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Abstract 
Accurate measurements of broadband outdoor longwave irradiance are im-
portant for renewable energy applications and the study of the atmosphere 
and climate change. A unique method of pyrgeometer calibration has been 
developed to improve the measurement uncertainty [1]. The results of this 
method yielded irradiance values within ±3 W/m2 of those traceable to the 
World InfraRed Standard Group (WISG). This article describes a technique 
for validating this pyrgeometer calibration method using two Absolute Cavity 
Pyrgeometers (ACPs). The ACPs and pyrgeometer model PIR were deployed 
outdoors and the irradiance measured by the PIR was compared against the 
average irradiance measured by the two ACPs. The irradiance measured by 
the PIR was calculated using two equations, NREL equation and the Physika-
lisch Meteorologisches Observatorium Davos (PMOD) equation. The uncer-
tainty with 95% confidence level (U95) of the irradiance measured by the PIR 
using NREL equation equaled ±3.51 W/m2 with respect to SI and using 
PMOD equation U95 equaled ±2.99 W/m2 with respect to SI. These results 
suggest that the PIR calibration method might be useful in addressing the in-
ternational need for a secondary standard pyrgeometer traceable to SI. 
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1. Introduction 

The pyrgeometer model PIR was installed outdoors on an aluminum plate that 
was connected to a temperature controller, see Photo 1. Adjusting the tempera-
ture controller to decrease the pyrgeometer’s body temperature changed the 
pyrgeometer’s thermopile output. If the incoming radiation was stable, then the 
slope of the change in the pyrgeometer’s output irradiance (Wout) versus the 
change in the thermopile output voltage (V) would equal the pyrgeometer out-
doors responsivity (RS), independent from the absolute value of the atmospheric 
longwave irradiance [1]. We then evaluated the results of the method using two 
Absolute Cavity Pyrgeometers (ACPs), ACP95F3 and ACP10F3. The ACPs were 
installed on temperature controllers and operated as described in [2]. The de-
scribed method addressed the inherent problems related to the spectral differ-
ence between the blackbodies and the atmospheric irradiance by calculating RS 
from the clear sky outdoor calibration and using the actual atmospheric irra-
diance as the calibration source. 

Section 2 describes the procedure, equations, and the mathematical represen-
tation of the rate of change of V versus Wout. 

Section 3 shows the procedure results and the outdoor evaluation of this pro-
cedure. The evaluation compared the measured irradiance by the PIR against the 
average irradiance measured by ACP95F3 and ACP10F3.  

Section 4 is the conclusion. 

2. Procedure 

The ACPs and PIR were deployed outdoors from July 20 to August 19, 2020. 
Two equations were used to calculate the atmospheric longwave irradiance 
measured by the PIR, as described below in NREL and PMOD equations. 
 

 
Photo 1. Outdoor set up from left to right of ACP95F3, ACP10F3, and PIR 
on top of temperature controllers. 

ACP      Temperature Controller                                        PIR

https://doi.org/10.4236/acs.2020.104027


I. Reda et al. 
 

 

DOI: 10.4236/acs.2020.104027 532 Atmospheric and Climate Sciences 
 

NREL Equation [3] 

( )0 1 2 3atm r d rW K K V K W K W W= + + + −               (1) 

where: 
Watm is the atmospheric longwave radiation in W/m2. 
K0, K2, and K3 are the calibration coefficients of the pyrgeometer, calibrated at 

the PMOD [4]. 
K1 is the reciprocal of the PIR’s RS, calculated from the outdoor calibration 

described below.  
V is the pyrgeometer thermopile output, in microvolts. 
Wr is the pyrgeometer receiver radiation = 4

rTσ ∗ , and 4r cT T K V= + ∗ , 
where: 

σ Stefan-Boltzman constant = 5.6704 × 10−8 W/m2/K4. 
Tc pyrgeometer case temperature, in Kelvin. 
S Seebeck coefficient = 39 V/K. 
n number of thermopile junctions = 56 junctions. 
E thermopile efficiency factor = 0.65 (manufacturer specification). 
K4 thermopile efficiency factor equal to ( )1 S n E∗ ∗  = 0.0007044 K·uV−1. 
Wd is the pyrgeometer dome radiation = 4

dTσ ∗ , where Td is the dome tem-
perature in Kelvin. 

Equation (1) is rewritten in the following form: 

1out atm net atmW W W W K V= − = −                   (2) 

where: 
Wnet is the net irradiance measured by the pyrgeometer thermopile. 
Wout is the outgoing irradiance from the pyrgeometer. 

( )0 2 3out r d rW K K W K W W= + + −                  (3) 

A fundamental principle for this calibration procedure is to lower the out-
going irradiance while the atmospheric longwave irradiance (Watm) is constant, 
i.e., stable during clear sky conditions to within 1 W/m2 from the start to end of 
the calibration, at least 7 minutes. Lowering Wout was achieved by cooling the 
pyrgeometer’s case using the temperature controller. While lowering Wout, all 
signals from the pyrgeometer were measured every 10 seconds (i.e., thermopile 
output voltage, Td, and Tr). Differentiating Equation (2) with respect to time 
then yields: 

1d d d d d dout atmW t W t K V t= −                   (4) 

If Watm is assumed constant, Equation 4 then yields: 

1 d doutK W t= −                        (5) 

Equation (5) implies that the change of Wout versus the change of V yields K1, 
which is independent from the absolute value of Watm. 

Once K1 was calculated using the above procedure, Equation (1) was used to 
calculate the measured atmospheric longwave irradiance for 2 hours, and then 
the procedure was repeated from a solar zenith angle of >95˚ (PM) to <95˚ 
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(AM). 
PMOD Equation [4] 

( ) ( )3
1 2 31atm b b d bW V C K T K W K W Wσ= + + + −             (6) 

where C is the pyrgeometer responsivity and Tb is the case temperature. 
As in the NREL method described above, where Watm is assumed to be con-

stant, differentiating Equation 6 with respect to time yields:  

( )( ) ( )3
1 2 3d 1 d d d d db b d bV K T t C K W t K W W tσ+ = − − −        (7) 

For simplicity, Equation (7) is rewritten as: 
d d outC F W=                           (8) 

where ( )3
11 bF V K Tσ= +  and ( )2 3out b d bW K W K W W= − − − . 

Equation (8) implies that the change of F versus the change of Wout yields C, 
which is independent from the absolute value of Watm. 

The ACP’s Measurement Equation [2]  
To measure the atmospheric longwave irradiance: 

( ) ( )( )1 22 1atm r cW K V K W Wε ε τ= + − − +               (9) 

where: 
Watm is the atmospheric longwave irradiance (W/m2). 
K1 is the reciprocal of the ACP’s responsivity (W/m2/uV). 
V is the thermopile output voltage (uV). 
ε is the gold emittance. 
K2 is the emittance of the black receiver surface. 
Wr is the receiver irradiance (W/m2). 
Wc is the concentrator irradiance (W/m2). 
τ is the ACP’s throughput. 

3. Results 

The measurement uncertainty was calculated using the following equation: 

( )2 2
95 95ACP 95PIRSQRTU U U= +                   (10) 

where U95ACP equals ±2 W/m2 with respect to SI [2], using the NREL equation 
U95PIR equals ±2.88 W/m2 with respect to ACP; therefore, U95PIR equals ±3.51 
W/m2 with respect to SI. Using the PMOD equation, U95PIR equals ±2.22 W/m2 
with respect to ACP; therefore, U95PIR equals ±2.99 W/m2 with respect to SI. 

Photo 1 shows the outdoor set up of ACP95F3, ACP10F3, and PIR. Table 1 is 
a sample list of the calculated K1 for the PIR (NREL), ACP95F3, ACP10F3, and 
C for PIR (PMOD). Figure 1 and Figure 2 show Wnet versus V for ACP95F3 and 
ACP10F3. Figure 3 shows Wout versus V for the PIR using the NREL equation. 
Figure 4 shows Wout versus F for the PIR using the PMOD equation. Figure 5 
shows the average irradiance of the ACPs and the PIR using NREL and PMOD 
equations. Figure 6 shows the difference between the ACPs average irradiance 
and the PIR irradiance using NREL and PMOD Equations. Figure 7 shows the 
atmospheric water vapor content.  
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Figure 1. Wnet versus thermopile output voltage during the calibration of ACP95F3. 

 

 
Figure 2. Wnet versus thermopile output voltage during the calibration of ACP10F3. 

 

 
Figure 3. Wout versus thermopile output voltage during the calibration of 
PIR31197F3 using NREL equation. 
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Figure 4. Wout versus F during the calibration of PIR31197F3 using PMOD equation. 

 

 
Figure 5. ACPs average irradiance and PIR31197F3 irradiance versus MST. 

 

 
Figure 6. Difference between ACP’s average irradiance and PIR31197F3 
irradiance versus MST. 
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Figure 7. Water vapor content during data collection versus MST. 

 
Table 1. Sample of the calculated K1 for PIR (NREL), ACP95F3, ACP10F3, and C for PIR 
(PMOD). 

Date 
K1 C 

PIR (NREL) AC95F3 ACP10F3 PIR (PMOD) 

7/20/2020 0.2352 0.0697 0.0707 4.5283 

7/21/2020 0.2480 0.0674 0.0751 4.3126 

7/22/2020 0.2556 0.0655 0.0766 4.3075 

7/29/2020 0.2297 0.0701 0.0791 4.4923 

7/30/2020 0.2480 0.0807 0.0767 4.2560 

8/11/2020 0.2561 0.0717 0.0791 4.1499 

8/15/2020 0.2412 0.0672 0.0759 4.4200 

8/16/2020 0.2395 0.0714 0.0757 4.4516 

8/17/2020 0.2396 0.0684 0.0770 4.4476 

8/19/2020 0.2488 0.0692 0.0783 4.2890 

4. Conclusion 

We conclude that using this procedure will result in calibration coefficients that 
are independent from the absolute value of the atmospheric longwave irra-
diance. Based on the results, it is possible to achieve an uncertainty of ±3.51 
W/m2 using the NREL equation and an uncertainty of ±2.99 W/m2 using the 
PMOD equation with respect to SI. These results suggest that the PIR calibration 
method might be useful in addressing the international need for a secondary 
standard pyrgeometer traceable to SI. 
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