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Abstract 
Foundation pit excavation engineering is an old subject full of decision mak-
ing. Yet, it still deserves further research due to the associated high failure 
cost and the complexity of the geological conditions and/or the surrounding 
existing infrastructure around it. This article overviews the risk control prac-
tice of foundation pit excavation projects in close proximity to existing dis-
connected piled raft. More focus is given to geotechnical aspects. The review 
begins with achievements to ensure excavation performance requirements, 
and follows to discuss the complex soil structure interaction involved among 
the fundamental components: the retaining wall, mat, piles, cushion, and the 
soil. After bringing consensus points to practicing engineers and decision 
makers, it then suggests possible future research directions. 
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1. Introduction 

Burgeoning intentions to use basement slabs as a component contributing to 
the foundation’s bearing capacity and settlement requirements have recently 
spurred an escalated demand for piled-rafts as an economical alternative foun-
dation system. The 828 m tall Burji Khalifa building in Dubai is an example 
founded on piles beneath the base of thick slab—the raft [1]. Moreover, raft 
foundations integrated with column type ground improvement (rigid inclu-
sions) have widely been practiced in many parts of the world to utilize marginal 
urban soft ground [2]. In China, the columns are mainly constructed with ce-
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ment-fly-ash-gravel (CFG) and the improved ground is termed as CFG pile 
composite foundation [3] [4] [5]. The 200 m high structure in Dalian City, Chi-
na, for example, was built on composite foundation where the raft transfers the 
load from the superstructure to the ground treated by vertical columns [6]. This 
shows, based on the intended use, piles may be connected or disconnected to the 
raft. To circumvent localized higher stress and bending moment at the point of 
connection between the piles’ head and the raft during lateral and seismic loads, 
an interposed layer of sufficient thickness is laid [7] [8]. Previous experimental 
and numerical analyses indicated that the disconnecting layer plays a significant 
role in distributing superstructure loads in such an interplay that integrates the 
piles and the soil in load sharing mechanism [9] [10]. In this case, the piles re-
ceive the upper load indirectly and mostly considered as stiffeners of the mar-
ginal ground or settlement reducers [11]. Many researches are now being done 
to understand the complex soil-structure interaction (SSI) phenomena in dis-
connected piled rafts [12] [13] [14] [15]. 

On the other hand, in recent years, the use of underground space has evident-
ly become an important attribute to promote sustainable development [16] [17] 
[18]. In fact, aggressive progress towards underground construction will spate in 
a complex manner, with stringent performance requirement for deep foundation 
pit excavation support [19] [20] [21] [22]. The consequences of foundation pit 
excavation support’s failures are significantly dangerous and risky, mandating 
proper monitoring during construction [23] [24] [25]. For example, the 2004’s 
sudden collapse of Singapore’s deep braced excavation of Mass Rapid Transit 
Circle Line project adjacent to Nicoll Highway was reported to result in a disas-
ter in four fatalities, costing approximately $6.7 billion [26]. The Chinese 
Hangzhou Metro Line 1 project collapse in 2008 was found to take 17 lives and 
other four missing, with more than ¥50 million loss [27]. Such catastrophic col-
lapses affect the performance of the surrounding infrastructures; similar to the 
toppling of the 13-floor building in Minhang District of Shanghai, China causing 
huge social effects [28]. In 2009, the failure of deep excavation at the Cologne 
metro station in Germany was anticipated to be due to the increase in hydraulic 
gradient during the excavation, in turn the historical City Archive Building col-
lapsed [29]. 

When neighboring structures or public utilities exist, the design and perfor-
mance requirement of deep excavation project is met on the bases of serviceabil-
ity rather than failure prevention criteria [20] [30]. The construction method 
must also be able to confirm practically that the induced ground movement is 
tolerable, so the subsequent associated risks are controlled. Previous research on 
the design and construction on deep foundation pit excavation works mainly 
focused on excavation pit support, related ground and wall movements, design 
and/or construction risks (see Table 1). 

Regardless of whether the project is delivered by traditional Design-Bid-Build 
or Design-build bidding, the construction of deep foundation pit excavation is  
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Table 1. Selected researches on foundation pit excavation and the interaction with its surrounding. 

Focus of study Reference Methodology Key research parameter 

Prediction of 
excavation-induced 

ground and 
wall movement 

[31] Numerical Small-strain soil behavior 

[32] Empirical + numerical 
3D distribution of soil movements, 
small strain behavior of the soil 

[33] Analytical Plane strain problem, modes of wall displacement 

[34] Numerical Constitutive soil models, displacement of tieback wall 

[35] 
Modified mobilizable 
strength design (MSD) method 

Deformation of multipropped excavation, excavation 
geometries, strength mobilization characteristics of soil 

[36] Numerical 
Sheet pile wall installation, 
construction sequence and bracing 

[37] Numerical 
Diaphragm wall deflection, ground surface settlement, 
excavation depths, geological conditions 

[38] Numerical 
Narrow excavations, support stiffness, 
excavation width-depth ratio 

Effect of 
groundwater (GW) 

dewatering 

[39] Numerical 
Watertightness Assessment Test before excavation, 
stability of the bottom of the excavation, 
defects in the enclosure (gaps or open joints) 

[40] State-of-the-art review 
Ground settlement, interactions between the retaining 
wall-dewatering well, the dewatering-excavation, 
and dewatering-recharge 

[41] Field observations 
Wall deflection (diaphragm wall/secant-bored pile wall), 
ground surface settlement, 
stage of excavation, groundwater drawdown 

[42] Case study 
Dewatering (pumping rate and depth of a cutoff wall), 
soil properties, building settlement 

[43] Review on water leak incidents 
Water ingress (leak through joints & seepage-prone weak 
zone), surface settlements and diaphragm wall deflection 

Design and 
support 

optimization 

[44] Robust geotechnical design (RGD) 

Braced excavation, wall deflection, Cost-efficiency 
(costs of the diaphragm wall, the bracing system, 
excavation/disposal of the dirt, dewatering, 
and instrumentation) 

[45] 
RGD coupled with first order second 
moment (FOSM) method 

Braced excavation (geometry and depth), wall deflection, 
uncertainties of soil parameters (noise factors), 
cost efficiency, robustness and safety 

[46] 
Constructing indicator system 
of optimization of supporting 
schemes based on TOPSIS 

Technical feasibility, effect reliability (such as static and 
dynamic performances), construction accessibility 
(complexities during construction), economic rationality 

[47] Numerical analysis 

Bearing capacity, stability design requirements, 
and environmental requirements during construction, 
composite support systems, soil arching effect between 
existing pile foundations (bending moment in the piles) 

[48] 

FEM for analysis, BS8081:1989 
for ground anchor, BS8002:1994 
for toe stability check, BS 5950 
and CIRIA Special Publication 95 
for strutting elements 

Secant pile retaining wall, water-tightness, ability to vary 
the depth of retaining wall for irregular soil profiles, 
HS-Small model, grouting techniques, excavation support 
stability, assessment of surrounding infrastructure’s damage 
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Continued 

 [49] Numerical inverse analysis 
A shift from temporary to permanent support system, 
over-excavation (design depth increment), 
stress–strain behavior 

Construction 
method 

[50] 
Divided-pit construction 
(FEM implemented) 

Irregular excavation geometry and depth, displacement of 
adjacent conserved buildings (relative location from 
the pit), effects of buildings on excavation process 
(pit deformation due to buildings) 

[51] [52] 
Zoned and staged construction, 
Channel-type top-down 
method of excavation 

Construction cost and schedule, excavation support 
deformation, hauling distance, safe operation of adjacent 
railway (allowable displacement of the rail tracks) 

[53] 
Dividing alternate excavation 
method (strip excavation 
plus several dividing walls) 

Time-space effect and stiffness of tunnel, 
tunnel deformation, construction period 

[54] 
Case histories from bottom-up 
construction technique 

Foundation pit deformation, quick excavation, 
promptly propping, timely casting of floor slabs, 
segmented construction, excavation stage 

[55] 
Top-down technique and 
inverse numerical analysis 

Displacements of existing buildings, retaining wall 
deformations, hydraulic uplift failure mechanisms, 
wall installation effect 

[56] 
Both top-down and bottom-up 
construction method 
with bipartition walls 

Oversized excavation, time-space-effect on both deflection 
of diaphragm wall and deformation of partition walls 

[57] 
Zoned excavation and 
instrumented observation 

Wall deflection, ground settlement, corner effect, 
construction sequence, performance of adjacent metro line 

[58] 
Bottom-up construction 
method with zoned construction 

Lateral wall displacement, adjacent utility tunnel 
movement, stage and sequence of construction, 
construction schedule, groundwater dewatering, 
basal ground treatment 

Interaction 
with the 

surrounding 
environment 

[59] Numerical Excavation zone of influence, building settlement 

[60] Numerical 
Frame action with inclusion of building stiffness, 
limiting tensile strain 

[61] Numerical 
Stages of construction, deformation of excavation, 
strains of adjacent buildings 

[62] Analytical 
Excavation induced axial pile deformation, 
vertical soil displacement, load transfer mechanism 

[63] Analytical Tunnel deformation 

[41] [64] 
[65] [66] 

Numerical 
Effect of depth of excavation, supporting system stiffness, 
pile dimensions, pile head condition, working load, 
soil properties, location from excavation 

[67] Numerical 
Isolation piles and jet-grouted piles, 
displacement of retaining wall 

[68] Numerical 
Building deformations and settlement due to excavation, 
distance to excavation, type of building’s foundation 

[69] Numerical 
3D structural distortion based on soil-structure interaction, 
damage due to differential displacement 
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Monitoring 
technology and 

early safety 
warning 

[70] 
Levelling, rod extensometers 
and torpedo inclinometer 

Ground and wall displacements, accuracy of 
monitoring method (human or environmental errors) 

[71] 
Internet-of-Things-(IoT) based 
safety barrier early warning system 

Tracking of workers and “things” to change their risky 
behaviors, diaphragm wall collapse 
(elastic potential energy exceeded) 

[72] 
Optical fiber sensing technology 
(fiber Bragg grating-FBG-technology) 

Deformation of foundation pi 

[73] 
Slope indicator systems, strain gauges, 
optical fiber and topographic survey 

Displacements and strains of a noncontinuous anchored 
wall, earth pressure influence on lateral displacement 
(supported by numerical analysis) 

[74] 

Displacement monitoring with a precise 
total station; crack measurements, 
rainfall observations, groundwater and 
seepage observations; Stress-monitoring 
equipment (vibrating string 
extensometer); Computer aided 
information management system 

Deformation of foundation pit, ground surface 
settlement, inclination of the surrounding buildings, 
foundation settlement of adjacent buildings, integrated 
management of monitoring data (instrumentation, 
monitoring points, construction progress, 
the surrounding environment) and 3D visualization 

Construction 
safety risk 

management 

[75] Numerical 
Existing adjacent railway operation, 
railway subgrade deformation 

[76] Monitoring based risk disposal 
Distance from excavation, additional load due to stock 
piling materials on the pit edge, groundwater level change 

[77] 
Case analysis of safety accidents 
(accident forecasting and prevention) 

Safety behaviors of personnel, technological innovation 
of safety management, integration of 
networking and digital technology 

[78] Support Vector Machine 
Excavation deformation, 
longitudinal slope instability, gushing of water and sand 

[79] Building Information Modeling (BIM) Technical risks, Geological risks, Environmental risks 

[80] 
Equivalent axial stiffness theory & 
Monte Carlo simulation technique 

Soil parameter uncertainty, 
tunnel longitudinal stiffness, excavation depth 

[81] Case study on damage remedial work 
Grouting, soil unloading due to excavation, 
deformation of shield tunnel, groundwater drawdown 

 
still fraught with challenges. It requires progressive monitoring of project per-
formance. If deviations from design expectations are encountered during con-
struction, appropriate modifications will be made and the experience gained can 
be used in a different way in the future [82]. This process usually takes five stag-
es: Information, Analysis, Prediction, Observation and Evaluation [83]. Limited 
data, as well as the spatial variation of material properties involved in the com-
plex geo-environment and unavailability of soil model to capture all aspects of 
material’s behavior, have forced geotechnical engineers to rely on simplification 
and engineering judgment to fit analysis and prediction results [5] [34] [84]. 
This helped to develop presumed designs and safe constructability. Moreover, in 
the observation process, handling critical data requires more attention than the 
mechanics and manipulation of the data. Then, during evaluation process, the 
questions arising from the deviation between observed performance and ex-
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pected performance will be answered. The results of the analysis will indicate the 
source of associated risks (hazards) and possible control measures to minim-
ize/alleviate these risks. Therefore, a risk control process that accommodates the 
daily changes during construction is necessary for the successful completion of 
deep excavation pit project safely. 

With this in mind, it becomes self-evident that the success of deep foundation 
pit excavation project is reflected on how it links the competence of project 
management process with risk-informed decision making. Besides, in the con-
text of reasoned geotechnical judgment that systematically combines “data” and 
“experience”, it can succinctly be described that a pressing demand is currently 
prompted on the role of relevant data which explicitly takes uncertainties into 
account. Consequently, it is unlikely to possibly reduce taking heed to risks in 
the near future, especially when novel foundations systems emerge. At this point 
of departure, this paper enlightens the construction profession regarding geo-
technical aspects of risk control and management practice for new foundation 
pit excavations near the recent widely used on-service disconnected piled rafts. 

In what follows, the method for predicting the likelihood and occurrence of 
unintended events in the deep foundation pit excavation project adjacent to 
conventional foundation system is introduced first. Then, for space brevity, brief 
discussion in the context of disconnected piled raft is covertly provided under 
separate sections allocated to topics on how to confront uncertainties during risk 
prediction; risk control measures; and risk management process. Ultimately, as 
there always exists something to explore in any area of study, future research di-
rections, at least to the level of this article, are forwarded for interested scholars. 
Since several parties are involved to partake decisions at different levels, final de-
cision will be affected by a certain sources of bias among the stakeholders [85]. 
Geotechnical engineers are responsible to make clear geotechnical bias sources 
for better decision makings. Accordingly, this paper gives more attention to 
demonstrate geotechnical aspects; and organizes the challenges arising from di-
rect or indirect risks for deep foundation pit excavations in close proximity to 
existing structures supported by disconnected piled rafts. The concepts discussed 
will help practicing engineers to resolve the impact of uncertainties in a 
well-organized and structured manner. 

2. Risk Prediction Methods 

Risk and decision are almost interrelated [86]. Many factors exist that cause risk 
associated with interconnected tasks for a given project. They result in time de-
lay or cost overruns if not properly dealt with in the process of risk management. 
Risk management mainly includes risk identification, analysis and response. In 
order to take effective counter measures to deal with the impact of risks, project 
managers or decision makers should implement strategies. The approach to do 
so is to measure the expected loss due to risk based on the potential impact and 
occurrence probability [87] [88] [89] [90]. For projects like deep foundation pit 
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excavation, which is a complex system with many risks, early and effective pre-
diction of possible outcomes can reduce detrimental effect of incidents and ac-
cidents. Available risk prediction methods can be grouped into three—1) empir-
ical, 2) numerical and 3) machine learning. 

Empirical approaches are qualitative in nature, which limits their application 
to a certain construction techniques and ground conditions [91]. It is used for 
predicting settlement and ground loss [92] [93]. Because of the possibilities to 
simulate excavation sequences numerically, numerical simulation methods are 
being implemented to analyze safety and cost constraints, incorporating spatial 
soil variability and pore pressure measurement [94] [95] [96]. However, recent-
ly, machine learning methods have been widely applied in risk prediction, and 
mainly include time series analysis—TSA [97] [98], Bayesian network—BN [99] 
[100], support vector machine—SVM [101] [102], artificial neural net-
works—ANN [103] [104], and random forest—RF [105] [106] [107]. Due to al-
gorithmically and computational simplicity than other methods, applicability of 
supervised learning method, RF, in deep foundation pits has been validated us-
ing monitored data [108]. Owing to the complexity of excavation of foundation 
pits, there is uncertainty in the monitoring data collected from different types 
and different monitoring points of the same type. Processing of these data impli-
citly takes uncertainties into account. In view of this, it is prudent to provide re-
levant practical insights on the ways of handling the reality of “site-challenges” 
as a result of evolution of uncertainties from different sources, as presented in 
Sections 3. 

3. Dealing with Uncertainties and Reliability 

Geotechnical engineering practice and research are characterized by the uncer-
tainty of time and space, and often encounter many sources of risk or hazards. 
As shown in Figure 1, uncertainties arise from geotechnical inherent uncertain-
ty (measurement error) and/or transformation uncertainty [109]. Transforma-
tion uncertainty appears while using empirical or other correlation models and 
interactions between the ground and structures, both during and after construc-
tion [110] [111]. Consequently, it becomes convenient to acquire reliability in-
dex or failure probability for specific circumstances in excavation projects, so  
 

 
Figure 1. Overview of geotechnical uncertainties [109]. 
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that decisions can be made on the relative contribution of sources of uncertainty 
[112] [113] [114] [115]. Based on the identified and quantified uncertainties, 
probability factors are developed to define probability of unacceptable perfor-
mance, which is very important to identify the leading risk category of concern, 
especially in the design-build (DB) procurement process [116] [117]. 

Probabilistic considerations in deep foundation have emerged in applications 
towards excessive differential settlement; analysis of excavation-induced retain-
ing wall deflection, ground movements, and damage potential to an adjacent 
building with focus on component reliability assessment of serviceability crite-
rion [27] [118] [119] [120]. Occurrence probabilities of risk events, assessment 
of consequences, and planning of control strategies require to acknowledge the 
risk at the very end and provide remedial measures to avoid the risk or recovery 
methods in the event based on informed decisions [121] [122]. 

Fenton [123], Fenton et al. [114], Fenton and Naghibi [124] have made 
comparison among existing codes regarding periodic updates and revisions for 
professional practice harmonization. They indicated that countries have already 
been shifting the national geotechnical design codes of standards towards relia-
bility-based design concepts where separate “partial” factor of safety is employed 
unlike that of comprehensive one in the traditional method. In this regard, it is 
prudent to carefully examine what existing (monitoring) data have to implicate 
in decision making; especially as data is increasingly being considered as “new 
oil” to the point whereby data is used to support sensitive decisions apart from 
project compliance purposes [125] [126]. For instance, if one excavation failure 
phenomenon among the 15 failure categories seen in china [127] is suspected to 
possibly occur, then the reliability of the critical event can be checked along with 
observations made as excavation progresses and remedial measures can be dep-
loyed to control it early from happening. Therefore, it is not a trivial thing in 
deep excavation projects to incorporate new knowledge of site conditions as 
construction progresses in order to make adjustments on the system perfor-
mance. Within the framework of observational method, real-time observed data 
are employed timely to act against uncertainties during construction. This re-
quires understanding of the observational method and appropriate real-time da-
ta acquisition system. 

3.1. Application of Observational Method (OM) 

After Peck [128] formally introduced Terzaghi’s “Learn-As-You-Go method”, 
OM has been successfully applied in practice by progressively modifying the de-
sign to minimize potential construction risks over the years [129] [130] [131] 
[132]. If there is enough time to fully implement the revision plan proposed 
from ab initio or ipso tempore, the overall economy within the safety margin of 
the project can be achieved. However, some reticence still remains to its wider 
use [133] [134]. The reluctance of engineers to change design decisions already 
made has been now ameliorated through monitored-decision process [135] 
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[136]. Finno [137] used monitoring data to update performance predictions of 
supported excavations. Young and Ho [138] and Ikuta et al. [139] applied OM in 
design of supported excavation in which excavation sequence is taken into ac-
count to revise and confirm initial design assumptions. Corner effects and 
time-dependent movements in excavation projects have been dealt within OM 
framework in the context of EUROCODE 7 by Fuentes, Pillai, and Ferreira 
[140]. Wu, Ching, and Ou [141] adopted probabilistic OM to “update” wall dis-
placements at later stages from earlier stages of excavation, and proposed “stage 
correlation” based on database of 22 excavation case histories in Taipei. 

Implementing OM limits the risk of damage to a satisfactorily low level. 
Finno and Calvello [142] developed and tested inverse modelling in updating 
design predictions using inclinometer data obtained from a 12.2 m deep exca-
vation through soft clays in Chicago. Calvello [143] forwarded an approach 
combining OM and inverse analysis techniques for continuous model recali-
bration of geotechnical boundary value problem, as shown in Figure 2. This 
time-dependent iterative model calibration using updated new field observations 
is termed as “observational modelling”; and is found to be effective in predicting 
associated soil displacements, provided that model uncertainties are dealt with 
an adequate engineering judgment. Acquiring a high level of good and sound 
engineering judgment by observing actual performance while the construction 
proceeds need an ongoing learning and previous experience [144] [145]. More-
over, much computational benefit is gained from computers. [143] 

3.2. Construction Monitoring and Early Warning 

As deep excavation pit construction sites generally involve multiple resources in 
dynamic work task and neighboring structures, the risk warning value needs to 
be cautiously monitored from the perspective of safety and stability. If the field 
monitoring result of design performances (be it compression force in the struts  
 

 
Figure 2. Schematics of: (a) observational method; (b) “observational modelling” ap-
proach for updating the design predictions of geotechnical boundary value problems 
[143]. 
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through strain gauges or load cells; deflection of the wall obtained with inclino-
meters; ground surface movements via optical surveys, inclinometers and ex-
tensometers; and porewater pressures through piezometers) are surpassed, the 
monitoring personnel sends the forewarning document to overseeing unit to 
trigger threshold safety alarms [25] [146] [147] [148]. Due to the installation of 
the instrument, the measurement cost by manual monitoring approach is very 
high, but emerging safety technology is basically replacing them by the automat-
ic monitoring method. Automatic monitoring mainly works on electromagnetic 
effects and capacitive effects of sensors [72] [149]. 

Monitoring performance plays an important role in the construction process. 
Liu, Ren, and Liu [150] discussed how monitoring-based risk management can 
be used in risk classification, identification and assessment with early warning in 
deep excavation engineering. A refined monitoring data can bring good early 
risk warning. However, as the construction of deep foundation pits continues, 
the safety risks continue to change, making it difficult to achieve real-time mon-
itoring through traditional safety risk early warning systems [78] [151]. In order 
to eliminate this drawback, the so called “Building Information Modelling 
(BIM)” has recently become an inevitable choice owing to its convenience in 
multi-dimensional visualization and user friendliness [79] [152] [153]. With the 
advantage to incorporate a time factor in using BIM, an effective safety risk 
identification and occupational health can be achieved [77] [154] [155]. Qian 
and Lin [77] also detailed the progress of Chinese real-time online safety risk 
management. 

A safety barrier early warning system using the Internet of Things (IoT) has 
been implemented in underground construction sites to improve safety man-
agement by gathering monitoring data of workers and “things” [71] [148]. The 
system uses a hazard control alternative, in which the sensing unit, wearable de-
vice and monitoring apparatus interact with each other to reduce the contact 
between hazard energy (danger/risk source) and target (workers, the environ-
ment, or physical assets); and recovery enforcement necessary to step away from 
any potential hazards. An increasing research interest on sensors is putting In-
formation technology (IT)-based construction management into practice [156] 
[157] [158] [159]. IT-based construction management addresses the following 
aspects: 1) fast and accurate tracking of construction resources, 2) assuring 
effectiveness of proximity detection and alerting technology, 3) efforts to replace 
human operations with robots, and 4) combination of BIM and GIS technolo-
gies; in addition, it improves the accuracy and processing time of data, forecast-
ing capability and information feedback. 

4. Risk Control Measures 

Construction safety risks can be addressed by identifying the consequences of 
critical risk factors (causes) and evaluating their occurrence probability to select 
preventive and protective strategies [160] [161]. The notable construction risk 
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factors according to Tinghua, Siping, and Jingru [160] include design and con-
struction scheme; edge protection; side-wall supporting; drainage measure; loads 
close to pit side; up-down passage; earth excavation; deformation monitoring; 
and working environment. These factors contributed to main risk events such as 
pit collapse, collapse of pit bracing structure, high-fall accident and other causal-
ities. In order to control these risk events, a detailed process is needed that en-
sures providing satisfactory safety factor during the design process, combined 
with an inclusive quality control program and monitoring system applicable to 
the source of risk during the construction process, and applying appropriate 
contingency plans that fit-for-purpose [162]. 

As envisioned by the need for economic foundation system in marginal soils 
and the growing practice of overlaying high-rise structures on piled rafts, it is 
now inevitable to find new foundation pit excavations adjacent to them. As pre-
viously shown in Table 1, the performance of foundation pit excavation work 
has gained much attention. The focus was mainly concentrated to adjacent 
structure’s settlement and more specifically the challenges to neighboring piled 
foundations. Many studies have attempted to respond by investigating the re-
sponse of piles, which involves consideration of pile-soil interactions [62] [163] 
[164]. The ultimate lateral resistance of a pile in a group under passive loading 
is affected by the pile-soil interaction [165]. Likewise, assessment has to be 
done for the stability and integrity of piled rafts under the influence of adja-
cent deep foundation pit excavations. However, when it comes to disconnected 
piled rafts, the soil-structure interaction mechanism gets even more complex 
due to the coordinating effect among the raft, cushion, pile and ground. Partly 
because of this complexity, straightforward solution has not yet been issued 
and its associated risk has been given little attention. For such a project with 
intricate boundary conditions, investigating the response of existing foundation 
would essentially require knowing its current condition and implementing 
observational method with proper data-interpretation methodology. Due to this 
distinctive sophistication, an independent peer review (4-eye-principle) on tech-
nical matters made by independent experts is highly sought [166] [167]. 

Compared with research concentration on understanding the load sharing 
mechanism of disconnected piled rafts [8] [168] [169] [170] [171] [172] and on 
excavations either on infinite soil or adjacent pile foundations (Table 1), little is 
done on understanding the influence of excavation on nearby piled raft founda-
tions with interposed layer. Zhu et al. [173] experimentally evaluated the hori-
zontal bearing characteristics of disconnected piled rafts. They found that the 
frictional resistance at the interface of mat and cushion layer provides the hori-
zontal resistance to the applied lateral load. However, their load was not pas-
sively applied on the piles. Azizkandi et al. [174] and Sharma et al. [14], for ex-
ample, have discussed the efficiency of unconnected piled rafts under seismic 
loading. Recently, focus is placed on the behavior of pile-soil system under later-
al soil spreading due to liquefaction [165]. Nevertheless, liquefaction-induced 
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flow imparts negligible load on the pile due to sudden loss of soil stiffness, which 
is not experienced by the pile-soil system subjected to excavation induced soil 
displacement [175] [176]. 

Wang and Yang [177] performed experimental study on the interaction of 
new excavation with adjacent high-rise building founded on CFG piled raft. The 
results of their model test indicated that as the adjacent excavation work was 
proceeded, the adjustment of the load shared by the CFG piles continued in a 
complex manner of joint interaction among the pit retaining structure (piles), 
composite ground and strip of soil column between pit supporting piles and 
CFG pile composite ground. The centrifuge experimental test performed by Li, 
Huang, and Han [178] also confirmed the same and revealed the presence of 
CFG piles reduces the active earth pressure compared to the conventional Ran-
kine theory. Yan-qing Wei [179] also performed indoor model test. The results 
showed that as the retaining wall was moved, the sliding surface in the retained 
soil was different from the conventional slip surface because of the piles (see 
Figure 3). Furthermore, the same study pointed out that that with the gradual 
movement of the wall, the load transmitted to the piles’ head increased and con-
sequently, the load shared by the soil decreased, see Figure 4. The numerical 
analysis of Ren and Qiao [180] showed that with an increase in excavation 
depth, the lateral displacement of the CFG piles increases. 

On the other hand, according to some research results, because the axial 
working load has little effect on the lateral response of pile, once the serviceabil-
ity limit is exceeded, it may cause sudden damage and collapse of the pile with-
out any signal [64] [181]. Moving on, the lateral response behavior of front piles 
is highly affected by excavation induced extra passive loading than the rear ones 
[66] [182] [183]. Therefore, it may be necessary to check whether the structural 
and geotechnical capacity of the pile is sufficient to withstand the passive load 
applied due to ground movement caused by excavation. In order to eliminate 
such and other risks (see Table 2), engineering experience and judgment play a 
significant role. In the risk management process, engineering experience and  
 

 
Figure 3. Potential failure surface in the soil behind a retaining wall under (a) rotation 
about its base; (b) translational mode [179]. 
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Table 2. Selected potential risks with countermeasure suggestion and/or comments. 

Objective Target 
Risk/event 

source 
Methodology Remedies/comment 

Deep 
excavation 
assuring 
protected 

environment 

1) Controlling 
foundation 
pit deformation; 
2) Limiting ground 
movement 
(sudden ground 
loss or subsidence) 

Geotechnical 
conditions 

Spatial geo-material 
variation & uncertainties 
(different site conditions) 

Inverse analysis based on observations during 
excavation to confirm actual & design 
assumption; Enhance soil strength by grouting; 
Turn to appropriate construction method to 
suit unanticipated condition 

Leakage & 
hydraulic failures 

End-plate method connection for diaphragm 
wall joints; With relief wells release confined 
aquifer pressure; Waterproof curtain by 
mixed-in-place technology; Prevent uplifting 
by hybrid of jet grouting & deep soil mixing 

Global and/or localized 
soil and excavation 
support structure failure 

Zoned construction method 
(quick excavation, prompt propping, 
casting rigid floor slab timely); 
Provide sufficient wall embedment 
& adequate passive resistance (including 
stiffness of retaining wall-strut system, 
soil/anchor length with soil voids filled by 
grout); Increase unlading moduli of basal 
stratum with ground improvements 

Selection of proper 
constitutive model 
(model simplification 
and omissions) 

Consider optimum compromise to account 
for path- and state-dependent soil properties; 
Insufficient level of detailing and 
design accuracy 

Surrounding 
existing 

condition 

Structural and geotechnical 
failure of existing piles 

Construction of isolation/barrier piles to 
reduce imposed external passive loading 
(bending moment and forces) on piles 

Abrupt loss of foundation 
bearing capacity 

Avoid over-excavation to prevent 
toppling; Compensation grouting 

Tensile strains induced 
in a building 

Component and system fragility assessment 
for limiting tensile strain 
(reliability analysis approach) 

Differential foundation settlement; 
movement and rotation at pile head 

Renovation, backfilling and underpinning 
to limit distortions in the sagging 
and hogging zones 

Project-delivery 
system 

Uncertainties in performance 
measurements as required 
by the contract 

Risk transfer through negotiated exception 
clauses included in the bid or through claims 

Amount of risk willingly 
taken by the owner 

The traditional design-bid-build is ineffective 
in minimizing adversarial relationships 

Poor on-site management 
& communication 

Continues performance & productivity 
monitoring with 4-eye principle; Turn to 
Design-Build or Construction-Management 
at work mode of project delivery 

Political and 
financial related 

Change of related-low and regulations; Price 
escalations, payment delays, etc. 
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(a) 

 
(b) 

Figure 4. Influence of retaining wall movement on the average stress of soil between piles 
and pile head of composite foundation under a working vertical load of 88 kPa (a) rota-
tion about the base; and (b) under translation mode [179]. 
 
judgment will normalize the decisions regarding Contractor’s means and me-
thods, choosing appropriate and mature technology, and dealing with uncertain-
ties in design and construction phases [116] [184] [185] [186]. 

5. Risk Management Process 

It is not enough to understand the probability and consequences of each risk 
event. There is a need for a systematic method called a risk management process 
that responds to minimize adverse risk by transferring, avoiding, mitigating or 
accepting specific risk elements among risk owners and action parties, as illu-
strated in Figure 5 [76] [87] [187] [188] [189]. There is also a need for a system 
that delivers information appropriately at the right time to ensure that the iden-
tified risks and their treatment plans are well communicated [188]. For example,  
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Figure 5. Risk management process for construction projects [187] [188] [189]. 
 
the case studies of 50 Dutch underground deep excavation projects in the Neth-
erlands conducted by M. Korff [82] indicated that evaluating and documenting 
risks during the project by itself is not sufficient to prevent failures but also the 
lesson systematically gained for the next stage or project needs to be incorpo-
rated. In the same report, it was shown that the knowledge to prevent 60% 
failures existed outside the project, indicating clearly that it is not common to 
learn regularly between projects. O’Neil [190] also argues to involve all project 
personnel to search for opportunities in order to enhance margins with constant 
anticipation and conscientious efficiency in all areas. Similarly, the study on 
safety risk management for Chinese large scale subway and underground con-
struction projects pointed out that weak risk management mechanism is the 
leading cause of economic losses and casualties [191]. 

In general, the approach for risk management and response strategy can either 
be applied through risk control (by avoiding, loss reduction, risk prevention, and 
risk transfer) or financing the losses that may occur [189]. While applying ob-
servational modelling, the lesson learnt from the earlier stage of the same project 
is used to reduce the size of the initial risk. Progressive application of such dy-
namic risk management is termed as Multiphase Risk Management Method 
[192] [193]. Furthermore, the cushion layer compressibility and the interaction 
effects among each pile while the soil moves around the piles would require 3D 
finite element analysis. It is worth noting that when implementing risk response 
strategies, back analysis with pit and ground deformation control criteria as well 
as monitoring based risk tracking by considering risk interdependences play an 
important role. Needless to say, achieving project objectives and successful deli-
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very largely depends on how the risk management and response strategy is prac-
tically structured and properly implemented among concerned parties. 

6. Future Research 

Despite project managers are fully cognizant and give much attention to high-risk 
projects, the following issues are worthy of further study:  
 Holistic geotechnical risk management plan from the perspective of stake-

holders. Often statistical results were reported on previous studies, thus, fur-
ther study is suggested on the risk diagnostics to refine the bias sources and 
risk decision theory. 

 Issues related to risk and knowledge management at the company and site 
level. Is there any structured knowledge sharing platform to capture, encode 
and transfer lessons gained from organization’s practice and experience in 
deep foundation pit excavation? 

 More parametric numerical studies on the load transfer mechanism and ex-
cavation-induced settlement characteristics. Since disconnecting the pile 
from the raft is a novel practice, more and more researches are needed to 
fully understand the complex soil-structure interaction due to the presence of 
the deformable cushion layer. 

 Advanced technologies to capture the soil-structure interaction experimen-
tally. In fact, the current experimental setup lags behind perfection to take 
into consideration factors such as superstructure stiffness, retaining wall in-
stallation, and embedded basement slabs (mats). 

 Back analysis during OM highly depends on the model parameters. Thus, 
further study may be necessary to understand the non-linear soil stress-strain 
response under different loading/loading states due to excavation. 

7. Conclusions 

This paper dissects the risk management approach from the perspective of geo-
technical engineering and enlightens the need to account for risk interdepen-
dences and proper communication of lesson learned from other projects and/or 
ongoing ones. To this aim, based on risk triggering conditions, risk/event sources 
can be categorized broadly into 1) geotechnical conditions, 2) surrounding envi-
ronment, and 3) project delivery system. For deep foundation pit excavations in 
congested urban dwellings, the risk control practice is essentially concentrated 
on limiting foundation pit deformation and associated ground displacements to 
an allowable amount that ensures serviceability limit state requirements are met. 

Supplemented with sound engineering judgment, a well-posed observational 
modelling allows to better understand the load and deformation behaviors of the 
foundation pit and adjacent on-service foundations. If the expected performance 
cannot be achieved during the observation period, rigorous and timely research 
on the uncertain parameters and predicting their potential impact will provide 
reliable elements for risk-based decision-making. Currently, numerical simula-
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tions are widely used to assess the effect of ground movement on piles. 
Each deep foundation pit excavation has its own challenges to take lessons 

from it due to the very nature of pertinence and strong locality. Although it is 
not necessarily copied and pasted, the essential information systematically ex-
plored out of the “dark data” of the completed project and/or the ongoing mon-
itoring data can avoid failures. Therefore, proper communication of such infor-
mation is germane to the competency of decision makers along the risk man-
agement process. It eliminates predictable risk events. Yet, comprehensive future 
study is needed to fully understand the behavior of disconnected piled rafts sub-
jected to excavation-induced soil movements. 
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