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Abstract 
Diffusion of momentum gives rise to viscosity. This article presents a solution 
in the explicit form of the equation of the momentum diffusion for a viscous 
fluid flowing around a plate taking into account deceleration. Three characte-
ristic regions of a viscous flow have been described: the mantle, the body of 
the boundary layer, the viscous sublayer. In the mantle, the effect of viscosity 
is significant at a considerable distance from the plate. The momentum diffu-
sion is focused in the body of the boundary layer. The diffusion force that 
produces the momentum of force giving rise to eddies is localized in the 
viscous sublayer. At the beginning of the plate, a moment of force twists the 
liquid along the flow, creating eddies that roll along the plate. For this reason, 
they are pressed against the surface of the plate. But at some distance from 
the beginning of the plate, the moment of force changes its orientation to the 
opposite and twists the vortices in the opposite direction, causing the vortices 
to roll along the plate against the flow. This causes the liquid to detach from 
the surface of the plate. This is the beginning of turbulence. The diameter of 
the vortex produced in the viscous sublayer is small being of the order of the 
thickness of the viscous sublayer. The vortex possesses a large angular veloci-
ty. Due to the momentum diffusion and the effect of the eddies combined in 
passing along the plate, its diameter increases up to the size of the thickness 
of the boundary layer and even more, whereas its angular velocity decreases 
down to the values really observed. The value of the critical Reynolds number 
of the transition from the laminar flow to the turbulent one has been found, 
and it agrees with the experimental data. The value of the shear stress pro-
duced by the viscous fluid on the plate surface has also been obtained. The 
way of measurement of the friction coefficient characterizing the effect of the 
plate on the flow has been proposed. It has been shown that the boundary 
condition of adhesion to the surface of a body flown around, that is applied in 
the estimation of viscous flows, contradicts the real processes of the flow. 
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1. Introduction 

At present, the theory of the flow of a viscous fluid has been insufficiently de-
veloped. Even the simplest problem of a flow around a plate parallel to the 
stream cannot be solved using the proposed solutions that are not suitable for 
the description of the flow near the front edge of the plate. Nor there is an ade-
quate description of the transition of the laminar flow to the turbulent one or the 
theory of the generation of eddies, etc. The main reason for this situation is the 
introduction of “viscous stresses” into the above theory, that do not exist in na-
ture [1]. At the same time, it is surprising that when considering a viscous flow, 
they are absolutely right in saying that the reason for the viscosity is the mo-
mentum diffusion. However, instead of studying diffusion, they say that it pro-
duces the shear stresses τ . 

The Newton law is postulated  

 xu
y

τ η
∂

=
∂

                            (1) 

here xu  is the velocity of the flow along the abscissa; η  is the viscosity coeffi-
cient. By definition, a fluid and a gas are of the media in which there are no 
shear stresses. The momentum is a volume vector. The forces produced by its 
diffusion are also volume forces rather than surface once, the latter being cha-
racteristic of a shear stress. An incorrect definition of this force is the reason for 
misunderstanding of a viscous flow. As a result, the fictitous viscous stresses 
have been included in the equation of motion, which made it unsuitable for cal-
culations. Thus, the diffusion equation, which is the key element in the theory of 
viscosity, has escaped consideration. 

2. Equation of Momentum Diffusion 

If a fluid contains the momentum sources with the volume density J , then, ac-
cording to the Newton law [2] [3] [4] [5]  

 d
dt

=
J F                               (2) 

The momentum sources are equivalent to the action of the volume force. Here 
,J F  are the vectors of the momentum density and the volume force density, 

respectively. The consideration is carried out under the two-dimensional state-
ment of the problem, with the problem parameters depending only on two space 
variables x and y. Figure 1 shows a schematic of the considered problem. The 
stationary plate of the length dl  flown around by a viscous fluid is located on  
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Figure 1. Shown is a plate of the length dl , located on the abscissa and flown around by 
a viscous fluid with the momentum density w . 
 
the abscissa interval ( )d ,0l− . The flow of the viscous fluid with the momentum 
density  

 { } { },0 ,0ew v ρ= − = −w                        (3) 

is parallel to the abscissa in the negative direction. Here 0ev >  is the velocity of 
the approach stream, ρ  is the density. The minus in (3) means that the flow 
moves in the negative direction of the abscissa. The diffusion vector of the mo-
mentum { },0I=I  also consists of one abscissa component. The viscosity is 
produced by the momentum diffusion [1]. The effect of the momentum pro-
duced by diffusion can be treated as the appearance of the momentum sources 
with the density { },0J=J  in the flow that are derived from the equation of 
the momentum diffusion. 

2.1. Diffusion Equation  

Dimensionless equation. The nonstationary equation of momentum diffusion 
in a motionless fluid is  

 ( ) ( ) ( )
2 2

02 2 d dJ J J J l t x y t
t x y

η δ δ δ
 ∂ ∂ ∂

− + = ∂ ∂ ∂ 
             (4) 

Here η  is the diffusion coefficient, 0J  is the power of the momentum source 
on the plate, i.e. the momentum quantity produced by unit of surface per unit of 
time, dl  is the length of the elementary plate flown around. The value of 

0 d dJ l t  is the quantity of the momentum produced when the momentum 
source operates on the plate of the length dl  during the time dτ . The length 
dl  is considered small. 

Equation (4) is rewritten as  

 ( ) ( ) ( )
2 2

0
2 2 2 d dm

m mm

t J
l Jl

η
λ τδ χ δ ζ δ τ

τ χ ζ
 ∂ϒ ∂ ϒ ∂ ϒ

− + = ∂ ∂ ∂ 
         (5) 

Here  

 d d, , , , d , d
m m m m m m

J x y t l t
J l l t l t

χ ζ τ λ τϒ = = = = = =       (6) 

and the property ( ) ( )kx x kδ δ=  of the δ -function is used. 
The values of the scales , ,m m mJ l t  can be found from the equalities  

 0
2 1, 1m

m mm

t J
l Jl

η
= =                          (7) 
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As there are two equalities and three scales, ml  is an arbitrary value and then  

 
2

0,m
m m

m

l J
t J

lη
= =                          (8) 

The Equation (4) is presented in the dimensionless form  

 ( ) ( ) ( )
2 2

2 2 d dλ τδ χ δ ζ δ τ
τ χ ζ
∂ϒ ∂ ϒ ∂ ϒ

− − =
∂ ∂ ∂

               (9) 

Its solution at 0τ >  is [6] [7]:  

 ( )
2 2d d, , exp

4 4
λ τ χ ζχ ζ τ
τ τ

 +
ϒ = − 

 
                (10) 

For 0τ < , that is before the momentum force operates, ( ), , 0χ ζ τϒ ≡ . 
Let us introduce the dimensionless velocity  

 m
e

l
vν
η

=                            (11) 

Since ml  is an arbitrary value, it is possible to assume m el vη= , then 1ν = . 
Let at the moment of time dNτ τ= −  the elementary plate be on the abscissa 

at the point dN λ− , N being an arbitrary natural number. Over the time dτ  it 
will move along the horizontal coordinate at a distance of d dλ τ= , since the 
velocity 1ν =  and reach the point ( )1 dN λ− +  at the moment ( )1 dN τ− + . 

The process is repeated and the plate moves to the point ( )2 dN λ− +  at the 
moment ( )2 dN τ− + . After i-jumps it gets to the point ( )di N iχ λ= − +  at the 
moment ( )di N iτ τ= − + , here 1,2, ,i N=  . After N jumps the plate will ar-
rive at the origin of coordinates 0χ =  at time 0τ = . 

The equation of the momentum diffusion (9) for the moment iτ  is  

 ( ) ( ) ( )
2 2

2 2 d d i iλ τδ χ χ δ ζ δ τ τ
τ χ ζ
∂ϒ ∂ ϒ ∂ ϒ

− − = − −
∂ ∂ ∂

         (12) 

Its solution is  

 ( ) ( )
( )

( )

2 2d d, , exp
4 4

i
i i

i i

χ χ ζλ τχ χ ζ τ τ
τ τ τ τ

 − +
 ϒ − − =

π
−

− −  
      (13) 

Equation (13) is the diffusion momentum ϒ  produced by the elementary plate 
at the ith moment of time. 

Summarizing Equation (13) one obtains  

 
( )

( )
( )

2 20

1
1

dd 1 exp d
4 d 4 di N

i
i i

χ τ ζλ τ
τ τ τ τ=− +

 − +
ϒ = − 

− −  π ∑          (14) 

Equation (14) is the diffusion momentum produced by the moving elementary 
plate from the beginning of the moment at dNτ τ= −  up to 0τ = . Let us turn 
in (14) to a new coordinate system by the substitution  

 χ χ τ′= −                            (15) 

in which the plate dλ  is immobile whereas the fluid is moving at a velocity of 
1ν = − .  
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( )

( )( )
( )

2 20

1
1

dd 1 exp d
4 d 4 di N

i
i i

χ τ τ ζλ τ
τ τ τ τ=− +

 ′ + − +
 ϒ = −

− 
 

π − ∑         (16) 

Further the prime is dropped. At N →∞  in (16) changing from summarizing 
to integrating one obtains  

( ) ( )
( )

( ) ( )

2 2
1

1 1
1 1

2 2

0

d 1, exp d
4 4

d 1 exp d ,
4 4

s
s

s s

τ χ τ τ ζλχ ζ τ
τ τ τ τ

χ ζλ χ ζ

−∞

+∞

 + − +
ϒ = − 

− −  
 + +

= − = ϒ 
  

π

π

∫

∫ 

         (17) 

1τ  changes from −∞  to τ , 1s τ τ= − . 
The right-hand side of (17) does not contain time; it is the solutions of the sta-

tionary equation of the momentum diffusion produced by the immobile ele-
mentary plate in the moving fluid  

 ( ) ( )
2 2

2 2 dλδ χ δ ζ
χ χ ζ
∂ϒ ∂ ϒ ∂ ϒ

− − =
∂ ∂ ∂

  

                 (18) 

Thus, the solution of the stationary Equation (18) is derived from the solution 
of the nonstationary Equation (9). 

2.2. Interaction of the Flow with the Plate 

Until now, the review did not specify the liquid or gas, since this was not neces-
sary. Below we will consider only the flow of gas. This is due to the fact that in a 
gas, the molecules between collisions move independently of each other. In a 
liquid, there is no such independence, the molecules are constantly interacting 
with each other and move in clusters. These differences affect their interaction 
with the surface of the plate. If gas need to consider the interaction of individual 
molecules with a surface for fluid interaction of the cluster with it. 

When a gas molecule of the mass µ  runs into the plate moving at the veloc-
ity ev , it acquires a momentum which, on the average, is  

 evαµ                               (19) 

and directed along the abscissa. The value of α  specifies an average fraction of 
the tangential momentum imparted when the gas molecule collides with the 
plate surface  

 0 1α≤ ≤                             (20) 

From the Clapeyron-Mendeleev law it follows that the number of the gas mo-
lecules per unit of volume is  

 pn
kT

=                             (21) 

Hence, the average distance between the molecules is as follows  

 
1

0

3

3
1 kTr
n p

 
= =  

 
                       (22) 
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Here k is the Boltzmann constant, T is the absolute temperature, p is the gas 
pressure. For the air 0r  is by an order of magnitude larger than the interatomic 
distance in condensed substances. 

The molecule free path is [8]  

 1
2 2

kT
n pσ σ

Λ = =                       (23) 

Here σ  is the square of the section of the molecule scattering. For the air 
710 m−Λ  . 

The root-mean square velocity of the molecule thermal movement is  

 8kTv
µ

=                           (24) 

The average time during which a molecule covers the length Λ  will be  

 
4

kT
t

v p
µ
σ

Λ
= =                        (25) 

Let us consider a parallelepiped adjacent to the plate with the sides dl  along 
the abscissa, Λ  along the ordinate and 1 along the z-axis (Figure 2) and call it 
an elementary volume. Its lower side, the plate dl , has the square d 1l × . It 
contains the molecule number  

 dd
2
ln n l
σΛ = Λ =                       (26) 

The sixth part of these molecules 6nΛ  move to the plate and over the time 
t  (25) they will reach its surface. As a result of their interaction with the surface 
atoms of the plate, each gas molecule will get the momentum of the value (19). 
The total value of the momentum imparted to the molecules during the time t  
will be written as  

 

 
Figure 2. Shown is the elementary volume, a parallelepiped with the sides dl  along the 
abscissa x and Λ  along the ordinate y adjacent to the plate. The length of the side along 
the z-axis is 1. 
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d
6 6

e ev n v n lαµ αµΛ Λ
=                       (27) 

Equation (27) is the momentum imparted from the plate dl  to the fluid over 
the time t . Further that momentum will be redistributed among all the mole-
cules nΛ  of the volume dlΛ  whose quantity is six times larger than that of the 
molecules that have interacted with the plate surface. The time of the redistribu-
tion is of the order of t . As a result, each molecule, from the volume dlΛ  
gets, on the average, an additional diffusion momentum of the value  

 
36 evα µ                             (28) 

Multipling (28) by nΛ  one obtains the momentum transferred to the ele-
mentary volume from the plate over the time t   

 
36 ev nα µ Λ                            (29) 

Dividing (29) by t  one derives the force acting on the gas volume dlΛ  due 
to the interaction with the plate  

 
36

ev n
t

µα Λ                           (30) 

Let us call (30) a diffusion force, which is a volume force. Dividing (30) by the 
volume dlΛ  one obtains the diffusion force density  

 
( )

2

3 29
ep v

kT
σα µ

π
                        (31) 

Then dividing (27) by t  one derives the tangential force applied to the surface 
of the plate dl   

 d
6

ev n
l

t
αµ Λ

                         (32) 

Dividing (32) by dl  one gets the force acting on the unit of the surface square 
of the plate, i.e. the tangential stress on the surface of the plate g produced by the 
momentum exchange between the plate and the gas  

 2
3

epv
g

kT
α µ

=
π

                      (33) 

The force acting on the plate of the length l, is written as  

 2F gL=                           (34) 

Since the plate has two surfaces, then the coefficient 2 is added to (34). For the 
formula (34) to be used correctly, it is necessary that the stress g should be the 
same across the whole surface of the plate, i.e. the plate length L should be suffi-
ciently small. The value F can be measured experimentally, which makes it 
possible to estimate the value g, and using the latter, according to (33) one can 
estimate the friction coefficient α   
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 3
2e

g kT
pv

α
µ

=                           (35) 

The method of calculating g presented here is not suitable for a fluid, since the 
molecules in a fluid interact with each other directly and the notion the free path 
disappears. The molecules move in clusters, which represents the Brownian 
movement. The momentum from the plate is transferred to the fluid by the mo-
lecule clusters located near the contact of the fluid with the plate surface rather 
than by individual molecules as it happens in a gas. Consideration of the me-
chanism of the viscous interaction of a fluid with a solid is beyond the scope of 
this article. 

In metal fluids heat conduction is caused by free electrons moving at a high 
velocity, whereas the momentum diffusion is produced by the molecules moving 
slowly. As a result, the Prandtl number for metal fluids is much less than unity. 

2.3. Plate of a Finite Size  

Let a plate be located on a segment of the axis of abscissa ( ),0L− . A flow is 
running against the plate and it is directed against the axis of abscissa with the 
momentum density (3) (see Figure 1), where dl  should be replaced by L. 

Let us consider a stationary problem. The plate L is divided into the sectors 
dl  numbered from the origin of the coordinates from 0 to N, here dN L l= . 
The number of a sector is also the number of the elementary volume related to 
it. A flow with the momentum density w is running against the sector numbered 
0. The time during which the gas will pass the elementary volume is  

 d

e

l
v

                               (36) 

and as a result, the diffusion momentum will be produced. Its value is found by 
multiplying the force acting on the elementary volume (30) by (36)  

 d d
36 36

e

e

v n nl l
t v t

µ µα αΛ Λ=                      (37) 

The momentum of the zero elementary volume of the inflowing stream dw lΛ  
decreases by (37) and will become  

 ( )d d 1 d d
36

nw l l w l
t

µ
α γ λΛΛ − = − Λ                 (38) 

Here  

 2

d, , d
36 me

l
lv t

ηγ αβ β λ= = =                  (39) 

Dividing (38) by the elementary volume dlΛ  one obtains the momentum den-
sity of the flow running against the elementary volume numbered 1.  

 ( ) d1 d ew w γ λγ λ −− =                        (40) 

Here (3), (24) and nµ ρ=  are used. The length dl  can always be chosen 
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small so as to satisfy d 1γ λ   and use the relation de 1 dγ λ γ λ− ≈ − . 
For the air 0.026 W m Kη = ⋅ , 710 m−Λ = , 400 m sv =  at 300 KT = , 

10 m sev =  one obtains.  

 29000β =                             (41) 

The value 1β  , the value 1α   and their product (39) 1γ  . From me-
chanics, it is known that when two bodies with a different mass collide, the 
transferred kinetic energy is in inverse proportion to the relation of their masses 
[9]. When a gas molecule collides with a solid, the above effect takes place. 
However, since the solid mass is by orders of magnitude larger than the mass of 
an air molecule, probably, one should take only the mass of the volume with a 
diameter of the order of the phonon length rather than the whole mass of the 
solid. Besides, the part of the kinetic energy of the translation transferred by vis-
cosity is small compared to the kinetic energy of the thermal movement. For in-
stance, for the above values of the parameters the relation of the kinetic energies 
is 2 2 0.0006ev v = . The collision occurs tangentially to the solid surface, which 
further decreases the part of the transferred translation. As a result, when a gas 
molecule collides with the plate surface, the latter is given a small part of the 
momentum. Therefore, the value β  is so small that  

 1γ αβ=                             (42) 

The diffusion profile of the zero sector is described by the Equation (18), its 
solution is (17). 

The flow momentum of sector 1 is given by the relation (40), the diffusion 
equation for it is written as  

 ( ) ( )
2 2

d
2 2 e d dγ λ λδ χ λ δ ζ

χ χ ζ
− ∂ϒ ∂ ϒ ∂ ϒ

− + = + ∂ ∂ ∂ 
             (43) 

Let us consider that d 0λ > , the plate is located on the abscissa χ  at the point 
dλ− . The right-hand side (43) describes the source of the diffusion momentum 

located at that point. The solution of (43) is  

 ( )2 2d

1
0

de d 1 exp d
4 4

s
s

s s

γ λ χ λ ζλ ∞−  + + +
ϒ = − − 

  π ∫             (44) 

Adding (17) and (44) one obtains the solution (43) for a plate of the length 
2dλ . 

The right-hand side (43) for the n sector is  

 ( )( )de d dn nγ λ λ χ λ ζ− +                       (45) 

Its solutions is  

 ( )2 2d

0

de d 1 exp d
4 4

n

n

n s
s

s s

γ λ χ λ ζλ ∞−  + + +
ϒ = − 

  π ∫           (46) 

Summing up (46) with respect to n and replacing summation by integration one 
obtains the diffusion momentum for a plate with a finite length  
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( ) ( )

( ) ( )

1

2 20
1

1
0

0

0

1 1, e exp d d
4 4

1 2 1 2e erf erf d
4 2 2

e erf erf d
4 2 2

s
s

s s

s s
s

s s

s s s
s s

γ χ

λ

γ χ

γ χ

χ χ ζ
χ ζ χ

γ χ λ γ χ

χ λ χ

∞
−

−

− ∞

− ∞

 − + +
ϒ = − − 

  
 + + + + +   

= Ψ −    
     
 + + +   

≈ Ψ −    
   

π

π 

π



∫ ∫

∫

∫

 (47) 

Here 1 dnχ λ− = − , the sign of minus is taken because the plate is located on the 
negative section of abscissa on the interval ( ),0λ− ,  

 ( )
2 21 1exp 1 exp

4 4
s s

s ss s
ζ ζγ γ γ

   
Ψ = − − − ≈ − −   

   
        (48) 

Since 1γ  , then in (47) and (48) (47) and (48) can be neglected in comparison 
with unity. 

Let us introduce the following symbols. If differentiation is performed with 
respect to the dimensional variables x and y, then grad and div are written with 
small letters. If differentiation is performed with respect to the dimensionless 
χ  and ζ , then the capital letters are written - Grad, Div. 

The diffusion momentum is the vector { },0= ϒϒ  with the abscissa xϒ  
equal (47) and ordinate 0yϒ = , its divergence is  

 ( ) { }, Div ,0χ ζ
χ
∂ϒ

Γ = ϒ =
∂

                    (49) 

Note the following feature of the diffusion momentum. With potential flows a 
change in the velocity results in a change of the pressure, and vice versa. This is 
not true in the case of the diffusion momentum: it is transferred by diffusion 
without a change of pressure or density. 

2.4. Approximation of the Quadrature Formula  

Let us consider a case when  

 
2

s c
s

χ λ+ +
>                           (50) 

 
2
s c

s
χ+

>                             (51) 

Since 0s > , then for 1.7c >  one can approximately assume [10]  

 ( )erf sign
2

s s
s

χ λ χ λ+ + 
≈ + + 

 
                  (52) 

 ( )erf sign
2
s s

s
χ χ+ 

≈ + 
 

                     (53) 

The larger c the higher the accuracy of approximation (52) and (53), for instance, 
for ( )erf 1.7 0.984= , ( )erf 3 0.999978= . 

To find the domains where (50) and (51) are satisfied, it is necessary to solve 
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quadratic equations with respect to s   

 2 0, 2 0s c s s c sχ λ χ λ+ + + = − + + =              (54) 

 2 0, 2 0s c s s c sχ χ+ + = − + =                  (55) 

The Equation (54) and Equation (55) have two similar roots  

 ( )2
1,2s c c χ λ= − ± − +                      (56) 

 2
3,4s c c χ= − ± −                         (57) 

The sign of minus is taken from square root for indices 1 and 3 and that of plus 
for 2 and 4, then with the real roots 1 2 3 4,s s s s< < . 

At  

 2cχ λ> −                             (58) 

the Equation (54) has no real roots and (50) is satisfied for all values 0 s≤ < ∞ . 
In this case,  

 0s χ λ+ + >                            (59) 

Therefore,  

 ( )sign 1s χ λ+ + ≈ +                        (60) 

In (47) and (67) the substitution is used  

 erf 1
2

s
s

χ λ+ + 
≈ 

 
                        (61) 

Similarly, for (55) at  

 2cχ >                              (62) 

There are no real roots  

 ( )sign 1s χ+ ≈ +                         (63) 

In (47) and (67) the substitution is used  

 erf 1
2
s

s
χ+ 

≈ 
 

                        (64) 

If (62) is satisfied, then the same holds true for (58), which means that 0ϒ = . 
Therefore, at a distance of 2c  in front of the plate the diffusion has no effect on 
the flow. 

Squaring (57) one obtains the interval ( ),q Q , on which approximation (53) 
is inadmissible  

 ( )
22 2

3 2 2
c cq s cχ χ= = − − −                 (65) 

 ( )
22 2

4 2 2
c cQ s cχ χ= = − + −                 (66) 

The interval for (52), where one cannot change erf for sign, is found in the same 
way. Under the conditions of (50), (51) it is possible to use approximation (61), 
(64) and (47) is written as  
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 2

0

2 2e ed erfc e erfc
2 4 2 2

s
χγ χ γζ γ χ

γζζ γ χ ζ γ χ

γ χ χ

− − −     − +    ϒ = Ψ = −
       π  

∫  (67) 

Equation (67) does not include the plate length λ . Equation (67) gives the cor-
rect values of ϒ  for the interval ( )2 2,c cχ λ∈ − + − . Outside the above interval, 
one should use (47) where the plate length λ  comes into play. This is illu-
strated in Figure 3, which shows the plots of the diffusion momentum ϒ  for 

0.0001γ =  of a plate with the length 41 10λ γ= =  calculated according to 
(47) - (a) and (67) - (b). They coincide. For ( )2 2,c cχ λ∈ − + −  the calculation 
is possible according to (67). 

Maximum ϒ  at the given χ  is located on the surface of the plate, where 
ϒ  increases from 0.3 for 0χ =  up to 21 at 5000χ − , with ϒ  further de-
creasing at a distance from the plate. When a distance of 100ζ ϒ  is reached, 
ϒ  is close to zero. The diffusion momentum ϒ  is the deceleration momentum. 
The larger ϒ  the slower the flow moves and the weaker its effect on the plate, 
which, in turn, produces less diffusion momentum. This is clearly seen in Figure 
3. At first the deceleration value on the plate surface increases quickly (the 
curves 1, 2, 3 for the interval ( )2500,0− ). Then ϒ  remains approximately 
constant on the interval ( )5000, 2500− − . After that the slope of the ϒ  curve 
becomes more flattened, which suggests that the diffusion rate decreases, as it is 
proportional to the slope. It is the decrease in the slope that indicates stabiliza-
tion in the ϒ  value on the plate surface, since the less diffusion momentum is  
 

 

Figure 3. The dependence of ( ),χ ζϒ  for 0.0001γ =  on ζ  for abscissa values: 0) 0χ = , 1) 

100χ = − , 2) 1000χ = − , 3) 2500χ = − , 4) 5000χ = − , 5) 7500χ = − , 6) 10000χ = − , calculated 
according to the formulas (47) for a) and (67) for (b). The formula (67) is not suitable for calculation at 

0χ = . Therefore, in the figure (b) there is no profile for 0χ = .  
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produced the less of it is further transmitted. After the point 5000χ = −  is 
reached, the momentum value becomes so low that ϒ  on the plate surface de-
creases. 

1 γ  is the characteristic length of the plate, with the plate length 1λ γ  
the profiles of ϒ  being similar. Figure 4 shows the ϒ  plots at 0.001γ =  for 

1000λ = . These plots are similar to those in Figure 3. 
Figure 5 demonstrates the diffusion profile of ϒ  behind the plate (the wake) 

for , 1.1 , 1.2 , 1.5λ χ λ λ λ λ= − − − −  for 1000λ =  calculated according to 
(47). 

The interval of change of ζ  in Figure 5 includes the negative values of ζ . 
In the plot for χ λ= −  one can see a bend caused by the presence of the mo-
mentum source on the plate surface. Behind the plate, it disappears smoothed by 
the diffusion. Here we have considered the case of a plate flown around by a 
stream without the formation of eddies. 

2.5. Induced Field  

The momentum diffusion field (47) is the first approximation of the solution of 
the plate flown around problem. It creates volume sources of momentum, which 
is equivalent to the appearance of a volume force in the flow. The second ap-
proximation is the calculation of the velocity field created by these volume 
sources, which we will call the induced field. The vectors , ,T U V  are the di-
mensionless induced momenta. 
 

 

Figure 4. Shown are the diffusion profiles ( ),χ ζϒ  for 1000λ =  for the following ab-

scissa values: 1) 10χ = − , 2) 100χ = − , 3) 250χ = − , 4) 500χ = − , 5) 750χ = − , 6) 
1000χ = − .  
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Figure 5. Shown are the profiles of the diffusion momentum in the wake behind the plate 
with the dimensionless length 1000λ =  for the points , 1.1 , 1.2 , 1.5χ λ λ λ λ= − − − − . 
There is a bend in the plot at the point 0ζ =  passing through the point χ λ= −  of the 
plate. In the other plots, there is no bend. 
 

Substitution of (67) into (49) shows that 0Γ ≠ , which means that the mo-
mentum diffusion produces volume momentum sources without a mass influx. 

The total momentum density in dimensionless variables is  

 + +w J T                               (68) 

The continuity equation for T  is  

 Div = ΓT                              (69) 

The potential solution for (69) is  

 ( ), Gradχ ζ =U                           (70) 

The potential   is  

 2 21 ln
2

χ ζ= ∗
π
Γ +                        (71) 

The symbol ∗  denotes convolution. The potential velocity field is  

 ( ) ( ) { }2 2

1 1Grad , ,
2

χ ζ χ ζ
χ ζ

= = Γ ∗
+π

U               (72) 

Figure 6 shows the plots of the potential abscissa and ordinate components 
U  for 50χ = , 100χ = , 2500χ = , 5000χ = . Their value is by an order of 
magnitude less than that of ϒ  (Figure 3). The potential momentum has the 
largest value near the front edge of the plate.  
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Figure 6. The potential component U  versus ζ  for 1) 50χ = , 2) 100χ = , 3) 2500χ = , 4) 2500χ = . (a) The 
potential component Uχ . (b) The potential component Uζ .  

 
The nonpotential solution V  is  

 ( )
( )

{ }
2 2

22 2

1 3, ,
4

χ ζχ ζ χ ζ
χ ζ

+
= Γ ∗

+
V                  (73) 

Figure 7 shows the plots of the nonpotential solution V  for the points: 1) 
50χ = , 2) 100χ = , 3) 1000χ = , 4) 2500χ = , 5000χ = . 

The general solution is written as follows  

 1 2c c= +T U V                          (74) 

Here 1 2,c c  are the arbitrary constants. Substituting T  into (69) one obtains  

 1 2Div Divc c+ = ΓU V                      (75) 

The ϒ  maximum is considerably larger than the maximum of the induced 
components ,U V  as can be seen from the plots in Figure 3, Figure 6 and Fig-
ure 7. The induced components decay slower than ϒ . For instance, ϒ  be-
comes small at a distance of 100 dimensionless units, whereas the induced com-
ponents at a distance of 2000 and more than that. Let us call the domain of the 
considerable values of the diffusion momentum ϒ  the body of the boundary 
layer, and the domain of the considerable values of the induced components the 
mantle. The third region, a viscous sublayer, is described below. It is by an order 
of magnitude thinner than the body of the boundary layer, with the diffusion 
force f  being significant there. 

Thus, in dimensional variables, the thickness of the boundary layer body is 
100 ml , and the thickness of the mantle is 2000 ml . 

To find 1c  and 2c , one needs two additional conditions. First, for any point 
( )0 0,χ ζ  the momentum flow through the closed contour around it is equal to  
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Figure 7. Plots of the dependence of the nonpotential induced component V  on ζ  for: 1) 50χ = , 2) 

100χ = , 3) 200χ = , 4) 1000χ = , 5) 2500χ = , 6) 5000χ = . (a) The nonpotential component Vχ . (b) 

The nonpotential component Vζ .  

 
the momentum produced by the sources inside the contour. The above condi-
tion excludes one arbitrary constant, e.g. 2c . To find 1c , one needs the second 
condition, e.g. the minimum energy of the system. 

The flow of the vectors ,U V  through the circle of the radius R with the cen-
ter at the point 0 0,χ ζ  is written as  

 
2

0

dU RG U R ϕ
π

= ∫                         (76) 

 
2

0

dV RG V R ϕ
π

= ∫                         (77) 

Here ,R RU V  are the radial components of the vectors ,U V  in the polar sys-
tem of the coordinates with the centre at the point 0 0,χ ζ . The transition is 
achieved through the change of the coordinates ,U V  in the polar system of the 
coordinates with the centre at the point 0 0,χ ζ . The transition is achieved 
through the change of the coordinates  

 cos , sinR Rχ ϕ ζ ϕ′ ′= =                      (78) 

Let us expand ( ),χ ζΓ  in (72) and (73) into the Tailor series near the point 

0 0,χ ζ  about the degrees ,χ ζ′ ′  and calculate a flow produced by the zero 
component in the expansion ( )0 0 0,χ ζΓ = Γ . The formulas (72) and (73) look 
like  

 
( ) ( )

{ }0
1 1 1 12 2

1 1

1 , d d
2

RS

χ χ ζ ζ χ ζ
χ χ ζ ζ

Γ ′ ′= − −
′ ′− + −π ∫∫U        (79) 

 
( ) ( )
( ) ( )

{ }
2 2

1 10
1 1 1 122 2

1 1

3
, d d

4
RS

χ χ ζ ζ
χ χ ζ ζ χ ζ

χ χ ζ ζ

′ ′− + −Γ ′ ′= − −
 ′ ′− + − 

π ∫∫V      (80) 
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Integration in (73) is performed in the circle RS  of the radius R with the centre 
at the point 0 0,χ ζ . 

Let us turn to the polar coordinates  

 cos , sinR Rχ ϕ ζ ϕ′ ′= =                       (81) 

The radial components of the induced vectors on the circle are written as  

 0 1 1d d
R

R U
S

U q χ ζ= Γ ∫∫                          (82) 

0 1 1d d
R

R V
S

V q χ ζ= Γ ∫∫                          (83) 

Here it is designated  

 
( )

1 1
2 2 2

1 1 1 1

cos sin
2 2 cos sinU

Rq
R R

χ ϕ ζ ϕ
χ ζ χ ϕ ζ ϕπ

− −
=

 + + − + 
              (84) 

( ) ( ) ( )

( )

2 2
1 1 1 1

22 2 2
1 1 1 1

3 cos sin cos sin

4 2 cos sin
V

R R R
q

R R

ϕ χ ϕ ζ χ ϕ ζ ϕ

χ ζ χ ϕ ζ ϕ

 − + − − − =
 + + − + π

     (85) 

Integrating (84) and (85) with respect to the contour RS  one obtains  

 
2

0

1d
2Uq R ϕ

π

=∫                            (86) 

 
2

0

1d
2Vq R ϕ

π

=∫                            (87) 

The flow of the induced vectors through the circle RS  according to (76) and 
(77) is written as  

 
2

20
0 1 1 1 1 0

0

d d d d d
2 2

R R

U U
S S

G q R Rϕ χ ζ χ ζ
π πΓ

= Γ = = Γ∫∫ ∫ ∫∫            (88) 

 
2

20
0 1 1 1 1 0

0

d d d d d
2 2

R R

V V
S S

G q R Rϕ χ ζ χ ζ
π πΓ

= Γ = = Γ∫∫ ∫ ∫∫            (89) 

Since  

 2
1 1d d

RS

Rχ ζ =∫∫                           (90) 

dividing (88) and (89) by (90) one derives the value of the divergence produced 
by the induced momenta U  and V  at the point 0 0,χ ζ  in the form  

 1Div Div
2

= =U V                         (91) 

Substituting the values of (91) into (75) and taking into account the fact that the 
value Γ  in the right-hand side of (75) should also be taken at the point 0 0,χ ζ  
one obtains  

 2 12c c= −                             (92) 

Hence and from (74):  

 ( )1 12c c= + −T U V                         (93) 
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The above relation contains one arbitrary constant 1c , its value can be defined 
from the condition of the minimum of energy flow. This problem calls for a 
separate consideration and it is beyond the scope of the present article. 

3. How Eddies Are Generated  

The emergence of eddies when a viscous fluid flows around a plate has not been 
thoroughly studied in theory. That they emerge in a fluid or a gas is explained by 
the action of the tangential viscous stresses which do not exist in nature. The 
problem is not trivial. The formation of an eddy requires the momentum of 
force. However, the question about how viscous stresses produce the momentum 
of force has not been answered yet. Besides, the simplest experiments reject this 
hypothesis. If one takes a glass with water and begins to rotate it, one can make 
sure that to make the water rotate in the glass due to viscosity, one has to rotate 
it for a long time. However, it should be noted that eddies form without the ro-
tation of a plate or any external flow. In a fluid or a gas the surface forces can 
have only components normal to the surface, as it happens with pressure, i.e. 
there are no shear stresses. This is how they are different from a solid. 

If the work of the force on a closed contour is not zero, then it produces the 
momentum of force. There can be no rotation without it. Therefore, the main 
problem of the formation of an eddy is the nature of the momentum of force. 

Diffusion Force  

The total derivative of the diffusion momentum density, i.e. the diffusion force is  

 d
d
J J J JF
t t xρ

∂ ∂
= = +

∂ ∂
                       (94) 

For the stationary case (94) changes over to  

 ( ) ( )2 2,
,m

m e

JJ J gF f
x l v

χ ζ
χ ζ

ρ ρ χ ρ η
∂ϒ∂

= = ϒ =
∂ ∂

            (95) 

This force has only abscissa - component 0xF ≠  directed against the flow, 
ordinate - component 0yF ≡ . This is also the case for { },0f=f . Here  

 ( ) ( ) ( ),
, ,f

χ ζ
χ ζ χ ζ

χ
∂ϒ

= ϒ
∂

                   (96) 

Let f depend linearly on ζ   

 ( )0 1f k c kζ ζ= − =                        (97) 

Here 1 0cζ ζ= − . The function ( )1,f χ ζ  can be expanded into the Tailor se-
ries near the point 0,cχ , with the coefficient at power one 1ζ  being  

 ( )0,fk cχ
ζ
∂

=
∂

                         (98) 

or it is possible to linearize f using a different approximation; its specific form is 
not significant. 

In the polar coordinates ,ϕ   
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 1cos , sinχ ϕ ζ ϕ= =                      (99) 

with the centre at the point ( )0,cχ  the azimuth component of the vector f  
is represented in this way  

 2
1 sin sinf k kϕ ζ ϕ ϕ= − = −                    (100) 

The moment of force in the dimensional form dM , with respect to the point 
( )0,cχ  produced by the force f  in the radius ring   with the thickness d  
is the written as  

 
22 2 2

3 2 3
4

0

d d d dm
e e

g gM l f k
v vϕ

ηϕ
ρ η ρ

π

= π= −∫              (101) 

Figure 8 shows the dependence of the force f (96) at 0.0001γ = . The diffu-
sion force is concentrated within the interval of 20 - 30 dimensionless units near 
the plate, which will be called a viscous sublayer. In dimensional variables, the 
thickness of the viscous sublayer will be 20 - 30lm. It is much thinner than the 
boundary layer. It is there that eddies are generated. Within the interval of 

2000 0χ− < <  near the plate there exist sections with practically linear depen-
dence ( )ζϒ , where the moment of force is produced. Linearisation of these 
plots gives the values of 0.080, 0.054, 0.033, 0.017, 0.010, 0.006k = − − − − − − . The 
coefficient order corresponds to the numbers of the plots in Figure 8. The coef-
ficients are negative, so taking into account the minus with the azimuth compo-
nent, in (100), one obtains the positive azimuth component, and, hence, the 
moment of force produced by it is positive and directed counter clockwise. The 
eddy seems to roll along the surface of the plate in the direction of the flow. The 
above direction of rotation agrees with the observation data on the eddies pro-
duced when the plate is flown around by a stream. Besides, the above direction 
of the moment produces the pressing effect of the flow to the plate. Since the 
point of the maximum deceleration is located on the plate, the direction of the 
rotation along the flow as if rolls the eddy in the direction of the movement of 
the flow. If the rotation is in the opposite direction, it obstructs the movement of 
the flow along the plate so the eddy “rolls” against the flow breaking it off the 
surface of plate. In the curve 7 of Figure 8 there is a section near the plate with 
the positive value of the angle of the slope, that is the place where the negative 
moment of force starting to rotate the fluid clockwise. From that moment eddies 
break off the surface of the plate and the laminar flow turns into the turbulent 
one. 

At 2000χ = −  the curve begins to bend and at 3000χ = − , there appears a 
section in the plot in which 0ζ∂ϒ ∂ > , i.e. there appears a region where rota-
tion occurs in the negative direction. It results in the eddy breaking off the plate 
surface and the beginning of turbulence. Thus, the dimensionless length of the 
plate * 2000λ   for 0.0001γ =  is the critical length of the transition to tur-
bulence. In the dimensional form this relation looks like  

 * 2000e

m

v LL
l

λ
η

= =                        (102) 
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Figure 8. Plots of the dependences of the diffusion force f on ζ  at the points χ =  1) 
−100, 2) −200, 3) −500, 4) −1000, 5) −1500, 6) −2000, 7) −3000, 8) −5000 at 0.0001γ = . 
 
The value  

 Re ev L
η

=                           (103) 

is the Reynolds number. The consideration presented here gives the correct val-
ue of the Reynolds number for the transition of the laminar flow to the turbulent 
one at 0.0001γ = . For small values of γ  the critical dimension of *λ  is larg-
er, at present γ  is not measured. 

The inertia moment of the ring is written as  

 
4

4 3 3
4d 2 d 2 dm
e

Z l
v
ηρ ρ= =π π                    (104) 

From (101) and (104) it follows that with linear dependence of the volume force 
density on the coordinate it produces angular acceleration independent of the 
radius of the ring.  

 
2

2 2

d
d 2
M k g
Z

ω
ρ η

= = −                     (105) 

Under the action of the moment (101) the fluid volume rotates like a solid with 
the same angular velocity at all points. 

Estimation. Let 2 3 5 2 21 N m , 2 kg m , 10 m s, 10g kρ η − −= = = = , then  

 7 210 sω −



                        (106) 

The eddy diameter is of the order of the thickness of the viscous sublayer. The 
eddies really observed have a diameter that is much larger - of the order of the 
thickness of the body of the boundary layer and more than that. Besides, the an-

https://doi.org/10.4236/ojfd.2020.104018


A. Ivanchin 
 

 

DOI: 10.4236/ojfd.2020.104018 311 Open Journal of Fluid Dynamics 
 

gular velocity (106) turns out larger. If the plate length is ~0.1 m, then the time it 
takes the flow to pass at the velocity 10 m sev   will be 0.01 s. During this 
time the eddy in the viscous sublayer has to reach the angular velocity 

510 m sω  . Due to the momentum diffusion, this angular velocity will relax. 
The inertia moment of the cylinder of the radius r relative to its axis per unit 
length along the z-coordinate is [9]  

 4

2
rρπ                              (107) 

Therefore, the increase in the cylinder radius r ten times with the same momen-
tum results in the decrease of the angular velocity 104 times, i.e. the angular ve-
locity ω  will decrease from 105 s−1 down to 10 s−1. The time necessary for the 
distribution of the momentum moment of the cylinder with the radius 30 ml  
onto that with the radius 300 ml  is  

 
( )2

5
2

300
10 0.01 sm

e

l
v
η

η
                      (108) 

This is the time of covering a distance equal to the length of the plate. 
Attraction of eddies. Theoretically, the rotation of two cylinders in a viscous 

liquid is discussed [11] [12], but we are not interested in their interaction with a 
viscous liquid medium, but they are used exclusively to illustrate the joining 
(summation) of vortices. 

In addition to diffusion, the distribution of the momentum can follow the 
mechanism of “summation”. Let there be two rotating cylinders with the radius 
R and the angular velocity ω  (Figure 9). 

 

 
Figure 9. In the figure (a) one can see two solid-state cylinders rotating at the same ve-
locity ω  around the points O1 and O2. On engagement at point O they begin to rotate 
around it as shown in the figure (b). The broken-line circle denotes the trajectory of the 
movement of the points C and D after engagement. The azimuth velocity of the points O1 
and O2 is denoted by v and the angular velocity of the combined rotation of the cylinders 
around the axis O is designated by Ω . 
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The moment of momentum and the kinetic energy for the rotating cylinder in 
Figure 9(a) is written as  

 4

2
rρωπ                             (109) 

2 4

4
rρωπ                             (110) 

On the engagement of the cylinders, there happens a transition from the indi-
vidual rotation (a) to the combined one (b), with the moment of momentum re-
tained and the excess energy leaving for the environment and heating the cy-
linders. The moment of inertia of the rotation of the cylinder around the axis O 
is  

 43
2

rρπ                             (111) 

The moment of momentum for the rotation of the cylinder around the axis O is  

 43
2

rρπ
Ω                            (112) 

Equating (112) to (109) one derives 3ωΩ = . The kinetic energy for (b) is  

 2 4

12
rρωπ                           (113) 

Comparing (110) and (113) one obtains the kinetic energy for the variant (a) 
three times as much as that for the variant (b) with the similar moment of mo-
mentum. The rotation variant (b) is more preferable than (a) as regards to ener-
gy. Thus, if a fluid has several eddies, they will tend to combine with a decrease 
in the angular velocity. 

Stability of the circular motion of a fluid. During the rotation of a circular 
ring the pressure inside it is the same, which holds true for its external part, so 
the pressure on its external boundary will be the same at all points of the exter-
nal contour. The difference in the pressures on the internal and external con-
tours gives rise to the centripetal force. The circular motion of a fluid will be sta-
ble. If a rotating fluid ring changes into an ellipse whose curvature is not stable, 
the centripetal force will be unstable either. Where the curvature is larger the 
difference in the pressure between the internal and the external contours of the 
ring is larger, and so is the centripetal force. As a result, the pressure inside the 
elliptical ring will be unstable and it will be smaller with the arcs of a larger cur-
vature and vice versa. It will make the fluid moving inside the ring equilibrate 
the pressure, which finally leads to a change of the elliptical ring into the circular 
one. Therefore, the elliptical rotation is unstable and it changes over to the cir-
cular one. If due to the action of the volume force, there arises the motion of a 
fluid rotating along arbitrary trajectories, it evolves into circular eddies. 

4. Summary  

In the dynamics of viscous liquids and gases, the concept of viscous stresses is 

https://doi.org/10.4236/ojfd.2020.104018


A. Ivanchin 
 

 

DOI: 10.4236/ojfd.2020.104018 313 Open Journal of Fluid Dynamics 
 

used. These stresses are by definition tangents. Tangential stresses can only exist 
in a solid. They don’t exist in liquids and gases. Their use leads the theory of 
viscous fluid flow to a dead end. The theory is not able to give a correct quantita-
tive description of the observed effects. To adequately describe the flow of a 
viscous medium, it is necessary to include the momentum diffusion equation, 
which is currently not included in the system of Euler equations describing hy-
drodynamic flow. Momentum diffusion is the main process that determines the 
main parameters of a viscous flow, and the diffusion equation provides a de-
tailed description of the viscous flow process. For viscosity, this equation turns 
out to be the main one. Without it, it is impossible to calculate the flow parame-
ters of both laminar and turbulent flow. It is the momentum diffusion that leads 
to the formation of vortices in the wake during laminar flow around bodies, to 
the separation of the laminar flow from the streamlined surface and the transi-
tion to a turbulent flow. 

The “sticking” condition is used as a boundary condition in the equation of 
motion when the plate flows around, that is, the velocity on the surface of the 
plate is considered to be zero. This is not an experimental fact, it is a postulate 
accepted without serious justification. The sticking condition for certain types of 
flow is absurd. For example, the flow of a ceramic surface with a noble gas, argon. 
The surface of the argon atoms is not captured, there is no sticking. An incorrect 
boundary condition leads to solutions that contradict the observed effects. The 
analysis carried out here uses the kinetic interaction of a gas with a streamlined 
surface, and the dependence of the surface interaction parameters on the ther-
modynamic parameters of the flowing gas is found out. This is necessary for 
creating experimental methods for measuring the parameters of interaction be-
tween a gas and a streamlined surface. 

5. Conclusions 

Viscosity is the result of the momentum diffusion. Viscous stresses do not exist 
in nature. In [1], the author considers the momentum diffusion without taking 
into account the deceleration of the flow along the plate. The problem discussed 
there is related to the case of short plates, in which the slow-down effect does not 
work. In the present article, the author has taken into account the deceleration 
effect. The solution for the diffusion momentum has been found in the explicit 
form. It describes the effects observed under a viscous flow, in particular, a visc-
ous sublayer and the generation of eddies. 

In the description of a viscous flow, the space scale equal to the relation of the 
viscosity coefficient to the velocity of the free stream ml  plays an important role. 
Using it one reduces the diffusion equation to the dimensionless form depend-
ing only on one parameter, that is the dimensionless length of the plate, which is 
the Reynolds number. 

The flow region, where the viscosity is manifested, is divided into three parts: 
the viscous sublayer, the body of the boundary layer and the mantle. The thick-
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ness of the viscous sublayer is 20 ml ; that of the body of the boundary layer is 
100 ml ; the thickness of the mantle is more than 2000 ml . In the mantle, the 

diffusion momentum is close to zero, and it decreases near the body of the 
boundary layer, where the flow is nonpotential. The mantle size determines the 
boundary of the influence of the viscosity on the flow. The effects of the viscous 
flow-around cover the region which is ten times larger than the body of the 
boundary layer. 

The body of the boundary layer is the region where the effect of the diffusion 
viscous momentum is significant. 

The viscous sublayer is the region where the diffusion force producing the 
moment of force and generating the eddies is essential. The moment of force at 
the front edge of the plate is directed so that the eddy caused by it would press 
the flow to the plate surface. Moving along the plate the diffusion moment of 
force changes its orientation for the opposite one, which leads to the fact that the 
flow breaks off the plate surface, thus resulting in turbulence. 

The eddy produced in the viscous sublayer has a small diameter and a high 
rotational velocity. Due to the diffusion momentum, the eddy increases in di-
ameter and its angular velocity decreases. The eddy diameter also grows as the 
eddies combine. As a result, during the time, the flow passes the plate the eddy 
diameter increases up to the value of the order of the thickness of the boundary 
layer, with its angular velocity decreasing. 

The momentum of the mantle has been obtained in the quadrature form, and 
it consists of the potential and nonpotential parts. 

The consideration of the interaction of the gas with the surface of the plate 
that is flown around shows that the boundary condition of the adhesion of the 
flow to the plate surface is rough and it does not allow estimating the diffusion 
momentum near the front edge of the plate. The interaction of the flow with the 
plate is characterized by the friction coefficient. It determines the plate lengths 
for qualitatively similar flows as well as the value of the Reynolds number for the 
transition from the laminar flow to the turbulent one. 

The momentum of the mantle has been obtained in the quadrature form, and 
it consists of the potential and nonpotential parts. 

Here we obtain an analytical solution to the problem of viscous fluid flow 
around the plate. To understand a physical phenomenon, the analytical solution 
is more convenient, makes it easier to understand the essence of the phenome-
non, and to identify the essential parameters that determine it. It greatly simpli-
fies calculations for engineering applications in the development of structures 
that use fluid and gas flows, simplifies finding their optimal action, and so on. 

Here, the theory of generalized functions [6] [7] was used to obtain an analyt-
ical solution. It allows you to get an analytical solution to a wide range of prob-
lems in mathematical physics that have real practical significance. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this paper. 

https://doi.org/10.4236/ojfd.2020.104018


A. Ivanchin 
 

 

DOI: 10.4236/ojfd.2020.104018 315 Open Journal of Fluid Dynamics 
 

References 
[1] Ivanchin, A. (2018) Delusions in Theoretical Hydrodynamics. World Journal of 

Mechanics, 8, 771-831.  
https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=87600   

[2] Loytsanskii, L.G. (2003) Fluid Mechanics. Drofa, Moscow. 

[3] Landau, L. and Lifshits, E. (1987) Theoretical Physics: Fluid Mechanics. Pergamon 
Press, Oxford. 

[4] Gallavotti, G. (2002) Foundations of Fluid Dynamics. Springer-Verlag, Berlin. 
https://doi.org/10.1007/978-3-662-04670-8  

[5] Drazin, P.G. (2006) The Navier-Stokes Equations. A Classification of Flows and 
Exact Solutions. Cambridge University Press, Cambridge.  
https://doi.org/10.1017/CBO9780511526459  

[6] Kanwal, R.P. (1983) Generalized Functions. Theory and Technique, Academic 
Press, Orlando. 

[7] Vladimirov, V.S. (1971) Equation of Mathematical Physics. Marcel Dekker, New 
York. 

[8] Landau, L. and Lifshits, E. (2005) Statistical Physics. Elsevier, London. 

[9] Landau, L.D. and Lifshits, E.M. (1960) Mechanics. Pergamon Press Ltd., Oxford. 

[10] Korn, G.A. and Korn, T.M. (2000) Mathematical Handbook for Scientists and En-
gineers. Dover Publications, New York. 

[11] Riley, N. and Watson, E.J. (1993) Eccentric Oscillations of a Circular Cylinder in a 
Viscous Fluid. Mathematika, 40, 187-202.  
https://doi.org/10.1112/S0025579300006975 

[12] Smith, S.H. (1991) The Rotation of Two Circular Cylinders in a Viscous Fluid. Ma-
thematika, 38, 63-66. https://doi.org/10.1112/S0025579300006446  

 
 
 
 
 
 
 
  

https://doi.org/10.4236/ojfd.2020.104018
https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=87600
https://doi.org/10.1007/978-3-662-04670-8
https://doi.org/10.1017/CBO9780511526459
https://doi.org/10.1112/S0025579300006975
https://doi.org/10.1112/S0025579300006446


A. Ivanchin 
 

 

DOI: 10.4236/ojfd.2020.104018 316 Open Journal of Fluid Dynamics 
 

Appendix. Curl and Rotation 

Since this article is a continuation of [1], one more delusion in theoretical hy-
drodynamics should be noted. There exists a concept [2] that the value rot 2v  
is the angular velocity of the rotation of the elementary volume. However, this is 
not so. 

The concept of rotation implies a body of a finite size that cannot be deter-
mined for a point, since the rotation of a point is a meaningless concept. A curl 
is the differential operator meaningful for a point rather than for an extended 
object. Therefore, in a general case, it is wrong to say that a curl determines rota-
tion. 

It makes sense to determine rotation through a curl for solids whose curl of all 
points is the same. The linear velocity of an arbitrary point of a rotating solid in 
the cylindrical coordinates , ,r zϕ  with the z-coordinate as the axis of rotation 
is written as  

 0, ,0rω=v                          (114) 

The broken brackets indicate that the vector is written in the cylindrical coordi-
nate system. Hence, one derives  

 rot 2 0,0,1ω=v                        (115) 

It is not right to compare rotv  and the angular velocity for a fluid, which 
can be illustrated using two examples.  

Plane - parallel flow. Let the flow velocity be given as  

 ( ){ },0,0f y=v                        (116) 

The above flow is nonpotential; it is impossible to produce it by a pressure dif-
ference; it can only be produced by viscosity. The flow moves forward, its mo-
tion is parallel to abscissa, there being a nonzero velocity curl at each point of 
the flow  

 ( ){ }rot 0,0, 0f y′= − ≡/v                     (117) 

The vector (117) possesses one nonzero component, which is the z-coordinate, 
but there is no rotation. This movement cannot be called rotation as its trajecto-
ries are straight lines parallel to abscissa.  

Eddy source. The field with the velocity  

 { }2 2 , ,0 0, ,0y x
rx y

ω ω
= − =

+
v                 (118) 

is called an eddy source. In the cylindrical coordinates it has only the azimuth 
velocity rather than the zero one. The trajectories of fluid particles are concentric 
circles with the center at the origin of coordinates. The angular velocity of a fluid 
particle is 2 0rω ≠ , there exists rotation, however, rot 0≡v . 

These two examples show that the velocity curl and the angular velocity are 
different notions. 
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