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Abstract 
As per the Essential Climate Variables (ESV) of World Meterological Or-
ganisation (WMO), the physical, chemical and biological variables critically 
contribute to the earth’s climate. Among them, the variables such as tem-
perature and pH in the marine environment may affect seriously and in turn 
it has an impact on the biota, especially in the intertidal environment, where 
it has brunt force. According to United Nations Framework Convention on 
Climate Change (UNFCCC), the datasets should provide the empirical evi-
dence needed to predict the climate change and evoluate the mitigation and 
adaptation measures. Under this context, a review was carried out to know 
what extent marine scientists understand this factor and what level the biodi-
versity was evoluated and its impact was analysed in this article. Based on the 
existing literature review, it was understood that only a few groups that also 
only few species from these groups were studied in this aspect. The remaining 
groups and their species and their basic trophic were not evolved in this as-
pect. So, the marine scientific community, environmentalist and policy 
makers should take stock on this aspect and give thrust on this study. 
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1. Introduction 

Climatic change is one of the important factors to consider for the futuristic re-
search activities, especially with biodiversity concern. According to Global Cli-
mate Observing System (GCOS), it should be ensured that observations and 
information needed to address the climate issues are obtained and made avail-
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able to all potential users. The World Meterological Organisation (WMO) also 
suggested that under the Essential Climate Variables (ECV) the datasets on EVS 
should provide the empirical evidence, which needed to understand and predict 
the climatic change to evoluate the mitigation and adaptation measures to under-
pin the climatic services [1]. Under this programme, it was suggested generating 
and archiving data on the variables, wherever possible, using historical dataset. 
The predication of the future climate states that the temperature is the important 
factor for the terrestrial and temperature and pH are the two major components to 
be altered in the marine environment concern. As predicted by IPCC [2], a rise of 
temperature around 1˚C to 2.5˚C was suggested based on the year 2000 data. 
The expected outcome of this 20% - 30% of plants and animals may extinct and 
Island States undergo the sea due to increase of sea level rise. The climate change 
affected drastically and the ecosystem shifts and numerous extinctions will be 
resultant [3]-[8].  

The effect of climate change is rapid and highly influence in marine ecosys-
tem, especially in the intertidal zone where the upper temperature differences 
have their impact [9] [10] [11] [12]. If the species cannot acclimatize physio-
logically or change genetically to cope with temperature increment to move 
cooler habitats, i.e. high latitude [5] [7] [13] [14] [15] [16] [17]. It was proposed 
that the shift of marine species in an average 19 km/year [11] than the terrestrial 
shift, i.e. 0.6 km/year [5]. Since, the shift range can be predicated well in marine 
species because of its thermal tolerance limit [18], so as the web interactions 
changes within ecological community [19]. 

2. Methodology 

Understanding the importance of impact of temperature and pH variables on 
the intertidal life forms, the existing literature was scanned. The available infor-
mation was shared here to understand the level of our knowledge on this aspect 
and discussed the views for the future need on this aspect. Even though good 
amount of literature is available on the distribution and taxonomy, the impact of 
the individual group is species were scanty. The available studies were discussed 
in this article. 

3. Intertidal Region 

The seashore which covered during the high tide and exposed during the low 
tide is defined as intertidal zone or littoral zone. This eco zone covers a unique 
biome with variety of plant and animal [20] [21]. This zone is characterised by 
unique temperature, ecological factors and micro climates. This zone is divided 
into four distinct regions: 

Lower Littoral Zone - Low Tide Zone 
This area is closest to the sea and submerged majority time with seawater. The 

waves in this region protect the harmful radiation and severe temperature fluc-
tuation. The species lives in this region are larger in size, greater in number, 
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more diverse than the other areas of intertidal zone. The organisms in the low 
tide zone do not have to be well adapted to drying out and temperature ex-
tremes. The common fauna and flora observed in this region are sea anemone, 
brown sea weed, green algae, chiton, crabs, hydroids, isopods, limpets, mussels, 
sometimes small fishes. 

Mid-Littoral Zone - Mid Tide Zone 
The region is submerged half of the time of tidal fluctuations. The plant and 

animal species are living in this region but not as diver as Low Tide Zone. The 
organisms in the mid tidal zone are snails, sponges, sea stars, barnacles, mussels, 
sea palms and crabs. 

Upper Mid-Littoral Zone - High Tide Zone 
The zone is submerged during the high tide only. Very few plants and animals 

survived in this region. The most of the animals in this region are mobile (Crab) 
or attached to the substrate (Barnacles). The organisms in the high tidal zone are 
seaweeds, marine algae, sea anemone, starfish, chiton, crabs, mussels, nudi-
branchs and hermitcrabs. 

Splash Zone 
The splash zone is located above the upper mid-littoral zone. The water splash 

during the high tide by the wavers and never submerged with water.  

4. Results and Discussion 
4.1. Temperature  

All organisms have an influence on climatic variables in the range of molecular 
to ecosystem scales because the temperature dependent process is imminent [22] 
[23] [24]. Comparative to terrestrial species marine ectotherms act faster because 
of its sedentary nature and short life spans prevent escape from the change of 
environmental regimes [25] [26]. The flora and fauna existed in the intertidal 
regime responding quicker than the higher trophic level [27] [28] [29], because 
this quicker response leads to surge of deficiency of food chain [30]. Even 
though, semidiurnal and diurnal tidal effect along with seasonal variable may af-
fect the intertidal organism to the tune of 2.5˚C over a single tidal cycle [31], the 
temperature increment of air may affect further on this fact leads to some kind 
of thermal extremes for the intertidal flora and fauna. 

The temperature increment affected the Boreal Barnacle Semibalanus 
balanoides larval development [32] [33]. The blue mussel Mytilus edulis exhib-
ited impaired respiration and metabolism change [34] [35] [36]. The pink coral-
line algae show impaired growth in the intertidal environment [37]. The Pacific 
Oyster Crassostrea gigas (Figure 1) located in the intertidal zone adapted to 
massive temperature fluctuations around 2˚C in a tidal cycle. Additionally, the 
exposure to high thermal variability can cause shifts in gene expression patterns 
which set limits for physiological function [38]. The sea star Crossaster papposus 
(Figure 2) has lecithotrophic larvae which have less susceptible to environ-
mental change than the planktotrophic larvae of asteroid species.  

https://doi.org/10.4236/ojms.2020.104016


P. M. Mohan, V. Swathi 
 

 

DOI: 10.4236/ojms.2020.104016 206 Open Journal of Marine Science 
 

 
Figure 1. Crassostrea gigas [75]. 

 

 
Figure 2. Crossaster papposus [76].  

 
The enhanced respiration rates of faunal community through temperature 

raise affect the carbon balance of macroalgae assemblages which declines net 
productivity of seaweed and due course of time species richness [39]. The crab 
has good sustainability for temperature and pH variation in the intertidal re-
gions. However, the effect of these combined two factors leads to decline its re-
sistivity and its population. This in turn exhibited a potential long term adverse 
effect on the ectotherm. The sea anemone Actinia equina (Figure 3) in the rocky 
Mediterranean coast exhibited the growth of polyp will shunted along with re-
duced biomass during the raise of temperature [40]. The brown dinoflagellates 
(Symbiodinium californium, A. T. Banaszak, R.Iglesias-Prieto & R. K. Trench  
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Figure 3. Actina equina [77].  

 
and S. muscatinei, La Jeunesse & R. K. Trench) called zooxanthellae translocate 
during the high temperature to the host [41] [42]. 

4.2. pH 

The studies on the pH of marine water suggested that during the end of 21st 
Century, the CO2 level may be increased to three to four fold than the 
pre-industrial levels [43] [44] [45]. This increment may effect on the surface of 
the water and increase the dissolved CO2 and in turn alter the seawater pH 
which was not seen in the last 300 million years by the change the carbonate 
chemistry [46]. The year 2016, carbon dioxide parts in the atmosphere surpassed 
400 ppm (parts per million), the highest since the Pliocene epoch, a geological 
period known for its warm temperatures. Morris and Taylor [47], Truchot [48] 
and Wootton et al., [49] reported that in the tide pool studies the pH changed 
from 9.5 to 6.5 which was higher than the proposed value of next century predi-
cation on the surface water. Feely et al., [45] and Hofmann et al., [50] reported 
that the intensity of upwelling increased and in turn the deep hypercarbanic wa-
ters mixing in the surface water also lowering the pH towards acidic side.   

The change of pH was termed as Ocean Acidification (OA) as mentioned by 
Caldeira and Wickett [51] and Meehl et al., [44]. This large variation of pH may 
affect the biota’s metabolism, growth and reproduction [52] [53] [54] through 
the intracellular pH homeostasis [55]. This may lead to ecological implications 
by the way disappearance of the particular species or genetical modification of 
the same and in turn affect the local biodiversity with the result of disturbed 
community composition [55] [56] [57] [58]. Further, the change of pH may be 
affected the intertidal regions of the ocean than the deeper habitats [32] [50] 
[59]. This fact is very much significant for the crustaceans and snails [32] [60] 
[61]. However, it was not affected the teleost fish and brachyuran crabs but in-
creased its availability more [52] [62] [63]. Another interesting findings also ob-
served that the early life history of organisms (embroyonic, larval or juvenile 
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stages) show more response on the OA factor than the latter stages of their life 
history [54] [64] [65]. This factor was very much significant for mollusks, echi-
noderm and crustaceans [32] [60] [66] [67]. The studies on the porcelain crab 
Petrolishthes cinctipes stated (Figure 4) that the survival rate of juvenile reduced 
to the tune of 30% in hepercapnic waters influence [68]. The above studies were 
clearly mentioned that the whole life history of a fauna or flora should be studied 
[69] to understand the impact of OA in the marine environment. The California 
mussel—Mylitis californiansis (Figure 5) precipitated smaller shells with less 
thickness due to pH level towards acidic [70]. The coralline algae recruitment 
and deficient growth were observed under acidic conditions [71]. 

As reported by Alenius and Munguia [72] the species Paradella dianae (Figure 
6) from the Isopod living in the intertidal regions showed its variation among 
the consumption of oxygen, swimming speed, food response varied when the pH 
conditions varies. As reported by Orr et al., [43] and Bednaršek et al., [73], the 
OA may also reduce calcification in planktonic organisms. The pH fluctuate 
daily ≥ 0.5 pH units and up to ≥1 pH level on temperate rocky shores [49]. The 
coral reef environment suggested that the pH varies ≥ 0.5 pH units day and 
night cycles Birkeland et al., [74].  

5. Conclusion 

The existing literature was stated that the studies on intertidal fauna and flora 
for the impact on climatic variables executed only for few groups of organisms. 
The number of other intertidal fauna like polycheate, sponges, hydroids, bryo-
zoans, etc., (Table 1) is not known for its effect on the temperature and pH 
changes in the intertidal mechanism, which is highly essential for the food web of 
marine trophic as a total. If scientific community does not understand its effect, 
which in turn estimation of the range extension of faunal distribution will become 
more cumbersome and effect on the climatic variable will not be understood fully  
 

 
Figure 4. Porcelein crab [78].  
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Figure 5. Mylitis californiansis [79]. 

 

 
Figure 6. Parandella dianae [80].  

 
Table 1. Intertidal faunal and floral distribution. 

Intertidal Organisms 

Upper littoral zones Mid littoral zones Lower littoral zones 

Periwinkles Mussels Hydrozoans 

Littorina scabra Mylitis californianus Porpita porpita 

Nerita atropurprea 
 

Physalia physalisa 

Nerita articulata Barnacles Velella velella 

Nerita Costata Semibalanus balanoides Obelia geniculata 

LIttorina scutulata Chthamalus malayanus Aurelia aurita 

Blue green algae Lepas anatifera Doto Sp 

  
Shrimps 

Green algae Chitons Periclimenes brevicarpalis 
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Continued 

Enteromorpha Ischnochiton dispar Sea anemone 

Calerpa Stenoplax limaciformis Stoichatis Sp 

Padina Chiton stokesii Anthopleura elaegantissima 

Brown algae Acanthochitona hirudiniformis Anthopleura anathogrammica 

Halymenia Sp Acanthochitona ferreirai Dardamus Sp 

Halimeda Sp Chaetopleura lurida Stichodactyla haddoni 

 lepidachitona beanie Sponges 

 
Callistoplax retusa Oceanapia saggitaria 

 
Callisstochiton expressus Neopetrosia sp. 

 
Flat Worms Haliclona sp. 

 
Pseudoceros coralliophilus Ircinia fusca 

 
Thysanozoon sp Cinachyra Arabica 

  
Dysidea fragilis 

 Limpets Phyllospsongia calciformis 

 
Acmaea stellaris Chondrilla australiensis 

  
Bryozoans 

 
Polychaetes 

 

  
Sea weeds 

  
Electra indica 

 Sipunculids 
 

  
Crabs 

 
Oyster Thalamita Sp 

 
Saccostrea cucullata Ochypoda Sp 

  
Sesarma longipes 

 Clam Clibanarius Sp. 

 Tridacna crocea Uca anulips 

  
Uca vocans 

  
Uca marionis 

  
Paguras Sp 

  
Cancer magister 

  
Hemigrapsus nudus 

  
Oregonia gracilis 

  
Cardiopoma carnifex 

  
Limpets 

  
Acmaea stellaris 

  
Barnacles 

  
Balanus glandula 

  
Semibalanus cariocus 
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Continued 

  
Polliapes polymeras 

  
Mussels 

  
Mylitis californianus 

  
Sea urchins 

  
Echinothrix calamaris 

  
Diadema stosum 

  
Stongylocentrotus purpuratus 

  
Isopod 

  
Isotea wosnesenki 

  
Sea Star 

  
Pisaster ochraeus 

  
Linkia Leavigata 

  
Culcita novaquinea 

  
Asterias Rubens 

  
Oyster 

  
Saccostrea cucullata 

  
Sea Cucumber 

  
Holothuria sp 

  
Zooplankton 

 
for the intertidal biodiversity. Not only that, the need to understand the impact 
of climatic variable to the fauna and flola of the intertidal regions as needed for 
Globla Climatic Observation System and if the scientist, not able to provide a 
clear cut information, the mitigation efforts was also not successful for future 
developmental aspects.  
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