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Abstract 
We present the usefulness of mass-momentum “vectors” to analyze the colli-
sion problems in classical mechanics for both one and two dimensions with 
Galilean transformations. The Galilean transformations connect the mass- 
momentum “vectors” in the center-of-mass and the laboratory systems. We 
show that just moving the two systems to and fro, we obtain the final states in 
the laboratory systems. This gives a simple way of obtaining them, in contrast 
with the usual way in which we have to solve the simultaneous equations. For 
one dimensional collision, the coefficient of restitution is introduced in the 
center-of-mass system. This clearly shows the meaning of the coefficient of 
restitution. For two dimensional collisions, we only discuss the elastic colli-
sion case. We also discuss the case of which the target particle is at rest before 
the collision. In addition to this, we discuss the case of which the two particles 
have the same masses. 
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1. Introduction 

Collisions of the interacting particles have fundamental importance in physics. 
To concerning collision problems in classical mechanics, it is customary that the 
initial states, for example the mass and momenta, are given. Then, we want to 
find the final states, especially, momenta and energies after the collision. To ob-
tain the final states, we have to solve the simultaneous equations of the momen-
tum-conservation law and the definition of the coefficient of restitution [1]. Be-
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sides, it is also important to obtain the relation between the laboratory and the 
center-of-mass systems. It is complicated to understand the collision problems 
in classical mechanics. 

The purpose of this paper is that we resolve the complexity of the collision 
problems and we show a new looking at them. In recent years, the mass-momentum 
diagram is used to analyze the collision problems in Newtonian mechanics [2] 
[3]. There, the mass-momentum “vectors” are introduced. These diagrams show 
the whole story of the collision problems in both the laboratory and the cen-
ter-of-mass systems. However, the discussion of the paper [3] still stuck to the 
simultaneous equations. This paper shows that we never solve them for obtain-
ing the final states. This diagrammatic approach is also used for two-dimensional 
collision problems [4] [5] [6]. There, we see the collision problems on the 
two-dimensional momentum space. This paper also gives the theoretical back-
ground of them.  

Now consider two reference frames K and K'. We assume that the frame K' 
moves in the x-direction at speed V with respect to K. And let us assume the ori-
gins O and O' of the two reference frames coincide with time 0t = . An event 
that occurs at some point is observed from both frames, which are characterized 
by a set of coordinates ( ), , ,t x y z  and ( ), , ,t x y z′ ′ ′ ′ . The Galilean transforma-
tions give the relation between two coordinates and it is described by 

1 0 0 0
1 0 0

.
0 0 1 0
0 0 0 1

t t
x V x
y y
z z

′    
    ′ −    =
    ′
    ′    

                  (1) 

The inverse transformation is given by just putting −V to V in Equation (1). 
In the following paper, we designate the frame K as the laboratory system, while 
K' as the center-of-mass system. Accordingly, the velocity V describes the veloc-
ity of the center-of-mass. 

In this article, we show that the collision problems are solved by using 
mass-momentum “vectors” ( ), , ,x y zm p p p  and this Galilean transformation. 
Our strategy and notations are pictorially stated in Figure 1. In the introductory 
textbooks of physics [1], we have to calculate the simultaneous equations of 
momentum-conservation with energy-conservation or the definition of the coef-
ficient of restitution in order to obtain the final states. See the dashed arrow in 
Figure 1. However, we propose that we make a detour through the cen-
ter-of-mass system for obtaining the final states. It is applicable to both one and 
two dimensional collisions. Our strategy is as follows.  

1) By the Galilean inverse transformation, we obtain the velocity V of the 
center-of-mass in terms of masses ( ),A Bm m  and momenta ( ),A Bp p  in the 
laboratory system before the collision. The velocity V is conserved throughout 
the collision. 

2) By the Galilean transformation, we obtain the momenta ( ),A Bp p∗ ∗  in the 
center-of-mass system before the collision. See the strategy 2 in Figure 1. We  
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Figure 1. The usual approach to the collision problems is along the 
dashed arrow. The strategy in this article is on the detour of the solid ar-
rows. The asterisks are attached to the variables in the center-of-mass 
system, while the primes are attached to the variables after the collision. 

 
attach the asterisk for the variables in the center-of-mass system. In this frame, 
two particles make a head on collision with the momentum which have the same 
magnitude p∗ . 

3) We determine the momenta ( ),A Bp p∗ ∗′ ′  in the center-of-mass system after 
the collision. See the strategy 3 in Figure 1. We also attach the prime for the va-
riables after the collision. In this frame, two particles move in the opposite direc-
tion after the collision with the same magnitude of momentum. We introduce 
the coefficient of restitution e for one dimensional collisions and the collision 
angle θ ∗  of the incident particle for two dimensional elastic collisions. 

4) By the Galilean inverse transformation, we obtain the momenta ( ),A Bp p′ ′  
in the laboratory system after the collision. See the strategy 4 in Figure 1. Final-
ly, we reach the final states. We never solve the simultaneous equations in con-
trast with the usual treatment of the collision problems. 

5) Let us consider the two special cases. One is that the target particle is at rest 
( 0Bp = ) in the laboratory system before the collision. 

6) The other is that, in addition to the case ( 0Bp = ) above, two particles have 
equal masses ( A Bm m= ). 

This paper is organized in the following way. In Section 2, we discuss one di-
mensional collision. The role of the coefficient of restitution e is clearly stated. 
We also discuss the case in which the target particle is at rest before the collision 
and two particles have equal masses. In Section 3, we turn to the two dimension-
al elastic collision. We introduce the collision angle θ ∗  of the outgoing particle 
after the collision. We show the theoretical background for the diagrammatic 
approach [4] [5] [6]. Section 4 is devoted to a summary. 

2. Collisions in One Dimension  

Let us discuss the one dimensional collisions. The motions of the particles are 
restricted in the x-direction. Therefore, the y- and z-components of the mo-
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mentum are zero. The diagrammatic technique of this section is fully discussed 
in [3] 

2.1. Velocity of Center-of-Mass System 

We discuss the strategy 1 in the Introduction. Consider the Galilean inverse 
transformation with the whole two body system,  

1 0 0 0
1 0 0

,
0 0 0 1 0 0
0 0 0 0 1 0

A B A B

A B A B

m m m m
p p V p p∗ ∗

+ +    
    + +    =
    
    
    

                (2) 

where, 0A Bp p∗ ∗+ =  is the definition of the center-of-mass system. From the 
second row of the matrix, we obtain the velocity of the center-of-mass,  

,A B

A B

p pV
m m

+
=

+
                          (3) 

which is conserved throughout the collision because of the conservation law of 
mass and momentum in Newtonian mechanics. 

2.2. Momentum in the Center-of-Mass System before the Collision 

We discuss the strategy 2 in the Introduction. Concerning the Galilean trans-
formation for each particle,  

1 0 0 0 1 0 0 0
1 0 0 1 0 0

, ,
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0

A A B B

A A B B

m m m m
p V p p V p∗ ∗

         
         − −         = =
         
         
         

     (4) 

we obtain the momenta in the center-of-mass system before the collision;  

,A B B A A B
A A A A A

A B A B

p p m p m pp p m V p m
m m m m

∗ + −
= − = − = +

+ +
         (5) 

,A B B A A B
B B B B B

A B A B

p p m p m pp p m V p m
m m m m

∗ + −
= − = − = −

+ +
         (6) 

where, we used Equation (3). It is natural that 0A Bp p∗ ∗+ =  is fulfilled because 
of the definition of the center-of-mass system. Then we define a momentum p∗  
as  

,B A A B
A B

A B

m p m pp p p
m m

∗ ∗ ∗−
≡ = = −

+
                   (7) 

for later use. Note that the momentum p∗  is written in terms of velocity as 

( )B A A B A B
A B

A B A B

m p m p m mp v v
m m m m

∗ −
= = −

+ +
, which is usually seen in textbooks. The 

energies of the particles in the system are given by  

( ) ( )2 2 2
1 ,

2 2 2
A B A A B

A
A A A A B

p p m p m pE
m m m m m

∗ ∗
∗  −
= = =  + 

             (8) 
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( ) ( )2 2 2
1 .

2 2 2
B B A A B

B
B B B A B

p p m p m pE
m m m m m

∗ ∗
∗  −
= = =  + 

             (9) 

Energies in the laboratory system before the collision 
Before concluding this subsection, we write down the energies in the labora-

tory system before the collision in terms of p∗ . From Equations (5) and (6), we 
obtain  

, .A A B Bp m V p p m V p∗ ∗= + = −                   (10) 

Thus, the kinetic energies in the laboratory system before the collision are 
given by  

( ) ( )22
2 ,

2 2 2
A A

A
A A

pp mE V Vp
m m

∗
∗= = + +                  (11) 

( ) ( )22
2 ,

2 2 2
B B

B
B B

pp mE V Vp
m m

∗
∗= = − +                  (12) 

and their sum becomes  

( ) ( )
( )

( )2 22
2 1 1 ,

2 2 2 2

A BA B
A B

A BA B A B

A B

p pp pm mE E V
m mm m m m

m m

∗ ∗
+ +

+ = + + = +  + 
+

 (13) 

where, we used Equation (3). The first term of the right hand side shows the ki-
netic energy of the center-of-mass, while the second term shows the kinetic 
energy of the relative motion with respect to the center-of-mass. 

2.3. Momentum in the Center-of-Mass System after the Collision 

We discuss the strategy 3 in the Introduction. We determine the momenta in the 
center-of-mass system after the collision. In this frame, the particles move in the 
opposite direction. We introduce the coefficient of restitution e ( 0 1e≤ ≤ ), and 
write down the momenta in the center-of-mass system after the collision  

, .A A B Bp ep ep p ep ep∗ ∗ ∗ ∗ ∗ ∗′ ′≡ − = − ≡ − = +               (14) 

Note that these momenta can be derived from the usual definition of the coef-

ficient of restitution: A B

A B

v ve
v v
′ ′−

= −
−

. In other words, the particles move in the 

opposite direction after the collision and the magnitudes of the momenta are 
decreased by e. The kinetic energies are obtained by  

( ) ( )2 2

2 2 ,
2 2

A
A A

A A

p p
E e e E

m m

∗ ∗
∗ ∗

′
′ = = =                 (15) 

( ) ( )2 2

2 2 ,
2 2

B
B B

B B

p p
E e e E

m m

∗ ∗
∗ ∗

′
′ = = =                 (16) 

where, AE∗  and BE∗  are given by Equations (8) and (9). Namely, the kinetic 
energies in the center-of-mass system are decreased by 2e . 
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2.4. Momentum in the Laboratory System after the Collision 

We discuss the strategy 4 in the Introduction. Consider the Galilean inverse 
transformation for each particle,  

1 0 0 0 1 0 0 0
1 0 0 1 0 0

, ,
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0

A A B B

A A B B

m m m m
p V p p V p∗ ∗

         
         ′ ′ ′ ′         = =
         
         
         

      (17) 

we obtain the momenta in the laboratory system after the collision. From the 
second row of these matrices, we obtain  

( )1 ,A A A A Ap m V p m V ep p e p∗ ∗ ∗′ ′= + = − = − +             (18) 

( )1 .B B B B Bp m V p m V ep p e p∗ ∗ ∗′ ′= + = + = + +             (19) 

The second terms of the right hand side are interpreted by the momentum 
lost by particle A and the momentum gained by particle B, which are called im-
pulse in Newtonian mechanics. Adding the two equations, we easily see the con-
servation of momentum: A B A Bp p p p′ ′+ = + . And we also obtain the kinetic 
energies from Equations (18) and (19),  

( ) ( )22
2 2 ,

2 2 2
A A

A
A A

pp mE V eVp e
m m

∗
∗′

′ = = − +              (20) 

( ) ( )22
2 2 .

2 2 2
B B

B
B B

pp mE V eVp e
m m

∗
∗′

′ = = + +              (21) 

Summing these kinetic energies, we obtain the total energies after the collision  

( )
( )

( )22
2 .

2 2

A B
A B

A BA B

A B

pp p
E E e

m mm m
m m

∗+
′ ′+ = +

+
+

             (22) 

Comparing this equation with Equation (13), we understand the followings: 
the first term, which is the kinetic energy of the center-of-mass, does not change, 
while the second term, which is the kinetic energy of the relative motion with 
respect to the center-of-mass, decreases by 2e . By using Equation (13), we ob-
tain  

( ) ( )2

21 .
2

A B A B
A B

A B

p
E E E E e

m m
m m

∗

′ ′+ = + + −

+

             (23) 

The third term of the right hand side is called Q-value, which is larger than 
zero. Namely, the total energy of the whole system is decreased in Q-value. 

2.5. In Case of Bp 0=  

We discuss the strategy 5 in the Introduction. In this case, we clearly see the re-
lation  
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,B A
B

A B

m pp m V
m m

∗ = =
+

                       (24) 

and obtain the momenta in the laboratory system after the collision  

( )1  ,A B
A A A

A B

m emp p e p p
m m

∗ −′ = − + =
+

                (25) 

( )1  .B B
B A

A B

m emp e p p
m m

∗ +′ = + + =
+

                  (26) 

We obviously understand the conservation of the momentum: A B Ap p p′ ′+ = . 
In addition, we obtain the kinetic energies for each particle  

( ) 22

 ,
2

A A B
A A

A A B

p m emE E
m m m
′  −′ = =  + 

                  (27) 

( ) ( )
( )

2
2

21  ,
2

B A B
B A

B A B

p m mE e E
m m m

′
′ = = +

+
               (28) 

and energy conservation law  

( )21  .B
A A B A

A B

mE E E e E
m m

′ ′= + + −
+

                (29) 

2.6. In Case of Bp 0=  and A Bm m m= =  

We discuss the strategy 6 in the Introduction. We easily see the relation  

,
2

A
A B

pp m V m V∗ = = =                      (30) 

and obtain the momenta in the laboratory system after the collision  

1 1 ,  .
2 2A A B A

e ep p p p− +′ ′= =                   (31) 

We also obtain the kinetic energies  

( ) ( )2 21 1
 ,  ,

4 4A A B A

e e
E E E E

− +
′ ′= =                (32) 

and their sum  
21  .

2A A B A
eE E E E−′ ′= + +                     (33) 

Here, 1e =  shows the elastic collisions. After the collision, the incident par-
ticle A stops and the initially rest particle B moves with the momentum of which 
the particle A had before the collision. 

3. Elastic Collisions in Two Dimensions 

Let us turn our discussion to the case of the two dimensional elastic collisions, 
i.e., the case in which the coefficient of restitution e is equal to 1. 

We suppose that the motions of the particles are restricted in the x-y plain so 
that the z-component of the momentum is zero. Since the motions of the par-
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ticles are supposed along the x-direction before the collision, we trace the same 
discussion of subsections 2.1 and 2.2. So, let us start from the strategy 3 in the 
Introduction. 

The diagrammatic technique of this section is fully discussed in [6]. 

3.1. Momentum in the Center-of-Mass System after the Collision 

We discuss the strategy 3 in the Introduction. In the center-of-mass system, the 
magnitudes of the momenta do not change before and after the collision. Thus, 
we write down the momenta in the same way with Equation (7),  

.B A A B
A B A B

A B

m p m pp p p p p
m m

∗ ∗ ∗ ∗ ∗− ′ ′≡ = = = =
+

              (34) 

However, the direction of the momenta changes in the two dimensional colli-
sion. As shown in Figure 2, we define the sense of the momentum A

∗′p  as 

( )cos ,sinθ θ∗ ∗ ∗=n , where θ ∗  is the scattering angle of the particle A in the 
center-of-mass system. In other words, the momenta after the collisions are de-
noted by the vector-form in two dimensions  

.A Bp∗ ∗ ∗ ∗′ ′= = −p n p                         (35) 

Since the magnitudes of the momenta do not change in this frame after the 
collision, the kinetic energies of each particle do not change:  

( ) ( )2 2

,
2 2

A
A A

A A

p p
E E

m m

∗ ∗
∗ ∗

′
′ = = =                    (36) 

( ) ( )2 2

,
2 2

B
B B

B B

p p
E E

m m

∗ ∗
∗ ∗

′
′ = = =                    (37) 

where, AE∗  and BE∗  are the same with Equations (8) and (9). 

3.2. Momentum in the Laboratory System after the Collision 

We discuss the strategy 4 in the Introduction. The motion of the particles after 
the collision is supposed to occur in the x-y plain. Thus, the momenta are writ-
ten by ( ) ( ), ,0 cos , sin ,0A Ax Ay A Ap p p pθ θ′ ′ ′ ′ ′= =p  and  

( ) ( ), ,0 cos , sin ,0B Bx By B Bp p p pφ φ′ ′ ′ ′ ′= = −p , where θ  and φ  are the scattering 
angle of the particles A and B in the laboratory system as shown in Figure 2. 

From the Galilean inverse transformation, we obtain the momenta in the la-
boratory system after the collision by using Equation (35)  

1 0 0 0
cos 1 0 0 cos

,
sin 0 0 1 0 sin

0 0 0 0 0 1 0

A A A

Ax A

Ay A

m m m
p p V p
p p p

θ θ
θ θ

∗ ∗

∗ ∗

      
      ′ ′      = =
      ′ ′
      
      

            (38) 

1 0 0 0
cos 1 0 0 cos

.
sin 0 0 1 0 sin

0 0 0 0 0 1 0

B B B

Bx B

By B

m m m
p p V p
p p p

φ θ
φ θ

∗ ∗

∗ ∗

      
      ′ ′ −      = =
      ′ ′− −
      
      

           (39) 
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Figure 2. Left: The collision in the center-of-mass system. The scattering angles θ ∗  and 
φ∗  have the relation θ φ∗ ∗+ = π . Right: The collision in the laboratory system.  

 
From the second and third row of these matrices, we obtain x and y compo-

nents of the momentum of the particle A,  

cos cos ,Ax A Ap p m V pθ θ∗ ∗′ ′= = +                (40) 

sin sin ,Ay Ap p pθ θ∗ ∗′ ′= =                   (41) 

and of the particle B,  

cos cos ,Bx B Bp p m V pφ θ∗ ∗′ ′= = −                 (42) 

sin sin .By Bp p pφ θ∗ ∗′ ′= − = −                    (43) 

Combining with the relation 2 2cos sin 1θ θ∗ ∗+ = , we obtain  
22

1,AyAx A pp m V
p p∗ ∗

′′   −
+ =  

   
                   (44) 

22

1.ByBx B pp m V
p p∗ ∗

′′   −
+ =  

   
                   (45) 

These equations show the circle with the radius p∗  and the center 
( ),0,0Am V  and ( ),0,0Bm V . The circle in Equation (44) of the particle A is 
drawn in the literature [4] [6]. 

The kinetic energies of each particle are obtained by using Equations (40), (41) 
and Equations (42), (43)  

( ) ( )22
2 cos ,

2 2 2
A A

A
A A

pp mE V Vp
m m

θ
∗

∗ ∗′
′ = = + +              (46) 

( ) ( )22
2 cos .

2 2 2
B B

B
B B

pp mE V Vp
m m

θ
∗

∗ ∗′
′ = = − +              (47) 

Since their sum is the same with Equation (13), we obtain the conservation of 
energies:  

.A B A BE E E E′ ′+ = +                       (48) 

3.3. In Case of Bp 0=  

We discuss the strategy 5 in the Introduction. The same condition of Equation 
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(24) is satisfied. Dividing two equations of Equations (40), (41) and Equations 
(42), (43), we obtain the relations of the scattering angles  

sintan ,
cosA

B

m
m

θθ
θ

∗

∗
=

+
                       (49) 

sin sintan ,
1 cos 1 cos

θ φφ
θ φ

∗ ∗

∗ ∗= =
− +

                   (50) 

where, we used θ φ∗ ∗+ = π . Using Equations (40), (41) and Equations (42), (43) 
with (49), we obtain the momenta  

2 2 2 cos ,A
A A B A B

A B

pp m m m m
m m

θ ∗′ = + +
+

              (51) 

2
sin ,

2
B A

B
A B

m pp
m m

θ ∗ 
′ =  +  

                     (52) 

and the energies  

( )
( )

2 2 2

2

2 cos
,

2
A A B A B

A A
A A B

p m m m mE E
m m m

θ ∗′ + +′ = = ×
+

            (53) 

( )
( )

2
2

2

4
,sin

2 2
B A B

B A
B A B

p m mE E
m m m

θ ∗′  
′ = = ×  

+  
              (54) 

after the collision. 

3.4. In Case of Bp 0=  and A Bm m m= =  

We discuss the strategy 6 in the Introduction. The same condition of Equation 
(30) is satisfied. We obtain the momenta from Equations (51) and (52)  

cos , sin
2 2A A B Ap p p pθ θ∗ ∗   

′ ′= =   
   

              (55) 

and the energies from Equations (53) and (54)  

2 2cos , sin .
2 2A A B AE E E Eθ θ∗ ∗   

′ ′= =   
   

            (56) 

The product of the relation of the angles, Equations (49) and (50), becomes  

sin sintan tan 1.
1 cos 1 cos

θ θθ φ
θ θ

∗ ∗

∗ ∗× = =
+ −

               (57) 

Since the addition theorem for tangent  

( ) tan tantan ,
1 tan tan

θ φθ φ
θ φ
+

+ = = ∞
−

 

we obtain the relation in this case  

,
2

θ φ π
+ =                            (58) 

which is well-known in the textbooks of physics. 
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4. Summary 

We reexamined the collision problems in Newtonian mechanics. The usual 
treatment of the introductory textbook of physics is that we have to solve the 
simultaneous equations for obtaining the final states. In contrast to this, we in-
troduce the mass-momentum “vectors”, though this has no nature of the vector, 
and show the validity of them. Just moving the laboratory and center-of-mass 
systems to and fro by the Galilean transformation, we obtain the same results 
which are given by solving the simultaneous equations. This process is applica-
ble to both one and two dimensions in the same fashion. This gives students the 
unified way for seeing the collision problems. 

Illustrating the collision problems is rewarding to understand them. For one 
dimensional collision, the mass-momentum “vectors” play the central role [2] 
[3]. For two dimensional collisions, the circles on the momentum space are im-
portant [4] [6]. 

This discussion in this article is also applicable to special relativistic collision 
problems in the same fashion [7]. In this case too, we do not have to solve the 
simultaneous equations any more. Furthermore, all results in this paper are ob-
tained from the relativistic collisions by the limit of c →∞  [7] [8], where c is 
the speed of light. 
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