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Abstract 
This article is based on the impulsively started horizontal Riga plate in two 
dimensional unsteady Casson fluid flows with rotation. The plate starts ab-
ruptly from the rest relative to the rotating fluids moving with uniform ac-
celeration in its plane. Numerical solutions are acquired by using explicit 
finite difference method and estimated results have been gained for various 
values of the Rotational parameter, modified Hartmann number, Prandtl 
number, Radiative parameter, Eckert number, Heat source parameter, Schmidt 
number, and the Soret number. Both the Compaq visual FORTRAN 6.6a and 
MATLAB R2015a tools have been used to find the numerical solutions and 
the graphical presentation. The Skin friction, Nusselt number and Sher-
wood number have been computed and the effects of some pertinent para-
meters on various distributions are discussed briefly and presented graphi-
cally. 
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1. Introduction 

Casson fluid flows along the Riga plate create a new research area that plays a 
fundamental role in various industrial and engineering processes, such as MHD 
generators, thermal nuclear reactors, flow meters and the design of nuclear 
reactors. Such flows have tremendous applications in civil engineering, mechan-
ical engineering, chemical engineering, food processing and biomechanics. Riga 
plate is generated by the combination of electrodes and permanent magnets that 
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create a plane surface instead of polarity and magnetization. The flow of Casson 
fluids with heat transfer is widely used in the processing of chocolate, foams, sy-
rups, toffee and food processing industries. The Riga plate is first induced by 
Gailitis and Leilausis [1] to generate a wall paralleled Lorentz force to control the 
fluid flow. Anjum et al. [2] explained the thermally stratified viscous fluid with 
stagnation point flow dominated by a variable thicked non-linear Riga plate. 
Ahmed et al. [3] studied the united convection boundary layer flows of a nanof-
luid along a Riga plate stated vertically with strong suction. The study of a na-
nofluid flow past a vertical convective heated Riga plate is analyzed by Wahi-
dunnisa et al. [4]. The characteristics of nanofluid boundary layer flow occupied 
with a Riga plate is concerned by Hayat et al. [5]. Pantokratoras and Magyari [6] 
proposed an electro-magneto hydrodynamic free convection flow of a weakly 
conducting fluid from an electromagnetic actuator or Riga plate. Thereafter 
Pantokratoras [7] investigated the Riga-plate moves with constant velocity or the 
Riga-plate is situated in a constant free stream. Iqbal et al. [8] investigated the 
boundary layer Casson fluid flow for a stagnation point along a Riga plate. The 
incompressible, steady and electrically conducting non-Newtonian Casson fluid 
flow among two cylinders, where a magnetic field is applied radially is studied by 
Eldabe et al. [9]. Hydrodynamic impulsively lid-driven flow with heat transfer of 
a Casson fluid has been described by Attia and Sayed [10]. Hayat et al. [11] ana-
lyzed the MHD Casson fluid flow of the Soret and Dufour effects upon a 
stretched surface. Ramesh and Devakar [12] have considered three fundamental 
flows Couette, Poiseuille and generalized Couette flow of an incompressible 
Casson fluid between parallel plates with slip boundary conditions. Mahantesh 
et al. [13] have considered a two-dimensional flow of non-Newtonian MHD flow 
of Casson fluid. Raju et al. [14] analyzed the heat source and chemical reaction 
effect on Casson fluid flow past an exponentially enterable stretching surface 
with thermal radiation and viscous dissipation. Rao and Sreenadh [15] investi-
gated the steady two-dimensional MHD convective boundary layer Casson fluid 
flow over an exponentially inclined permeable stretching surface with thermal 
radiation and chemical reaction. Saidulu and Lakshmi [16] presented the heat 
and mass transfer boundary layer fluid flow of a non-Newtonian Casson fluid 
towards a porous stretching sheet with thermal radiation and suction. The 
Casson fluid flow with heat transfer and thermal radiation along a porous 
stretching surface is presented by Pramanik [17]. Ahmad [18] described the 
effect of the Powell-Eyring and Reiner-Phillipoff fluid flow on the Riga plate. 
Yucel [19] explained the associated free convection flow in a micropolar fluid 
through a Riga plate. Ghulam Rasool et al. [20] investigated the effect of a chemi-
cal reaction of nanofluids in the presence of Lorentz force and thermal radia-
tion. 

From the above-mentioned discussion of the authors, we have come to a 
completely new opinion that has not discussed yet before. The royal object is to 
investigate the behavior of the fluid particles which are adjacent with an impul-
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sively started horizontal Riga plate in Casson fluid flow where appearance a ro-
tation. Numerical investigations are gained by the finite difference method and 
its solutions are computed by using the code of Compaq visual FORTRAN 6.6a 
and also MATLAB R2015a. 

2. Problem Formulation 

Consider the horizontal Riga plate in laminar, incompressible Casson fluid 
flows, which is parallel to the x-axis, and the y-axis is normal to it (Figure 1). 
Also, consider the system rotated about a vertical axis with angular velocity 
Ω . Initially, both the plate and fluid are stagnant. At 0t =  the plate is set in 
motion at a constant velocity 0U  in the direction of x-axis. This generates a 
two dimensional parallel flows near the plate. Instantaneously at time 0t >  
the temperature of the plate and concentration are raised from wT  to T∞  and 

wC  to C∞  respectively, which are thereafter sustained. Here wT , wC  are 
temperature and concentration at the wall and T∞ , C∞  designate the tem-
perature and concentration outside the boundary layer. Due to the Riga plate, 
the Lorentz force is defined as ( )f σ= ∧ ≈ ∧J B E B , which generates mag-
netic force. According to the Grinberg investigation, this magnetic force is de-
fined as follows: 

0 0 0 0e ,0, e
8 8

y y
l lf J M J M
π ππ π− − 

= ∧ =   
 

J B  

where, 0J  is the applied current density, 0M  is the magnetization of the per-
manent magnets and l is the width of magnets and electrodes. 

The fundamental equation of Casson fluid can be written as 
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where τ  is the shear stress, bµ  is known as plastic viscosity of the non-Newtonian  

 

 
Figure 1. Physical configuration. 
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fluid, yp  is known as yield stress of the fluid, mathematically expressed as 

2y bp µ π β= , where β  is the parameter of the Casson fluid, IJ IJe eπ = , 

(i.e. π  is the product of the component of deformation rate with itself, here 

IJe  is the ( ), thi j  component of deformation rate), cπ  is the critical value 
based on the non-Newtonian model. Dynamic viscosity of Casson fluid is defined 

as 2b ypµ µ π= +  so that kinematic viscosity may define as ( )1 1bυ υ β= +  
where b bυ µ ρ= . 

Within the framework of the above assumptions, the equations related to the 
unsteady two-dimensional problems governed by the following system of 
coupled non-linear partial differential equations under the boundary layer ap-
proximations, are given as follows: 
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And the corresponding boundary conditions for the problem are given as fol-
lows: 

0 , 0, , at 0
0, 0, , at

w wu U w T T C C y
u w T T C C y∞ ∞

= = = = =

= = = = →∞
              (6) 

Here, x and y are the Cartesian coordinates systems, u and w are the velocity 
in the x and y direction respectively, pC  is the specific heat at the constant 
pressure, Q is the variable heat source parameter, ρ  is the density of the fluid,  
k is thermal conductivity, bυ  is the kinematic viscosity, mD  is the mass diffu-

sivity, TD  is the coefficient of the thermal diffusivity and 
2b

yp
µ π

β =  is the 

Casson fluid parameter. 

Similarity Analysis 

Now introducing the non-dimensional variables and the necessary transforma-
tions are as follows: 
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Using these quantities into the Equations (1)-(6), removing asterisk sign it is 

found the dimensionless form of the equations are as follows: 
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3. Method of Solution 

The governing non-linear coupled dimensionless form of partial differential Equa-
tions (6) to (10) with the associated initial and boundary conditions (11) are 
solved. In fact for this set of equations, it is not possible to find its exact solution 
and hence it has been calculated these equations by using the explicit finite differ-
ence method. The finite difference schemes with respect to t, x and y are as follows: 

1
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Here, the subscripts i and j refer to x and y and the superscript k refers to time 
t. Same way it has been followed for the other variables. The graphical solutions 
of the program are illustrated by using both the Compaq visual FORTRAN 6.6a 
and MATLAB R2015a tools. 

Skin Friction, Nusselt Number and Sherwood Number 

The effects of various parameters on local and average shear stress from the ve-
locity profile have been investigated. The velocity gradient at the plate is defined  
as the shear stress; the non-dimensional form of the local shear stress and aver-

age shear stress in x-direction is given by the relations 
0

L
y

u
y
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=

∂
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0
0

1 d
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y

u x
L y
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=

∂
=

∂∫  respectively. From the temperature profile, the effects of 

various parameters on local and average Nusselt number have been calculated. 
The rate of heat transfer at the plate is defined as the Nusselt number; the local 

Nusselt number and the average Nusselt number are given by 
0
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∂∫  respectively. Similarly, the effects of various  

parameters on local and average Sherwood number from the concentration field 
have been analyzed. The rate of mass transfer at the plate is defined as the Sher-
wood number; the local Sherwood number and the average Sherwood number is  

defined by 
0
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∂∫  respectively. 

4. Results and Discussion 

The behavior of the primary velocity (u), the secondary velocity (w), tempera-
ture (θ ) and concentration distributions (ϕ ) have been analyzed for the differ-
ent values of Rotational parameter (R), modified Hartmann number ( aH ), 
Prandtl number ( rP ), Radiative parameter ( rQ ), Eckert number ( cE ), Heat 
source parameter ( sQ ), Casson fluid parameter ( β ), Schmidt number ( cS ) and 
the Soret number ( 0S ). Consider the values of 1.0aH = , 0.71rP = , 0.2R = , 

0 5rQ .= , 1.0sQ = , 0 01cE .= , 0 6cS .= , 0 1 0S .=  and 2.0β =  are fixed as 
common for all cases except the varied values of respective parameter. The flow 
characteristics are shown graphically from Figures 2-19. 

4.1. Mesh and Time Sensitivity Test 

To find the steady-state solution of our problem, the computations have been 
carried out for different mesh pairs (Figure 2(a)). It has been shown that there 
are negligible changes for the mesh pairs ( ) ( ), 70,70m n = , ( ) ( ), 80,80m n =  
and ( ) ( ), 90,90m n = . Also Figure 2(b) depicts that the velocity distributions for 
the different time 1,2,3,6,7τ =  and 8 with the time increment 0.001t∆ =  
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with mesh pair ( ) ( ), 80,80m n = . It is observed that after 6t = , there is very 
minimal change in the velocity distribution. Hence from both figures that there 
is a suitable choice of maximum time 6t =  and mesh pair ( ) ( ), 80,80m n =  
with time increment 0.001t∆ =  for steady-state solution. 

4.2. Code Sensitivity Test 

To verify the results, the computations data are collected by using Compaq visu-
al FORTRAN 6.6a and MATLAB R2015a tools on the velocity distributions with 
the increasing values of the Casson parameter ( β ) and its graphical representa-
tions are shown in Figure 3(a) and Figure 3(b) respectively. Here it is found 
that the velocity decreases with the increases of β . The same results have found 
in both codes. 

 

 
Figure 2. (a) Mesh sensitivity on primary velocity u; (b) Time sensitivity on primary velocity u. 

 

 
Figure 3. (a) Primary velocity distribution for u for different values of β  [Fortran code]; (b) Primary velocity distribution u 
for different values of β  [Matlab code]. 

https://doi.org/10.4236/jamp.2020.89140


S. Nasrin et al. 
 

 

DOI: 10.4236/jamp.2020.89140 1868 Journal of Applied Mathematics and Physics 
 

4.3. Primary Velocity Distribution 

It is seen from Figure 4 that the nature of fluid velocity for the variation of the 
Hartmann number, there are very negligible changes in the primary velocity dis-
tributions with the increase of aH , which is shown in enlarge figure in Figure 4. 
Figure 5 represents the influence of the rotational parameter (R) on the primary 
velocity is decreased with the increase of R. 

4.4. Secondary Velocity Distribution 

It is noticed from Figure 6, with the increasing values of the Casson fluid para-
meter ( β ), the secondary velocity w has minor increasing flow near the plate 
and thereafter it has decreasing flow. It is observed from Figure 7 that w has 
been very minor increasing effects with the increasing values of Ha. Figure 8 de-
picts that w is increased with the increase of R. 

 

 
Figure 4. Primary velocity distribution u for different values of Ha. 

 

 
Figure 5. Primary velocity distribution u for different values of R. 
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Figure 6. Secondary velocity distribution w for different values of β . 

 

 
Figure 7. Secondary velocity distribution w for different values of Ha. 

 

 
Figure 8. Secondary velocity distribution w for different values of R. 
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4.5. Temperature Distribution 

Figure 9 is displayed that the rising values of the Eckert number ( cE ) lead to 
raise the fluid temperature. For the influence of rP  the temperature θ  is de-
creased, it is depicted in Figure 10. It is evident from Figure 11 that the effect of 

sQ , the temperature θ  is decreased. 

4.6. Concentration Distribution 

It is found from Figure 12 that near the plate the concentration distributions has 
an increasing effect with the increase of Qs, thereafter it has very minor reverse 
effects. But Figure 13 demonstrates the effect of Sorret number on the concen-
tration profile is increased. 

4.7. Local and Average Skin Friction 

It is mentioned that the figures (a) and (b) of Figures 14-16 refer to the local  
 

 
Figure 9. Temperature distribution θ  for different values of Pr. 

 

 
Figure 10. Temperature distribution θ  for different values of Qs. 
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Figure 11. Temperature distribution θ  for different values of Qr. 

 

 
Figure 12. Concentration distribution ϕ  for different values of Qs. 

 

 
Figure 13. Concentration distribution ϕ  for different values of S0. 

https://doi.org/10.4236/jamp.2020.89140


S. Nasrin et al. 
 

 

DOI: 10.4236/jamp.2020.89140 1872 Journal of Applied Mathematics and Physics 
 

 
Figure 14. (a) Local shear stress xLτ  against R; (b) Average shear stress xAτ  against R. 

 

 
Figure 15. (a) Local shear stress zLτ  against R; (b) Average shear stress zAτ  against R. 

 

 
Figure 16. (a) Local shear stress xLτ  against β ; (b) Average shear stress xAτ  against β . 
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shear stress [ xLτ  (or zLτ )] and average shear stress [ xAτ  (or xAτ )] respectively. 
It is observed from Figure 14(a) & Figure 14(b) that the local (and average) 
primary shear stresses both are decreases with the increase of R. But for second-
ary velocity distribution, local and average shear stresses both are increases with 
R, which is shown in Figure 15(a) & Figure 15(b). The effects of Casson para-
meter on the local and average primary shear stresses have shown in Figure 
16(a) & Figure 16(b). Both figures have shown a very minor decreasing effect 
with the increases of β . 

4.8. Local and Average Nusselt Number and Sherwood Number 

Here Figure 17(a) & Figure 17(b) refer to the influence of the heat source pa-
rameter on the Local (and average) Nusselt number. It has sheared that LNu  
and ANu  both increase with the increase of sQ . But the figures (a) and (b) of 
Figure 18 & Figure 19 depict the local (and average) Sherwood number LSh   

 

 
Figure 17. (a) Local Nusselt number LNu  against sQ ; (b) Average Nusselt number ANu  against sQ . 

 

 
Figure 18. (a) Local Sherwood number LSh  against 0S ; (b) Average Sherwood number ASh  against 0S . 
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Figure 19. (a) Local Sherwood LSh  number against sQ ; (b) Average Sherwood number ASh  against sQ . 
 

(and LSh ) respectively. It is noticed in all figures, ( LSh  and ASh ) both de-
crease with the increase of 0S  and sQ  respectively. 

5. Conclusions 

The impulsively started horizontal Riga plate with rotation of unsteady Casson 
fluid flow has been discussed. The influence of various values of the Rotational 
parameter, modified Hartmann number, Prandtl number, Radiative parameter, 
Eckert number, Heat source parameter, Schmidt number and the Soret number 
has been analyzed. The non-linear coupled governing equations are solved nu-
merically and the main findings can be summarized as follows: 
• The primary velocity u increases with the increase of aH , while it decreases 

with the increase of β  and R. 
• The secondary velocity w rises with the increase of R and aH , while it de-

creases with the increase of β . 
• The fluid temperature θ  is increased with the increase of rQ  but it de-

creases with the increase of rP  and sQ . 
• The concentration φ  rises for the increasing values of sQ  and 0S . 
• xLτ  (or xAτ ) is decreased with increase of R and β , while zLτ  (or zLτ ) is 

increased with increase of R and β . On the other hand LNu  (or ANu ) is 
increased with increase of sQ , while local (or average) Sherwood number is 
decreased with the influence of 0S  and sQ . 
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