. aureus or (d) C. albicans only time-matched control. Each adherence 
time course (n = 24) was repeated once. * indicates significantly different from virus-free time matched control (p < 0.05) as de-
termined by ANOVA. Arrows indicate time points used for immunofluorescent staining.  

 

 
Figure 2. Kinetics of Staphylococcus aureus and Candida albicans adherence to HSV-2 infected HeLa 229 cells. HeLa 229 cells 
were infected with HSV-2 (KOS) 333gJ- and co-incubated with (a) S. aureus or (b) C. albicans, for various time points. The adhe-
rence level of co-HSV-2 infection was normalized to (c) S. aureus or (d) C. albicans only time-matched control. Each adherence 
time course (n = 24) was repeated once. * indicates significantly different from virus-free time matched control (p < 0.05) as de-
termined by ANOVA. Arrows indicate time points used for immunofluorescent staining. 
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adherence to HSV-2 infected HeLa cells was significantly enhanced (p < 0.05) at 
60 to 135 min before returning to HSV-2 free control levels (Figure 2(d)).  

3.3. Kinetics of HSV-1/2, S. aureus and C. albicans Co-Receptor  
Expression 

Herpes viral infection of HeLa cells causes a dynamic expression of receptors 
shared by HSV-1/2, S. aureus and C. albicans, with the kinetics of receptor ex-
pression different between the viruses (Figure 3(a), Figure 3(b), Figures S1-S6). 
Based on the CFU adherence studies (Figure 1) HSV-1 had minimal effect on 
either S. aureus or Candida adherence. Since the receptors chosen were detecta-
ble despite the depression of S. aureus adherence, receptor display was measured 
for those time periods which best reflected changes in enhanced adherence for 
C. albicans. Over time, HSV-1 regulated expression of α5β1, CD36 significantly 
(p < 0.05) increased. HSP60 expression significantly (p < 0.05) increased by 30 
min to maximally measured levels where it remained over the course of the as-
say. However, the pattern of receptor expression measured does not correlate 
with the pattern of S. aureus or C. albicans adherence to HSV-1 infected cells. 
The inverse correlation between staphylococcal adherence and receptor expres-
sion likely indicates internalization of required receptor upon viral endocytosis. 
HSV-2 associated with HeLa cells was higher at the same MOI (50) than HSV-1 
(Figure S4-S6 and Figure S1-S3, respectively). This difference in viral entry 
pattern parallels that of α5β1 and CD36 receptor expression (~4-fold increase 
and ~4 - 6-fold increase, respectively). However, HSV-2 regulation of receptor 
expression like that of HSV-1 does not appear to directly correlate with either S. 
aureus or C. albicans adherence.  

4. Discussion 

The co-habitation of HSV with other taxonomic members of the microbiome, 
i.e. bacteria and fungi, occurs commonly on the buccal and tongue surfaces [8] 
[9] [10] [11]. The communal interaction between these microbes is also of im-
portance in disease states such as atopic dermatitis (eczema herpeticum) where 
there is an association between HSV infection causing increased staphylococcal 
skin disease as well as geographically distal candida infections [24] [25] [26]. On 
these surfaces, the intermittent viral shedding, either during asymptomatic or 
symptomatic infections, likely causes an alteration in the display of available re-
ceptors to which other members of the resident microbiome biofilm would at-
tach. This differential display of receptors could be due to either viral occupation 
of specific receptors during their attachment process, or conversely, as a result of 
exposure or internalization of receptors during virus endocytosis [27] [28]. Al-
terations in expression of receptors shared between HSV, S. aureus or C. albi-
cans could have a significant impact on infectious processes. 

HSV utilizes a variety of receptors in the initial stage of its entry process in-
cluding α5β1, CD36, HSP60 and fibronectin, which are receptors HSV-1/2  
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Figure 3. Kinetics of HSV-1/2 Candida and S. aureus shared cell receptor display (A) HeLa 229 cells infected with either HSV-1 or 
HSV-2 for various time points, followed by fixation and immunofluorescent staining of nucleus (DAPI), HSV-1 or HSV-2, and 
cellular receptors α5β1, CD36, and HSP60. DAPI, HSV-1/2 and cellular receptor merged images are shown. Scale bar (A) 
represents 500 μm. ((a)-(f)) α5β1, CD36, and HSP60 fluorescence was measured using ImageJ, and normalized to uninfected, vi-
rus-free control for each time point and sample (5 fields; n = 10/field). * indicates significant difference (p < 0.05). 
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shares with S. aureus and C. albicans [29]-[46]. A distinct advantage in the utili-
zation of HeLa cells for the study of microbiome interactions is that these cells 
lack surface fibronectin expression, which in situ is also differentially lacking on 
the apical surface of mucosal epithelia [47]-[54]. Thus, initial interactions by the 
microbial mucosal biofilm with HSV-infected cells can be examined in the ab-
sence of this confounding extracellular matrix material. Defining the kinetics of 
virus-mediated receptor display, relative to the interaction between virally in-
fected cells and putative members of the microbiome in cell association, i.e. ad-
herence, is an important first step in characterization of the virus-regulated mi-
crobe membership. The findings for S. aureus and C. albicans adherence to 
HSV-1 or HSV-2 infected cells demonstrate that it is a dynamic virus-specific 
process. Interestingly, the dynamic display of virus-microbe shared receptors 
α5β1, CD36 and HSP60 does not correlate with adherence patterns for either S. 
aureus or C. albicans despite their shared receptors [47] [55] [56]. Thus, alterna-
tive receptors may be involved in regulating subsequent S. aureus or C. albicans 
adherence to HSV-infected cells. To date, most studies measuring microbial ad-
herence to living substrate are done at a “point-in-time”, as was the foundational 
study measuring HSV-staphylococcal-candidal interaction (180 min) [12]. The 
importance of measuring the kinetics of complex interkingdom interactions in 
biofilm formation as they pertain to a dynamic substrate, such as a living cell 
membrane, has been shown by the findings herein. This observation also illu-
strates the complexity in dissecting apart the interactions that take place between 
members of the microbiome, especially since the virion endocytic process could 
result in the masking or unmasking of alternative receptors.  

5. Conclusion 

Further studies are needed to clarify this complex relationship between micro-
biome members, particularly with regards to additional specific S. aureus or C. 
albicans receptors that could be hidden, or unmasked, as part of HSV’s cell entry 
process [12]. These studies also further support the previous findings that 
HSV-S. aureus has an antagonistic relationship while that of HSV-Candida is a 
supportive interaction, relative to adherence. Characterization of how HSV re-
gulates microbiome membership in HeLa cells may prove useful in identifying 
factors that can be applied to studies of candidal or staphylococcal colonization 
of HSV infected keratinocytes towards the elucidation of the pathophysiology of 
specific diseases such as eczema herpeticum. 
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Supplemental Data 

 
Figure S1. Kinetics of HSV-1 and α5β1 cellular receptor. HeLa 229 cells were infected with HSV-1 for 30, 90, 135 and 180 minutes, 
followed by fixation and staining of nucleus (DAPI), HSV-1, and cellular receptor α5β1 by immunofluorescent microscopy. Indi-
vidual channel images are shown. α5β1 fluorescence was measured using ImageJ, and normalized to uninfected, virus-free control 
for each time point and sample (40 cells total/4 fields over 2 cover slips). Scale bar represents 500 μm. 
 

 
Figure S2. Kinetics of HSV-1 and CD36 cellular receptor. HeLa 229 cells were infected with HSV-1 for 30, 90, 135 and 180 mi-
nutes, followed by fixation and staining of nucleus (DAPI), HSV-1, and cellular receptor CD36 by immunofluorescent microscopy. 
Individual channel images are shown. CD36 fluorescence was measured using ImageJ, and normalized to uninfected, virus-free 
control for each time point and sample (40 cells total/4 fields over 2 cover slips). Scale bar represents 500 μm. 

https://doi.org/10.4236/aim.2020.1011043


B. J. Plotkin et al. 
 

 

DOI: 10.4236/aim.2020.1011043 597 Advances in Microbiology 
 

 
Figure S3. Kinetics of HSV-1 and HSP60 cellular receptor. HeLa 229 cells were infected with HSV-1 for 30, 90, 135 and 180 mi-
nutes, followed by fixation and staining of nucleus (DAPI), HSV-1, and cellular receptor HSP60 by immunofluorescent micro-
scopy. Individual channel images are shown. HSP60 fluorescence was measured using ImageJ, and normalized to uninfected, vi-
rus-free control for each time point and sample (40 cells total/4 fields over 2 cover slips). Scale bar represents 500 μm. 

 

 
Figure S4. Kinetics of HSV-2 and α5β1 cellular receptor. HeLa 229 cells were infected with HSV-1 for 30, 90, 135 and 180 minutes, 
followed by fixation and staining of nucleus (DAPI), HSV-2 and cellular receptor α5β1 by immunofluorescent microscopy. Indi-
vidual channel images are shown. α5β1 fluorescence was measured using ImageJ, and normalized to uninfected, virus-free control 
for each time point and sample (40 cells total/4 fields over 2 cover slips). Scale bar represents 500 μm. 
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Figure S5. Kinetics of HSV-2 and CD36 cellular receptor. HeLa 229 cells were infected with HSV-1 for 30, 90, 135 and 180 mi-
nutes, followed by fixation and staining of nucleus (DAPI), HSV-2, and cellular receptor CD36 by immunofluorescent microscopy. 
Individual channel images are shown. CD36 fluorescence was measured using ImageJ, and normalized to uninfected, virus-free 
control for each time point and sample (40 cells total/4 fields over 2 cover slips). Scale bar represents 500 μm. 

 

 
Figure S6. Kinetics of HSV-2 and HSP60 cellular receptor. HeLa 229 cells were infected with HSV-1 for 30, 90, 135 and 180 mi-
nutes, followed by fixation and staining of nucleus (DAPI), HSV-2, and cellular receptor HSP60 by immunofluorescent micro-
scopy. Individual channel images are shown. HSP60 fluorescence was measured using ImageJ, and normalized to uninfected, vi-
rus-free control for each time point and sample (40 cells total/4 fields over 2 cover slips). Scale bar represents 500 μm.   
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