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Abstract 
With the high speed development of information technology, contemporary 
data from a variety of fields becomes extremely large. The number of features 
in many datasets is well above the sample size and is called high dimensional 
data. In statistics, variable selection approaches are required to extract the ef-
ficacious information from high dimensional data. The most popular ap-
proach is to add a penalty function coupled with a tuning parameter to the 
log likelihood function, which is called penalized likelihood method. Howev-
er, almost all of penalized likelihood approaches only consider noise accu-
mulation and supurious correlation whereas ignoring the endogeneity which 
also appeared frequently in high dimensional space. In this paper, we explore 
the cause of endogeneity and its influence on penalized likelihood approach-
es. Simulations based on five classical penalized approaches are provided to 
vindicate their inconsistency under endogeneity. The results show that the 
positive selection rate of all five approaches increased gradually but the false 
selection rate does not consistently decrease when endogenous variables exist, 
that is, they do not satisfy the selection consistency.  
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1. Introduction 

Along with the rapid progress of information technology and electronics indus-
try, more and more data have been obtained from biomedical, econometrics and 
other fields. Therefore, in order to extract valid information from mass data, 
high-dimensional variable selection has been set off in statistics. Variables selec-
tion refers to the selection of important variables from the suspicious feature 
space and the elimination of redundant variables. High dimension indexes the 
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number of variables (features) is much higher than the sample size, and can even 
reach its exponential order. Compared with traditional data analysis, variable 
selection in high-dimensional space not only increases the computational bur-
den, but also leads to noise accumulation, spurious correlation and endogeneity 
[1]. The noise accumulation is mainly due to the accumulation of estimation er-
rors caused by the need to estimate a large number of unknown parameters at 
the same time during feature selection. To avoid noise accumulation, variable 
selection often makes a reasonable sparse assumption for the parameters to be 
evaluated [2]. The suspicious correlation is mainly due to the high sample corre-
lation between high-dimensional variables. When important variables are highly 
correlated with some redundant variables, these redundant variables are easily 
selected and make suspicious variables. In this case, penalty function is usually 
added. This method of adding a penalty function after a log-likelihood function, 
called the penalized likelihood method, is the most common method for 
high-dimensional variable selection. Unfortunately, most penalized likelihood 
methods consider noise accumulation and spurious correlation, but ignore 
another important factor—endogeneity [3]. This paper studies the influence of 
endogeneity on the classical penalized likelihood methods, which is divided into 
three parts. Firstly, it introduces the origin and causes of endogeneity; secondly, 
it summarizes the classical penalized likelihood method and its development 
process; finally, comparative analysis is carried out to show the inconsistency of 
various penalized likelihood approaches under endogeneity. 

2. The Origin and Cause of Endogeneity 

The concept of endogeneity originated from economics. Under the linear regres-
sion model 0 1 1 2 2 ... p pY X X Xβ β β β ε= + + + + + , it means that some explana-
tory variables correlates with the residual, namely cov( , ) 0jX ε ≠ . The causes of 
endogeneity in variable selection can be roughly divided into three categories: 
omitted variables, measurement errors and simultaneous bias. These will be ela-
borate in detail under the most commonly used linear regression model. Omit-
ted variables mean that some important variables that can affect the response 
variable Y are omitted in the explanatory variable. If these omitted variables 
were related to the pre-existing explanatory variables, endogeneity would occur. 
To be more specific, assuming that the true regression model is  

0 1 1 * *... k kY X X Xβ β β β ε= + + + + + , but variable X* is omitted, and the regres-
sion model is mistakenly set as 0 1 1 ... k kY X Xβ β β ε= + + + + . Therefore the 
omitted variable actually goes into the error term u, that is, u = Xβ*+ε. if X* is 
related to Xj, then u is related to Xj, and it would lead to endogeneity. When the 
measurement of a variable is incomplete, the measurement bias will be included 
in the error term of the regression equation as a part of the regression bias. The 
measurement bias comes not only from the error records of variables, but also 
from the inevitable conceptual differences between the commonly used proxy 
variable and the real variable, which can be obtained from the explanatory va-
riables and the response variable. For example, suppose the real regression mod-
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el is 0 1 1 ... k kY X Xβ β β ε= + + + +  and the equation to be estimated is  
*

0 1 1 ... k kY X X uβ β β= + + + + , *Y Y t− =  is the measurement error. If the 
measurement bias t is related to the explanatory variable, endogeneity will occur. 
In addition to the omitted variables and measurement biases leading to endo-
geneity, explanatory variables and response variables may also affect each other. 
That is not a one-way casuality, leading to causal correlation bias but also endo-
geneity. Take resident income X and resident consumption Y as an example. In 
general, the interaction between income and consumption, and the process of 
mutual influence cannot be observed. At this time, the information about X and 
Y is essentially mixed up. More precisely, 0 1Y Xβ β ε= + + , 0 1X Y uγ γ= + + , 
so cov( , ) 0X ε ≠  and endogeneity occurs.  

In the analysis of high-dimensional data, endogeneity is almost inevitable. 
That is mainly because researchers tend to collect as many potential relevant ex-
planatory variables as possible to avoid omission of important variables when we 
do not know the real model while these high-dimensional variables are usually 
aggregated from multiple data sources. Unintentionally, some explanatory va-
riables may be associated with residuals, leading to endogeneity. It can also be 
said that the more variables, the higher the data dimension, the greater the 
probability of endogeneity. 

3. Penalized Likelihood Method and Its Development 

One of the most popular techniques in statistics for extracting information from 
large volumes of complex data is the high dimensional variable selection. There 
are two main goals in variable selection: selection consistency, that is, selecting 
of important variables accurately with a probability close to 1; prediction accu-
racy, that is, estimating coefficients as accurately as knowing in advance. An 
Oracle property is defined if these two goals can be satisfied simultaneously. 
However, due to the occurrence of over-fitting in high-dimensional space, it is 
difficult combine the two goals, and the selection consistency is usually consi-
dered to be more important. For example, in disease gene mapping, the main 
concern is which genes are the pathogenic genes and not others. 

In the high dimension linear model, the penalized likelihood method, which 
adds a penalty function to the log-likelihood function to shrink estimates to 
trade between variance and bias, is the most common method of variable selec-
tion. More specifically, we consider a linear regression model with main effects 
only, by minimizing the penalized likelihood function ( )2

jY X pλβ β− + ∑ , 
and it's going to produce a certain amount of non-zero coefficients. And their 
corresponding variables will be the candidate variables. In the penalized likelih-
ood approaches, a variety of penalized functions were selected, including Lasso 
[4], SCAD [5], Adaptive Lasso (ALasso) [6], MCP [7], Sequential Lasso (SLasso) 
[8], etc. 

3.1. Lasso and Improvements 

Lasso was the first to choose the most basic penalized function ( )pλ β λ β=  
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and has been widely cited. It is convenient and easy to compute since its entire 
regularization path is computed under the complexity of a single linear regres-
sion. In a high-dimensional space, the estimation of Lasso is biased, but it satis-
fies model's selection consistency under conditions like neighborhood stability 
condition [9], non-representable condition [10], and Mutual Incohorence Con-
dition [11]. However, all of these conditions require weak correlations between 
non-significant variables and significant variables, which is difficult to achieve in 
practice. That is, Lasso performs poorly when there is a high correlation between 
variables. In fact, for a set of variables with a high two-way correlation, Lasso is 
more likely to select a variable from this set regardless of which one is selected. 

Many classical feature selection methods have been proposed by on the basis 
of Lasso. Elastic net [12] integrated Lasso with ridge regression by defining 

( ) 2
1 2pλ β λ β λ β= +  and it outperforms Lasso in high correlation and predic-

tion accuracy. However, it is easy to cause grouping effect, that is, highly corre-
lated variables are often selected into the model or excluded at the same time. 
ALasso [6] considers the weighted penalized function ( )j j jp wλ β λ β=  and is 
proved to satisfy both the selection consistency and the prediction accuracy un-
der a reasonable initial estimator. Another significant improvement of Lasso, 
SLasso [8], takes a stepwise approach to variables selection, but only adds a L1 
penalized function to variables which are not selected in previous stage. This can 
ensure that variables selected in the early stage are not omitted in the subsequent 
selection process. SLasso also owns the oracle property and is more computa-
tionally attractive than approaches like elastic net. 

3.2. SCAD and Related 

Compared with Lasso, SCAD [5] takes a different approach, resulting in a suc-
cessful nonconcave penalized function 

' ( ) ( ) ( ) ( ) / ( 1)P I a I aλ β λ β λ λ β β λ= ≤ + − + > −  

which has desirable properties on many occasions [13] [14] [15]. MCP [7] makes 
' ( ) ( ) /P a aλ β λ β= − +  to be similar to the penalized function used for SCAD 

and translates the flat part of the derivative of SCAD penalty to the origin. 
However, due to the nature of the noncancave penalized function, they are both 
computationally unadvantageous if compared to the Lasso family. 

3.3. Tuning Parameter 

In addition to the chosen of penalized function, the determination of tuning pa-
rameter λ is also one of the key points of penalized likelihood approaches. If set 
λ to a set of values, a serious of candidate models are generated. Therefore, the 
penalized likelihood method should be used in conjunction with the model se-
lection criteria. The former generates candidate models; the latter decides the 
optimal model. Classical model selection criteria include AIC [16], BIC [17]. 
However, these traditional criteria are no longer suitable for high-dimensional 
space due to the selection of too many useless variables. In order to adapt to the 
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high-dimensional situation, researchers add additional penalized terms after 
AIC [18] or replace factor 2 with a constant term C [19]. For BIC, more efforts 
have been devoted to the prior probability modifications, such as modified BIC 
(mBIC) [20] and extended BIC (EBIC) [21]. By assigning different values to pa-
rameters γ, EBIC is essentially a set of criteria. The BIC and mBIC can be re-
garded as special cases of EBIC by letting γ = 0 and γ = 1. The properties of 
EBIC under different high-dimensional models have been extensively studied. It 
is consistent for the linear model [21], the generalized linear model [22], the cox 
model [23], etc. 

4. Inconsistency under Endogeneity 

When using the penalized likelihood method for variables selection, some basic 
conditions must be met to achieve the desired properties. This includes restric-
tions on explanatory variables [8] or focus on the explanatory variables and re-
gression coefficients [24] or the restrictions on likelihood function [25]. Howev-
er, when endogeneity exists, even if there’s only one endogenous variable left, 
the above necessary conditions are hard to meet. In this case, there will be an 
insurmountable difference between the estimated value of regression coefficient 
and the true value, which will affect the selection consistency of these features. 
Next, we will use a simulation to show the effect of endogeneity. 

4.1. Specification of Model 

Consider the model Y = Xβ+ε, where ε ~ N(0, I). let sample size be n = 50, 100 
and 200 respectively. Define the number of variables p = [n1.2] and  

( ) ( )1 0.8 0.05u
j uβ = − + , where u follows the two-point distribution with a pa-

rameter of 0.5, for 1,2,...,6j = ; βj = 0 for 7,8,...,j p= . Consider two different 
Settings:  

Setting 1: , 1, 2,...,6j jX Z j= = ; ( )1 2 , 7,8,...,j jX Z j pε= + = . 
Setting 2: ( )1 2 , 1,2,..., 6j jX Z j pε= + = − ; , 5,...,j jX Z j p p= = − . 
The difference between these two settings is that the former only has insigni-

ficant variables that are endogenous while the latter are all important variables 
that are endogenous. Both of them will be compared respectively with the ex-
ogenous case that Xj = Zj for all j to reflect the impact of endogeneity. The Z~N 
(0, ∑) and is independent of ε. The setting of the covariance matrix ∑ considers 
only two common structures: ∑ij = 0.5, i ≠ j, ∑ij = 1, i = j and ∑ij = 0.5|i−j|, which 
can be called S1 and S2 respectively. The extended Bayesian model selection cri-
terion EBIC is used to select the tunning parameter and determine the optimal 
model by letting γ = 1 − logn/4logp. 

4.2. Results and Interpretation 

In the measurement of selection consistency, PDR (number of true selected va-
riables/total number of true variables), FDR (number of false selected variables/total 
number of selected variables) and Msize (total number of selected variables) are 
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used. Due to the randomness of the explanatory variables and the error term, the 
above simulation process will be repeated 200 times to take the average value of 
the measures, and the results are shown in Tables 1-4. 

It can be seen from Tables 1-4 that when there is no endogeneity, PDR tended 
to 1 with an upward trend, while FDR tended to 0 with a downward trend, and 
the number of selected variables tended to the number of real variables, although 
the initial performance of various feature selection methods is different. In other 
words, the asymptotic consistency of these classical penalized likelihood ap-
proaches satisfied. However, when endogeneity exists, either the unimportant  
 
Table 1. Results under setting 1 with s1. 

endogeneity 
PDR, FDR (Msize) 

n = 50 n = 100 n = 200 

Lasso 0.29, 0.71 (4.6) 0.38, 0.67 (5.8) 0.51, 0.64 (8.2) 

SLasso 0.29, 0.73 (6.4) 0.45, 0.71 (9.0) 0.79, 0.70 (16.4) 

SCAD 0.96, 0.55 (14.0) 0.99, 0.60 (17.5) 1.00, 0.64 (22.6) 

ALasso 0.36, 0.70 (6.2) 0.47, 0.68 (8.8) 0.82, 0.69 (16.2) 

MCP 0.97, 0.56 (14.5) 0.99, 0.64 (18.1) 1.00, 0.70 (23.6) 

exogeneity n = 50 n = 100 n = 200 

Lasso 0.41, 0.25 (3.5) 0.81, 0.23 (6.8) 0.97, 0.16 (7.4) 

SLasso 0.64, 0.46 (10.3) 0.97, 0.14 (7.0) 1.00, 0.05 (6.4) 

SCAD 0.74, 0.53 (14.6) 0.99, 0.20 (11.7) 1.00, 0.04 (6.3) 

ALasso 0.62, 0.44 (10.2) 0.95, 0.12 (6.9) 1.00, 0.05 (6.4) 

MCP 0.75, 0.58 (15.2) 0.99, 0.25 (14.4) 1.00, 0.05 (6.4) 

 
Table 2. Results under setting 1 with s2. 

endogeneity 
PDR, FDR (Msize) 

n = 50 n = 100 n = 200 

Lasso 0.23, 0.73 (3.9) 0.33, 0.64 (5.4) 0.44, 0.52 (6.3) 

SLasso 0.20, 0.75 (4.8) 0.29, 0.70 (6.3) 0.44, 0.67 (9.9) 

SCAD 0.93, 0.58 (15.0) 0.99, 0.67 (20.3) 0.99, 0.56 (18.1) 

ALasso 0.31, 0.72 (4.6) 0.39, 0.62 (6.6) 0.46, 0.64 (8.6) 

MCP 0.94, 0.59 (15.2) 1.00, 0.69 (20.7) 1.00, 0.75 (27.3) 

exogeneity n = 50 n = 100 n = 200 

Lasso 0.49, 0.13 (3.6) 0.78, 0.14 (5.9) 0.96, 0.13 (7.0) 

SLasso 0.58, 0.33 (7.7) 0.90, 0.17 (6.9) 1.00, 0.06 (6.4) 

SCAD 0.71, 0.56 (11.3) 0.88, 0.25 (10.1) 1.00, 0.09 (6.7) 

ALasso 0.56, 0.28 (6.8) 0.89, 0.15 (6.8) 1.00, 0.06 (6.4) 

MCP 0.73, 0.66 (18.1) 0.96, 0.27 (12.9) 1.00, 0.06 (6.7) 
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Table 3. Results under setting 2 with s1. 

endogeneity 
PDR, FDR (Msize) 

n = 50 n = 100 n = 200 

Lasso 0.78, 0.58 (11.4) 0.89, 0.54 (12.0) 0.95, 0.42 (10.7) 

SLasso 0.77, 0.70 (16.3) 0.99, 0.62 (16.4) 1.00, 0.64 (17.3) 

SCAD 0.78, 0.47 (9.6) 0.99, 0.37 (10.6) 1.00, 0.38 (12.0) 

ALasso 0.72, 0.65 (14.7) 0.94, 0.56 (13.7) 1.00, 0.52 (14.8) 

MCP 0.74, 0.50 (9.6) 0.99, 0.40 (11.0) 1.00, 0.41 (14.8) 

exogeneity n = 50 n = 100 n = 200 

Lasso 0.41, 0.25 (3.5) 0.81, 0.23 (6.8) 0.97, 0.16 (7.4) 

SLasso 0.64, 0.46 (10.3) 0.97, 0.14 (7.0) 1.00, 0.05 (6.4) 

SCAD 0.74, 0.53 (14.6) 0.99, 0.20 (11.7) 1.00, 0.04 (6.3) 

ALasso 0.62, 0.41 (10.2) 0.95, 0.12 (6.9) 1.00, 0.06 (6.4) 

MCP 0.75, 0.60 (16.6) 0.99, 0.25 (14.4) 1.00, 0.05 (6.3) 

 
Table 4. Results under setting 2 with s2. 

endogeneity 
PDR, FDR (Msize) 

n = 50 n = 100 n = 200 

Lasso 0.75, 0.54 (10.9) 0.85, 0.51 (11.7) 0.96, 0.42 (11.0) 

SLasso 0.64, 0.71 (14.8) 0.90, 0.65 (16.1) 0.99, 0.62 (16.4) 

SCAD 0.76, 0.52 (10.6) 0.99, 0.40 (11.1) 1.00, 0.40 (10.7) 

ALasso 0.69, 0.67 (13.3) 0.88, 0.62 (15.2) 0.98, 0.58 (15.8) 

MCP 0.75, 0.55 (10.7) 0.98, 0.50 (12.6) 1.00, 0.54 (14.7) 

exogeneity n = 50 n = 100 n = 200 

Lasso 0.50, 0.13 (3.6) 0.78, 0.14 (5.9) 0.97, 0.13 (7.0) 

SLasso 0.58, 0.33 (7.7) 0.90, 0.17 (6.9) 1.00, 0.06 (6.4) 

SCAD 0.71, 0.56 (16.3) 0.88, 0.25 (10.1) 1.00, 0.08 (6.7) 

ALasso 0.57, 0.29 (6.9) 0.90, 0.15 (6.9) 1.00, 0.06 (6.5) 

MCP 0.74, 0.66 (18.1) 0.96, 0.27 (13.0) 1.00, 0.06 (6.7) 

 
endogenous variables or important endogenous variables, as the sample size in-
creases, all approaches are selected to rate though there is a rising trend for PDR 
but not necessarily obvious. The performance of FDR and number of selected 
variables is not as expected by their asymptotic nature; it’s still picking the 
wrong variables, which means it is no longer valid in the presence of endogenei-
ty. In addition, these tables showed the difference in the robustness between 
the above penalized likelihood methods. When switching from exgenous to 
exogenous, SCAD is the most robust and SLasso is the lowest robust, which 
suggests some implications for subsequent endogenous feature selection stu-
dies. 
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