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Abstract 
We review the (2 + 1)-dimensional Baňados-Teitelboim-Zanelli black hole so-
lution in conformally invariant gravity, uplifted to (3 + 1)-dimensional space-
time. For the matter content we use a scalar-gauge field. The metric is written 
as 2g gµν µνω=  , where the dilaton field ω contains all the scale dependencies 

and where gµν  represents the “un-physical” spacetime. A numerical solu-
tion is presented and shows how the dilaton can be treated on equal footing 
with the scalar field. The location of the apparent horizon and ergo-surface 
depends critically on the parameters and initial values of the model. It is not a 
hard task to find suitable initial parameters in order to obtain a regular and 
singular free gµν  out of a BTZ-type solution for gµν . In the vacuum situa-
tion, an exact time-dependent solution in the Eddington-Finkelstein coordi-
nates is found, which is valid for the (2 + 1)-dimensional BTZ spacetime as 
well as for the uplifted (3 + 1)-dimensional BTZ spacetime. While gµν  re-

sembles the standard BTZ solution with its horizons, gµν  is flat. The dilaton 
field becomes an infinitesimal renormalizable quantum field, which switches 
on and off Hawking radiation. This solution can be used to investigate the 
small distance scale of the model and the black hole complementarity issues. 
It can also be used to describe the problem of how to map the quantum states 
of the outgoing radiation as seen by a distant observer and the ingoing by a 
local observer in a one-to-one way. The two observers will use a different 
conformal gauge. A possible connection is made with the antipodal identifi-
cation and unitarity issues. This research shows the power of conformally in-
variant gravity and can be applied to bridge the gap between general relativity 
and quantum field theory in the vicinity of the horizons of black holes. 
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1. Introduction 

Besides the well-studied Schwarzschild and Kerr solution in general relativity 
theory (GRT), there is another black hole solution in (2 + 1)-dimensional space-
time, i.e., the Baňados-Teitelboim-Zanelli (BTZ) black hole [1] [2]. The BTZ 
geometry solves Einstein’s equations with a negative cosmological constant in 
(2 + 1)-dimensions. In general, (2 + 1)-dimensional gravity has been widely rec-
ognized as a laboratory not only for studying GRT, but also quantum-gravity 
models. A nice overview of these models can be found in the book of Compère 
[3]. It is conjectured that this genuine solution will be of importance when one 
considers thermodynamic properties close to the horizon, i.e., Hawking radiation. 
The (2 + 1)-dimensional BTZ solution is comparable with the spinning point 
particle solution (or “cosmon” [4]) of the dimensional reduced spinning cosmic 
string or Kerr solution. (2 + 1)-dimensional gravity without matter, implying 
that the Ricci- and Riemann tensor vanish, so matter-free regions are flat pieces 
of spacetime. When locally a mass at rest is present, it cuts out a wedge from the 
2-dimensional space surrounding it and makes the space conical. The angle defi-
cit is then proportional to the mass [5]. The important fact is that the spinning 
point particle has a physical acceptable counterpart in (3 + 1)-dimensions, i.e., 
the spinning cosmic string. The z-coordinate is suppressed, because there is no 
structure in that direction altogether. It is not a surprise that these models are 
used in constructing quantum gravity models. In these models one uses locally 
Minkowski spacetime, so planar gravity fits in very well. 

The BTZ solution is related to the Anti-deSitter/Conformal Field Theory 
(AdS/CFT) correspondence [6] and became a tool to understand black hole en-
tropy [7]. For the (2 + 1)-dimensional BTZ black hole solution, one can try to 
follow the same procedure as used for the cosmic string, by uplifting the solution 
to (3 + 1)-dimensional spacetime. However, the cosmological constant must be 
taken zero, when the BTZ solution is uplifted, so it loses its connection with the 
asymptotic AdS3 black hole. This opens the way to new solutions, which was 
done in a conformally invariant setting [8] [9]. Conformal invariance (CI) was 
originally introduced by Weyl [10]. See also the textbook of Wald [11]. The 
AdS/CFT correspondence renewed the interest in conformal gravity. AdS/CFT is 
a conjectured relationship between two kinds of physical theories. AdS spaces 
are used in theories of quantum gravity while CFT includes theories similar to 
the Yang Mills theories that describe elementary particles. It is believed that CI 
can help us to move a little further along the road to quantum gravity. Exact lo-
cal CI at the level of the Lagrangian, will then spontaneously be broken, compa-
rable with the Brout-Englert-Higgs (BEH) mechanism. It is an approved alterna-
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tive for disclosing the small-distance structure when one tries to describe quan-
tum-gravity problems [12] [13]. It can also be used to model scale-invariance in the 
cosmic microwave background radiation (CMBR) [14]. Another interesting ap-
plication can be found in the work of Mannheim on conformal cosmology [15]. 
This model could serve as an alternative approach to explain the rotational 
curves of galaxies, without recourse to dark matter and dark energy (or cosmo-
logical constant). In Mannheim’s model, standard Schwarzschild phenomenol-
ogy can in fact be recovered in conformal gravity in the presence of a sca-
lar-gauge field. Further, GRT will be different on different scales by virtue of the 
dilaton field. As regards dark matter, there is nothing in principle wrong with 
the existence of nonluminous material. Rather, what is disturbing is the ad hoc, 
after the fact, way in which dark matter is actually introduced, with its presence 
only being inferred after known luminous astrophysical sources are found to fail 
to account for any given astrophysical observation [15]. The dark energy prob-
lem is even more severe, and not simply because its composition and nature are 
as mysterious as that of dark matter. The introduction of a cosmological con-
stant will not solve this problem. It is not possible to explain the huge discre-
pancy between the contribution from zero-point fluctuations in quantum field 
theory and the predicted value in GRT (some 120 orders of magnitude!). It is 
hoped that in future more data will become available for the rotation curves of 
galaxies. The validity of conformal gravity theory can also be tested with the 
cosmic microwave background. It is a challenge to alternate theories to fit the 
cosmic microwave background data. The growth of inhomogeneities in the 
model and the size of the fluctuation “yardstick” (determined by ω) of the con-
formal theory would be different from the one used in the standard theory. 

Another key problem is the handling of asymptotic flatness of isolated systems 
in GRT, especially when they radiate and the generation of the metric gµν  
from at least Ricci-flat spacetime. In the non-vacuum case one should construct 
a Lagrangian where spacetime and the fields defined on it, are topological regu-
lar and physical acceptable. This can be done by considering the scale factor (or 
warp factor in higher-dimensional models [16]) as a dilaton field besides, for 
example, a conformally coupled scalar field or other fields. Conformal invariant 
gravity distinguishes itself by the notion that the spacetime is written as 

2g gµν µνω=  , with ω a dilaton field which contains all the scale dependencies 
and gµν  the “un-physical” spacetime, related to the (2 + 1)-dimensional Kerr 
and BTZ black hole solution. ω is just an ordinary renormalizable field, which 
could create the spacetime twofold: an in-falling and outside observer use dif-
ferent ways to fix the conformal gauge in order to overcome the unitarity prob-
lems encountered in standard approaches in quantum gravity models. It can be 
handled on equal footing with a scalar field. Renormalization and unitarity 
problems in general relativity at the quantum scale, have a long history [17] [18]. 
In first instance, it was believed that conformal invariance would not survive in 
quantum gravity (see, for example, the overview of Duff [19]). However, new 

https://doi.org/10.4236/jmp.2020.1110105


R. J. Slagter 
 

 

DOI: 10.4236/jmp.2020.1110105 1714 Journal of Modern Physics 
 

interest occurred, when it was realized that Weyl anomalies and unitarity prob-
lems could be overcome. In constructing an effective theory in canonical quan-
tum gravity and to obtain quantum amplitudes, one performs a functional inte-
gration of the exponent of the entire action over, for example, all components of 
the metric tensor at all spacetime points. Now the integration is first performed 
over the dilaton function ω together with the matter fields. Integration over the 
ω is identical to the integration over a renormalizable scalar field. In the action 
the dilaton must be shifted to the complex contour, in order to obtain the same 
unitarity and positivity features as the scalar field. Another actual problem is the 
back hole complementarity: how to handle the in- and out-going radiation as 
experienced by an in-falling- and outside observer. In a dynamical setting, there 
will be a back-reaction on the location of the horizon(s). The in falling and out-
side observer will experience a different ω. They use different ways to fix the 
conformal gauge. Further, there is the problem of extending the Penrose dia-
gram in a one-to-one map, in order to avoid unitarity and locality problems and 
to avoid the need to define the inside of the black hole (or even another un-
iverse). The antipodal identification could be used [20], i.e., a conformal com-
pactification of the manifold [21]. 

In Section 2 and 3 we describe the dynamical CI model on the original BTZ 
black hole spacetime, uplifted to (3 + 1) dimensions. In Section 3.2 we present a 
numerical solution of the complete set of coupled PDE’s. In Section 4 and 5 we 
find an exact time-dependent solution in the vacuum situation in Edding-
ton-Finkelstein coordinates and we explain possible ways to connect this solu-
tion with recent research on black hole complementarity, antipodal identifica-
tions and hawking radiation.  

2. The BTZ Solution Revised  

If one solves the Einstein equations G gµν µνλ=  for the spacetime 

( )
( )

( )( )222 2 2 2
2

1d d d d d ,s N t N t
N

ϕρ ρ ρ ϕ ρ
ρ

= − + + +           (1) 

one obtains [8] 

( )

( )

2 2
2 2 2

2

2

16 ,

4 ,

G JN

GJN Sϕ

ρ α ρ
ρ

ρ
ρ

≡ −Λ +

≡ − +
                   (2) 

where S, J and α are integration constants [1] [3]. The parameters α and J 
represent the standard ADM mass (α2 = ±8GM) and angular momentum and 
determine the asymptotic behavior of the solution. Λ represents the cosmologi-
cal constant. There is an inner and outer horizon and an ergo-circle just as in the 
case of the Kerr spacetime. However, we live in a 4-dimensional spacetime, so 
one way or another, the BTZ solution in 3 dimensions must be up-lifted to (3 + 1) 
dimensions. From the Einstein equations one can then easily verify that Λ = 0. 
So we consider here the case Λ = 0, and we write the spacetime as 
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( ) ( )
2 2

2 2 2 2 2
2 2 2 2

2 2 2
2

d 8 d d
16

4d 2 d d ,

H

H

rs G JS M S t
G J r

GJS t

ρ
ρ ρ

ρ

ρ ϕ ρ ϕ
ρ

 = − − − +  −

 
+ + − 

 

        (3) 

with Hρ  the horizon 2
H

G J
M

ρ = . In the case of S = 0, which is also done in 

the original BTZ solution, one can transform the spacetime to 

( ) ( )
2

2 22 2 24d d d d d ,GJs tα ϕ ρ α ρ ϕ
α

  ′ ′= − + + + 
 

            (4) 

by ( )
2 2 2 2

2
4

16G J α ρρ
α
+′ = . This is just the spinning particle spacetime [4]. 

In a former study [8], we investigated the revised BTZ solution in connection 
with the spinning cosmic strings and conformal invariance and found an up-
lifted exact vacuum solution.  

The spacetime Equation (1) is then replaced by 

( ) ( )
( )

( )( )22 22 2 2 2
2

1d d d d d ,s N t N t
N

ϕω ρ ρ ρ ρ ϕ ρ
ρ

 
= − + + + 

  
     (5) 

with ω the dilaton field. A typical solution is then found [8] for ω, N and Nϕ , 
which is asymptotically regular. See Figure 1. It is remarkable that this solution 
resembles the standard BTZ solution. However, we don’t need a cosmological 
constant. Further, ω plays the role here of a cosmological scale factor. So we can 
extend the model to small scales. This will be done, in a dynamical setting, in the 
next section.  

3. The Dynamical BTZ Model 

3.1. The Field Equations 

Let us consider the time-dependent spacetime ( )2,g t gµν µνω ρ≡   

( ) ( )
( )

( )( )22 22 2 2 2 2
2

1d , , d d d d , d ,
,

s t N t t z N t t
N t

ϕω ρ ρ ρ ρ ϕ ρ
ρ

 
= − + + + + 

  
(6) 

 

 
Figure 1. Example of a conformal invariant solution of the BTZ on a 3-dimensional 

spacetime. 
( )4

~
r c

N
r
+

. The location of the horizon is determined by the constant c. 
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with ω the dilaton field. The action under consideration is 

( ) ( )( )
( )

*4 * 2

2 4

1 1d
12 2

1 1, .
4 36

S x g R D D

F F V

α α
α α

αβ
αβ

ω ω ω

ω κ ω

= − − ΦΦ + − Φ Φ + ∂ ∂


− − Φ − Λ 


∫    





      (7) 

We parameterize the scalar and gauge field as 

( ) ( )( ) ( ) ( )0
1, ,0,0, , , , , e .inA P t P t n t X t
e

ϕ
µ ρ ρ ρ η ρ = − Φ =  

        (8) 

The gauge covariant derivative is D ieAµ µ µΦ = ∇ Φ + Φ  and Fµν  the Abelian 
field strength. 

In the action one redefined 
2

2
2

6ωω
κ

≡ −  (in order to ensure that the ω field 

has the same unitarity and positivity properties as the scalar field Φ [22]) and 
1
ω

Φ = Φ . This Lagrangian is local conformal invariant under the transforma-

tion 2 1,g gµν µν→ Ω Φ→ Φ
Ω

 

   and 1ω ω→
Ω

. 

Varying the Lagrangian with respect to , ,gµν ωΦ  and Aµ , we obtain the 
equations 

( ) ( ) ( ) ( ), 2 4
2 *

1 1 , ,
6

c AG T T T g g Vω
µν µν µν µν µν µνκ ω ω

ω
Φ = + + + Λ + Φ +ΦΦ  



    

 

 

    (9) 

2 31 1 0,
6 9

VRα
αω ω κ ω

ω
∂

∇ ∂ − − − Λ =
∂

                  (10) 

( )( )* *
*

1 0, ,
6 2

V iD D R F D Dα ν
α µν µ µε∂
Φ − Φ − = ∇ = Φ Φ −Φ Φ

∂Φ
          



     (11) 

with 

( ) 1 ,
4

AT F F g F Fα αβ
µν µα ν µν αβ= −

                    (12) 

( ) ( )
( ) ( ) ( )

, * *

** *
3

cT g

D D D D g D D

α
µν µ ν µν α

α
µ ν µ ν µν α

Φ = ∇ ∂ ΦΦ − ∇ ∂ ΦΦ

 − Φ Φ + Φ Φ − Φ Φ  



     



          



       (13) 

and 

( ) ( )2 2 16 .
2

T g gω α α
µν µ ν µν α µ ν µν αω ω ω ω ω ω = ∇ ∂ − ∇ ∂ − ∂ ∂ − ∂ ∂ 

 
  

        (14) 

The covariant derivatives are taken with respect to gµν . Newton’s constant 
reappears in the quadratic interaction term for the scalar field. One refers to the 
field ( ),tω ρ  as a dilaton field. A massive term in ( ),V ωΦ  will break the 
tracelessness of the energy momentum tensor, a necessity for conformal inva-
riance. The cosmological constant Λ could be ignored from the point of view of 
naturalness in order to avoid the inconceivable fine-tuning. Putting Λ zero in-
creases the symmetry of the model. 
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Note that we cannot use in the stationary CI invariant model the gauge At = 0. 
In standard gauged vortices models, this gauge simplifies the well-known Niel-
sen-Olesen 1n =  vortex solution. The spatial rotational symmetry can then be 
completely compensated by a spatially uniform gauge transformation. In the sta-
tionary situation this is not the case. 

For the Maxwell field Aµ , the equation for At is a constraint equation and in a 
time-dependent setting, only iA  are dynamical. Standard, one uses then the 
Lorentz-gauge to remove At completely. Gauge invariance is necessary in order 
to overcome breaking of locality and unitarity. In models with arbitrary vorticity 
n and SU(2)-Yang-Mills-Higgs theory, Gauss’s law yields also a non-zero At for 
most gauges. Just as in the monopole and dyon solutions, At produces a back 
reaction on iA  perturbatively. Although the dyon fields are time-independent, 
there is a net kinetic energy because At is non-vanishing, so are steadily rotating 
(see for example the textbook of Weinberg [23]). 

In our model we have rotation, i.e., a term ( ),N tϕ ρ . If we calculate the con-
servation equations for the Einstein equations, one easily finds that 

0
1P PN
e

ϕ=                           (15) 

So we obtained a kind of natural “gauge” in order to get rid of A0 (Equation (8)). 
The equation for Nϕ  decouples from the other equations. 

The field equations now become 

( )

( ) ( ) ( )

( )

( )

2
4 3 2 4 2 2

2 2 2

5
3 2 2 4 2 2 2 4 2

2 2

4 2 2 3 2 2 4 2 3
2 3 4

2 3 2 2 2 42 2 2

2 2 5
2 4 2 2

4 4 2 3

13 3 3

3 2

1 16 6 18
6

3 6

N NN N N N N N N
N X

N NN V XX N N X X P N P
e

N P N X P X NN N
e eX

NP P NP N P X
e e

ω ω
ρ η ω

ωω η η
ρ ρ

η ηκ ω
ρ ρ ρη ω

ωω η
ρ ρ

′  ′′ ′ ′= − + + − + −  +  

′ ′ ′ ′− − + + − + −

 
′− − Λ + + 

 +

′ ′+ − − +







 

 ( ) ,X


′ 


(16) 

( ) ( )

( )
( ) ( )

2
4 3

2 3
4 2 2 2 4 2 2

2 3

2 2 2

2 4
2 2 4 2

2 2 3 2 22 2 2

2 2 2 2 2 2
2 2 2 2 2 2

2 2 2 2 2

d2 2
d

2

1 12
2

2 6

N XN VN N N
N X

P NN N X X N
e

X

P N XX P N P
e e rX

P P N X PX X
e e

ω ω ηω ω ω
ρ ω

ωω ω ω η ω
ρ

η ω

ω ωω η ω
ρη ω

η ωω η ω η
ρ ρ ρ

′ ′′ ′ ′= + + + + 
 
 

′ ′ ′− + − − 
 +

+


′ ′ ′+ − + + −

+

   
⋅ + + + + +   
   

−













( )
2

2 4 4 2 2 2 4 41 3 5 2 ,
3 6
N V X Xκ ω ω η ω η
ω

 + Λ + +  
  

   (17) 
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( ) ( )

( )
( ) ( )

2
4 3

2 3 2
2 4 2 2 4 2 2 2 4

2 3

2 2 2

2 4
2 2 4 2

2 2 3 2 22 2 2

2 2 2 2 2 2
2 2 2 4

2 2 2

d2 2
d

12
3 6

1 1[ 2
2

2 6

X XN N VX N X N X N
N X

XP N XNX N X X X N N V
e

X
XP N XX X P N P
e eX

P P N X X PX
e

ρ η

η ω ω κ ω
ρ

η ω

ωω η
ρ ρη ω

ηω η ω
ρ ρ

′ ′′ ′ ′= + + + − 
 

  ′ ′ ′− + − − − + Λ    +
+

′ ′ ′+ − + + −
+

 
⋅ + + − − 
 

 









2 2 2
2 2 ,X

e
η ω

ρ
 

+  
 

(18) 

( )
( )

3
4 2 2 2 2 3

2 4 2 2 4 2 2 2 2 2 2

2 2 2 2 2

2 4

2 6
2 ,

P PN PN NP N P e PX N N P N
N r

P P N P e N XX e N X P

e X

η
ρ

ρ η ωω η

ρ η ω

′ ′ ′′ ′ ′= − + + + − 
 
 ′ ′ ′− − + + +

+

 





    (19) 

( ) ( ) ( ) ( ) 1, ,P PN N N N
P P

ϕ ϕ ϕ ϕ

ρ
′ ′ ′ ′′ ′= − = − + 

 



             (20) 

( )
( )

( )

2
2 2 2 2 2 2 2 2 2

2
2

3 2 4 2 2 2

6 2
4 2 .

P N P e X P e N XX
NNN N

e X
ϕ

η ρ η ωω

ρ ρ η ω

 
′ ′ ′− + − + 

′  ′= − +
+



(21) 

Further, we obtain from the Maxwell equations and Einstein constraint equations 
2 2

2 2
2 2 2 2 2 2

2 2 2 2

2 2, .
2 2

XX XXP P
P PX X

e e

η ωω η ωω

η ω η ω
ρ ρ

′ ′+ +′= =
+ − + −





           (22) 

The equation for ω is obtained from the Einstein equations and the scalar equa-
tion for X. If we substitute back the equations into the dilaton equation, we ob-
tain the relation for the potential 

2 d d ,
3 d d

V VV X
X

η ω
ω

= +                       (23) 

From the conservation equations we then obtain 
2 2 2 2

2 2
d d d d5 6 6 , 5 6 6 .
d d d d

X PP V V X PP V VV X V X
X X

η ηη ω η ω
ω ωρ ρ

′
′ ′ ′= + + = + +



 

  (24) 

Sometimes, one chooses a unitary gauge in order to obtain a comparable relation 
(see for example Oda [24]).  

3.2. The Numerical Solution  

We can plot a numerical solution of the field equations of Section 3.1 for a set of 
initial and boundary values. We can choose as initial values the vacuum solution 
of Equation (16)-(21). This solution can easily be found exactly: 

( ) ( ) ( ) ( )( )
( ) ( )

1 11

1

1
212

1 1
1

1 2 2 1 2 3 2
1

1e , log ,

1e , d ,

k t kk

k t

F N G t F
F

N H t F F a a
F

ϕ

ω ρ ρ ρ
ρ

ρ ρ
ρ

−
= = −

= + = + ∫
        (25) 
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where from the other PDE’s a function for F1 can be found for any 1k . We write 
the second order PDE system as a set of first order PDE’s and used a Mathema-
tica routine for solving the system. We checked the solution with the Cad-
sol-Fidisol solver.1 In Figure 2 and Figure 3 we plotted typical solutions for dif-
ferent initial and boundary conditions. It turns out that the solution is insensi-
tive for the cosmological constant (as expected), but very sensitive for the value 
of the potential. Further, we observe that an initial wavelike function for the sca-
lar field, induces a wavelike behavior in the dilaton field. It is not a hard task to 
find the initial conditions and the suitable values of the several parameters in 
order to obtain a regular and singular free spacetime gµν  out of a BTZ solution 
gµν  with its horizons. We already mentioned in the introduction, that the 
z-coordinate don’t play a role in our model. So it was possible to uplift the 
BTZ-spacetime. We will return to this issue in connection with conformal com-
pactification in the next sections.  

 

 
Figure 2. Example of a numerical solution of the system of Equation (16)-(21) with only for the scalar field 
X an outgoing wavelike initial value. We used the potential from Equation (23). 

 

 

1See: http://www.sai.msu.su/sal/B/2/FIDISOL.html.  
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Figure 3. As Figure 2, but now with a different initial wave for the scalar field. We used the initial outgoing 

wave ( )( )e sin 4X tρ ρ ρ−= − + . We observe that the wave turns quickly into a solitary wave and induces a 

wavelike behavior in ω. 

4. An Exact Time-Dependent Vacuum BTZ Solution in  
Eddington-Finkelstein Coordinates in Conformal  
Invariant Gravity  

Quite recently, some progress was made in understanding the physics at the ho-
rizon of black holes, where quantum effects will come into play. For a main-
stream treatment on this subject we refer to Parker and Toms [25]. 

The fundamental question is what happens with an evaporating black hole 
(see for example the overview article of Page [26] and references therein). It is 
for sure that quantum effects will resolve the distinction between the inside and 
outside of the black hole and the description of the hawking radiation. It will be 
necessary to consider the dynamical evolution of the spacetime. This can be 
done in a tractable way in an Eddington-Finkelstein coordinate system. One of 
the first attempts was the Vaidya solution [27]. In fact, the Vaidya solution is 
one of the non-static solutions of the Einstein field equations and is a generaliza-
tion of the static Schwarzschild black hole solution. This solution is characte-
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rized by a dynamical mass function depending on the retarded time. A solution 
on the (2 + 1)-dimensional BTZ spacetime was recently found by Chan et al. [28] 
and an approximate solution by Abdolrahimi, et al. [29]. There are several ways 
to look at the “inside” of a black hole, or, differently formulated, how to extend 
maximally the Penrose diagram. Some authors use the existence of white holes, a 
parallel universe, or a wormhole to black-bounce transition [30] [31]. Another 
possibility was proposed by Susskind and Maldacena [32]. Two entangled par-
ticles (a so-called Einstein-Podolsky-Rosen or EPR pair) are connected by a 
wormhole (or Einstein Rosen bridge) and may be a basis for unifying general re-
lativity and quantum mechanics. However, the two entangled black holes in re-
gions I and II in the extended Penrose diagram, will interact via the ingoing and 
outgoing particles instantly. Another problem is, how to treat the connection 
between the observation of the in-falling observer and the outside observer, i.e., 
how to map the quantum states of the in- and out-going radiation in a 
one-to-one way. In context of conformal invariance and black hole complemen-
tarity, there is another possibility of maximal extension of the Penrose diagram 
as initiated by 't Hooft [33], using antipodal identification as spherical harmon-
ics (see also 't Hooft [20] and references therein). If one doesn’t want to give up 
locality and unitarity, one needs this approach. We can ask ourselves if some of 
these ideas can be applied to our spacetime. It seems possible for the Kerr space-
time [3]. However, here we are dealing with the uplifted standard (2 + 1) BTZ 
spacetime. It is clear that one has to consider a dynamical evolution of the space-
time, as described in section 3.1. In the case of the BTZ black hole, the evolution 
of the horizons (where the inner one is the unstable Cauchy horizon) and er-
go-surface outside the horizons can then be revealed. 

Let us write the spacetime Equation (6) in the retarded (“outgoing”) *U t ρ= −  
or advanced (“ingoing”) *V t ρ= +  Eddington-Finkelstein coordinates 

( ) ( ) ( )( )

( ) ( ) ( )( )

22 22 2 2 2

22 22 2 2 2

d , , d 2d d d d , d ,

d , , d 2d d d d , d ,

r

a

s U N U U U z N U U

s V N V V V z N V V

ξ

ξ

ω ρ ρ ρ ρ ξ ρ

ω ρ ρ ρ ρ ξ ρ

 = − − + + +  
 = − + + + +  

(26) 

with 

( ) ( )
( )
( )

* *
2 2

2

d dd d , d d ,
, ,

,
d d d ,

,

U t t V t t
N t N t

N t

N t

ϕ

ρ ρρ ρ
ρ ρ

ρ
ξ ϕ ρ

ρ

≡ − ≡ − ≡ + ≡ +

≡ −

        (27) 

with domains [ ] [ ], , ,U V ρ∈ −∞ +∞ ∈ −∞ +∞ . We make no a priori assumptions 

for N and N ξ  (for example by writing ( )
2 2

2
1

M u
N

aρ
= −

+
 [30]). The field eq-

uations without matter terms now reduce to (an over-dot represents 
U
∂
∂

 and 

'
ρ
∂

=
∂

) 
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2 ,ωω
ω
′

′′ =                           (28) 

2 2 21 12 3 2 2 ,N N N Nω ω ω ω ω ωω ωω ωω
ρ ρ

′ ′ ′ ′ ′ ′+ + + + +            (29) 

2 2

2 2

4 3 3 3 2 34 ,N N N N NN
N r r rNN

ω ω ω ωω ωωω
ω ω ωω ω

′ ′ ′ ′ ′ ′ ′
′′ ′= − − − − − + − +

 

     (30) 

2 2
2 2

4
2 3

4 2 6 2 2

3 2 0,

N NN N NN N N
r r

NN N
r

ω ω ωω ωω ω ω ωω ω ω

ωωω ωω

′ ′ ′ ′− − + − − +

′
′ ′ ′+ + + =





   

      (31) 

( ) ( ) ( ) ( ) 2 32 , 2 ,N N N N
r

ξ ξ ξ ξω ω
ω ω

′ ′ ′ ′′ ′= − = − + 
 



           (32) 

and constraint 

( )
22 2 2 2

2 2

4 3 2 6 2 .
3

N NN N N Nξ ω ω ω ω ω
ρω ω ρωρ ω

 ′ ′ ′′ ′ ′= + − − + + 
 

       (33) 

One easily finds the non-trivial solution 

( )
( )

1

2 2 2
2 3 2

1
2 32 3

1 , , ,
ec U

c c
N c N F U

c cc c
ξρ

ω
ρ

−
= = ± =

+
        (34) 

with ( )F U  an arbitrary function of U. This solution is consistent with the di-
laton equation. Further, it is remarkable that the time dependency emerge in ω  
and not N. However, UUg  depends on U via N ξ . So our metric ( )4gµν  becomes 
(for the retarded case) 

( )
( )

( )( )
1

2 2 22
21 3 22 2 2 2

2
2 32 3

ed d 2d d d d d ,
c U c c c

s U U z F U U
c cc c

ρ
ρ ρ ξ

ρ

−  −
 = ± − + + +
 +  

(35) 

which is flat, while ( )4 1 2

3

6c cR
c

= . The function ( )F U  will be fixed when mat-

ter terms are incorporated (i.e. for example, a scalar gauge field). The metric 
Equation (26) will then contain a term ( )2 2, db U ρ ϕ  and a relation like 

( ) 2 2 2

bN
X

ξ

η ω
′ =

+
 will be obtained. We can now express, for example, U in t 

and ρ : 

2 3

2 3

log .
c c

U t
c c
ρ
ρ

 +
= −  − 

                      (36) 

So we have now a complete picture of the spacetime. We must note that this 
solution is rather different with respect to the vacuum Vaidya spacetime. We al-
so are dealing here with null radiation (null matter fields or gravitational radia-
tion) as in the case of Vaidya, but we did not make any explicit assumption for 
the U or V dependency of , Nω  and N ξ . They follow from the field equations. 
Further, the radiation is in the ( ), zρ -plane instead of the ( ),r θ  plane in the 
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Vaidya case. It is interesting to compare our solution with the Vaidya-type solu-
tion of a spinning black hole in (2 + 1) dimensions found by Chan in conven-
tional GR [28]. They also find a rotation function ( )N Uξ  which is determined 
by an energy-momentum tensor of null spinning dust. From Equation (35), we 
see that the small-scale behavior (and so the dynamical apparent Cauchy hori-
zon) is determined by 

( )
( )

( )

( )1

2 2 2
1 3 222

2 2 2 2 2 3
22

2 3

,
e c U

c c c
F U

c c
N N

c c
ξ

ρ
ρ

ω ρ
ρ

−
−

− =
+

             (37) 

and in the advanced coordinate 

( )
( )

( )

( )1

2 2 2
1 3 222

2 2 2 2 2 3
22

2 3

.
e c V

c c c
F V

c c
N N

c c
ξ

ρ
ρ

ω ρ
ρ

−
+

− =
+

             (38) 

If we omit the dilaton factor, we obtain the expressions for gµν . De apparent 
horizon is then determined (in V) by 

( )( )22 2d 1 0,
d 2

N N
V

ξρ ρ= − =                    (39) 

so 

( )

3

23
2 2

1

,AH
c

cc c F V
c

ρ = ±
 

− 
 

                  (40) 

and in U 

( )

3

23
2 2

1

.AH
c

cc c F U
c

ρ = ±
 

+ 
 

                  (41) 

We see that the location of apparent horizon is independent of the dilaton (so 
also valid for gµν ). However, VVg  depends also on ω , as can be seen by in-
spection of Equation (35), i.e., the denominator. The solution turns out to be  

also valid in the (2 + 1)-dimensional spacetime, i.e., ( )3 1 2

3

6c cR
c

=  and ( )3gµν  flat.  

So we can safely uplift the BTZ solution in Eddington-Finkelstein coordinates in 
vacuum to 4-dimensional spacetime. We will return to this issue in the next sec-
tion. In Figure 4 we plotted *ρ  against ρ  and *ρ  against U. The asymptote  

is at 3

2

c
c

. In Figure 5 we plotted the light cone structure. For the outward emit-

ted signals, the slope is given by Equation (39) (in U) (for the inward, d 0U = ). 
For the limiting cases, we obtain 

( )1

1

2 3
22

3 1 2
2
2 3

0

d 1 e
d 2

0

c U

AH

c
c c

c F U c c
U

c c

ρ

ρ
ρ

ρ ρ

−

− →

= ⋅ +

→ ∞

 =

             (42) 
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Figure 4. Left: *ρ  as function of ρ. The asymptote is at 3

2

c
c

. Right: *ρ  as function of 

U for 1 2 3 1c c c= = =  and 4 0.3c = ± . 

 

 
Figure 5. Left: Plot of light cone structure. The location of the apparent horizon is for 

small ( )F U  at 3

2

c
c

. For increasing ( )F U  it tends closer to 0ρ = . Right: Penrose di-

agram for the evaporating BTZ black hole in Eddington Finkelstein coordinates ( )*,U ρ . 

The global location of the two pairs of the apparent horizons as function of U is indicated. 
Note that one pair *

AHρ  enters the “future inside” region and comes from the “past in-
side”. By the antipodal identification these regions are removed (no “inside” of the black 
hole) so the locations are mapped on each other. See Section 5. 

 
For 0ρ → , its value doesn’t tend necessarily to −∞ . For increasing U it could 
approach zero again by suitable 1c . Note that in general the location of the ap-
parent horizon is dependent of U (see Figure 5). We can express the apparent 
horizon also in *ρ , 

( )

( )

23

1 2*

23

1 2

1 1
ln ,

1 1
AH

c F U
c c
c F U

c c

ρ

 
+ + 

 =  
 − + 
 

                 (43) 

We can globally plot the location of the apparent horizon in a Penrose diagram, 
if we take for ( )F U  for example 4c Ue . See Figure 5. 

Let us now describe what is the meaning of the dilaton field for an infalling 
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and outside observer in connection with the complementarity of the ingoing and 
outgoing massless particles. We will use the notion of conformal maps. The out-
side observed experiences a mass 2 2Nω  and an evaporating black hole (in 
U-coordinate) by Hawking radiation (in the case of massive particles, of course, 
there can also be first a growing mass; we will not consider this here). This radi-
ation is 

( ) 1
2

22 2 1

2 3

2
~ e .c U

U
cN

c c
ω −∂ =                      (44) 

This blows up for 1 0c <  and U → +∞ . However, there is in VVg  in the de-
nominator the factor 12e c U . So an infalling observer crossing the apparent hori-
zon will need a different ω . The ingoing observer, passing the horizon, will 
NOT use the ω  of the outside observer. In fact, it is locally unobservable. This 
happens at very small scales, when 0UUg →  and ( )2 2 2 2 0N Nξω ρ − →  for 

1U −
 in Planck units (the ergo-surface) and there is no horizon at all (note 

that 2ω  is an overall factor for gµν ). The dilaton determines the different no-
tion of what is happening near the horizon for an infalling and outside observer. 
Now remember that the Ricci scalar curvature transforms under conformal  

transformations as 2

1 6R R α
α

 → − ∇ ∇ Ω ΩΩ  
 and the additional freedom in ω, 

i.e., 1ω ω→
Ω

. The dilaton equation of Equation (10) is an auxiliary equation in  

vacuum. It follows also from the Einstein equations. When matter is included, 
one obtains conditions on the potential (see, for example, Equation (23)). So it 
would be fine if we could impose 0R =  for the local observer by using  

6 0R α
α− ∇ ∇ Ω =

Ω
   . One can then apply Fourier analysis of quantum mechanics  

and treat ω  infinitesimal [34]. This is a complementarity transformation on 
the dilaton and switches on and off the effects these Hawking particles have on 
the metric. 

5. Complementarity Transformation and Conformal  
Compactification  

Let us first describe what is the meaning of the dilaton field for an in-falling and 
outside observer in connection with the complementarity of the ingoing and 
outgoing massless particles. We will use the notion of conformal maps. The out-
side observed experiences a mass 2 2Nω  and an evaporating black hole (in 
U-coordinate) by Hawking radiation (in the case of massive particles, of course, 
there can also be first a growing mass; we will not consider this here). This radi-
ation is 

( ) 1
2

22 2 1

2 3

2
~ e .c U

U
cN

c c
ω −∂ =                     (45) 

This blows up for 1 0c <  and U → +∞ . However, there is in VVg  in the de-
nominator the factor 12e c U . So an in-falling observer crossing the apparent ho-
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rizon will need a different ω. The ingoing observer, passing the horizon, will 
NOT use the ω of the outside observer. In fact, it is locally unobservable. This 
happens at very small scales, when 0UUg →  and ( )2 2 2 2 0N Nξω ρ − →  for 

1U −
 in Planck units (the ergo-surface) and there is no horizon at all (note 

that 2ω  is an overall factor for gµν ). The dilaton determines the different no-
tion of what is happening near the horizon for an in-falling and outside observer. 
Now remember that the Ricci scalar curvature transforms under conformal  

transformations as 2

1 6R R α
α

 → − ∇ ∇ Ω ΩΩ  
 and the additional freedom in ω, 

i.e., 1ω ω→
Ω

. The dilaton equation of Equation (10) is an auxiliary equation in  

vacuum. It follows also from the Einstein equations. When matter is included, 
one obtains conditions on the potential (see, for example, Equation (23)). So it 
would be fine if we could impose R = 0 for the local observer by using  

6 0R α
α− ∇ ∇ Ω =

Ω
   . One can then apply Fourier analysis of quantum mechanics  

and treat ω infinitesimal [34]. This is a complementarity transformation on the 
dilaton and switches on and off the effects these Hawking particles have on the 
metric. 

Let us return to the conformal mapping in more detail. We know that in 
Minkowski spacetime the conformal map preserves the light-cone structure and 
so the null geodesics (i.e., the affine parameter). The conformal group in Min-
kowski, however, does not act as linear transformations, so one needs a trick (see, 
for example Felsager [21], section 10.3). 

One starts with a pseudo-Cartesian space 1 1R R⊗  (for example our ( ),x z ). 
One then enlarge first the pseudo-Cartesian space by adding a “null”-cone at in-
finity. So one compactifies the plane in R2. In order to apply the conformal 
transformation of inversion, one considers the unit sphere S1 and map R1 onto 

{ }1S N− . If we want to apply all the conformal transformations, then we must 
enlarge the pseudo-Cartesian space by adding two extra dimensions ( ),t y , (lat-
er, we replace x by sinx ρ ϕ=  and cosy ρ ϕ= , to get back our axially sym-
metric spacetime coordinates ( ), , ,t zρ ϕ ). The goal is then to embed the pseu-
do-Cartesian space 1 1R R⊗  as a subset of 2 2R R⊗ . We define M as the inter-
section of the null cone K (in 2 2R R⊗ ) with the hyperplane 1tρ − =  (or 

tρ + ) and define an isometry 1 1:F R R M⊗ → . Further, one works in the par-
ticular section of M, ( )1 1M R R⊗ . Because F induces a coordinate system on M, 
one can construct characteristic lines. There are characteristic lines that are pa-
rallel to 1tρ − =  and are generated by null vectors where tρ = . There is a 
one-to-one correspondence between these lines missing ( )1 1M R R⊗  and 
points on K in 1 1R R⊗ . So they represent points on the null cone at infinity. 
One can proof [21] that local sections N1 and N2 on the null cone which intersect 
characteristic lines at most once, can be mapped onto each other by a conformal 
map obtained by projection along the characteristic lines. If we would now try to 
project ( )1 1M R R⊗  onto a suitable subsection of K, then it turns out that it is 
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not possible to find a single section that is intersected exactly once by each cha-
racteristic line. Instead one can consider N as the product of two unit spheres in 

( )2 2M R R⊗ , i.e., N becomes a hyper-torus 1 1S S⊗  and each characteristic 
line will then intersect K twice in antipodal points. So each point in 

( )1 1M R R⊗  is represented by a pair of antipodal points on 1 1S S⊗ . The pro-
jection is a conformal map. The procedure here described is called a conformal 
compactification of ( )1 1M R R⊗ . In our case the antipodal identification is 
( ) ( ), , , , , ,U V z U V zϕ ϕ→ − − − + π . The points are not physically distinct events, 
but identical and are different representations of one black hole. In fact, there is 
no inside of the black hole. The price is that the manifold is not time-orientable 
for AHρ ρ< . When the evaporation process speeds up, we observe from Equa-
tion (40) that the two horizons approach zero for increasing ( )F U , which is 
assumable. Moreover 

1

1
20

2 3

lim
eUU c U

cg
c cρ→

→ ±                      (46) 

where in the denominator appears the exponential factor from the dilaton. So ω 
determines the scale as function of U the local observer experiences. Note that 
on “the other side” (in the Penrose picture region II), U change sign and the  

righthand side of Equation (46) becomes 
1

1
2

2 3e
c U

c
c c − . 

We found in section 4 that the solution of the BTZ spacetime in 4D in Ed-
dington-Finkelstein coordinates in conformally invariant gravity is identical to 
the 3D case, where we omitted the 2dz . That is curious, because we can still ap-
ply the conformal compactification (conformal transformations) and the antip-
odal identifications in 4D spacetime sketched above. Further, we obtained a flat 
gµν  out of the “un-physical” gµν , which resembles the original BTZ-black 
hole (without the need of a cosmological constant). 

Some notes can be made about the connection with the gravitational 
back-reaction. In the non-vacuum situation of section 3.2, the back-reaction is 
quite clear. In the vacuum case, there will be a shift in the location of the appar-
ent horizon after the emission of null radiation (Equation (45)). This can be 
made clear in the Penrose diagram, as was also found in the time-dependent 
Vaidya spacetime in connection with black-bounces and traversable wormholes 
[30] [31]. In the conformally invariant model and the antipodal approach, how-
ever, one doesn’t need such extreme escape. This shift will be related to the ic  
in (Equation (45)), just as the scalar curvature of gµν  was related to ic , i.e.,  

( )4 1 2

3

6c cR
c

= . A comparable effect was found in the counterpart model of the  

cylindrical radiating Lewis-van Stockum solution (in ( ), tρ  coordinates) and 
Einstein-Rosen pulse-wave solution [35]. This solution is obtained from the sta-
tionary ( ),z ρ  spacetime where one replaces ,t iz z it→ →  and J iJ→ . This 
solution has, however, reflection symmetry, , z zϕ ϕ→ − → − . A curious feature 
of the solution is the fact that the Kretschmann scalar becomes zero for two dif-
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ferent values of a constant in the exact solution. In some sense, the spacetime 
returns to his original status after the emission of the pulse wave. The relation 
with the antipodal symmetry is current under investigation by the author. 

6. Conclusions  

Using conformally invariant gravity, a new solution is found for the uplifted BTZ 
spacetime, without a cosmological constant. The solution shows some different 
features with respect to the standard BTZ solution. In the non-vacuum situation, 
where a scalar-gauge field is present, a numerical solution is presented on a 
spacetime where one writes the metric as 2g gµν µνω=  , with ω a dilaton field, to 
be treated on equal footing with the scalar field and gµν  an “un-physical” 
spacetime. The effect of ω on the behavior of the solution is evident. An out-
going wave-like initial value for the scalar field induces a wave-like response in 
the dilaton field and pushes the apparent horizon closer to 0ρ = . The solution 
depends critically on the shape of the potential. The solution can be used to in-
vestigate what happens with the spacetime of an evaporating black hole through 
Hawking radiation. In the vacuum situation in Eddington-Finkelstein coordi-
nates, an exact solution is found for the (2 + 1)-dimensional case as well as for 
the uplifted situation. The “un-physical” gµν  (BTZ) solution has a non-zero 
Ricci scalar, while gµν  is flat. 

There is possible a link with the antipodal identification. Antipodal mapping 
is inevitable if one wants to maintain unitarity during quantum mechanical cal-
culations on the Hawking particles. The antipodal identification can be 
represented as a conformal transformation generated from the pseudo-orthogonal 
matrices of ( )3,3O , i.e., the conformal group. Each conformal transformation 
in this group can be presented by a pair of antipodal matrices. This was the main 
reason to investigate in this manuscript the dynamics of the BTZ black hole in 
conformally invariant gravity. In the conformally invariant approach, the dilaton 
field plays a fundamental role. We find that as soon its value is fixed (by the 
global spacetime after choosing the coordinate frame), the local observer expe-
riences scales. Moreover, we find that it also plays a role in the antipodal map-
ping. If we substitute the apparent horizon AHρ  (Equation (41)) into ω (Equa-
tion (34)) at the horizon, we can then compare ω on both sides of the horizon by 
replacing U by −U. By imposing proper matching conditions, one could obtain 
restrictions on ( )F U . 

We do not pretend that our model is a new description of the physics of an 
evaporating BTZ black hole. We have tried to compare conformally invariant 
gravity solutions of the (2 + 1)-dimensional BTZ black hole solution and its up-
lifted counterpart model with the results of former results on black hole studies. 
Especially the antipodal identification seems to fit well in our model. 
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