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Abstract 
Participatory sensing systems are designed to enable community people to 
collect, analyze, and share information for their mutual benefit in a cost-effective 
way. The apparently insensitive information transmitted in plaintext through 
the inexpensive infrastructure can be used by an eavesdropper to infer some 
sensitive information and threaten the privacy of the participating users. Par-
ticipation of users cannot be ensured without assuring the privacy of the par-
ticipants. Existing techniques add some uncertainty to the actual observation 
to achieve anonymity which, however, diminishes data quality/utility to an 
unacceptable extent. The subset-coding based anonymization technique, 
DGAS [LCN 16] provides the desired level of privacy. In this research, our 
objective is to overcome this limitation and design a scheme with broader 
applicability. We have developed a computationally efficient subset-coding 
scheme and also present a multi-dimensional anonymization technique that 
anonymizes multiple properties of user observation, e.g. both location and 
product association of an observer in the context of consumer price sharing 
application. To the best of our knowledge, it is the first work which sup-
ports multi-dimensional anonymization in PSS. This paper also presents an 
in-depth analysis of adversary threats considering collusion of adversaries 
and different report interception patterns. Theoretical analysis, comprehen-
sive simulation, and Android prototype based experiments are carried out 
to establish the applicability of the proposed scheme. Also, the adversary 
capability is simulated to prove our scheme’s effectiveness against privacy 
risk.  
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1. Introduction 

Participatory Sensing System (PSS) is a framework facilitating community mem-
bers sense, collect, analyze, and share information obtained from the surround-
ings for mutual benefit. This has evolved as a cost-effective alternative for relia-
ble and impartial data collection, processing and dissemination. Smartphones 
equipped with high-precision localization capability and camera or other ad-hoc 
sensing devices mounted on vehicles may be used to record objects/events of in-
terest by the participants. These captured data are then reported to the Applica-
tion Server (ApS) using existing lightweight wireless communication networks. 
ApS is expected to extract valuable information from a collection of reports to 
repay the participants by responding to specific queries on-demand. Consum-
er price information sharing applications [1] [2], safety and monitoring [3] 
and query based user-services [1] [4] are some of the widely used PSS applica-
tions. 

Privacy preservation of the participants is a pre-requisite for the success of 
PSS. An eavesdropper may infer sensitive information about an observer by in-
tercepting some reports. Hiding the data ownership is not an option in this con-
text as it infringes the reputation schemes needed by ApS to assess the reliability 
and trustworthiness of data and also for developing incentive mechanisms [5]. 
Hence, any mix-network based scheme that creates hard-to-trace communica-
tions by using a chain of proxies e.g. hot-potato-privacy-protection (HP3) [6], 
cannot be used. Encrypting the reports before transmitting is also not a viable 
option. As the reported data is usually drawn from a small range, a smart adver-
sary may encrypt some predicted messages with the public key of the application 
server and then match these against the received message. Moreover, PSS is ex-
pected to rely on public networks where encryption may unnecessarily raise 
concerns within the law enforcement agencies. 

The existing privacy protection mechanisms, where information is transmit-
ted with some anonymity or by adding Gaussian noise or at reduced precision, 
cannot be used here as the destination expects complete data recoverability at 
the individual level. For example, PetrolWatch [1] assists drivers to find the 
cheapest fuel station in the neighborhood. If it recommends a station with a 
higher price for a user looking for the cheapest one, its reputation would be de-
stroyed. Another technique called Spatial cloaking [3] also fails to achieve data 
quality as they refer to a geographic region in reply to the query for a specific lo-
cation. If more than one candidate objects exist in that region, it becomes con-
fusing. Some data aggregation techniques [7] have been proposed where aggre-
gate information (such as the average weight of a community) is required at ser-
vice provider end but these approaches are limited to applications. Therefore, a 
technique is needed such that each observation from a participant can be trans-
mitted with sufficient anonymity and, at the same time, the data collector can 
de-anonymize individual data with acceptable accuracy. The aim of this paper is 
to provide a solution to this significant challenge. 
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Our previous k-anonymization techniques proposed in [8] [9] aimed to en-
sure data recoverability at the individual level while preserving the privacy of 
PSS participants. In this context, an observation is k-anonymous if the observed 
object/event is indistinguishable from 1k −  other objects and data recoverabil-
ity implies the ability to map an object to its attribute (e.g. map a petrol pump 
with its petrol price) by de-anonymizing a collection of anonymized reports. 
However, the Probabilistic Greedy Anonymization Scheme (PGAS) [8] was li-
mited in application as it suffers from very high computational complexity, i.e. 
( )!O N  where N implies the number of objects of interest. In an attempt to 

overcome this limitation, a deterministic approach was adopted in [9] named 
Deterministic Greedy Anonymization Scheme (DGAS). This approach is a sub-
traction-based (Set difference) technique which iteratively rules out impossible 
mapping combinations from all possible set. The advantage of this approach is 
that it can achieve global optimization as it considers all possible combinations. 
However, the cardinality of all possible combinations of mappings is exponential 
number which leads to exponential order of anonymization. This limitation 
makes this approach infeasible in practical scenarios. Complexity of DGAS has 
been improved in Fast Deterministic Greedy Anonymization Scheme (FDGAS). 
However, it could work with only a fixed degree of anonymity (i.e. 1k N= − ) 
and thus sacrificed the flexibility of user preference in desired anonymity. In this 
work, we have developed a technique that allows the flexibility of any user pre-
ference of anonymity without increasing complexity than FDGAS [9]. Our pro-
posed approach uses attribute-centric scheme which keeps track of possible ob-
jects/events per reported attribute instead of computing over all possible combi-
nations. Thus the order of anonymization is reduced to polynomial time, i.e. 
( )O N  effectively. This achievement allows us to design the first anonymization 

scheme for the multi-dimensional scenario in PSS and overcomes the restriction 
over anonymity, k. 

To the best of our knowledge, this is the first work that attempts simulta-
neously anonymizing multiple attributes of an observation. The proposed OC-based 
scheme is developed first for single-dimension anonymization and then ex-
tended to the multi-dimensional scenarios. The paper also presents comprehen-
sive analysis on privacy risk by the adversaries. By considering colluding adver-
sary models and different message interception patterns of the adversaries, the 
analysis confirms the robustness of the proposed k-anonymization scheme against 
a wide range of malicious attacks. The specific contributions of this paper are 
listed below:  
 Developing the first Multi-dimensional Anonymization Scheme (MDEAS) of 

PSS that provides anonymity in multiple dimensions.  
 Designing efficient anonymization and de-anonymization algorithms that 

preserve high data recoverability at the desired end and exploiting some op-
timization issues.  

 Designing k-anonymization technique that works with variable k, i.e. differ-
ent user preference of anonymity. This is useful to design incentive schemes 
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considering users’ choice of privacy, i.e. offering more incentive to a user 
who demands less anonymity.  

 Presenting theoretical analysis on desirable properties of MDEAS and vali-
dating those with extensive simulation.  

 Comprehensively analyzing privacy risk with simulation in the presence of 
different types of adversaries.  

 Conducting real-world experiments with Android-based prototype.  
The organization of the rest of the paper is as follows. Section 2 describes the 

system model of PSS, its related terminologies, and the adversary model. Section 
3 explains our proposed scheme with a detailed example. Section 4 presents the 
optimizations that can be applied in MDEAS with an example. We also present a 
theoretical analysis on required number of reports to achieve full de-anonymization 
in Section 5. We present the Algorithm and its computational complexity in Sec-
tion 6. In Section 7, we present our simulation setup and the results of experi-
ments. In Section 8, we discuss the previously proposed privacy schemes on PSS 
along with their limitations for real world applications. Finally, Section 9 con-
cludes the paper. 

2. System Model 
2.1. PSS Architecture 

In PSS, users (mobile nodes) report their observations about some objects or 
events to an Application Server (ApS). The ApS wants to collect information about 
some particular objects/events (e.g. price of fuel). We denote this domain as PSS 
scenario. We use the term Objects of Interest to represent the objects/events that 
a PSS scenario is interested about.  

Definition 1 (of Interest). An Object of Interest (OOI) is an object/event 
whose attribute/property is observed and reported by the participants of a PSS 
application.  

Here we discuss the major entities of a PSS scenario in brief. The users are in-
dependent and they do not collectively send reports and there is no apparent 
communication between them. To protect the privacy of a user, several anony-
mization schemes are applied in PSS that use an Anonymization Server (AnS) 
[5]. This server remains transparent from Application Server (ApS) which ac-
tually provides desired service to the community. The service of AS is provided 
by some trusted third party e.g. a government agency. The whole process of pri-
vacy preserving participatory sensing in the perspective of a user can be divided 
into two parts: 

1) Anonymization Step: User reports the observed data to Anonymization 
Server (AnS) that transforms and returns an anonymized report (AR) to her. 
Since incentive or reputation schemes do not rely on this communication, user 
association with these reports need not be preserved. This reporting is done 
through mix-network based communication [6].  

2) Reporting Step: User sends AR to ApS along with his/her identity infor-
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mation. ApS de-anonymizes these reports to map an attribute to an OOI for of-
fering the desired service to the participants. This reporting is done through 
conventional, inexpensive and un-encrypted communication network.  

Note that the primary purpose of using AnS is to reduce the number of re-
quired observations to map all the OOIs to their corresponding attributes by the 
ApS. The report sent to the AnS for anonymization contains user preference of 
anonymity (denoted as k), OOI identification, and the observed value/attribute. 
For example, a participant John observes the price of a camera. He wants to re-
port camera’s price with 3-anonymity i.e. 3k = . So he sends the report  

{ }Camera 3 : $100  to the AnS. Now, AnS may anonymize his report as  
Camera,Phone,GPS : $100  and returns this AR to John. Next, John sends this 

AR to the ApS with his identity. 
As alluded in the previous section, users’ association with multiple objects/events 

can also be protected simultaneously in our proposed scheme. Let John reports 
the price of a camera on a particular location loc1 and wants to anonymize his 
report both in terms of location and product simultaneously. In many cases, this 
is essential as the price of the product varies with location. Let us use N and S to 
denote the total number of OOIs and the set of all OOIs, respectively in a sin-
gle-dimensional PSS. For d-dimensional PSS scenario, let the total number of 
OOIs for all dimensions be denoted as 1 2, , , dN N N  and their respective sets 
of OOIs as 1 2, , , dS S S . Even the anonymity preference for each dimension 
can be different. We use 1 2, , , dk k k  to denote the anonymity preference. The 
term OOI Combination is used to denote the collection of d OOIs from d di-
mensions for which an attribute is reported. Accordingly, the total number of 
OOI combinations is 

1
d

iiX N
=

=∏ . Suppose, John reports his observed data to 
the AnS as { } { }Camera 2 , 1 3 : $100loc  as shown in Figure 1. Accordingly, 
here 1 2k =  and 2 3k =  which implies that John wants to anonymize his report 
with two-anonymity on the observed product (camera) and three-anonymity on 
his location of purchase (loc1). In this situation, a valid AR sent by AnS might be 
{ } { }Camera,Phone , 1, 2, 3 : $100loc loc loc . This notion can be expressed in gen-

eral term with the following definition. 
Definition 2 (Report). An Anonymized Report (AR) for an observed report 

{ } { } { }
1 1 1

, , , :i i j j d dOOI k OOI k OOI k v  is expressed as  

{ } { } { } { } { }
{ } { }

1 2 1 2

1 2

, ,

, :

k ki j

kd

i i i j j j

d d d

OOI OOI OOI OOI OOI OOI

OOI OOI OOI a>

   

  

 such that 

each 
ji iOOI S∈ .  

Hence, the task of anonymization is basically to select some extra OOIs from 
the relevant available alternatives along with the real OOI according to the user’s 
preference of anonymity. A good anonymization algorithm should select the ex-
tra OOIs in such a way that ApS can de-anonymize them with few ARs. 

Data quality is achieved when the ARs of a PSS scenario are fully de-anonymized. 
Here, we define the term Full De-anonymization as follows: 
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Figure 1. System model of a multi-dimensional PSS system. 

 
Definition 3 (De-anonymization). The outcome of an anonymization tech-

nique achieves full de-anonymization iff N OOIs (single-dimensional scenario) 
or X OOI combinations (multi-dimensional scenario) can be associated with 
their correct attributes.  

Another desired property of an anonymization technique in our context is to 
achieve full de-anonymization from a feasibly low number of anonymized re-
ports. To measure this property, we define the term NRRFD as follows: 

Definition 4 (NRRFD). NRRFD (Number of Reports Required for Full De- 
anonymization) refers to the total number of ARs required to achieve full de- 
anonymization in a particular PSS scenario.  

The NRRFD depends on the order of appearance of ARs in PSS. However, 
anonymization techniques anonymize intelligently to keep the NRRFD minimal. 

In our model, we assume that each OOI has a unique attribute; which may not 
be practical in some scenarios. However, the transformation of the non-unique 
scenario to the unique scenario can be accomplished by the AnS which can make 
the attribute unique by adding a small value below the level of significance when 
it receives the same attribute for different OOIs. 

2.2. Adversary Model 

The adversaries of PSS are assumed to be rational, i.e. does not attack the opera-
tion of the system. Rather they try to eavesdrop messages and reveal users’ pri-
vate information. As the AR sent to ApS includes participator’s identity, the ad-
versary residing near ApS is the strongest one (see Figure 2). This adversary 
tries to de-anonymize the eavesdropped ARs and thus reveal the OOI-user asso-
ciation. 

The primary strategy against adversary is to divide the anonymization tasks of 
a PSS among different AnSs as presented in [8]. In this strategy, the OOIs under 
the PSS is divided into two or more groups and assigned to different AnSs. A 
user will be allowed to report from only one group with a single user id. The ad-
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versaries are also assumed to be registered users of PSS and each adversary (one 
id) will be member of one group. A grouping example is presented in Figure 3 
where multiple petrol stations with same names are assigned to different groups. 
If any user e.g. John registers in Group 1, he can report only the price of petrol 
pumps belonging to Group 1. However, as adversaries do not know the group id 
of John, by intercepting the AR of John, they will not be able to distinguish be-
tween the three petrol pumps with the same name A (see Figure 3). For example, 
OOI A of Group 1 from where John reported is not distinguishable from OOI A 
of Group 2 and thus creates confusion to the adversary. 

Note that the user registration for a particular group of OOIs is done once 
in a while. Hence, it can be done via a secure website (e.g. HTTPS). Thus group  
 

 

Figure 2. Adversary model of PSS. 
 

 

Figure 3. PSS grouping as the first line of defense against adversary. 
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association of user is not revealed to the adversary but known to ApS which can 
de-anonymize ARs according to their groups. However, our previous works [8] 
did not analyze the outcome of this strategy, i.e. to what extent adversary threat 
is mitigated. In this paper, we make a comprehensive analysis considering dif-
ferent possible attacks as discussed below. 

2.2.1. Adversary Interception Pattern 
We divide adversaries into three types depending on how they intercept the ARs 
of a PSS scenario as shown in Table 1. The Type 1 adversary is considered for 
theoretical interest only because it is practically impossible to intercept all re-
ports for an adversary. The Type 2 adversary intercepts all reports for a limited 
period of time which is also less probable in practical scenarios. Type 3 is the 
most common type of adversary in practical PSS scenarios and the privacy risk 
against this type of adversary is investigated in detail. 

Besides this interception pattern, we also consider some enhanced capabilities 
of adversaries as follows. 

2.2.2. Collusion 
Each adversary intercepts certain ARs and tries to de-anonymize those. However, 
the threat becomes stronger if multiple adversaries share information among 
them. As Type 2 and Type 3 adversaries cannot intercept all ARs, they can share 
their intercepted ARs among themselves and become stronger. Moreover, all 
types of adversaries can also share their own observed OOI-attribute mapping 
among themselves and de-anonymize attributes with the combined information. 

2.2.3. Prediction 
As adversaries cannot distinguish reports of different PSS groups, they cannot 
reveal the real OOI from their de-anonymization result. Even if we assume that 
the adversaries know the group mapping by registering in all groups or by collu-
sion with members of other groups, it is still not possible to reveal the real OOI 
from the reported OOI name as adversaries do not know the users’ group id. 
This argument is validated with simulation results. 

Let adversaries make some prediction based on distance estimation to predict 
the real location (OOI) from the OOIs of different groups with same local ID, an 
equidistant location may be considered as a representative point of all these 
OOIs. The OOI nearest from this representative point can be considered as real 
OOI by adversary. We shall also empirically investigate if this strategy enables 
the adversary to cause more risk. 
 
Table 1. Types of adversaries according to interception pattern. 

Type of Adversary Interception Pattern 

Type 1 All ARs for whole period 

Type 2 All ARs for a limited period 

Type 3 Random proportion of ARs for whole period 
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3. Conceptual Framework of Proposed Scheme 

We now discuss the conceptual framework with an illustration of examples of 
our proposed scheme, MDEAS (Multi-dimensional Effective Anonymization 
Scheme). MDEAS works efficiently and supports variable-length anonymity. In-
stead of keeping all possible combinations of attribute-OOI mapping, MDEAS 
keeps track of occurrence counts or absence counts for each reported attribute. 
When a user sends an actual report to the AnS, it tries to anonymize each ob-
served report in such a way that ApS can de-anonymize maximum attributes. 
The whole scheme can be divided into two parts, i.e. Anonymization and De- 
anonymization. For the convenience of the readers, we first discuss the simple 
boundary case of the technique considering single dimension and then explain 
its expansion to multiple dimensions. 

3.1. Single-Dimensional Scenario 

In order to explain the concept, we assume a PSS scenario of consumer price 
sharing with 4N S= =  where it collects the price of four different products 
named A, B, C, and D that have prices $10, $20, $30, and $40, respectively. We 
have assumed these values of the parameters by analyzing real world application 
scenarios. For the sake of simplicity, we assume unique attributes. We assume 
the order of appearance of observations as shown in Figure 4(a). However, the 
algorithm is applicable for any arbitrary order of appearance. 

3.1.1. Anonymization Process 
The goal of anonymization process is to generate AR by selecting 1k −  addi-
tional OOIs along with the observed OOI in such a way that the joint de- 
 

 

Figure 4. Demonstration of the anonymization process in a single-dimensional scenario. 
(a) List of reports; (b) Initial; (c) First anonymization step; (d) Second anonymization 
step; (e) Third anonymization step; (f) Fourth anonymization step; (g) Fifth anonymiza-
tion step; (h) Completion of anonymization. 
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anonymization can be done with a feasibly low number of ARs. Without any 
control over the distribution or order of observations, it cannot be done opti-
mally. However, the AnS uses some heuristics such as maximizing the diversity 
of an AR with respect to previously generated ARs for same OOI. The AnS 
maintains a data structure named Inverse Occurrence Checklist (IOC) for N 
OOIs. The IOC for an OOI p, denoted as pIOC , contains the absence count of 
each other OOI |q q S q p∈ ∧ ≠  where S is the set of OOIs. We use the notion 

( )pIOC q  to express how many times q could be, but has not been included in 
ARs of OOI p. 

The rule for identifying whether an OOI might be de-anonymized is as fol-
lows: 

Rule 1. (Rule of being de-anonymizable) An OOI p is de-anonymizable if  

( ) 0q S q p pIOC q∈ ∧ ≠∀ >                      (1) 

The rule for selecting 1k −  OOIs is as follows: 
Rule 2. (Rule for selection of OOIs in an AR) To anonymize a report con-

taining the attribute of OOI p, the set of selected OOIs, S ′  is formed as:  

( ) ( )1 largest IOC-valued OOIs in \S p k S p′ = −          (2) 

After anonymizing the report, AnS increases the count of those OOIs in S that 
have not been included in this AR. This rule of updating IOC values can be for-
malized as:  

Rule 3. (Rule of updating IOC) After producing an AR for OOI p, the pIOC  
is updated as  

( ) ( ) 1q S q p q S p pIOC q IOC q′∈ ∧ ≠ ∧ ∉∀ = +              (3) 

All IOC values are initialized with zero (Figure 4(b)). Let the first three re-
ports carry the price of OOI A (Figure 4(a)). To anonymize the first report, AnS 
chooses 1k −  OOIs randomly. Hence, the AR might be any of , , : $10A B C  
or , , : $10A B D  or , , : $10A C D . Without any loss of generality, we as-
sume that the selected AR is , , : $10A B C . According to Rule 3, ( )AIOC D  is 
increased by one (Figure 4(c)) as D has not been used in this AR. When $10 is 
reported again in the second report, AS chooses D as one of the anonymized 
OOI because ( )AIOC D  is greater than other IOC values. The other OOI is 
chosen randomly from B and C as both have same IOC value. Let, AnS chooses 
B as the other anonymized OOI. Hence, this time the AR is , , : $10A B D . 
According to Rule 3, now AS updates ( )AIOC C  because C does not exist in 
this AR (Figure 4(d)). The third report also contains the attribute of A. Now, AS 
chooses C and D as anonymized OOIs because  

( ) ( ) ( )1A A AIOC C IOC D IOC B= = > . Hence, the AR is now , , : $10A C D . As 
B is not present, AnS increases ( )AIOC B  after producing this AR. 

In this state, for OOI A, all the IOC values, i.e.  
( ) ( ) ( ), , 0A A AIOC B IOC C IOC D > . Hence, according to Rule 1, A is  

de-anonymizable. In the same way, subsequent observations are de-anonymized. 
After the arrival of the ninth report, all the OOIs are de-anonymizable and IOC 
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table reaches the state shown in Figure 4(h) traversing through previous states 
shown in Figures 4(c)-(g). 

3.1.2. De-Anonymization Process 
This process runs in ApS. As ApS may not have prior knowledge of all OOIs, it 
cannot construct fixed length IOC table. Therefore, ApS maintains another data 
structure named OC (Occurrence Checklist) for each reported attribute. OC for 
a reported attribute v, denoted as vOC , tracks the occurrence count of the can-
didate OOIs for v. We also use the notation ( )vOC p  to denote how many 
times p has been reported as candidate OOIs in all reports of attribute v. Besides 

vOC , ApS tracks the total number of reports for each reported attribute v de-
noted as vT . When an AR is received by the ApS, it follows the steps below: 

1) Creates vOC  if v is reported for the first time to ApS. (all values initialized 
to zero).  

2) Sets 1v vT T= + .  
3) Updates ( )vOC p  as  

( ) ( )OOIs of AR 1p v vOC p OC p∈∀ = +  

An attribute v is mapped to an OOI p i.e. p is de-anonymized by ApS, if the 
following rule is satisfied for vOC .  

Rule 4. (Rule of being de-anonymized) The attribute v is de-anonymized for 
OOI p if  

( ) ( )
Dv v q S q p q S p vOC p T OC q T∈ ∧ ≠ ∧ ∉= ∧∀ <               (4) 

Considering our example, ApS receives the AR, , , : $10A B C  first. Since 
$10 has not been reported before, ApS creates an OC for $10 denoted as $10OC . 
As it is the first report of $10, ApS sets $10T  to one. This report indicates that 
$10 is a possible attribute of either A, B or C. Hence, ApS creates three OC col-
umns for A, B and C denoted as ( )$10OC A , ( )$10OC B  and ( )$10OC C  respec-
tively and increases their OC values as shown in Figure 5(a). 

The second AR received by ApS is , , : $10A B D . As $10 has been reported 
before, ApS does not need to create $10OC  again. However, the OOI D has been 
reported to ApS for the first time in this report. Hence, ApS creates an additional 
column for OOI D. Next, ApS increases the OC values of the candidate OOIs of 
this report, i.e. ( )$10OC A , ( )$10OC B  and ( )$10OC D  by one (Figure 5(b)). 
ApS also increases the total count i.e. $10T  by one. In the same manner, when 
the third AR is received by ApS which also contains the attribute $10, ApS 
simply updates its corresponding $10OC . At this stage, the current OC counts 
and total counts for attribute $10 is:  

( )
( ) ( ) ( )

$10 $10

$10 $10 $10 $10

3 and all other s, . .,OC A T OC i e

OC B OC C OC D T

= =

= = <
 

Therefore, according to Rule 4, ApS can de-anonymize the attribute $10 as 
only the vOC  value of OOI A is equal to $10T . 

In the same process, B, C and D are de-anonymized by ApS after receiving 
fourth to ninth ARs (Figure 5(f)). 
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Figure 5. Demonstration of the de-anonymization process in a single-dimensional scena-
rio. (a) 1 report received; (b) 2 report received; (c) 3 report received; (d) 4 report received; 
(e) 5 report received; (f) all reports received. 

3.2. Multi-Dimensional Scenario 

For multi-dimensional PSS scenario, we apply the same rules of anonymization 
and de-anonymization explained in the previous section for each dimension. 

For the sake of simplicity, we discuss this process by restricting our example 
scenario in two dimensions, i.e. 2d = . Accordingly, we assume a PSS applica-
tion which deals with the price of 3 products, e.g. { }1 , ,S A B C=  in three dif-
ferent locations, e.g. { }2 , ,S X Y Z= . Hence, the total number of OOI combina-
tions is 3 3 9× =  and their set is ( ) ( ) ( ) ( ){ }, , , , , , , ,R A X A Y C Y C Z= 

. The 
observed attributes for each OOI combination are shown in Figure 6(a). With-
out any loss of generality, we assume that the anonymity preference for both 
dimensions (product and location) is 1 2 2k k= =  for all users and the observa-
tions are shown in Figure 6(b) in order of appearance. 

3.2.1. Anonymization Process 
For each dimension i, AnS chooses 1ik −  OOIs along with the real OOI where 

ik  is user’s preference of anonymity for ith dimension. AnS maintains d differ-
ent IOCs for each OOI combination r R∈ . In our example, the first report 

{ } { }2 , 2 : $11A X  refers to the price of A from location X. To anonymize these 
two OOIs, i.e. product and location, AnS randomly chooses additional OOIs B 
(for product) and Y (for location), respectively at the initial step. After produc-
ing this AR, i.e. { } { }, , , : $11A B X Y , AnS increases the count of ( )1

,A XIOC C  
and ( )2

,A XIOC Z  as C and Z are not included in this AR. Here, 1IOC  and 
2IOC  refers to the respective dimensions. 

Following the strategy as shown in Figure 6(c) and Figure 6(d), ( ),A X  can 
be de-anonymized after receiving the third AR.  

3.2.2. De-Anonymization Process 
In multi-dimensional scenario, we use the notation ( )i

vOC p  to denote the OC 
of ith dimension for a reported attribute v and ( )i

vOC p  to denote the OC value 
for OOI p in that corresponding OC. 
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Figure 6. Demonstration of the anonymization process in a multi-dimensional scenario. 
(a) Price of different OOIs; (b) List of reports; (c) Second anonymization step; (d) Third 
anonymization step. 
 

In our example, after receiving the first AR { } { }, , , : $11A B X Y  , the ApS 
creates one row for keeping the information of $11. In one column, ApS keeps 
the total report count $11T  and two other columns to keep the OC values for 
two dimensions, i.e. 1

$11OC  and 2
$11OC . As it is the first report for 11, $11T  is 

set to one. From this report, the ApS comes to know about A, B as the OOIs for 
first dimension and X, Y for the second dimension. It creates columns for the OOIs 
in respective dimensions of OC and increases ( )1

vOC A , ( )1
vOC B , ( )2

vOC X  
and ( )2

vOC Y  by one. The remaining de-anonymization process continues in 
the same manner (Figure 7). 

4. Optimization Strategies to Reduce NRRFD in MDEAS 

MDEAS can boost up its performance by adopting some optimization tech-
niques. In anonymization process, the IOC counts refer to the OOIs which are 
ruled out from the possible mappings at the end of ApS. Hence, while choosing 
OOIs for anonymization, we prefer the OOIs with highest IOC values. However, 
the OOIs which are already de-anonymized, are more preferable candidates for 
being selected in ARs because they are already ruled out by ApS. We can rede-
fine the Rule 1 and Rule 2 as follows where SD denotes the set of de-anonymizable 
OOIs in current anonymization process. 

Rule 5. (Rule of being de-anonymizable) An OOI p is de-anonymizable if  

( ) 0q S q p p DIOC q q S∈ ∧ ≠∀ > ∨ ∈                    (5) 

The rule of anonymizing an observed report by AnS is as follows: 
Rule 6. (Rule for selection of OOIs in an AR) To anonymize a report con-

taining the attribute of OOI p, the set of selected OOIs, S ′  is formed as:  

( )
( )

any 1 OOIs in , if 1

1 largest

IOC-valued OOIs in \ \ 1

D D

D D

D D

p k S S k

S p S k S

S p S S k

 − ≥ −
′ = − −


≤ −



              (6) 

Similarly, while de-anonymizing reports, the OOIs which are already de- 
anonymized for other attributes are automatically ruled out from possible candidate  
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Figure 7. Demonstration of the de-anonymization process in a multi-dimensional scena-
rio. (a) 2 reports received; (b) 3 reports received. 
 
lists and their OC values are not considered while de-anonymizing. The Rule 4 is 
modified as follows. 

Rule 7. (Rule of being de-anonymized) The attribute v is de-anonymized for 
OOI p if  

( ) ( )v v q S q p p vOC p T OC q T∈ ∧ ≠= ∧∀ <                  (7) 

Here, we present a simple example referring to our example in Section 1. In 
our example, B is de-anonymized after receiving fifth report. However, if this 
optimization is applied, B would be de-anonymized at fourth report. According 
to Rule 2, AR would choose , : $20A B  instead of , : $20B D . Here, A is 
chosen instead of D because A is already de-anonymized. In this case, the BIOC  
will look like the following: 
 

 
 

In this state, B will be de-anonymized according to the Rule 5 as  
( ) ( ), 0B BIOC C IOC D >  and A is already de-anonymized for other attribute. 

5. Theoretical Analysis on NRRFD for MDEAS 

In this section, we present a theoretical analysis on NRRFD as explained earlier. 
As the order of appearance of reports (ARs) is probabilistic, we derive the ex-
pected NRRFD using probability theory. Consider a d-dimensional PSS scenario 
where the i-th dimension has iN  OOIs that are reported with ik  anonymity 
for all 1 i d≤ ≤ . Overall, there are 

1
d

iiX N
=

=∏  distinct OOI combinations 
that need to be reported with as many unique attributes. Our de-anonymization 
scheme carries out “attribute-centric” independent de-anonymization process 
for each of the X unique attributes. 

For each AR received by ApS for a particular attribute, it eliminates i iN k−  
OOIs from the potential list of OOIs in the i-th dimension on the basis that their 
OC values are less than the number of ARs received so far. As the anonymization 
process selects unobserved OOIs in the order of their IOC, the de-anonymization 
process of ApS is able to continually eliminate i iN k−  OOIs from the potential 
list of observed OOIs in the i-th dimension for each received report. To isolate 
the actual attribute, ApS needs to eliminate 1iN −  other OOIs. Therefore, the  

de-anonymization process in the i-th dimension requires 1i

i i

N
N k

 −
 − 

 reports to 
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isolate observed OOI in ith dimension from the candidate list altogether. As the  
de-anonymization process in each dimension is independent of other dimen-
sions and they are carried out in parallel, the de-anonymization process of a par-
ticular attribute is completed by isolating the OOIs in all d dimensions  

after receiving 1
1

max i
i d

i i

N
Y

N k≤ ≤

 −
=  − 

 reports. 

Ideally, the anonymization framework needs no more than idealn XY=  re-
ports to de-anonymize the attributes of all X OOI combinations. This low-
er-bound, however, can only be met if and only if each unique attribute is ob-
served exactly Y times, which is an unrealistic assumption. The probability of a  

particular attribute being observed is 1p
X

= . After n observations, the number  

of times each unique attribute v is reported, vn , can be assumed normally dis-
tributed with mean, nnp

X
µ = =  and variance,  

( )2
2

1 11 1n Xnp p n
X X X

σ − = − = − = 
 

 according to the Central Limit Theorem,  

i.e. ( )2~ ,vn N µ σ . The minimum of X number of vn ’s follows the Gumbel  
distribution ([10], §10.5), one of the Generalized Extreme Value (GEV) distribu-

tions, with mean 
1n z Xz n

X X
µ σ −
− = −  where 

1 1 11 1 11 1 1
e

z
X X X

γ− − −     = − + − − −           
Φ Φ Φ            (8) 

and 1−Φ  is the inverse CDF (cumulative distribution function) of the standard 
normal distribution ( )0,1N , and 0.5772γ =  is the Euler-Mascheroni constant 
[11]. 

We may now find the expected NRRFD, n  needed to de-anonymize the 
values of all X OOI combinations by finding the root of the following quadratic 
equations.  

1n z Xn Y
X X

−
− =                        (9) 

Simplifying the equation above, we find  

( )( )21 1 1 4
2

n z X z X XY= − + − +                (10) 

( ) ( ) ( )( )( )2 2 21 2 1 4 2 1 1 4
4

n z X XY z X z X XY= − + + − − +        (11) 

Finally, by simplifying more the above equation, we get  

2

1
2ideal
z zn
Y Y

 
≅ = + + 

 
                     (12) 

Figure 8 shows the NRRFD by varying N2 with fixed N1 (e.g. 5, 10, 20, 60). 
When N2 is smaller than N1, the idealn  increases linearly with X. And when N2  
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Figure 8. NRRFD on different N and k in multi-dimensional PSS scenario. 
 
is larger than N1, idealn  increases quadratically with both X and Y. This graph 
also depicts that the configurations with similar idealn  values require similar 
NRRFD. 

The value of NRRFD obtained from this mathematical analysis conforms to 
the results obtained from our simulaitons. We present both theoretical and si-
mulation results in Section 7.2. 

6. Algorithms in MDEAS 

In this section, we present the algorithms to be used for anonymizing observa-
tions and de-anonymizing them at ApS. These can be applied in any-dimensional 
PSS scenario. 

6.1. Anonymization Algorithm 

Algorithm 1 is used by the AnS to anonymize a d-dimensional observation. It 
takes a set of user preferences ( )1 2 3, , , , dk k k k  for d dimensions and the cor-
responding OOI combination ( )1 2, , , dr p p p=   as input. To remind the 
readers, here 1 2, , , dp p p  are OOIs of different dimensions such as location, 
product etc. The Algorithm uses corresponding IOC, i.e. rIOC  to anonymize 
this report. For each dimension i, ( )1ik −  extra OOIs are selected from the set 
of OOIs in that dimension, i.e. iS  by preferring the OOIs with highest IOC 
value and the de-anonymized ones following Rule 2. These selected OOIs along 
with the observed OOI are put into the set iS ′ . After preparing the set iS ′ , the 
Algorithm updates rIOC  by incrementing the IOC count for each OOI 

| i iq q S q S ′∈ ∧ ∉ . Thus, the returning set is formulated, i.e. { }1 2, , , dS S S S′ ′ ′ ′=   
where iS ′  denotes the anonymized OOI set for ith dimension. 

6.2. De-Anonymization Algorithm 

Algorithm 2 is used by the ApS for de-anonymizing the ARs. Here, input iS ′  
and v denote the set of anonymized OOIs in the ith dimension and the reported  
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Algorithm 1. },{ vS ′ : Anonymize }),,{,},,,({ 11 dd kkvpp  . 

 

 

Algorithm 2. P: De-anonymize ),,,,( 21 vSSS d ′′′  . 

 
attribute, respectively. For each dimension i, the Algorithm increases the OC 
value for all OOIs q, i.e. ( ) |i

v iOC q q S ′∈ . To check whether a reported attribute, 
v has been de-anonymized, ApS checks Rule 1 for each dimension i. If all di-
mensions’ observed OOIs are de-anonymized following Rule 1, then the actual 
OOI combination for v is known by the ApS. 

Note that, as discussed in Section 3, the anonymization Algorithm 1 can be 
optimized for single dimension to achieve faster de-anonymization. In order to 
do this, we need to keep track of the already de-anonymized OOIs and prioritize 
those to add in anonymized set in Line 4 of Algorithm 1. However, this optimi-
zation is not applicable in multi-dimensional scenario as the attribute of OOI 
depends on multiple dimensions and the anonymization is done separately for 
each dimension. 

7. Results and Discussions 

To establish the applicability and assess the performance of our proposed schemes, 
we have experimented with both comprehensive simulation and android-based 
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real world prototype. Adversary capabilities are modeled considering realistic 
approach to encourage the replication; we have shared our implementations of 
both simulation and android-based prototype1. 

7.1. Simulation 
7.1.1. Simulation Setup 
We have conducted a simulation of our proposed schemes using custom simu-
lator. User Observations are generated randomly with uniform distribution. By 
varying the number of OOIs and the anonymity preference of users, we have 
analyzed the performance of the algorithms for both single and multi-dimensional 
scenarios. As we are mostly interested in evaluating the performance of pro-
posed schemes in terms of data quality, we investigated how many observations 
are required to achieve different extent of de-anonymization. We use a term called 
“De-anonymization rate” to present our results. De-anonymization rate of T ob-
servations is defined as the proportion of OOIs de-anonymized among the N OOIs. 
We shall also analyze the impact of anonymity preference on de-anonymization 
rate. All the results presented here are obtained by averaging 1000 simulation 
runs. 

7.1.2. Results for Single-Dimensional PSS 
In this section, we have presented the results of simulation for sin-
gle-dimensional PSS scenario by applying the simple optimization explained in 
Section 4. As alluded earlier, our proposed scheme is scalable in the number of 
OOIs. Hence, we could experiment with PSS scenarios with a reasonably large 
number of OOIs. Figure 9 shows the de-anonymization rate for fixed 15N =  
by varying anonymity preference k from 8 to 14. Naturally, high anonymity pre-
ference requires more observations to de-anonymize all OOIs. For example, 
around 100 reports are needed to de-anonymize all OOIs for 8k =  while little  

 

 

Figure 9. De-anonymization rate of MDEAS in single-dimensional PSS scenario for 
15N =  and varying k. 

 

 

1Simulator: https://bitbucket.org/shaolinkhusbu/pss-simulator android prototype:  
https://bitbucket.org/nafeezabrar/pss-server-front-end. 
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more than 200 reports are needed for 13k = . However, the highest possible 
anonymity preference, e.g. 14k =  requires considerably higher number of ob-
servations, i.e. 375. This result indicates that based on the observation frequency 
in the OOIs, a feasible k should be selected. 

7.1.3. Comparison with Existing Subset-Coding Techniques 
As we have discussed in Section 1 that we are interested in scenarios where indi-
vidual data need to be retrieved at the destination, existing techniques such as spatial 
cloaking, obfuscation are not applicable in our context. Hence, k-Anonymization 
Techniques, e.g. PGAS [8], DGAS/FDGAS [9] are the only comparable tech-
niques with our schemes. Although we have outperformed them completely in 
terms of computational overhead, we may compare in terms of their required 
number of observations to achieve certain data quality. Since the requirement of 
observations to achieve full de-anonymization is almost similar in all 3 cases, we 
consider it sufficient to compare only DGAS with our approach. We have simu-
lated both approaches with the same set of observations with different N and k 
to maintain fairness. Since the computational overhead of DGAS is much higher 
than MDEAS, we have simulated it with smaller N. From Figure 10, we see that 
we require a higher NRRFD compared to DGAS but almost similar NRRFD in 
optimized MDEAS explained in Section 4. 

7.1.4. Results for Multi-Dimensional PSS 
Allowing anonymity in multiple dimensions and at once satisfying different 
anonymity preference for each dimension is the most desired performance for 
an anonymization scheme. We achieved this without sacrificing recoverability of 
data. Figure 11 depicts the result for two-dimensional anonymization which 
anonymizes both location and product with different anonymity preference. We 
see that for quite a large number of OOIs in both dimensions, i.e. 1 8,10,15N ∈  
and 2 4,6,8N ∈ , the required number of observations are in the range of 500 -  
 

 

Figure 10. Comparison of de-anonymization rate between DGAS and MDEAS (both unop-
timized and optimized) for 4N =  to 6 and highest anonymity preference, 1k N= −  in 
single-dimensional PSS scenario. 
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Figure 11. Impact of location anonymity lk  on the de-anonymization rate of MDEAS 
in multi-dimensional PSS where, 8lN = , 4pN =  and 3pk = . 

 
3000 to de-anonymize all OOIs with highest anonymity 1i ik N= − . However, 
when the anonymity preference is reduced to half, i.e. 2i ik N= , the required 
number of observations also declines significantly. For example, for 8lN =  
and 4pN = , if lk  and pk  is reduced from 1i ik N= −  to 2i ik N= , the re-
quired number of observations decreases by 49% which is approximately half 
compared to the highest anonymity. Hence, in the case of a very large number of 
OOIs in multi-dimensional scenraio, PSS can vary the anonymity preference in 
different dimensions in order to achieve good de-anonymization with a finite 
number of observations. 

7.2. Comparison with Theoretical Result 

Figure 12 depicts the result for two-dimensional anonymization which anony-
mizes both location and product i.e. for { }13,14lN ∈  and { }6,7pN ∈ . Our 
simulation result matches with the theoretical results found explained in Section 
5. The red dot shown in this figure denotes the theoretical mean while the di-
amond-shaped black dot denotes the mean achieved by 1000 simulation run. 
The mean NRFFD achieved from our simulation differs by only 4% from the 
theoretical mean which is inacceptable range and validates each other Moreover, 
an interesting pattern is observed in this figure. The total reports required for 
full de-anonymization is 2864, 2812 and 2679 for 14, 8l pN N= = ,  

15, 7l pN N= =  and 16, 6l pN N= =  which are very close. Similarly the re-
ports required are similar for 13, 8l pN N= = , 14, 7l pN N= =  and  

15, 6l pN N= =  also. This similar pattern is observed in both our simulation 
and theoretical result. Both results depicts that the NRRFD depends mostly on 

idealn . Therefore, similar configurations with closer idealn XY=  requires similar 
NRRFD. 

Results for Variation in User Preference 
In the real world, individual’s privacy concern varies with many parameters such  
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Figure 12. Theoretical and experimental results different lN  and pN . 

 
as the culture of the society and family, job position, age, etc. Therefore, choos-
ing a universal anonymity preference (k) for all users is sometimes impractical. 
Moreover, incentive schemes may reward lower anonymity preference more if it 
helps to gain better de-anonymization. From this consideration, we would like to 
evaluate the response of our proposed scheme against variable anonymity prefe-
rence. Without loss of generality, we show result for three different configura-
tions in Figure 13. First, we consider a fixed 12k =  for 15N = . Then, we 
compare it with 10k =  for half the observations and 14k =  for the other half. 
Finally, we like to distribute user preferences in three equal proportions for 

10k = , 12, and 14, respectively. We find that there is not a significant change in 
de-anonymization rate for these variable anonymity preferences. Thus our algo-
rithms offer a flexibility to satisfy users with diverse anonymity preference without 
compromising de-anonymization performance. 

7.3. Privacy Risk Analysis with Adversary 

Adversary residing near ApS can eavesdrop the ARs sent by the participants and 
thus reveal actual attribute of OOIs and find the users’ association with the OOI. 
We have discussed the adversary model in details in Section 2.2 and a grouping 
strategy is proposed to mitigate the adversary risk. We also discussed some addi-
tional adversary capabilities. In our simulation, we have evaluated MDEAS’s 
performance under the presence of adversaries with additional capabilities 
where grouping strategy is applied. We use τ  and AT  to define the colluding 
group size and adversary type, respectively. 

7.3.1. Simulation Setup 
We simulated all 3 types of adversaries as defined in Table 1 (Section 2.2) who 
collude among themselves and try to de-anonymize by sharing observed OOIs 
among the colluding team members. We have also analyzed the de-anonymization 
capability of adversaries by varying their pattern of intercepting ARs, AT  and  
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Figure 13. Impact of variation of anonymity preference, k on the de-anonymization rate 
of MDEAS in single-dimensional PSS where 15N = . 
 
collusion i.e. the size of their colluding team, τ . In this simulation, we have as-
sumed an arbitrary PSS scenario with two dimensions (location and product) 
where 18lN =  and 12pN =  and 3 , 5l pk k≤ ≤ . We have applied grouping as 
discussed in Section 2.2 and varied the total number of groups, G by 4, 6 and 9. 
The generation of observed reports and grouping of OOIs are done randomly 
with uniform distribution. Adversaries are also selected from the registered users 
randomly (uniform distribution) according to the colluding team size. All the 
simulation results are prepared by taking the average of 100 runs. For the sake of 
completeness, we also simulated the behavior of adversary that might use pre-
diction as discussed in 1 for de-anonymization. 

7.3.2. Results of the De-Anonymization Capability of Adversary 
We have compared the de-anonymization capability of different types of adver-
saries in Figure 14. In this experiment, only the AR interception pattern differs 
while the colluding team size, τ  and the number of groups of PSS, G are fixed. 
Here, it is clear that the de-anonymization capability of all three types of adver-
saries does not differ much. As grouping is applied in PSS, no matter how many 
ARs they intercept, they only know the OOI-attribute mapping of their own ob-
served reports which is only 1.4% of total attributes of PSS. 

The colluding adversaries incur more privacy risk on PSS as more collusion 
means more shared information and revelation of ARs. Figure 15 depicts the 
impact of colluding team size, τ  on the de-anonymization capability of adver-
saries by keeping N, k, G, and TA fixed. It is clear from this result that the in-
crease of colluding team size increases the privacy risk of users. Still, a practically 
reasonable size of colluding groups (e.g. 5, 10, 15 when the total number of users 
is 500) can only reveal 11%, 21% and 30% attributes of PSS respectively that are 
actually revealed from the observed reports of adversaries themselves. 

Figure 16 shows the de-anonymization rate of adversary by varying the total 
number of groups, G in PSS while other parameters are fixed. This analysis clearly  
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Figure 14. De-anonymization rate of different adversary types, TA in multi-dimensional 
PSS with 18, 12l pN N= =  where adversary colluding team size, 1τ = , the total number 

of groups, 6G =  and anonymity, 3 3l pk k= = = . 

 

 

Figure 15. De-anonymization rate of the adversary for different colluding team size, τ  
where 2, 4, 5A l pT G k k= = = = . 

 

 

Figure 16. De-anonymization rate of the adversary for multi-dimensional PSS by varying 
the total number of groups, G where 2, 1, 3A l pT k kτ= = = = . 
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depicts that G does not have much impact on the de-anonymization capability of 
the adversary. 

From Figures 14-16, we may conclude that the interception of ARs by adver-
sary does not help them in their de-anonymization. However, more collusion 
means more revelation of attributes and consequently the risk increases. Still, 
this privacy risk is not significant as such large portion of a colluding group of 
users practically does not exist. 

As discussed in Section 2.2, the adversary might make some prediction on 
their set of most probable de-anonymized OOIs. As an example, we explained 
how the adversary can predict location OOIs using distance estimation. We have 
simulated such adversary with location prediction capability and shown the re-
sult in Figure 17. Here, we have shown the de-anonymization capability of dif-
ferent possible types of adversaries with respect to colluding team size τ . Even 
though the adversary has assumed distance based prediction, adversaries with 
colluding team size 10 can only de-anonymize about 50% OOIs which is equiva-
lent to a random prediction. 

7.4. Android Prototype Based Experiment 

We have developed an Android-based software prototype as a proof of concept 
of our proposed scheme which can be applied in real world scenario. Specifical-
ly, it has modules for the users to send the actual report to the AS, receive ARs 
from AS and forward this with user id to the ApS. Figure 18(a) and Figure 
18(b) show the user interface for sending a report to AnS and ApS respectively. 
Figure 18(c) and Figure 18(d) show the servers’ responses. 

With the help of this application using Android Smart-phones (connected to 
the Internet and equipped with GPS) and two separate servers dedicated as AnS 
and ApS built with Python Tornado Web Framework, we test our anonymiza-
tion and de-anonymization algorithms. Here the user’s current location is ob-
tained from device’s GPS and other information like the product and its actual  
 

 

Figure 17. De-anonymization rate of adversary with location-estimation capability by 
varying colluding team size, τ  and number of groups, G where 2, 4, 5A l pT G k k= = = = . 
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Figure 18. Android prototype of sending a report to AnS and ApS and the corresponding 
server response on receiving the reports. (a) User sends Report to AnS; (b) User sends 
report to ApS; (c) AS receives user’s report without identity; (d) ApS receives AR with 
user identity. 
 
attribute is taken as user input. After receiving the anonymized report from AnS, 
a user can directly send the report to ApS shown in Figure 18(b). This user’s 
report is received by ApS shown in Figure 18(d). ApS can de-anonymize all the 
reported products successfully from the received ARs. We have simulated our ap-
plication for 2-dimensional PSS scenario where 3lN = , 3pN =  and 2l pk k= = . 
Figure 19 shows our experimental result where 90% de-anonymization has been 
achieved after receiving 59 reports on average were required to achieve full 
de-anonymization. We have calculated this de-anonymization rate by averaging 
the results by running the application for 10 times. 

8. Related Works 

Assurance of privacy in accordance with users’ contribution is the key factor for 
maintaining adequate participants in PSS system [12] and hence numerous re-
search works using a few techniques have been conducted to protect the privacy 
of the users. These approaches are briefly discussed below. 

8.1. Mix Network 

Hot-Potato-Privacy-Protection (HP3) [6] scheme is designed based on mix net-
work concept where a user sends a report to one of his/her friend and that friend 
chooses another friend to deliver the report to next hop. This process continues 
until a threshold is reached and then the last recipient sends the report to ApS. 
LAP [13] reduces the latency and minimizes computational overhead of this 
mix-network scheme. Wang and Ku proposed another variant of mix-network 
approach in [14] where only the connection request is transferred through the 
peers and thus it consumes less bandwidth and computational power. Recently, 
using mix network a collaborative data exchange method is proposed in [15] 
where participants exchange data before submission and submit mixed data for 
privacy protection. Another decentralized peer-to-peer exchange platform 
named Privacy Aware Incentivization (PAI) has been proposed [16] to provide 
anonymous, untraceable and secured data submission alongwith adaptive, ad-
justable and incentive-compatible reward computation. However, all these 
mix-network based schemes suffer from delays due to slow network connection  
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Figure 19. De-anonymization rate of ApS achieved in the android experiment. 
 
in volunteer peers. Ensuring the trustworthiness of the peers is a big challenge of 
these schemes. 

8.2. Pseudonym 

The pseudonym-based approaches are also common for protecting identity pri-
vacy from ApS. But long-term pseudonym tends to be identified easily by ad-
versary. Mix-zone concept is proposed in [17] where users register in a con-
nected spatial region so that adversary cannot distinguish a user coming out 
from a mix-zone. Mobimix [18], TrPf [19] are proposed using this mix-zone 
concept. However, these approaches may suffer from low level of anonymity in 
high spatial-temporal resolution. 

8.3. Encryption 

Encryption is one of the most common approaches for protecting privacy in PSS. 
E. De Cristofaro et al. presented an approach where server gets encrypted data 
and blindly performs computation on the encrypted data. LotS [20] maintains 
k-anonymity with the use of cryptographic techniques and combines voting ap-
proaches to support users’ reputation. To report large multimedia data, an era-
sure coding based scheme named SLICER [21] has been proposed where the 
sensing record is sliced and each slice is transferred via other participants or ge-
nerator itself using cryptographic encryption scheme. However, these encryp-
tion-based approaches are often prohibited by government as illegal data might 
be transferred. 

Multi Secret Sharing and Information Exchange 
Multi-secret sharing [22] is a concept where some arbitrarily related secrets are 
shared among a set of participants who are not trusted individually. This ap-
proach is improved in PShare [23] [24]. For protecting trajectory privacy, ex-
changing report has been proposed in [25]. In this scheme, users exchange 
his/her collective sensor readings with another user when they physically meet. 
To identify malicious users in this scheme, TrustMeter [26] has been proposed 
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which assesses the user contribution as well as trust levels. I. Boutsis and V. Ka-
logeraki proposed another low-cost information exchange strategy in [27] 
named LOCATE (LOCation-based middlewAre for TrajEctory databases). Here 
user data is distributed among multiple users in local user databases. This dis-
tribution of location makes impossible for an attacker to breach the privacy of 
user. 

8.4. Techniques for Aggregated Data 

Different techniques for privacy protection have been proposed in the PSS sce-
narios where the ApS is only interested in aggregated result. PriSense [28] sup-
ports non-additive aggregate functions like average, min/max, histogram etc. 
Negative surveys are used in [29] to facilitate the complemented sensory data as 
an input and get aggregated result of the actual ones without revealing actual in-
dividual data. 

8.5. Spatial Cloaking 

Obfuscation is first introduced in [30] as a new technique to safeguard location 
privacy which degrades quality of service. k-anonymity based location-privacy 
schemes have been proposed in [31] [32] where 1k −  participants are selected 
through a third-party or other participants which may suffer from privacy attack 
of adversary participants or third-party. To address this challenge, a distributed 
k-anonymity based scheme has been proposed [33] where participants cloak 
their location data without disclosing their exact location to third party or other 
participants. However, these approaches incorporate delay in real time operation 
and not suitable where fine-grained information is required. 

8.6. Differential Privacy 

Differential privacy (DP) protection is a new paradigm based on the notion that 
some aggregate property of a large data-set remains unchanged even if individu-
al data are tweaked with controlled random noise. Many researchers have uti-
lized this differential privacy technique for providing privacy protection in mo-
bile crowd-sourcing (task assignments), aggregation-based queries and loca-
tion-based services. For example, DP-MDBScan schema proposed in [34] focus-
es on clustering analysis of network user data. Another differential Privacy pro-
tection approach is proposed in [35] which is applicable to arbitrary aggregate 
query function by avoiding too much noise. In [36] [37] controlled noise is 
added to protect workers’ from revealing exact locations. Another framework 
has been proposed in [38], where cellular service providers (CSP) release work-
ers’ locations to third party application servers in noisy form applying Differen-
tial privacy based technique. However, none of these approaches aim for 100% 
accuracy on query response or task acceptance ratio. As we aim for achieving 
100% de-anonymization, differential privacy cannot be applied in our technique 
of data collection. 
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8.7. Combination of Different Techniques 

Many privacy-preserving mechanisms [39] have been proposed that combines 
anonymization, data obfuscation, and encryption techniques to increase the pri-
vacy of the users while improving the quality of information and the energy 
consumption. Ensuring user privacy and data trustworthiness are two conflict-
ing challenges in PSS [40]. ARTSense [41] designs trust assessment algorithms to 
compute the trust of sensing reports based on anonymous user reputation while 
maintaining privacy of the users. Wang et al. [42] proposed a framework to dy-
namically assess the trustworthiness of information as well as the participants. In 
[43] both privacy and incentive issues have been addressed using token-based 
authentication and blind signature. Here, task and credit are transferred through 
real id while the reports and credit receipt are transferred anonymously. Still, 
this approach can cause credit-based inferable attack. IncogniSense [44] scheme 
addresses this challenge by periodically changing pseudonym and dynamically 
cloaking the reputation score. But this approach is not feasible in real life for its 
additional management overhead and heavy communication cost. 

9. Conclusion 

In this paper, we have presented efficient algorithms for anonymization and 
de-anonymization of user observations in the context of PSS. To the best of our 
knowledge, this is the first work that presented anonymization technique in 
multiple dimensions with flexible anonymity preference. Theoretical analysis 
and simulation results show that our proposed scheme achieves sufficient data 
recoverability at the target end from a feasible number of user reports. We have 
also implemented an Android prototype and conducted experiments in real-world. 
Our proposed approach is likely to contribute to making participatory sensing a 
popular technology to the community ensuring privacy of participants without 
compromising the quality of data. 
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