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Abstract 
This paper has two main contributions. First, we build a simple but rigorous 
stochastic volatility—stochastic correlation model. Mean-reverting and local-
ly stochastic with dependent Brownian motions, our model proves to fit both 
marginal and joint distributions of the option market implied volatility and 
correlation. Second, asset correlations are currently modeled exogenously and 
then ad hoc assigned to an asset price process such as the Geometric Brow-
nian Motion (GBM). This is conceptually and mathematically unsatisfying. 
We apply our approach to build a unified asset price—asset correlation mod-
el, which outperforms the standard GBM significantly. 
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1. Introduction and Motivation 

Asset prices are typically modeled with the Geometric Brownian motion (GBM) 
of the form 

d d dt t tS S t Bµ σ= +                       (1) 

where St is the asset price, μ is the drift, σ is the volatility, and dBt is a standard 
Brownian motion.  

Rapid developments in vanilla and exotic options markets, over the past sev-
eral decades, have fundamentally challenged the static assumptions of μ and σ 
parameters in GBM. Merton [1] introduces jumps and shows that if the loga-
rithm of the percentage jump is normally distributed, a closed form solution for 
European style options exists. Cox and Ross [2] create the constant elasticity of 
variance (CEV) model, where an exponential parameter α is added to the asset 
price. The value of α determines the dependence between asset price and volatil-
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ity. In a pure jump extension, Madan et al. [3] follow a variance-gamma ap-
proach, which creates heavier tails and provides semi-analytic expressions for 
European style options.  

Heston [4] in a seminal model correlates the asset return process with sto-
chastic variance. Many Heston model extensions have since developed with 
Zhou [5], Hagan et al. [6], Brigo and Pallacinini [7], and Langnau [8] counted 
among many prominent examples.  

The availability of market data of implied volatility surface1 has ushered in a 
new era of stochastic volatility modeling to reproduce a multitude of finer prop-
erties observed in the real world. Cont et al. [9] prove that 1-factor model is in-
sufficient to represent the true dynamics seen in SPX volatility surfaces. Further-
more, the eigenfactors of the vol-surface time series are found not to be perfectly 
correlated to the underlying asset price movements—hence concluding—“Vega” 
risk cannot be reduced to “Delta” risk.  

In a series of ground-breaking papers, Bergomi [10] and others set out to 
capture the term-structure of skew and vol-of-vol in a Forward Variance Swap 
framework, an analog of the Libor Market Model. A class of models has since 
multiplied aimed to price the “smiling” volatility derivatives consistently to va-
nilla options, therefore solving the “Joint S&P/VIX Smile Calibration Puzzle”. By 
adding simultaneous jumps to the Ornstein-Uhlenbeck process of the forward 
variance swap and the underlier GBM process, the flexible Lévy specification by 
Cont et al. [11] offers a greater analytical tractability and more efficient control 
of the vol-skew and the shifting correlation between spot and implied volatility.  

Joint modeling of asset volatility and asset correlation should attract more re-
search interest, as the need arises not only for asset allocation but also for deriv-
atives pricing and risk management. By comparison to stochastic volatility, less 
progress has been made in the literature regarding asset correlation as a state- 
dependent market factor. 

The summary statistics of realized stock correlations in Table 1 reveals that 
the level and variability of cross-sectional asset correlation both move higher 
conspicuously when market is in distress, from a distinctly lower regime ob-
served during expansionary economic times. Meissner [12] further asserts that 
elevated correlations persist without necessarily accompanied by rising volatility 
during recessionary periods. 

 
Table 1. Dow stock correlation level and Std. Dev. from Jan. 1972 to Mar. 20202. 

 
Avg Stock Correlation 

Economic Condition Level Std. Dev. 

Expansionary 27.46% 71.17% 

Normal 33.19% 82.51% 

Recessionary 36.96% 80.48% 

 

 

1The 3-D surface ( ),BS
t K Tσ  is implied from vanillaoption pricesvia Black-Scholes-Merton formu-

la, with strike K and maturity T. 
2Correlations estimated are the average of Pearson 30 × 30 correlation matrix of Dow stock price re-
turns. 
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Analogous to the irreducible “Vega” risk in the Implied Volatility (IV), the 
empirical evidence clearly supports the role of the Implied Correlation (IC) as a 
unique source of randomness to the financial system.  

Hull et al. [13] model the asset process in a GBM setting and then sample the 
asset correlation from a beta distribution, with the distribution parameters ex-
ogenously derived and not time-varying. Ma [14] models stochastic volatility 
and stochastic correlation processes to price exchange rate options, and Ma [15] 
applies stochastic correlation to price and hedge multi-asset options, the volatil-
ity and correlation are however assumed independent from each other.  

Emmerich [16] highlights the unique mathematical properties of a stochastic 
correlation process. Dϋllman et al. [17] model stochastic correlation with a Va-
sicek process. However, both papers do not combine the correlation process 
with the asset process.  

Buraschi et al. [18] and Fonseca et al. [19] extend the Heston [4] model, by 
correlating a n-dimensional stochastic correlation process with a n-dimensional 
stochastic asset process.  

The term of correlation is ubiquitous. It should be emphasized that the asset 
correlation in our study is restricted to the equity price returns. In contrast to 
Burtschell et al. [20], the local stochastic correlation model targets the default 
time correlation in a portfolio of Credit Default Swaps (CDS) instead. 

The remaining paper is structured as follows: In Section 2 we introduce our 
unified stochastic asset volatility—stochastic asset correlation model. In Section 
3 we show the real world fit of the model. Section 4 discusses the calibration of 
the eight parameters. Section 5 conducts the significance tests. Section 6 applies 
the model in an enhanced version of GBM. 

2. The USVSC Model 

Our proposed Unified Stochastic Volatility—Stochastic Correlation model (USVSC 
henceforth) consists of three stochastic differential equations:  

( )

( ) 2

2

d d d

d d 1 d (3)

d d 1 d (4)

(2)t t t t

t t t t

t w t w t

m t W

m t Z

W Z Z

β
σ σ σ

ρ ρ ρ

σ κ σ ν σ

ρ κ ρ υ ρ

ρ ρ ⊥

 = − +
 = − + −

 = + −

 

where stochastic instantaneous volatility tσ  and stochastic instantaneous cor-
relation tρ  are set within a local volatility framework, mean-reverting with a 
rate of { },σ ρκ  to a long-term mean of { },m σ ρ . The diffusion coefficient is de-
noted as { }, 0σ ρν > , and the positive skew in tσ  is captured by a power para-
meter β . The modeled stochasticity is generated by three 1-dimensional stan-
dard Brownian motions { }, ,t t tW Z Z ⊥ , where tZ  and tZ ⊥  orthogonal, tW  
and tZ  correlated with a coefficient wρ . 

Equation (2), referred to as CIRCEV hereafter, extends the Cox-Ingersoll-Ross 
(CIR) model with a β exponent parameter, otherwise known as Chan-Karolyi- 
Longstaff-Sanders (CKLS) model proposed by Chan et al. [21], or a variant of 
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the Constant Elasticity of Variance (CEV) model. Evoking CIRCEV model spe-
cification is motivated by its non-negativity and mean-reversion properties fit-
ting the implied volatility, and the presence of a positive skew found empirically 
and prominently displayed in Figure 1(c).  

Equation (3) specifies a Jacobi process, otherwise known as Wright-Fisher 
diffusion process. Jacobi is a natural model choice for implied correlation, in 
which not only the mean-reverting empirical feature is preserved, the limiting 
behavior for a correlation is also obeyed naturally at −1 or +1. As discussed by 
Ahdida et al. [22], Emmerich [16] and Zetocha [23], Jacobi specification permits 
analytical solutions of the first two moments, as well as the average over an arbi-
trary length of time. Although, like Heston [4], a Feller-like inequality constraint 
should apply over model parameters to ensure the desired numerical stability.  

Equation (4) gives a dependence structure between the implied volatility and 
the implied correlation, analogous to Heston [4] in treating the joint distribution 
between spot and local variance. 

In summary, our USVSC model is formulated as a correlated CIRCEV and 
Jacobi processes in an attempt to capture the equity derivatives dynamics. The 
rational for disallowing the joint-dynamics between derivatives and underlying 
spot market is two-fold: 1) to keep the model at the lowest possible dimension in 
support of historical calibration; and 2) to expose the risk factors exclusively 
within derivatives, as opposed to a joint model traditionally done for efficient 
hedging purpose.  

Our model consists of a total of eight parameters, namely,  
{ }, , , , , , , wm mσ σ σ ρ ρ ρθ κ ν β κ ν ρ= , forming the set of unknowns to be estimated 

empirically, with a goal to better understand the historically realized marginal 
and joint distributions of the risk neural option implied volatility and implied 
correlation through time. 

3. Real World Fit 

To measure the efficacy of our model, we let VIX represent IV (the option-implied 
volatility tσ ), and the CBOE Implied Correlation as IC (the option-implied 
correlation tρ )3.  

 

 

3Strictly speaking, the VIX only corresponds to the estimated implied volatility of 30-day SPX 
call/put contracts through a convergence framework between variance swap pricing and log-Price 
option contract. In order to model VIX Options and Futures over tenor T, consistently with SPX op-
tions, it is most common to express VIX as the result of the integration of an instantaneous forward 
variance rate 2

,Tτσ , as in Cont et al. [11] and Bergormi [10], rather than the instantaneous volatility 

stochastic factor tσ  as we proposed in Equation (2): 2
, ,

1VIX d
T

T uE u
T

τ

τ ττ
σ

+ =  
 ∫   where T = 30 

days. A similar expression exists for IC with respect to the quantity of tρ . To simplify the calibra-
tion, without evoking the instantaneous forward variance curve nor the required instantaneous for-
ward correlation curve, we implicitly assume ,:t Tτ τσ σ +=   and ,:t Tτ τρ ρ +=   for illustration purpose. 
Essentially a 1-month forward term-structure is embedded in both stochastic variables. This slight 
abuse of notation is acceptable, since 1) T is fixed at 30 days everywhere, and 2) the emphasis of our 
study is structured around the systemic interactions between IC and IV, impacts from term-structure 
and optimal risk hedging strategies are left out for future studies. 
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Figure 1. (a) Empirical relationship between IV and IC. (b) Time series plot of the 
empirical IV and IC. (c) Density of empirical IV. (d) Density of empirical IC. 
 
Our dataset is comprised of the SPX, the VIX and the ICJ/JCJ indexes ob-

served from 01/03/2007 to 08/01/2019, daily sampled and sourced from  
http://www.cboe.com/. CBOE publishes both historical data series of the Implied 
Volatility (known as the VIX—the “fear gauge”), and the Implied Correlation, 
derived from standard 1-month options and dispersion trading strategies re-
spectively, under the methodologies given by CBOE [24] and CBOE [25].  

We first display the excellent real world fit of our model, which is followed by 
a detailed description of a 2-staged calibration and the correspondent statistical 
test results. 

Figure 1 describes historical properties of the Implied Volatility (IV) and the 
Implied Correlation (IC).  

Figure 2 displays the simulated properties of the Implied Volatility (IV) and 
the Implied Correlation (IC) using our calibrated model results. 

With respect to Figure 2(a), the USVSC model is designed to produce a posi-
tive-“triangular” relationship between IV and IC as shown in Figure 1(a). A po-
sitivity in wρ  is expected to enable synchronized co-movements between tσ  
and tρ . Furthermore, as the correlation approaches upper or lower bounds, i.e. 
+1 or −1, its stochasticity decreases due to the diffusion term 21 tρυ ρ−  speci-
fied in Equation (3). 

After outlining our calibration procedure in Section 3, we perform a series of 
statistical tests associated with Figures 2(a)-(d) in Section 4.  

4. Model Calibration 

The estimation scheme is described in this section. We approach the calibration 
in three Stages using the Maximum Likelihood Estimation (MLE) framework. 
We believe MLE is simplest to implement, numerically stable while allowing for 
the generation of the desired statistical inferences.  

https://doi.org/10.4236/jmf.2020.104039
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Figure 2. (a) Modeled relationship between IV and IC. (b) Time series plot of 
the modeled IV and IC. (c) Density of modeled IV. (d) Density of modeled IC. 

4.1. Stage I—Marginal Distributions of IV and IC 

By design of the proposed USVSC model, except for the correlated Brownian 
motions anchored by Equation (4), IV and IC have no interactions in the drift as 
well as the diffusion terms, divergent from that in Heston [4]. Under this speci-
fication, therefore, a decoupled and 1-dimensional historical calibration, sepa-
rated for IV or IC process, is permissible.  

To illustrate, we first suppose a generalized univariate stochastic differential 
equation (SDE) with drift and diffusion terms fully parameterized as follows: 

( ) ( )d , d , dt t t tX f X t g X Wθ θ= +                    (5) 

where { }tX  represents the time series of empirical observations, and θ  the 
collection of model parameters. We assume the increments of observations d tX  
conditionally Gaussian ( )2,X XN µ σ . This means, based on the Euler discretiza-
tion scheme, we can derive explicitly the first two moments of the increments, 
similar to the approach taken by Ait-Sahalia [26]: 

( ) ( ) ( ) ( )22, , ,X t t X t tE X f X t E Var X g X tµ θ σ θ = ∆ = ∆ = ∆ = ∆   
   (6) 

The transition density, under our assumption, can therefore be expressed in a 
closed-form: 

( )
( )

( )( )
( )

2
1 1

1 22
11

,1, | exp
2 ,2 ,

i i i
i i

ii

x x f x t
p t x x

tg xtg x
θ

θ

θθ

− −
−

−−

 − − ∆
 ∆ = −
 ∆π∆  

  (7) 

The optimization objective function immediately follows, resulting in a max-
imization problem of the log-likelihood function to solve θ : 

( )

( )
( )( )

( )

11

2
2 1 1

1 21 1
1

arg max log , |

,
arg max log 2 ,

2 ,

N
i ii

NN i i i
ii i

i

p t x x

x x f x t
g x

tg x

θ θ

θ

θ
θ

θ

−=

− −
−= =

−

 
 Θ = ∆

 − − ∆  = − π +   ∆  

∏

∏ ∑
(8) 
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With an unconstrained optimization routine4, we first report in Table 2 the 
results of USVSC model parameter estimation of θ , along with the corres-
ponding estimation errors. 

The calibrated parameters of IV, per Equation (2)—CIRCEV specification, in-
cluding the long-term mean, the reversion rate (half-life), the magnitude in 
vol-of-vol, together with the CEV skew parameter 1β > , are all of expected 
values with a good match to existing literature, such as Ait-Sahalia and Kimmel 
[27], and Bu et al. [28]. 

The calibrated parameters of IC, per Equation (3) Jacobi process, are shown to 
have met the inequality condition of the mean-reverting rate,  

2 2

max ,
1 1m m

ρ ρ
ρ

ρ ρ

υ υ
κ

 
≥   + − 

, consistent to relevant discussions in Emmerich [16], 

Ma [14] and [15], as well as Zetocha [23]. 
To test the robustness, we produce 5k simulations to visualize in Figure 3. We 

confirm the fulfillment of correlation boundedness achieved by the calibrated 
parameters. In addition, the mean is fairly stable around the randomly assigned 
initial value of 0.2.  

The red line in Figure 3 represents the time series mean of all simulated IC 
paths, which exhibits a relative stability as IC converges to a long-term mean 
prescribed by a Jacobi process as in Equation (3). Measured by each simulated 
single path shown in Figure 2(b), and relative to IV, however, a greater magni-
tude of variability in IC empirically observed in Figure 1(b) is largely captured, 
helped in part by a faster mean-reverting rate ρκ . 

 

 
Figure 3. Time series of simulated implied correlation. 

 
Table 2. Univariate calibration of IV and IC. 

IV Coeff Std. Error IC Coeff. Std. Error 



σκ  7.1714 1.7569 

ρκ  10.9385 1.3941 

mσ  0.1940 0.0161 mρ  0.5548 0.0153 



σν  2.2586 0.1364 

ρν  0.5984 0.0075 

β̂  1.2296 0.0343 
   

 

 

4We thank Prof. Boukhetala for R package Sim. Diff. Proc. and the useful discussions. 
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4.2. Stage II—Correlated Brownian Motions 

Having estimated the seven parameter values in θ , { }, , , , , ,σ σ σ ρ ρ ρκ µ υ β κ µ υ , 
required by the model, we now turn our focus to the eighth parameter wρ  and 
the correlated Brownian motions in Equation (4).  

We reconstruct the realized increments of Brownian motions, d tW  and d tZ , 
making use of the estimated parameters from Stage I. Under the normality as-
sumption, it follows that the asymptotic correlation coefficient estimation as 
specified in Equation (5) is just the expectation of the product of d tW  and d tZ  
scaled by dt: 

( )d d dw t tE W Z tρ = ×                       (9) 

The estimated correlation coefficient parameter wρ , together with the 
t-statistic and p-value are presented in Table 3. The zero-value null hypothesis is 
strongly rejected at 95+% confidence level. This is an important finding from our 
Stage II calibration. 

The histogram of the product of the white noises is displayed in Figure 4 for 
illustration purpose. 

5. Goodness-of-Fit Tests 

In this section, we test if our calibrated model is statistically accurate in representing 
the empirical data. The marginal distributions of IV and IC resulted from cali-
bration Stage I are first examined, which are followed by normality tests con-
cerning the correlation parameter wρ  estimated in calibration Stage II. 

 

 
Figure 4. Histogram of d d dt tW Z t× . 

 
Table 3. Correlation calibration result of pw of Equation (4). 



wρ  0.5056435 

T 19.889 

p-value 2.20E−16 

0 : 0wH ρ = . 
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5.1. Testing for Stage I 

To test the equality in aggregation distribution between the historical IV and IC 
densities in Figure 1(c) and Figure 1(d), and our model-simulated densities in 
Figure 2(c) and Figure 2(d), we proceed as follows. 

Firstly, in Table 4, we perform non-parametric Kolmogorov-Smirnov (KS) 
test for the difference in univariate distributions. With the cumulative distribu-
tion functions (CDF) denoted as F(IV) and F(IC), respectively, between the em-
pirical distributions and the modeled 1-path time series simulation, denoted as 

( )ˆ IVF  and ( )ˆ ICF , started with a pair of arbitrary points (IV0, IC0). Below 5% 
are the max distances between two CDFs measured by the D-Scores associated 
with IV and IC. Nearing 1% p-values found by the tests, however, suggest the 
null hypothesis should be rejected with 95% confidence level.  

Secondly, in Table 5, we utilize a form of randomization test—the Permuta-
tion Test of Equality. With paired samples of univariate distributions, the high 
p-values registered for both IV and IC suggest a high degree of equality in dis-
tribution between the model generated IV or IC process and the correspondent 
empirical counterpart. 

Graphical depiction rendered in Figure 5 shows the density functions of IV 
and IC, respectively, between the simulated series and the empirical observations. 
The blue color identifies the largest distances in density, along the x-axis conti-
nuous values of likely (IV ∈ [0, +1]) and feasible (IC ∈ [−1, +1]) ranges. This 
should shed additional light on the locality of the discrepancies in the interest of 
future studies. 

Lastly, we study the sensitivity of inference test results to the numerical noises 
embedded in Monte Carlo simulations. When the number of simulation paths 
increases, the replicability of the distribution by our parameterized model is ex-
pected to significantly improve. This effect can be demonstrated via an unpaired 
2-sample Wilcoxon test, also known as Mann-Whitney test.  

 
Table 4. 1-Path Kolomogorov-Smirnov (KS) test for equivalence between empirical and 
the simulated 1-path time series with an arbitrary starting point of IV0 and IC0.  

 
IV IC 

D 0.0404 0.0483 

p-value 0.0113 0.0013 

( ) ( ) ( ) ( )0
ˆ ˆ: IV IV , IC ICH F F F F= = . 

 
Table 5. 1-Path permutation test. 

 
IV IC 

H 0.0177 0.0238 

p-value 0.9700 0.9860 

( ) ( ) ( ) ( )0
ˆ ˆ: IV IV , IC ICH F F F F= = . 
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Figure 5. 1-Path IV and IC permutation test.  
 
Judging by the large test statistics W and the high p-values (>>10%) reported 

in Table 6, resulted in by comparing 5K paths simulation against the single-path 
historical realizations, one can’t reject the null hypothesis of identical distribu-
tion for both IV and IC at 95% confidence level.  

5.2. Testing for Stage II 

Our SDE Equation (4) assumes a bivariate normal distribution generated by 
d tW  and d tZ , two Wiener processes underlying IV and IC observables with an 
instantaneous and constant correlation parameter wρ . We now examine the 
normality of the model derived Brownian increments. 

First we present the density function plots with a normal curve overlay, la-
beled as Normality Test (1) in Figure 6. We observe a very mild case of fat-tail 
(leptokurtic) in distributions of d tW  and d tZ . 

Normality Test (2) is consisted of a pair of QQ-plots and ACF autocorrelation 
graphs. Figure 7 displays that a wide-ranged linearity and low autocorrelation 
have been tested in the time series of estimated residual, in support of the Gaus-
sian distribution assumptions for d tW  and d tZ . 

With a reasonably high degree of confidence in normality, we conclude that 
our proposed Stage II calibration method for wρ  is consistent with empirical 
evidence. 

5.3. Testing the Joint Distribution of IV and IC 

Clearly Figure 2(a) makes a strong case in support of our USVSC model, as it 
successfully captures the very key feature of the real word implied volatili-
ty-correlation relationship as depicted by Figure 1(a).  

To statistically measure the fit, we apply Fisher’s Z-transformation to test the 
Pearson correlation difference of two un-paired independent samples: one is the 
historical realization sample of IV and IC, and the other is estimated from the 
5K paths of 2-dimensional simulation of IV and IC.  

https://doi.org/10.4236/jmf.2020.104039
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Table 6. 5K-Path Wilcoxon test. 

Wilcoxon IV IC 

W 2.48E+10 2.55E+10 

p-value 0.2885 0.1113 

( ) ( ) ( ) ( )0
ˆ ˆ: IV IV , IC ICH F F F F= = . 

 

 

Figure 6. d tW  and d tZ  normality tests (1). 
 

 

Figure 7. d tW  and d tZ  normality tests (2). 
 

With a zero correlation difference as the null hypothesis, we obtain a Z-Score 
of 1.59 reported in Table 7. This test statistics indicates that the Pearson correla-
tion estimation, between simulated IV and IC, is indistinguishable in distribu-
tion from that of the empirical observed IV and IC, over the sampled time pe-
riod, at 95% confidence level.  
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Table 7. IV and IC dependency test. 

Z 1.5900 

2-Tailed Prob. 0.1118 

( )  ( )0 IV,IC IV,IC
ˆ:H ρ ρ= . 

 
We, therefore, conclude that the empirical joint distribution of IV and IC is 

replicated by our proposed USVSC model with sufficient accuracy. 

6. Application of the Model—An Enhanced Geometric  
Brownian Motion  

With the stochastic IV and IC fully parameterized and tested, we can now 
re-visit GBM model log-normal specification in Equation (1), the most founda-
tional claim of the asset price returns in the finance literature.  

Using GBM as the benchmark, Equation (1) parameters {μ, σ} are first cali-
brated through MLE. Table 8 gives the estimation results along with the corres-
ponding standard errors.  

Although the calibrated spot price volatility σ under GBM is robust and statis-
tically significant, the same conclusion may not be drawn with respect to the pa-
rameter μ. The large estimation error suggests that the null hypothesis (μ = 0) is 
rather unrejectable with confidence, a subject to which we will return later. 

Integrating our stochastic local volatility and correlation model, we proceed to 
replacing the constant diffusion coefficient σ with our time-varying and stochas-
tic IV denoted by σt, as defined in Equation (2). The GBM Equation (1) thereby 
evolves into Equation (1a)—enhanced-GBM model, allowing the cash spot market 
infused with additional information sourced from the derivatives market: 

d d dt t t tS S t Bµ σ ′= +                      (1a) 

where d tB′  denotes a new Brownian motion for price returns, distinct from the 
original dBt from Equation (1).  

To incorporate the proposed USVSC model, we further assume that the risk 
factors inherent to IV and IC markets are also integral to the dynamics of index 
trading, therefore can be thought of as priced state variables for asset pricing. 
This is not unreasonable, as the derivatives IV and IC have become standalone 
asset classes, albeit with a shorter history and a narrower investor base relative to 
the underlying cash market. VIX, for example, has evolved from being a latent 
risk parameter to a set of publicly investable trading product group largely 
helped by the creation of VIX Index and VIX futures commenced in 2004. Not 
unexpectedly, the stochasticity of IC is argued by Emmerich [16] as a funda-
mental source of risk, which is furthered by Driessen et al. [29] in a hunt for risk 
premium in the context of asset pricing. The roles of derivatives markets affect-
ing index price discovering and the broader market have become more evident 
recently. Details and in-depth discussions on the market structure of VIX fixing, 
dispersion and worst-of option pricing, can be found in Osterrieder et al. [30], Li 
[31] and Zetocha [23]. 
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Table 8. Equation (1) GBM model calibration. 

 
Coeff. Std. error 

μ −0.0007 0.0817 

σ 0.2897 0.0036 

 
Across three stylized state variables, i.e. the Brownian motion increments 

d tB′  together with dWt and dZt, a deterministic dependence structure is supe-
rimposed. This is manifested by Equation (10) and Equation (11) sequentially, 
with ρB and ρZ denoting the instantaneous correlation coefficients between 
spot-IV and spot-IC, respectively. 

Since dWt and dZt are interconnected through ρw, as previously established by 
Equation (4), one can write: 

2d d 1 dt w t w tZ W Wρ ρ ′= + −                  (10) 

with Wt □ tW ′  as usual. Helped with the introduction of a third orthogonal 
factor tW ′′ , we can now decompose the Weiner process d tB′  in a 3-independent- 
factor representation: 

( )2
2

2 2
d d d 1 d

1 1
Z w BZ w B

t B t t B t

w w

B W W W
ρ ρ ρρ ρ ρ

ρ ρ
ρ ρ

−−′ ′ ′′= + + − −
− −

     (11) 

So that the recoveries of ( )d d dB t tE B W tρ ′= × , ( )d d dZ t tE B Z tρ ′= ×  and 
the identity property of ( )d d d 1t tE B B t′ ′× =  are satisfied. This particular setup 
should allow us to exploit the connections between index price dynamics with 
IV and IC observables5.  

It should be noted that by now dWt and dZt have been attained from calibra-
tion Stage II. Therefore d tW ′  and d tW ′′  are the two added sources of inde-
pendent Gaussian white noise under the newly enhanced-GBM model Equation 
(1a). 

Our task is therefore reduced to estimating the drift μ and correlation coeffi-
cients ρB and ρZ, and testing if the enhanced-GBM Equation (1a) is valid given 
our model setting. We proceed as follows. 

Let xt = ln(St) to simplify the notation for asset price returns, after applying 
Ito’s lemma, Equation (1a) is expanded to a 3-factor model Equation (1b), ad-
mitting the information transformation from IV and IC markets rather explicit-
ly: 

( )

2

2

2
2

2

1d d d d
2 1

1 d
1

Z w B
t t t B t t

W

Z w B
B t

W

x t W W

W

ρ ρ ρ
µ σ σ ρ

ρ

ρ ρ ρ
ρ

ρ

 −   ′= − + +    −
− ′′+ − −
− 

          (1b) 

 

 

5By this design, the risk transmission from IV into spot market is channeled through correlated 
Brownian motions, as the stochastic τσ  in Equation (1a) is set to historical observations directly. 
For additional insights of CKLS, readers are referred to Chan et al. [21] and Hu et al. [32]. 
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Taking the expectations on both sides, aided by the assumed Gaussianity of 
{ } ( )d ,d ,d ~ 0,dt t t N tW W W′ ′′ , we arrive at the drift rate estimator 

2d 1ˆ
d 2

t
t

x
E

t
µ σ= + 

  
                       (12) 

where all RHS variables are known, we obtain a calibration result and a statistical 
inference test in Table 9. At 95% confidence level, the null is once again unre-
jectable-same conclusion under the original GBM model. We thereby argue that 
the constant drift assumption under GBM (1) or (1a) is unsupported by the 
sampled historical data. That is, the linear drift term under GBM is not robust 
and likely misspecified, irrespective of the diffusion term being constant or lo-
cally stochastic. 

It is clear now that the calibration of Bρ  and zρ  is equivalent to locating 
the maximization of the log-likelihood (LL) function of a standard normal den-
sity over the full historical data sample: 

( ) ( )
2 2

dd
~ 0,1

1d d d d 1
2

t z B wt

t t w

tW
N

t x t t

σ ρ ρ ρ

σ µ ρ

−′
=
 + − − 
 

         (13) 

Figure 8 pictorializes the calibration approach, once again by utilizing the 
Maximum Likelihood Estimation approach. The RHS expression of Equation 
(13) containing 2 correlation parameters is assumed to follow a standard Gaus-
sian distribution. Hence the inverse of a max likelihood function, i.e. LL = 
−Log(L), reaches the minimum while the likelihood function L is maximized.  

An implementation for a non-linear optimization algorithm yields a solution 
pair of Bρ  and zρ , displayed in a matrix form in Table 10 together with the 
estimated wρ  for completeness: 

The estimated negative correlation Bρ , between spot and IV, corroborates 
the leverage effect puzzle termed by Ait-Sahalia et al. [33], and converges with 
the results by Zetocha [23]. This is also a widely known phenomenon by retail 
investors, as described in CBOE [34].  

The negative correlation zρ , between spot and IC, comes as no big surprises 
as stock prices tend to correlate more as the market is down than the reverse, 
consistent with a unique and well-known IC market feature—correlation skew 
by Reghai [35], Zetocha [23] and Delanoe [36]. In the academic literature, how-
ever, the interactivities of spot-IC have not been extensively studied relative to 
spot-IV.  

Several normality tests undertaken for d
d

tB
t

 estimated under GBM (1), as 

well as d
d

tB
t
′

 under GBM (1a): Table 11 gives the numerical improvements in  

Jargue Bera statistics; Figure 9 charts the normalized density plots benchmarked 
against the standard normal; Figure 10 supplements QQ-plots. The substantial 
gains in performance, of our joint stochastic Implied Volatility and Implied 
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Correlation model over the original GBM model, are demonstratively signifi-
cant. 

Our enhanced GBM model of Equation (1a) may also underlie a portfolio se-
lection process. To avoid penalizing upside volatility potential, a semivariance 
volatility approach could be applied, see for example Estrada [37] or Chen et al 
[38].  

7. Concluding Summary 

The dynamics of asset prices is typically modeled by stochastic processes; how-
ever their correlations are exogenously modeled and ad hoc assigned to the price 
process. This is mathematically and conceptually unsatisfying. 

 
Table 9. GBM (1a) calibration and inference test of drift μ. 

µ  0.10803 

T 1.35320 

p-value 0.17610 

0 : 0H µ = . 
 

Table 10. Correlation matrix. 



 

1 1
1 0.5056435 1

0.5852176 0.2959115 11
w

B z

ρ

ρ ρ

   
   = +   
   − −  

 

 
Table 11. GBM normality test. 

 
GBM (1) GBM (1a) 

Jarque Bera 15596 41.013 

( )0

d d
: , ~ 0,1

d d
t tB BH N
t t

 ′ 
 
  

. 

 

 

Figure 8. MLE solving Bρ  and zρ . 
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Figure 9. Density distribution comparison. 
 

 

Figure 10. QQ-plot comparison. 
 

We propose a simple and unified framework to model local stochastic volatil-
ity and local stochastic correlation, similar to the approach by Heston [4]. Po-
wered by coupled CIRCEV and Jacobi processes, our structural USVSC model is 
parsimonious and capable of re-producing the non-trivial volatility and correla-
tion skews observed in the real world. The calibration scheme developed is intui-
tive and tractable, with results proven significant. The goodness of fit is backed 
by robust inference results after undertaking multiple stringent statistical tests in 
both marginal and joint distributions of the implied volatility and implied cor-
relation.  

We show our well-calibrated model performs markedly better over the clas-
sical GBM approach, thus a suitable and practical challenger for asset pricing, 
especially under current market structure. 

Future research of our USVSC model may entail analyzing the sensitivity and 
stability to historical data sampling periods, and testing its capabilities in fitting 
the volatility smiles, term structure and correlation skews, for the purpose of 
pricing basket options and risk management. Additionally, new trading strate-
gies may be developed if the equity option-implied correlation skews have 
awareness of the CDO tranche-implied correlation skews, across firm capital 
structure and asset classes. Lastly, placing the implied correlation and joint dy-
namics of volatility-correlation in a wider context of risk premium study should 
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add useful insights in the field of financial economics. 
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