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Abstract

The idea of this research is to study different types of connections in an al-
most Hermite manifold. The connection has been established between linear
connection and Riemannian connection. Three new linear connections

vt v2 Vv® are introduced. The necessary and sufficient condition for

Vv V2, V® to be metric is discussed. A new metric S*(X ,Y) has been de-

fined for (M”,F,g*) and additional properties are discussed. It is also

proved that for the quarter symmetric connection V is unique in given ma-
nifold. The hessian operator with respect to all connections defined above has
also been discussed.
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1. Introduction

The study of connection has been the field of interest for most of the mathema-
ticians. The study of connections, semi symmetric connection was done in detail
by Yano [1] followed by Konar and Chaki [2], De and Biswas [3], Pandey and
Dubey [4], Pandey and Chaturvedi [5], Andonie [6] and many more, Quarter
symmetric connection by Golab [7], Rastogi [8], Mishra and Pandey [9] [10],
Biswas and De [11], De and Sengupta [12]. Quarter symmetric non-metric con-
nection was studied in Riemannian, Kaehlerian and Sasakian manifolds. Quarter
symmetric non-metric connection was studied in detail by Bhowmik [13],
Mondal and De [14], Haseeb, Prakash and Siddiqi [15]. Kankarej [16] has stu-
died the quarter symmetric non-metric connection in almost Hermitian Mani-

fold. In this research three new types of connection have been discussed in al-
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most Hermitian Manifold and the necessary and sufficient condition for it to be
a metric has been discussed. A new metric has been defined and some additional
properties with respect to the new metric is discussed.

This research has been divided in different sections. First section introduces
some elementary definitions. Second section shows the relation between linear
connection and Riemannian connection. Section three introduces some new
connections in almost Hermitian Manifold and also the necessary conditions for
new connections to be metric are established. Section four introduces a new me-
tric V'. Later in the same section some properties of new connections are
proved with respect to new metric. In section five, Hessian operator is defined

on all the connections established in section three.

Definition 1.1.
An even dimensional C” differentiable manifold M" is said to be an al-
most complex manifold (of class C™) if there exists a vector valued real linear

function fof differentiable class C” satisfying
f2(X)+X =0

for any vector field X; fis said to give an almost complex structureon M".

Definition 1.2.
A metric gon an almost complex manifold M" is said to be a Hermite me-
tric if
g(X.Y)=g(FX,FY)=g(X.Y)

It is always possible to introduce a Hermite metric on an almost complex ma-
nifold.

An almost complex manifold M" endowed with an almost complex struc-
ture Fand a Hermite metric gis called an almost Hermite manifold with struc-
ture {F,g} if

bl

+X =0 (1.1)

and
g(X.Y)=g(X.Y), (1.2)

where X =FX , Fis a tensor of type (1,1), g is a metric tensor and X,Y are

arbitrary vector fields.

Definition 1.3.

In an almost Hermitian manifold there exists a unique torsion free metric
connection D which is called Riemannian connection.

Riemannian connection D on an n-dimensional C” Riemannian Manifold
(M " g) is said to be a quarter symmetric connection if the torsion tensor S of

D satisfies
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S(X,Y)=a(Y)DX —a(X)DY (1.3)

where @ is a tensor field of type (L1) and @ is a 1-form associated with
vector field p

a)(X):g(X,p) (1.4)
If the quarter symmetric connection D satisfies:
(Dg)(X.,Y,Z)=0 (1.5)

where (Dg)(X,Y,Z)=D,g(Y,Z)-g(DY,Z)-g(Y,DyZ).
then the connection D 1is said to be quarter symmetric metric connection, other-

wise it is said to be a quarter symmetric non-metric connection.

Definition 1.4.
A necessary and sufficient condition that vector field X on a Riemannian Ma-
nifold (M " g) is a Killing vector is that

g(DYX,Z)+g(Y,DZX)=O (1.6)
for any vector fields Y'and Z The connection D is unique in Riemannian mani-
fold and is also called Levi-Civita connectionon M".

2. Relation between the Riemannian Connection
and a Linear Connection
The set of connectionsin M" defines a unique (2,1) tensor Bsuch that

V,Y =D,Y +B(X,Y), 2.1)

the tensor Bis a subject to the requirement and V is any linear connection
The torsion tensor of V is
T(X,Y)=B(X,Y)-B(Y,X) (2.2)
V issymmetricif T (X ,Y) =0;
V is semi-symmetricif T (X Y ) = a)(X )Y —a)(Y ) X
V is quarter-symmetric if T (X Y ) = a)(X )¢Y —a)(Y )¢X ;
where @ isatensor field of type (1,1) and w is a differential 1-form.

Theorem 2.1. @ being a differential 1-form is De Rham closed.

As  isa differential 1-form it can be represented as
o= f, Adx*
do=df, Adx'+ f, Addx' =0+0=0
do=0 and d’w=0

w 1is closed and also it is De Rham closed.

3. Some Connections on an Almost Hermite Manifold

Theorem 3.1. Let V' be the linear connection and D be a Riemannian con-
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nection of a Hermite manifold {F, g} such that
VLY =D,Y +a)(X)Y +a)(Y)X (3.1)
where is a 1-form associated with vector field p and Xand Y are vector fields.

Then V' isa symmetric connection.
Proof: From (2.1) and (3.1) we have

B(X,Y)=a(X)Y +o(Y)X (3.2)
Interchanging Xand ¥we have
B(Y,X)=a(Y)X +o(X)Y (33)
From (3.2) and (3.3) we have
B(X,Y)-B(Y,X)=0 (3.4)

(2.2) and (3.4) show T (X Y ) =0, which means V' isa symmetric connec-
tion.

Thus it is proved that V" is a symmetric connection.

Theorem 3.2. The necessary and sufficient condition for V' to be a metric

connection is
o(Y)9(X,Z)+o(Z)g(Y,X)=0 (3.5)
Proof: We know
(Vig)(X.Y,Z)=V4 (g(Y.2))-g(VY.Z)-g(Y.Vi2)
Dy (9(Y.2))+a(X)a(Y.Z2)+w(g(Y.Z))X

_ —g(DyY +o(X)Y +o(Y)X,Z)-g(Y,DyZ+0(X)Z+0(Z)X)

=D, (9(Y.2))+a(X)g(Y.Z)+o(g(Y.Z))X =g(D,Y.Z)-o(X)g(Y,Z)
—o(Y)g(X,2)-g(Y,DyZ)-o(X)a(Y.Z)-o(Z)g(Y.X)

=Dy (9(Y.2))-9(DcY.2)-9(Y.DcZ) +@(X)g(Y.Z) +@(g(Y,Z)) X
—o(X)9(Y.Z2)-a(Y)g(X,2)-o(X)g(Y.Z2)-a(Z)g(Y. X)

=Dy (9(Y.2))-9(DxY.2)-g(Y.DcZ) +@(X)g(Y.Z) +o(X)(g(Y.2))
—o(X)9(Y.Z2)-o(Y)g(X,Z)-o(X)g(Y.Z2)-a(Z)g(Y. X)
=-o(Y)g( Y, X

Y
X,Z)-w(Z)g(Y,X)+(Dyg)(Y,Z)-g(D4Y,Z)-g(Y,DyZ)
D being a Riemannian metric (D, g)(Y,Z)=9(D,Y,Z)+g(Y,DyZ)

(Vlg)(X,Y,Z)_— (Y)g(X,Z2)-o(Z)g(Y,X) (3.6)

Above equation proves that the given connection V' is non metric.

Necessary and sufficient condition for connection V' to be metric:
(V'g)(X.Y,2)=0
implies a)(Y)g(X,Z)+a)(Z)g(Y, X ) =0 from (3.6).

Theorem 3.3. Let V2 be the linear connection and D be a Riemannian con-
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nection of a Hermite manifold {F,g} such that
VY =D, Y +a(X)Y +5"(X,Y) (3.7)
Then V? isa semi symmetric connection.
From (2.1) and (3.7) we have
B(X,Y)=w(X)Y+s"(X,Y) (3.8)
assuming S*(X,Y) being symmetric.
Interchanging X and Y we have
B(Y.X)=aw(Y)X +s"(Y,X) (3.9)
From (3.8) and (3.9)
B(X,Y)=B(Y,X)=w(X)Y -o(Y)X +s"(X,Y)-s"(Y,X)
B(X,Y)-B(Y,X)=w(X)Y -a(Y)X
T(X.Y)=a(X)Y -o(Y)X

which proves V? isa semi symmetric connection.

Theorem 3.4. The necessary and sufficient condition for V? to be a metric

s (X,9(Y.2))=o(X)g(Y.Z)+g(Y,s" (X.Z))+g(s* (X.Y),Z) (3.10)
Proof: We know (Vg)(X,Y,Z)=V,(9(Y,Z))-g(V,Y.Z)-g(Y,V,Z)

(Vx9)(Y.2)

=D,g(¥.2)+w(X)g(Y. z> *(x, (v.2))
—g(DXY+a)(X)Y+s ).Z)-9(Y.DyZ+m(X)Z+5*(X,2))
=D,g(Y.Z)+o(X +5"(X,9(Y,2))-g(DyY,Z)
~o(X)g(Y,Z)- g( ).Z)-g(Y,Dy2)

~o(X)g(Y,Z)-g(Y.s* (x,z))
~D,9(Y.2)-(Y.D,2)-9(D,Y.2)+ a(X)g(¥.2)-w(X)g(¥ .2)
+5°(X,9(Y,2))-g(s* (X.Y).Z)-o(X)g(Y.Z)-g(Y.s*(X.2))

As Dis a Riemannian connection ng(Y,Z):g(Y,DXZ)—i-g(DXY,Z)
(V?g)(X.Y,2)

(3.11)
=-0(X)g(Y,2)+s*(X,9(Y.2))-g(¥,s"(X,2))-g(s* (X.Y).2)
It proves that V? defined in (3.7) is non metric.

Necessary and sufficient condition for V? to be metric:
(V*g)(X.Y,Z)=0

s (X,9(Y.2))=o(X)g(Y,2)+g(Y.s (X, 2))+g(s* (X,Y),Z)

Theorem 3.5. Let V® be the linear connection and D be a Riemannian con-
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nection of a Hermite manifold {F, g} such that
V,Y=D,Y +a)(X)¢Y +S*(X,Y) (3.12)

Then V° isa quarter symmetric connection.
From (2.1) and (3.12) we have

B(X,Y)=w(X)gY +5*(X,Y) (3.13)

assuming s*(X,Y) being symmetric.

Interchanging Xand Ywe have
B(Y,X)=w(Y)gX +5* (Y, X) (3.14)
From (3.13) and (3.14)
B(X,Y)-B(Y,X)=a(X)dY —a(Y)gX +s"(X,Y)-s" (Y,X)
B(X,Y)-B(Y,X)=a(X)gY —a(Y)¢X
T(X,Y)=o(X)dY —a(Y)sX

which proves V* isa quarter symmetric connection.

Theorem 3.6. The necessary and sufficient condition for V° to be a metric

connection is

s (X,0(Y.2))=g(Y.s"(X,2))+g(s"(X.Y).Z) (3.15)
Proof: Weknow (V@)(X,Y,Z)=V,(9(Y.Z))-g(VY.Z)-9(Y.V,2)
(Va)(X.Y.2)

=D, g(Y.2)+o(X)4(g(Y.2))+s" (X,9(Y.2))
—g(DyY +o(X)#Y +5"(X.Y),Z)-g(Y,DyZ +o(X)$Z +5" (X,Z))
=D, 9(Y,Z)+o(X)dg(Y, z)+s*(x 9(Y.Z))-9(DyY.2)
~o(X)g(4Y,2)-g(s"(X,Y),Z)-g(Y,D,2)
—o(X)g(Y.42)-9(¥.5"(X,2))
=ng(Y,Z)—g(Y,DXZ)—g(DxY,Z)+a)(X)¢(g(Y,Z))
~0(X)9(#.2)-9(s" (X.Y).2)-0(X)g(Y.42)
—g(Y.s"(X,2))+s*(X,9(Y.2))

As Dis a Riemannian connection D, g(Y,Z)=g(Y,DyZ)+9g(D,Y,Z)
(Va)(X.Y.2)=(X)d(a(Y.2))-a(X){g(47.2)+ 0 (Y.42)}

+5*(X,9(Y.2))-g(Y,s" (X,2))-g(s"(X.Y).2)
By the property of ¢ wehave ¢(g(Y.Z))=9(4Y,Z2)+9g(Y.42)
(Va)(X.Y,Z)=5s"(X,g(Y,Z))-g(Y.s"(X.Z))-9(s"(X.Y).Z)

It proves that V?® defined by (3.12) is non metric.

(3.16)

3
Necessary and sufficient condition for ¥~ to be metric:
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(V*g)(X.Y,Z)=

s*(X,9(Y.2))=g Y,s*(x,z))+g(s*(x,Y),z)

4. Existence of a New Metric g~

Theorem 4.1. If there exist a quarter symmetric non metric connection in

{M”,F,g} then there exist another metric g* such that the connection is
metric in {Mn,F,g*}.
Proof: Let us define a metric ¢* in the Hermitian metric such that:
s (X,07(Y.2))=0"(s"(X.Y).Z)+g" (Y.s" (X.,2)) (4.1)
Thenusing V°, VY =D,Y +a(X)Y +s"(X,Y)
We know
(Vg )(X.Y,Z)=V5 (9" (Y.2))-g" (VY.Z)-g" (Y., V2Z)

(Vg )(X.Y.2)
=Dy, 0" (Y,Z)+o(X)$(9 (Y.2))+s*(X,9"(Y.2))

—g" (DY +@(X)gY +57(X,Y),Z)-g" (Y. DyZ +0(X)¢Z +5° (X,2))

=D, g" (Y.Z)+o(X)gg" (Y. Z)+s* (X,g"(Y,Z))- 9" (D,Y.2)
—o(X)g* (#Y.2)-9" (5" (X.Y),Z)-g" (Y,D42)
—o(X)g" (Y.92)-g' (Y. (x.2))

=Dy 9" (Y.Z)-9" (Y.D,Z)-g" (DyY.Z)+a(X)g(9" (Y.2))
—o(X)g"(4Y.2)-9g ( (X.Y).Z)-o(X)g" (¥.42)

—g*(Y.s" (X,2))+s"(X,9"(Y.2))

As Dis a Riemannian connection D, g (Y,Z) =g (Y, D, Z)+ g (DXY,Z)
Using (3.16)

(79 )(X.Y.2) = o(X)8{g" (V. 2))-0(X){g" (9.2) -5 (V.02)
+5°(X,0%(Y,2))-9"(Y,5"(X,2))-g" (5" (X.Y),2)
By the property of ¢ we have ¢( (Y,Z))zg*(¢Y,Z)+g*(Y,¢Z)
(Va")(X.Y.Z2)=5s"(X,g"(Y.Z))-g" (Y.5" (X,Z))-g" (s" (X.Y),Z)
By theorem 3.5, we have (V3g*)(X,Y,Z):0.
Thus we have proved that if there is a connection, V° in {M”,F,g} which

is not metric then it is metric in {M " F, g*}
Necessary and sufficient condition for (V3g * )(X Y,Z) to be metric is:

s (X,07(Y.2))-g" (Y.s"(X,2))-g"(s" (X.Y),Z) =0
s (X,9°(Y,2))=g"(Y.s" (X,Z))+ 9" (s (X,Y),Z)

Theorem 4.2. For every quarter symmetric metric connection V in
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{M "F, g} there exist a unique connection V* such that it is quarter symme-
tric also.
Proof: Let us assume that V is quarter symmetric and metric in {M "F, g}

and define a connection V* such that
9(VxY.Z)=Xg(Y,Z)-g(Y,V(2) (4.2)

Let us check if V* is quarter symmetric.
(V'a)(X.Y,Z)=V5g(Y.Z)-g(VyY.Z)-
=V 9(Y.Z)-{Xg(Y.Z)-9g(Y,V,Z
=Vy9(Y.Z)-Vya(Y, Z)+g(Y v, Z

g(Yv z)
Xg(Y,Z)-g(VyY.2)}
ng(Y Z)+g(V Y,Z)

(ViY, )}—ng(Y,Z)

—

)i~

)-
=V;9(Y.2)-{V,a(Y.Z)-g(Y.V4Z)-g
- V0(Y.2)-{(V9)(X.¥.2)}-V,g(¥.2)
-Via(¥.2)-{(Va)(X.¥.2)} -V, a(¥.2)
By the assumption made in connection 4 implies that (Vg )( XY, Z) =0
(V'9)(X.Y,Z)=Vyg(Y,Z)-V4g(Y.2)

As g is a metric so, (V*g)(X,Y,Z) =0.

So, V49(Y.Z)=V,g(Y,Z).

This proves that V=V~

Hence there exist a unique connection on {M "F, g} which is metric and

quarter symmetric.

5. Hessian Operator on Different Connections

In this section we introduce the notion of hessian operator on different connec-

tions.

Definition 5.1. The Hessian of a smooth function f:M" - R on a smooth
manifold with a connection V is the covariant derivative of the function £ such
that

Hess( f)=VVf (5.1)

so that Hess(f)e F(T*M "®T*M "), itisa (0,2) tensor fieldon M".
For any two vector fields X and Y on M", we have a smooth real valued
function.
HeSS( f )( X ,Y) =VVf (X ,Y) on manifold M", which is a bilinear function.
It is defined as

Hess()(X,Y) = X (Y )=(V,Y) f (5.2)

Theorem 5.1. For every connection in an almost hermitian manifold there

exist a unique hessian operator.
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Hess(f')(X,Y)=Hess(f)(X,Y)

Proof: Let us define connection V*,V? and V® as mentioned above in (3.1),
(3.7) and (3.12). Then we have

VEY = D,Y +o(X)Y +o(Y) X
V2Y =D,Y +@(X)Y +5"(X,Y)
V3Y =D, Y +@(X)gY +5"(X,Y)

By (5.2) we can say that for a Riemannian connection D in an almost hermi-

tian manifold we have
Hess(f)(X,Y)=Dy (Yf)-(D,Y)f (5.3)
The hessian operator for connection (3.1) corresponds
Hess(f*)(X,Y) =V (YF)—(ViY)f
={DyYf + (X )Yf + o (YF ) X | —{DyY + (X )Y +o(Y) X} f
=D, (YF)=(DyY) f +0(X)Yf —o(X)Yf +o(YF)X —a(Y) X
Hess(f*)(X,Y)=Hess(f)(X,Y) using(5.3) and property of 1-form w.

Thus for connection in (3.1) above theorem holds true.

The hessian operator for connection (3.7) corresponds
Hess(7)(X,Y) =V} (YF)—(VXY)f
={DyYf +o(X)YF +5* (X YE) = {DyY +(X)Y +5° (X,Y)} f
=Dy (YF)=(DyY) f +@(X)YF —a(X)¥f +5* (X, ¥f)=s* (X,Y) f
Hess(f2)(X,Y)=Hess(f)(X,Y) using (5.3) and property of 1-form .

Thus for connection in (3.7) above theorem holds true.

The hessian operator for connection (3.12) corresponds

Hess( °)(X,Y)=V5 (Yf)—(V3Y) f

= {DyYf +@(X)gYf +5" (X,YF)} = {DyY + (X )Y +5* (X,Y)} f

=D, (YF)=(DyY) f+@(X)g¥f —o(X)g(Y) f +s" (X, Y)=s* (X,Y) f

Hess( f°)(X,Y)=Hess(f)(X,Y) using (5.3) and property of 1-form @ and
the tensor field ¢ of type (1,1).

Thus for connection in (3.12) above theorem holds true.

6. Conclusion

Thus in this paper I have introduced three new kind of connections

VY =D Y +o(X)Y +o(Y) X, VXY =D,Y +o(X)Y +s*(X,Y),

V3Y =D,Y +@(X)@Y +5"(X,Y) and proved the necessary conditions for all
to be metric are discussed. Also I have proved that in almost Hermitian manifold
linear connection is unique by introducing a new metric g*. It is also discussed

that Hessian operator in almost hermitian manifold is unique.
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Notations and Symbols

C” = Smooth manifold

M" = An even dimensional smooth differentiable manifold

X,Y = Vector fields

f= A vector valued real linear function = A tensor of type (1,1)

g = Metric tensor

9

*

= New kind of metric

{F, g} = A Hermite manifold with structure g

D = Riemannian connection

S (X ,Y) = Tensor

s*(X,Y) =Tensor

T (X ,Y) = Torsion tensor
B(X,Y) =Tensor

o = Differential 1-form

p = Vector field

® = Tensor field of type (1,1)

V = Linear connection

V' = 1*kind of linear connection
V? =2"kind of linear connection
V*® = 3"kind of linear connection

V* = New kind of connection
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