
Engineering, 2020, 12, 640-651 
https://www.scirp.org/journal/eng 

ISSN Online: 1947-394X 
ISSN Print: 1947-3931 

 

DOI: 10.4236/eng.2020.129045  Sep. 22, 2020 640 Engineering 
 

 
 
 

Boundary Exponential Stabilization of a 
One-Dimensional Anti-Stable Wave Equation 
with Control Matched Disturbance 

Ruicheng Li 

School of Mathematics and Statistics, Shandong Normal University, Jinan, China 

 
 
 

Abstract 
In this paper, we are concerned with output feedback stabilization for a 
one-dimensional anti-stable wave equation with disturbance. First, we design 
a disturbance estimator for the original system. Then, we propose an output 
feedback controller for the original system. By calculation, the closed-loop of 
original system is proved to be exponentially stable and well-posed. Finally, 
this paper is summarized. 
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1. Introduction 

The wave equation is a set of differential equations derived from Maxwell’s equ-
ations, which describes the wave characteristics of electromagnetic field. It is an 
important partial differential equation and has important research significance 
in the field of control. In recent years, anti-stable one-dimensional wave equa-
tion with boundary disturbance has been researched in different ways in the field 
of control. On this issue, there is used the Lyapunov function approach to de-
sign controller in Guo [1] (2014). Besides, active disturbance rejection control 
(ADRC) has established itself as a powerful control technology in dealing with 
vast uncertainty in control system. A class of nonlinear systems is dealt with a 
modified nonlinear extended state observer (ESO) of a time-varying gain in ac-
tive disturbance rejection control (ADRC) in Zhao [2] (2015). In Wu [3], they 
apply the active disturbance rejection control (ADRC), an emerging control 
technology, to output feedback stabilization for a class of uncertain multi-input 
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multi-output (MIMO) nonlinear systems with vast stochastic uncertainties. 
Boundary stabilization is considered for a multi-dimensional wave equation with 
boundary control matched disturbance that depends on both time and spatial 
variables. The active disturbance rejection control (ADRC) approach is adopted 
in investigation in Guo [4]. An algorithm with the active disturbance rejection 
control approach is developed to reject time and spatially varying boundary dis-
turbances from a multidimensional Kirchhoff plate via boundary control in [5] 
(2014). A vital step toward ADRC is to estimate the disturbance through an ex-
tended state observer (ESO). In Zhao [6] (2015) and [7] (2011), a nonlinear ESO 
is designed for a kind of lower triangular nonlinear systems with large uncer-
tainty. A nonlinear extended state observer (ESO) is investigated that con-
structed from piece-wise smooth functions consisted of linear and fractional 
power functions in Zhao [8] (2015). In Wu [9], they construct a nonlinear ESO 
for a class of uncertain lower triangular nonlinear systems with stochastic dis-
turbance and show its convergence, where the total disturbance includes internal 
uncertain nonlinear part and external stochastic disturbance. Besides, the dis-
turbance is then compensated in feedback loop by its estimate. In Guo [10] 
(2015), the active disturbance rejection control (ADRC) approach is adopted in 
investigation. In addition, the ADRC can also efficiently reduce the control 
energy in practice [11]. Moreover, there are many kinds of disturbances, the 
“backstepping” method for the problem of stabilization of one-dimensional 
wave equation with input harmonic disturbance is adopted in the design of the 
adaptive regulator in Guo [12] (2013). And there are many design methods for a 
boundary controlled one-dimensional wave equation with external disturbance. 
A new method is proposed to estimate the total disturbance without using high 
gain in Zhou [13] (2018). In particular, the derivative of disturbance isn’t longer 
commanded to be bounded, instead, we should relax the disturbance to be 

( )0,d L∞∈ ∞  or ( )2 0,d L∈ ∞ . The requirement is different from that in the 
ADRC of lumped parameter systems by high gain [14] [15] [16] [17]. 

Our main focus is on stabilization for the following anti-stable one-dimensional 
wave equation with general boundary disturbance: 

( ) ( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) [ ]

( ) ( ) ( ){ }
0 1

0

, , , 0,1 , 0

0, 0, , 0,

1, , 0,

,0 , ,0 , 0,1 ,

0, , 1, , 0, , 0,

tt xx

x t

x

t

t

u x t u x t x t

u t qu t t

u t d t U t t

u x u x u x u x x

y u t u t u t t

 = ∈ >


= − ≥


= + ≥
 = = ∈
 = ≥

             (1.1) 

where 0y  is the output (measurement), ( )U t  the input (control), ( )0 1,u u  
the initial value, 0, 1q q> ≠ , and ( )0,d L∞∈ ∞  or ( )2 0,d L∈ ∞  which gen-
erally represents an unknown external disturbance. The observer design for sys-
tem (1.1) can describe the measurement of knocking in the combustion process 
of automotive engine [18]. For the presence of external disturbance, this system 
became unstable. A state feedback control was designed in [16]. Next, we con-
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sider system (1.1) in the state space ( ) ( )1 20,1 0,1H H L= × . This is enough to 
show in Feng [19] (2017), it is obvious that using three output signals in his pa-
per. Besides, five equations are used in his study of stabilization and tracking 
problems, including three-wave equations and two transport equations in the 
recent work Zhou [20] (2017). There exists the approach of “backstepping” in 
designing controller. Compared with the method he studied, I simplify it. In this 
paper, I reduce the number of applying dynamic compensators, using three- 
wave equations and a transport equation to solve the problem. In this paper, we 
use a new approach to disturbance estimation by directly designing an infi-
nite-dimensional disturbance estimator with using two measurements. Specifi-
cally, the stability of closed-loop system is proved by the method of matrix 
change, which is in the process of innovation.  

The paper is organized as follows. In Section 2, we design a disturbance esti-
mator for original system (1.1). The new system is constructed by the known 
system, and then the disturbance estimator is designed. In Section 3, we are de-
voted to designing the output feedback control, and proving the exponential sta-
bility of the resulting closed-loop system. Finally, gives the concluding remarks. 

2. Disturbance Estimator Design 

In this section, we devote to design a disturbance estimator for system (1.1). To 
this end, we first introduce the following coupled system consisting of transport 
equation and wave equation    

( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( ) ( ) ( )

0

0

0 1 1 1

0 0 1

, , 0,

0, 0, ,
1

, , ,

0, 0, 0, 0, 0, ,

1, 0,

,0 , ,0 , ,0

t x

tt xx

x t

x

t

w x t w x t
q c

w t u t
c

x t x t

t c t c t c u t c w t

t

w x w x x x x x

β β

β β β

β

β β β β

+ =


+ = − +
 =
 = + + +
 =


= = =

        (2.1) 

where 0 1, 0c c >  are tuning parameters. 
System (2.1) is known since the injection ( )0,u t  is one of the original system 

(1.1). 
Let ( ) ( ) ( ) ( ), , , ,z x t u x t w x t x tβ= + + . Then z is governed by the following 

wave equation. 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) [ ]
( ) ( ) ( ) ( ) ( ) [ ]

0 1

0 0 0 0

1 1 0 1

, , , 0,1 , 0

0, 0, 0, , 0,

1, 1, , 0,

,0 ( ) , 0,1 ,

,0 , 0,1 ,

tt xx

x t

x t

t

z x t z x t x t

z t c z t c z t t

z t U t d t w t t

z x z x u x w x x x

z x z x u x w x x x

β

β

 = ∈ >


= + ≥
 = + − ≥
 = = + + ∈
 ′= = + + ∈

        (2.2) 

We construct an auxiliary dynamic system as follows:  
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( ) ( ) ( )
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= − ≥
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            (2.3) 

The error between systems (2.2) and (2.3), ( ) ( ) ( )ˆ, , ,z x t z x t z x t= − , is governed 
by 

  

( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) [ ]

0 1

0 1

, , , 0,1 , 0

0, 0, 0, , 0,

1, , 0,

,0 , ,0 , 0,1 ,

tt xx

x t

x

t

z x t z x t x t

z t c z t c z t t

z t d t t

z x z x z x z x x

 = ∈ >


= + ≥


= ≥
 = = ∈

 

  



   

            (2.4) 

Define the state space ( ) ( )1 20,1 0,1H H L= ×  for system (2.4) with the norm 

( ) ( ) ( )( ) ( ) ( )
1

12 2 2 2
1; 0

, d 0 , , ,
H

f g f x g x x c f f g H′= + + ∀ ∈∫


   (2.5) 

or 

( ) ( ) ( )( ) ( ) ( )
2

12 2 2 2
3; 0

, d 0 , , ,
H

f g f x g x x c f f g H′= + + ∀ ∈∫


  (2.6) 

where 3 0c > . In the rest of this paper, we write norm 
H

 without discrimi-
nation. 

Define the system operator ( ):A D A H→  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ){ }2 1

0 1

, , , , ,

, 0,1 0,1 | , , 0 0 0 , 1 0

A f g g f f g D A

D A f g H H A f g H f c g c f f

′′ = ∀ ∈
 ′ ′= ∈ × ∈ = + =

 (2.7) 

Then system (2.4) can be written as an abstract evolutionary equation in H. 

  ( ) ( )( ) ( ) ( )( ) ( )d , , , , , ,
d t tz t z t A z t z t Bd t
t

= +   
    ,          (2.8) 

where ( )( )0, 1B xδ −  with ( )δ 
 being the Dirac distribution. 

The following lemma is Lemma 2.1 in [19]. 
Lemma 2.1. Assume that ( )0,d L∞∈ ∞  or ( )2 0,d L∈ ∞ . For any initial 

value ( )0 1,z z H∈  , system (2.4) admits a unique bounded solution 
( ) ( )( ) ( ), , , 0, ;tz t z t C H∈ ∞ 
  . 

Next, we design an observer for system (2.4)    

( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) [ ]

0 1

0 1

, , , 0,1 , 0

0, 0, 0, , 0,

1, 1, , 0,

,0 , ,0 , 0,1 ,

tt xx

x t

x

t

x t x t x t

t c t c t t

t z t t

x x x x x

θ θ

θ θ θ

θ

θ θ θ θ

 = ∈ >


= + ≥


= ≥
 = = ∈



         (2.9) 

Notice that ( ) ( ) ( ) ( ) ( )ˆ1, 1, 1, 1, 1,z t u t w t t z tβ= + + −  is known. 

Let 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
ˆ, , , , , ,

ˆ, , , , ,

r x t x t z x t x t z x t z x t

x t u x t w x t x t z x t

θ θ

θ β

= − = − +

= − − − +



. 

Then ( ),r x t  satisfies 
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( ) ( ) ( )
( ) ( ) ( )
( )
( ) ( ) ( ) ( ) [ ]

0 1

0 1

, , , 0,1 , 0

0, 0, 0, , 0,

1, 0, 0,

,0 , ,0 , 0,1 ,

tt xx

x t

t

r x t r x t x t

r t c r t c r t t

r t t

r x r x r x r x x

 = ∈ >


= + ≥


= ≥
 = = ∈

           (2.10) 

Define the space ( ) ( ) ( ){ }1 10,1 0,1 | 1 0EH f H f= ∈ = . Consider system (2.10) 
in the energy state space ( ) ( )1 2

0 0,1 0,1EH H L= ×  with the norm 

( ) ( ) ( )( ) ( )
0

12 2 2
00

, d , , ,
H

f g f x g x x f g H′= + ∀ ∈∫        (2.11) 

Define the system operator ( )0 0 0:A D A H→  for system (2.10) by 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ){ }

0 0

2 1
0 0 0 0 0 1

, , , , ,

, 0,1 0,1 | , , 0 0 0

A f g g f f g D A

D A f g H H H A f g H f c g c f

′′ = ∀ ∈


′= ∈ × ∩ ∈ = +
(2.12) 

Hence, system (2.10) can be written as an evolutionary equation in 0H :  

( ) ( )( ) ( ) ( )( )0
d , , , , , ,
d t tr t r t A r t r t

t
=    ,            (2.13) 

Lemma 2.2. For any initial value ( )0 1,r r H∈ , system (2.10) admits a unique 
solution ( ) ( )( ) ( )0, , , 0, ;tr t r t C H∈ ∞  , which is exponentially stable in the 
sense that there exist two positive constants ,L δ  such that 

( ) ( )( ) ( )
00

0 1, , , e , , 0t
t HH

r t r t L r r tδ−≤ ≥             (2.14) 

Moreover, ( ) ( )21, 0,xr t L∈ ∞  and there exists 1 0M ′ >  such that 

 ( ) ( )2 1 2

1

2 22
1 2 11, d e e , 0.

t t t
xt

r t t M t tδ δ− −′≤ + ∀ > >∫          (2.15) 

when the initial value ( ) ( )0 1 0,r r D A∈ , the unique solution of system (2.10) sa-
tisfies ( ) ( )( ) ( )( )0, , , 0, ;tr t r t C D A∈ ∞   and ( )1,xr t  decays exponentially. 

Proof. From [19] and [21], operator 0A  defined by (2.12) generates an ex-
ponentially stable 0C -semigroup 0eA t  on 0H . Hence for any initial value 
( )0 1,r r H∈ , system (2.10) admits a unique solution ( ) ( )( ) ( )0, , , 0, ;tr t r t C H∈ ∞   
and (2.14) holds. 

Define Lyapunov functions for system (2.10)     

 
( ) ( ) ( )( )
( ) ( ) ( )( )

1 2 2
0

1

0

1 , , d ,
2

, , d .

v t x

v t x

E t r x t r x t x

p t xr x t r x t x

= +

=

∫

∫
               (2.16) 

Notice that ( ) ( ) ( )( )
0

2
2 , , ,v t H

E t r t r t=    decays exponentially and  

( ) ( )v vp t E t≤ . Differentiate ( )vp t  along the solution of system (2.10) to give 

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )

1
12 2 2 2
0

0

2

1, , , , d
2 2
1 1,
2

v t x t x

x v

xp t r x t r x t r x t r x t x

r t E t

= + − +

= −

∫

    (2.17) 

Integrating above equation from 1t  to 2t  with respect to t, we have 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

1 1

1 2

1 2

2
2 1

2
2 2

2 1

2
2 2

1, d 2 d 2 2

2 0
e e 2 2

2
0

2 0 e e ,

t t
x v v vt t

v t t
v v

v t t
v

r t t E t t p t p t

L E
E t E t

L E
LE

δ δ

δ δ

δ

δ

− −

− −

= + −

≤ − + +

 
≤ + − 
  

∫ ∫

    (2.18) 

which implies (2.15) holds. 
When the initial value ( ) ( )0 1 0,r r D A∈ , we define a new variable  
( ) ( ), ,tr x t r x t= . Then ( ),r x t  is governed by the following PDEs 

( ) ( ) ( )
( ) ( ) ( )
( )
( ) ( ) ( ) ( ) [ ]

0 1

1 0

, , , 0,1 , 0,

0, 0, 0, , 0,

1, 0, 0,

,0 , ,0 , 0,1 .

tt xx

x t

t

r x t r x t x t

r t c r t c r t t

r t t

r x r x r x r x x

 = ∈ >


= + ≥


= ≥
 ′′= = ∈

            (2.19) 

Notice that the initial value ( )1 0 0,r r H′′ ∈ . System (2.19) is the same as (2.10) ex-
cept the initial value. From the first assertion, we conclude that     

( ) ( )( ) ( )
00

1 0, , , e , , 0t
t HH

r t r t L r r tδ− ′′≤ ≥             (2.20) 

By Poincaré’s inequality, it follows from the boundary condition of (2.10) at 
0x =  that 

  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )( ) ( ) ( )( )( )
0

12 2 2

0
12 2

0 1 0
1 12 22 2 2

0 1 00 0

2 2

1, 2 0, 2 , d

2 0, 0, 2 , d

4 , d 4 2 , d

, , , , , ,

x x xx

t

x t

t tH H

r t r t r x t x

c r t c r t r x t x

c r x t x c r r x t x

C r t r t r t r t

≤ +

= + +

≤ + +

′≤ +

∫

∫

∫ ∫
   

     (2.21) 

for some constant 0C′ > . Hence ( )1,xr t  decays exponentially. 
Remark 2.1. From Lemma 2.1, observer (2.9) is valid for system (2.4). More-

over, when ( ) ( )0 1,r r D A∈ , we can obtain that ( )1, 0xr t →  exponentially from 
Lemma 2.1. It equals to that ( ) ( ) ( )1, 1,x xt z t d tθ → = . Therefore, observer (2.9) 
can recover state and disturbance simultaneously for (2.4). 

3. Output Feedback Controller Design 

We design the output feedback of control for system (1.1) as follows  

( )
( ) ( ) ( ) ( ) ( )

( ) ( )

3 00
3

0 0

3

1, 0, 1 1, 0, 1 , 1
1 1

1, 1, , 1

x t

x

c q cq c
t u t c u t u t t

c cU t
t c u t t

θ

θ

 ++
− + − − + − > + += 
− − <

 (3.1) 

where 3 0c >  is design parameter, ( ) ( ) ( )1, , 0, 1 , 1,x tt u t u tθ −  are given by the 
system (2.9) and (1.1) respectively. 

Under the controller (3.1), next considering the case of 1t > , the closed-loop 
system (1.1) can be written as 
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( ) ( )
( ) ( )
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ˆ ˆ, , ,

ˆ ˆ0,
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x x t
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x t

x
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x

u x t u x t

u t qu t
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u t d t t u t c u t u t

c c
w x t w x t
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w t u t

c
x t x t

t c t c t c u t c w t

t

z x t z x t

z t c z

θ

β β

β β β

β

=

= −

++
= − + − − + −

+ +

+ =

+
= −

+

=

= + + +

=

=

= ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

3 0
3

0

0 1

3 0

0

ˆ0, 0, ,

ˆ 1, 1, 1, 0, 1 ,
1

, , ,

0, 0, 0, ,

ˆ1, 1, 0, 1 1, 1, ,
1

t

x x

tt xx

x t

t c z t

c q c
z t t c u t u t

c
x t x t

t c t c t

c q c
t u t u t t z t

c

θ

θ θ

θ θ θ
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 +


+
= − − + − +

 =

 = +


+ = − − + − +

(3.2) 

where the initial value of system (3.2) is ( )0 1 0 0 1 0 1 0 1ˆ ˆ, , , , , , , ,u u w z zβ β θ θ . 
Consider system (3.2) in the state space  

( ) ( ) ( ) ( ){
( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )}

1 2 1
1 1 2 3 3, 4 4 5 5

31 2 0
2 1

0

5 1 2 3 4

, , , , , , , 0,1 0,1 0,1

0,1 0,1 | 0 0 ,
1

1 1 1 1 1

H f g f f g f g f g H L H

q c
H L f f

c

f f f f f

′ = ∈ × ×

+
× × =

+

= + + −

   (3.3) 

with the norm 

( )

( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ) )
( ) ( ) ( ) ( )

2
1 1 2 3 3 4 4 5 5

1 2 2 2 2 2
1 1 2 3 30

2 2 2 2
4 4 5 5

2 2 2 2
3 1 2 1 3 1 4

, , , , , , , ,

d

1 0 0 0

H
f g f f g f g f g

f x g x f x f x g x

f x g x f x g x x

c f f c f c f

′

′ ′ ′= + + + +

′ ′+ + + +

+ + + +

∫
          (3.4) 

Theorem 3.1. Assume that 0 1 3, , 0c c c > , For any initial value  
( )0 1 0 0 1 0 1 0 1ˆ ˆ, , , , , , , ,u u w z z Hβ β θ θ ′∈ , System (3.2) admits a unique bounded solu-
tion  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )ˆ, , , , , , , , , , , , , , , , , 0, ;t t t tu t u t w t t t z t z t t t C Hβ β θ θ ′∈ ∞         . 

Moreover, the solution of u-subsystem is exponentially stable in the sense that 
there exist two positive constants ,M ε , such that   

( ) ( ) ( )0 1 0 0 1 0 1 0 1ˆ ˆ, , , e , , , , , , , , , 0t
t H H

u t u t M u u w z z tε β β θ θ−≤ ∀ ≥    (3.5) 

Proof. Introducing a new variable ( ) ( ) ( ), , ,x t u x t w x tγ = +  and the variables 
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( ) ( ), , ,z x t r x t  in Section 2, that is, 

1 1 0 0 0
0 1 0 0 0
0 0 1 0 0

ˆ1 1 1 1 0
1 1 1 1 1

u
w w

z z
r

γ

β β

θ

    
    
    
    =
    

−    
    − − −    



,               (3.6) 

we can transform system (3.2) into the following equivalent system 

( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( ) ( )
( )
( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )
( )

0

3

0

0 1 1

0 1

, , ,

0, 0, ,

1, 1, 1, ,

, , 0,

0, 0, ,
1

, , ,

0, 0, 0, 0, ,

1, 0,

, , ,

0, 0, 0, ,

1, ,

, , ,

0,

tt xx

x t

x x

x x

tt xx

x t

x

tt xx

x t

x

tt xx

x

x t x t

t c t

t c t r t

w x t w x t
q c

w t t
q

x t x t

t c t c t c t

t

z x t z x t

z t c z t c z t

z t d t

r x t r x t

r t

γ γ

γ γ

γ γ

γ

β β

β β β γ

β

=

=

= − −

+ =

+
= −

−

=

= + +

=

=

= +

=

=

=

 

  



( ) ( )
( )

0 10, 0, ,

1, 0.
tc r t c r t

r t























 +


=

           (3.7) 

where the initial value  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0 1 1 0

0 0 1

0 0 0 0 0

1 1 0 1 1

0 0 0 0 0 0

1 1 1 1 0 1

,0 , ,0 ,

,0 , ,0 , ,0 ,

ˆ,0 ,

ˆ,0 ,

ˆ,0 ,

ˆ,0 .

t

t

t

t

x x u x w x x x u x w x

w x w x x x x x

z x z x u x w x x z x

z x z x u x w x x z x

r x r x x z x u x w x x

r x r x x z x u x w x x

γ γ γ γ

β β β β

β

β

θ β

θ β

′= = + = = −


= = =
 = = + + −
 ′= = + + −
 = = + − − −
 ′= = + − − −

 

 

 (3.8) 

We will consider the r-subsystems of (3.7) respectively. For any initial value
( )0 1 0 0 1 0 1 0 1ˆ ˆ, , , , , , , ,u u w z z Hβ β θ θ ′∈ , we have  
( ) ( )1 2

0 1 0 0 1 0 1 0 1 0ˆ ˆ, , , , , , , , 0,1w z z r r H H H Hγ γ β β ∈ × × × .  
Since ( )0 1 0,r r H∈ , the z -subsystem of (3.7) admits a unique exponentially 

stable solution ( ) ( )( ) ( )0, , , 0, ;tr t r t C H∈ ∞   guaranteed by Lemma 2.2.  
Since ( )0 1,z z H∈  , the -subsystem of (3.7) admits a unique exponentially sta-

ble solution ( ) ( )( ) ( ), , , 0, ;tz t z t C H∈ ∞ 
   guaranteed by Lemma 2.1. 

Define the system operator ( )1 1:A D A H→  

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ){ }

1 1

2 1
1 0 3

, , , , ,

, 0,1 0,1 | , , 0 0 , 1 1 .

A f g g f f g D A

D A f g H H A f g H f c g f c f

′′ = ∀ ∈
 ′ ′= ∈ × ∈ = = −

(3.9) 
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Then the γ-subsystem can be written as an abstract evolutionary equation in 
H 

( ) ( )( ) ( ) ( )( ) ( )( )1 1
d , , , , , , 1, ,
d t t xt t A t t B r t

t
γ γ γ γ= + −           (3.10) 

where ( )( )1 0, 1B xδ= − . 
It is well-known that operator 1A  generates an exponentially stable 0C

-semigroup 1eA t  on H. It is a routine exercise that 1B  is admissible for 1eA t  
([22]). Then the solution to system (3.9) can be written as 

( ) ( )( ) ( ) ( ) ( )( )11
0 1 10

, , , e , e 1, d .
t A t sA t

t xt t B s sγ γ γ γ γ−= + −∫        (3.11) 

From (2.15) in Lemma 2.2 and the estimation in  

( ) ( ) ( ) ( )
2 22

2 2 22 2
1 1 10

1 1

e 0, d 2 e 0 1 e 4 0 e
t t

t A t s t
s t

H

M MB s s M K E K E
k k

α α
β

ε εε
− −− −  

≤ + +  
 

∫   

(61) of [23], we obtain the exponential stability of γ-subsystem in the sense that 
there exist two positive constants 2 2,M δ  such that 

( ) ( ) ( )2
2 0 1, , , e , , 0.t

t H H
t t M tδγ γ γ γ−≤ ∀ ≥            (3.12) 

Define Lyapunov functions for γ-subsystem  

( ) ( ) ( )( ) ( )

( ) ( ) ( )

1 22 2 3
0

1

0

1 , , d 1, ,
2 2

, , d .

t x

t x

c
E t x t x t x t

p t x x t x t x

γ

γ

γ γ γ

γ γ

= + +

=

∫

∫
         (3.13) 

Notice that ( ) ( ) 2
2 , , ,t H

E t t tγ γ γ=    decays exponentially and ( ) ( )p t E tγ γ≤ . 
Differentiate ( )p tγ  along the solution of γ-subsystem to give  

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1
12 2 2 2
0

0

12 2 2 2
0

1 1, , , , d
2 2

1 10, 0, , , d
2 2

x t t x

x t t x

xp t x t x t x t x t x

t t x t x t x

γ γ γ γ γ

γ γ γ γ

−
= + − +

= + − +

∫

∫



   (3.14) 

Integrating above equation from 1t −  to t, we have 

( ) ( )( )
( ) ( ) ( )
( ) ( )( ) ( ) ( )

( ) ( ) ( )

2 2

2 2 2

2 2
1

1
2
2 2 1 2

2

2
2 2 2 2

2 2
2

0, 0, d

2 d 2 2 1

2 0
e e 2 2 1

2

0
e 2 0 2 0 e e

t
x tt

t

t

t t

t

s s s

E s s p t p t

M E
E t E t

M E
M E M E

γ γ γ

γ δ δ
γ γ

γ δ δ δ
γ γ

γ γ

δ

δ

−

−

− − −

−

+

≤ + − −

≤ − + + −

 
≤ + + 
  

∫

∫
       (3.15) 

For the w-subsystem, the exact solution can be written as   

( )
( )

( )

0

0

, ,
,

0, , .
1

w x t x t
w x t q c

t x t x
q
γ

− ≥
= +
− − ≥ −

                (3.16) 

which has the estimation 
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( ) ( )( ) ( )
( )

( )

( )
( )

( )

2
1 12 2 20

20 0

2
20

2 1

2
, , d 0, d

1

2
0, d , 1

1

t x t

t
tt

q c
w x t w x t x t x x

q

q c
s s t

q

γ

γ
−

+
+ ≤ −

−

+
= ≥

−

∫ ∫

∫
    (3.17) 

( ) ( )
( )

( )
2

2 20
20, 0,

1

q c
w t t

q
γ

+
=

−
 

From (3.12) and (3.15), ( ) ( ), , ,t H
w t w t   decays exponentially. 

For β-subsystem, we can write it into an abstract evolutionary equation in H. 

( ) ( )( ) ( ) ( )( ) ( )( )3 3
d , , , , , , 0, ,
d t tt t A t t B c t
t
β β β β γ= + −        (3.18) 

where A is defined by (2.7) and ( )( )3 0,B xδ= . Direct computations indicate 
that 3B  is admissible for eAt . Hence the solution to (3.18) can be written as 

( ) ( )( ) ( ) ( ) ( )( )0 1 3 30
, , , e , e 0, d ,

t A t sAt
tt t B c s sβ β β β γ−= + −∫     (3.19) 

which is exponentially stable because of the exponential decay of ( )0, tγ . Hence 
we obtain that system (3.7) admits a unique bounded solution 

By the bounded inverse transformation of (3.6), we obtain the solution to sys-
tem (3.2) as follows 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

, , , , , , , ,

, , , , , , , , ,

ˆ ˆ ˆ ˆ, , , , , , , , , ,

, , , , , , , .

t t t

t t

t t t t

t t t

u x t x t w x t u x t x t w x t

w x t w x t x t x t x t x t

z x t x t x t z x t z x t x t x t z x t

x t r x t z x t x t r x t z x t

γ γ

β β β β

γ β γ β

θ θ

= − = −


= = =


= + − = + −
 = + = +  

(3.20) 

Hence system (3.2) admits a unique bounded solution. From the exponential 
stability of γ- and w-subsystems, u-subsystem is exponentially stable.  

4. Conclusion Remarks 

In this paper, the anti stable wave equation with disturbance is controlled. 
Firstly, the disturbance estimator is designed for the original system, and then 
the disturbance is estimated. Then, the controller is designed to realize the con-
trol. In addition, many references, especially the relevant data about ADRC, are 
used to verify the closed-loop system, the closed-loop system is simplified and 
the content of this paper is obtained. 
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