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Abstract 
The study evaluates the effect of climate change on temperature, which is one 
of the most important variables in water resources management and irriga-
tion scheduling. Climate prediction is necessary in the agricultural and hy-
drological analysis. This study proposed an approach to the application of the 
Long Ashton Research Station Weather Generator (LARS-WG) in Coupled 
Model Inter-comparison Project Phase 5 (CMIP5) under EC-Earth and 
MPI-ESM-MR. The first step is model calibration, where the observed dataset 
is analyzed statistically. In the second stage, the synthetic data and observed 
data are checked for Kolmogorov-Smirnov and the means and standard devi-
ations. In order to evaluate the response of temperature under future warmer 
climate trends, the approach was assessed using data series. These parameters 
consisted of the minimum and maximum temperature at the Phitsanulok 
Meteorological Station (WMO Index 48378) and RCP4.5 climate change sce-
nario for the base period as well as for 2021-2040 (the near future), 2041-2060 
(the medium future) and 2061-2080 (the far future). The results of the nu-
merical applications indicated that the linkage between the observed data 
spatially downscaled from LARS-WG simulations with the historical one of 
the locations during the baseline period had a very good accuracy. It was also 
found that the future climate change of temperature contributed to higher 
change. The mean of minimum temperature in the baseline year was 23.13˚C 
while the mean of minimum temperature in the projection period for 
2021-2040, 2041-2060 and 2061-2080 is expected to be 24.09 (+4.18%), 24.49 
(+5.94%) and 24.82 (+7.36%)˚C, and 24.12 (+4.32%), 24.82 (+7.36%) and 
25.08 (+8.48%)˚C for the EC-Earth and MPI-ESM-MR, respectively. While, 
the mean of maximum temperature in the baseline year was 33.41˚C, the 
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maximum temperatures are projected to increase at 34.47 (+3.19%), 34.88 
(+4.43%) and 35.21 (+5.40%)˚C, and 34.53 (+3.36%), 35.19 (+5.34%) and 
35.30 (+5.67%)˚C, respectively. Furthermore, the future local surface temper-
atures from the MPI-ESM-MR project tended to be higher than EC-Earth. In 
conclusion, the study results indicate that in coming three time periods, the 
minimum and maximum temperature increase is expected in Phitsanulok 
province, Thailand. 
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1. Introduction 

According to existing evidence as well as the fluctuating influences of green-
house gases and human activities, climate is a complicated system that is conti-
nuously evolving. Appropriate approaches for decreasing the fatal effects of cli-
mate change phenomena are possible by forecasting and examining the rate of 
change in meteorological considerations. Employing modelled climatic variables 
by General Circulation Models or Global Climate Models (GCMs) is one of the 
most operative methods for assessing the influences of climate change occur-
rences [1] [2]. These simulations can forecast the changes resulting from the 
impact of greenhouse gasses on weather conditions. The output of these models 
should be reduced when they show low spatial resolution power. Awareness of 
potential climate change leads to the adoption of mitigation strategies, as these 
effects have implications for areas of public interest including agriculture [3] [4], 
hydrological [5] [6] and water management [7] [8]. 

The IPCC describes GCMs as a computational (quantitative) description of 
the climate system on the basis of the physical, chemical and biological characte-
ristics of its elements, their correlations and feedback mechanisms [9]. GCMs, 
centered on statistical models of the atmosphere, ocean and land surface sys-
tems, are thought to be the only reliable instruments presently offered to model 
the reaction of the global climate system to rising greenhouse gas levels. Because 
of the restricted depiction of scale atmospheric processes, topography and 
land-sea distribution in GCMs, however, the direct use of output from GCMs is 
frequently insufficient [10]. 

Potential climate forecasts of GCMs in various conditions are typically used to 
establish climate mitigation approaches. Current GCMs still have insufficient 
ability to predict complex and local climate characteristics or provide accurate 
information on temperature and rainfall, which is the key input for hydrological 
effect evaluation criteria. Additionally, the contributions given by GCMs are too 
imprecise to be used by these hydrological models as they involve details at finer 
scales. Downscaled GCM results are typically used to present the fine-resolution 
or point-scale information needed for impact simulations [11]. 
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A computer algorithm that incorporates weather and climate records to gen-
erate a long series of synthetic daily weather data of continuous integration for a 
location due to the statistical features of the studied weather data for that loca-
tion is a stochastic weather generator. One of the approaches for advancing local 
scale future climate situations from large-scale climate changes modelled by 
GCMs is stochastic weather generators [12]. Recently, establishing the prospec-
tive influence on hydrological applications has been carried out in climate 
change and variability studies using simulated weather data created by weather 
generators [13] [14]. 

These selected weather generators have been used in different climate change 
impact studies, including studies with LARS-WG weather generators [15]. The 
current version 6.0 of LARS-WG incorporates climate projections from the 
CMIP5 ensemble used in the IPCC Fifth Assessment Report (AR5) [16]. Pre-
vious version of LARS-WG 5.5 which climate projections from the CMIP3 pro-
vided the scientific base for the Fourth Assessment Report (AR4) of IPCC pub-
lished in 2007 [17]. The LARS-WG 6.0 has been well validated in diverse cli-
mates around the world. The LARS-WG version 6.0 can be download from  
https://www.rothamsted.ac.uk/, the link for downloading LARS-WG 6.0 is given 
in https://sites.google.com/view/lars-wg/. 

The objectives of this study were to use the new version of the LARS-WG in 
predicting climate change for the periods 2021-2040 (the near future), 2041-2060, 
(the medium future), and 2061-2080 (the far future) according to the projections 
of EC-Earth and MPI-ESM-MR GCMs for RCP4.5 scenarios (medium green-
house gas emission scenario) at the local site of Phitsanulok province, Northern 
of Thailand. 

2. Data and Methods 
2.1. The Study Area 

The study site was Phitsanulok Meteorological Station (PMS) which is located at 
latitude 16.783˚N, longitude 100.267˚E and altitude 44 meters above mean sea 
level, as shown in Figure 1. This area supplies much of the agricultural produce 
of Thailand, and is under intense demand pressures regarding climate change 
for agricultural and irrigation system. 

The site is influenced by the tropical region which has two seasons: the dry 
season from November to April, and the rainy season from May to October. The 
average minimum and maximum temperature were 22.73˚C, 33.26˚C in 1961- 
2019. 

Historical climate data for daily precipitation, the minimum and maximum 
temperature were obtained from PMS (WMO Index 48378) for the period 
1961-2019. Only data for the period 1980-2010 (the baseline year) were selected 
for analysis as required for the calibration and validation of the weather genera-
tor. The weather data did not include solar radiation. The climate data of 3.17% 
were missing from the observed station data. Missing data in the observed data-
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set may alter the statistics, but the long-term climate series will still be generated, 
missing data values should be coded −99.0 of the layout of a typical file of 
weather data for use in LARS-WG [18]. The generator outputs result of statistic-
al tests comparing the observed and generated data. 

2.2. LARS-WG Stochastic Weather Generator 

LARS-WG is a stochastic weather generator which could be utilized to predict 
weather data at a single station under both present and potential atmospheric 
conditions. The data comprises the regular time series for a number of envi-
ronmental factors, including rainfall, maximum temperature and minimum 
temperature, and solar radiation. LARS-WG employs a semi-empirical distri-
bution (SED) known as the cumulative probability distribution function 
(CDF) to estimate the confidence interval for minimum and maximum temper-
atures. 

0 ,  ,  ,  0 },  23{ i iEPM a a h i= = … .               (1) 

EPM is a distribution histogram of 23 distinct intervals (ai-1, ai) where ai-1 < ai 
and gives a more precise picture of the observable distribution compared to 10 
used in the earlier models. By disrupting the distribution parameters for a site 
with projected climate change from global or regional climate simulations, a 
regular environment model for this site may be created and used in tandem with 
a process-based impact assessment model.  Generally, the approach for produc-
ing synthetic weather data can be divided into three different steps: model initia-
lization, model validation, and scenario creation, as described and briefly de-
fined below [19]. 

 

 
Figure 1. Location of the study area. 
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In the case of the minimum and maximum temperature two values close to 0 
and 1 are used to interpret for extremely low and high temperatures, i.e. p2 = 
0.01, p3 = 0.02, pn-1 = 0.99 and pn-2 = 0.98. Both values of pi (0 < I < n). For the 
latest edition of LARS-WG 6.0, the low and high temperatures for dry and rainy 
days are estimated by SEDs measured for each month [20]. 

The contribution to LARS-WG is a collection of seasonal data (rainfall, low 
temperature and high temperature) from the base time (1980-2010) and site data 
(latitude, longitude and altitude). The perceived daily weather data at a given site 
was employed to establish a set of parameters for the probability distributions of 
weather variables after input data preparation and quality control. Such criteria 
are used to produce a simulated weather sequence of variable lengths by ran-
domly choosing values from the suitable distributions, with the same statistical 
properties as the original data observed, but varying on a day-to-day level. 
LARS-WG determines wet days from dry days depending on whether or not 
rainfall is zero. Alternating wet and dry series estimated by semi-empirical 
probability distributions are used to model the existence of rainfall. The statis-
tical properties of the actual and simulated weather data during the model test-
ing were evaluated to assess whether there were any statistically important varia-
tions using the Chi-square strength test (Kolmogorov-Smirnov, KS) and the 
means and standard deviations using the t and F measures, respectively. By va-
rying the constraints of LARS-WG, number of years and seed numbers can be 
conducted. The LARS-WG baseline constraints, which are analyzed from the 
perceived weather for a baseline period (1980-2010) are regulated by the del-
ta-changes for the future period and the emissions projected by a GCM for each 
climatic variable covering the site for creation of climate scenarios at the site for 
a particular time in the future with a designated emissions scenario. 

In this study, the local-scale climate scenarios based on RCP4.5 scenarios si-
mulated by the selected two GCMs are generated for the time periods of 
2021-2040, 2041-2060 and 2061-2080 to predict the future change of temperature 
in PMS. The coefficient of determination for a linear regression model is the quo-
tient of the variances of the generated data and observed data values [21]. The 
coefficient of determination is computed according to the Equation (2) below: 

( ) ( )
( )

22
2
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ˆy y y y
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y y

− − −
=

−

∑ ∑
∑

                  (2) 

The coefficient of determination (R2), represents the proportion of the total 
sample variation in y (measured by the sum of squares of deviations of the sam-
ple y values about their mean y) which is explained by the linear relationship 
between generated data and observed data.  

2.3. Global Climate Models (GCMs) 

The new version of the LARS-WG 6.0 was applied for this study that incorpo-
rated predictions from two GCMs, which were used in the IPCC’s Fifth Assess-
ment Report (AR5) based on Emissions Scenarios RCP4.5 (medium greenhouse 
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gas emission scenario) for three times the period as listed in Table 1. These two 
models differ in spatial resolution power, design institute, predictability of at-
mospheric variables, and predictability of oceanic variables [22] [23]. The simu-
lation of GCMs assumes the year length is 365 calendar days, with global cover-
age and daily. 

3. Results and Discussion 
3.1. Calibration and Validation of LARS-WG 

The “Site Analysis” function in the LARS-WG model with two data sets, com-
prising observed station and GCMs data, were utilized to conduct the calibration 
and validation. The Kolmogorov-Smirnov test, F-test and t-test were operated to 
assess the functioning of the weather generator during calibration and valida-
tion. To assess the similarity of distributions for daily maximum and minimum 
temperature, the KS test was used. The equivalence of 30-day mean of daily 
maximum temperature (Tmax) and the 30-day mean of daily minimum temper-
ature (Tmin) were assessed by the F-test. Both experiments measure a p-value 
that is used to support or dismiss the hypothesis that the two data sets (detected 
and created) may have been obtained from the same distribution at a 5 percent 
level of significance.  

The coefficient of determinant (R2) was used to check the performance. 
Tables 2-6 show the estimation of suitability for LARS-WG function in repli-
cating for PMS. The model executed very well in fitting for the two datasets, as 
shown by the KS test. LARS-WG performance was effective in simulating both 
minimum and maximum temperature for both data sets, as revealed by the as-
sessment results. 

Figures 2-5 show the relationship linking the 30-day mean and standard dev-
iation of temperature for the two data sets employed in the study. For measuring 
the 30-day means of Tmin and Tmax statistics, the outcomes displayed excellent 
performance by LARS-WG. Using LARS-WG, the mean periodic totals for the 
minimum and maximum temperatures were formed efficiently, which showed 
that the temperature can be analyzed using the daily time series. The findings of 
the experimental analyses showed that there were no major variations in the 
calculated mean of the measured average temperature relative to the estimates. 
LARS-WG precisely created the 30-day means of minimum and maximum 
temperature values, offering a coefficient of determinants equivalent to units. As 
shown in Table 2, the R2 for the mean 30-day minimum and maximum temper-
ature had a robust linear correlation linking the experimental, created and artifi-
cial data.  

 
Table 1. The global climate models from IPCC AR5. 

The Global Climate Models Country and Institution developed the GCMs Resolution 

EC-Earth EC-Earth consortium, Europe 1.00˚ × 1.00˚ 

MPI-ESM-MR Max-Planck Institute for Meteorology, Germany 1.875˚ × 1.875˚ 
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Table 2. Coefficient of determination (R2) in calibration. 

Temperature Observed data Generated data 

Tmin 99.7% 99.5% 

Tmax 99.6% 99.5% 

 
Table 3. KS-test of daily distributions for observed data. 

Month 
Tmin Tmax 

KS p-value Assess KS p-value Assess 

January 0.106 0.999 Perfect fit 0.106 0.999 Perfect fit 

February 0.106 0.999 Perfect fit 0.106 0.999 Perfect fit 

March 0.053 1.000 Perfect fit 0.106 0.999 Perfect fit 

April 0.106 0.999 Perfect fit 0.106 0.999 Perfect fit 

May 0.053 1.000 Perfect fit 0.158 0.913 Perfect fit 

June 0.053 1.000 Perfect fit 0.053 1.000 Perfect fit 

July 0.053 1.000 Perfect fit 0.053 1.000 Perfect fit 

August 0.053 1.000 Perfect fit 0.053 1.000 Perfect fit 

September 0.053 1.000 Perfect fit 0.106 0.999 Perfect fit 

October 0.106 0.999 Perfect fit 0.053 1.000 Perfect fit 

November 0.053 1.000 Perfect fit 0.105 0.999 Perfect fit 

December 0.053 1.000 Perfect fit 0.053 1.000 Perfect fit 

 
Table 4. KS-test of daily distributions for generated data. 

Month 
Tmin Tmax 

KS p-value Assess KS p-value Assess 

January 0.053 1.000 Perfect fit 0.053 1.000 Perfect fit 

February 0.053 1.000 Perfect fit 0.106 0.999 Perfect fit 

March 0.053 1.000 Perfect fit 0.053 1.000 Perfect fit 

April 0.106 0.999 Perfect fit 0.053 1.000 Perfect fit 

May 0.053 1.000 Perfect fit 0.053 1.000 Perfect fit 

June 0.053 1.000 Perfect fit 0.053 1.000 Perfect fit 

July 0.053 1.000 Perfect fit 0.033 1.000 Perfect fit 

August 0.053 1.000 Perfect fit 0.053 1.000 Perfect fit 

September 0.053 1.000 Perfect fit 0.053 1.000 Perfect fit 

October 0.053 1.000 Perfect fit 0.053 1.000 Perfect fit 

November 0.053 1.000 Perfect fit 0.053 1.000 Perfect fit 

December 0.053 1.000 Perfect fit 0.053 1.000 Perfect fit 
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Table 5. Future mean of minimum temperature (˚C) under RCP4.5 scenarios. 

Month Base 1980-2010 
EC-Earth MPI-ESM 

2030s 2050s 2070s 2030s 2050s 2070s 

January 18.68 19.77 20.53 20.74 19.47 20.70 20.90 

February 20.94 21.73 22.23 22.64 21.37 22.57 22.60 

March 23.60 25.07 25.17 25.56 24.68 25.78 25.69 

April 25.35 26.74 26.52 26.94 26.41 27.43 27.34 

May 25.17 26.25 26.55 26.99 26.49 27.16 27.36 

June 25.02 26.03 26.79 26.99 26.46 26.96 27.24 

July 24.77 25.69 26.36 26.58 26.07 26.40 26.71 

August 24.69 25.49 25.85 26.29 25.82 26.11 26.37 

September 24.68 25.41 25.55 26.07 25.55 25.96 26.18 

October 24.10 24.79 25.05 25.40 24.75 25.26 25.65 

November 21.76 22.55 23.05 23.27 22.61 23.14 23.79 

December 18.66 19.50 20.26 20.36 19.73 20.37 21.12 

 
Table 6. Future mean of maximum temperature (˚C) under RCP4.5 scenarios. 

Month Base 1980-2010 
EC-Earth MPI-ESM 

2030s 2050s 2070s 2030s 2050s 2070s 

January 31.70 33.05 33.81 34.01 32.86 34.15 34.20 

February 33.75 34.86 35.36 35.77 34.43 35.82 35.46 

March 35.73 37.29 37.39 37.78 36.70 37.92 37.41 

April 37.19 38.54 38.42 38.84 38.08 38.92 38.67 

May 35.51 36.58 36.88 37.31 36.83 37.30 37.41 

June 33.94 35.03 35.75 35.97 35.75 35.96 36.23 

July 33.18 34.21 34.88 35.10 34.96 34.95 35.18 

August 32.53 33.52 33.87 34.32 34.05 34.04 34.22 

September 32.48 33.24 33.37 33.91 33.37 33.62 33.82 

October 32.38 33.22 33.52 33.83 33.09 33.65 34.08 

November 31.74 32.56 33.06 33.28 32.57 33.31 33.85 

December 30.73 31.53 32.30 32.39 31.64 32.62 33.05 

 
Compared to those calculated from the experimental time series, the means 

and variances of day-to-day artificial weather data were assumed to be insignifi-
cantly distinctive. It is likewise critical that the artificial weather series adopt a 
confidence interval that is not significantly varied from the actual time series. As 
seen in Figure 4, Figure 5, the 30-day temperature standard deviations for the 
created values were miscalculated for both data sets (perceived and produced). 
The evaluation results exhibit that LARS-WG execution in reproducing the dis-
tributions of the day-to-day temperature in all months is ideal, as seen from the 
results in Table 3 and Table 4. 
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Figure 2. Tmin monthly mean of observed versus generated data. 

 

 
Figure 3. Tmax monthly mean of observed versus generated data. 

https://doi.org/10.4236/acs.2020.104028


S. Punyawansiri, B. Kwanyuen 
 

 

DOI: 10.4236/acs.2020.104028 547 Atmospheric and Climate Sciences 
 

 
Figure 4. Tmin monthly standard deviations of observed versus generated data. 

 

 
Figure 5. Tmax monthly standard deviations of observed versus generated data. 
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3.2. Future Scenarios of Minimum and Maximum Temperature 

The EC-Earth and MPI-ESM-MR GCMs and RCP4.5 scenarios in LARS-WG 
version 6.0 were used in this study to generate future climate scenarios to better 
deal with un-certainties. In Figure 6, Figure 7, graphs of the temporal evolution 
of the indicator Tmin and Tmax in the PMS part of Phitsanulok Province of 
Thailand are presented. Table 5, Table 6 show the mean of Tmin and Tmax in 
base time (1990s) would be 23.12 and 33.41 (˚C). The Tmin would increase (˚C) 
by 0.97, 1.37 and 1.70 under EC-Earth RCP4.5 (2030s), RCP4.5 (2050s) and 
RCP4.5 (2070s), respectively. From the MPI-ESM-MR, results showed the in-
crease (˚C) in the mean Tmin by 1.00 under RCP4.5 (2030s) after that an in-
crease in the mean of Tmin by 1.70 and 1.96 under RCP4.5 (2050s) and RCP4.5 
(2070s), respectively. 

The mean of Tmax would increase (˚C) by 1.06, 1.48, and 1.80 under EC- 
Earth RCP4.5 (2030s), RCP4.5 (2050s) and RCP4.5 (2070s), respectively. While 
the MPI-ESM-MR, results showed the increase (˚C) in the mean of Tmax by 
1.12, 1.78 and 1.89 under RCP4.5 (2030s), RCP4.5 (2050s) and RCP4.5 (2070s), 
as in Table 6. The changes in temperature are 0.97˚C - 1.80˚C (EC-Earth), 
1.00˚C - 1.89˚C (MPI-ESM-MR) under RCP4.5 scenarios generated using the 
observed station data. 

 

 
Figure 6. Baseline and future of minimum temperature (A) EC-Earth, (B) MPI-ESM-MR. 
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Figure 7. Baseline and future of maximum temperature (A) EC-Earth, (B) 
MPI-ESM-MR. 

 
A step towards a widespread evaluation of uncertainty in future climate pre-

dictions is possible with the multi-ensembles method using various climate 
models and emissions circumstances. Nonetheless, the relative change factors 
(RCFs), resulting from the direct GCM output of the variables that precisely 
match the estimates, are used by the LARS-WG. Therefore, the reality that 
GCMs are not very accurate when replicating temperature means that the error 
caused by the GCM output for temperature extends the error of downscaling 
that causes the efficiency of LARS-WG to downscale temperature to demand 
more vigilance [24]. 

4. Conclusion 

Using a LARS-WG 6.0 stochastic weather generator, this study replicated the 
meteoro-logical constraints from Phitsanulok meteorological station (minimum 
and maximum temperature). The findings revealed that these criteria were mod-
elled with very high precision. LARS-WG may be used to produce climate mod-
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els for present and future PMS simulations. LARS-WG projected the 30-day 
mean low and high temperatures, which are consistent with the similarity be-
tween the observable and produced mean values of 0.999 and 0.998 respectively. 
The low and high temperature for PMS would rise in the 2030s, 2050s and 2070s 
under RCP4.5, as revealed by the results. Climate signals for temperature values 
in the 2030s, 2050s, and 2070s would rise under perceived station data, as sug-
gested by the ensemble mean for the EC-Earth and MPI-ESM-MR GCMs. Fur-
ther, impending local surface temperatures from the MPI-ESM-MR project were 
likely to be superior to EC-Earth. It was concluded from research that the 
LARS-WG model had the reasonable ability to imitate the day-to-day and 
30-day temperature constraints and could be used as an operative tool for inte-
grating climate change impacts into viable improvement. The work presented in 
this paper strongly supports the use of multi-GCMs model downscaling for pro-
viding the required data for agricultural and hydrological analysis. Additionally, 
we found that one of the many reasons for the large differences of the future 
minimum and maximum temperature is the CMIP5 models’ resolution. Finally, 
the LARS-WG 6.0 provides a means of synthesizing long-term climate data that 
can then be used in impact of climate change assessment. Evaluate the perfor-
mance of the generators for multi-GCMs and climate models are required to 
provide perspective into downscaling model vulnerabilities in order to establish 
alternate mitigation and adaptation approaches in climate change. 
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