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Abstract

In order to answer a question motivated by constructing substitution
boxes in block ciphers we will exhibit an infinite family of full-rank
factorizations of elementary 2-groups into two factors having equal
sizes.
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1. Introduction

We will use multiplicative notation in connection with abelian groups.
Let G be a finite abelian group. The product A; --- A,, of the subsets
Aq,..., A, of G is defined to be the set of the elements

ay- - Gn, ay €Ay, ...,an € A,.

The product A; --- A, is called a direct product if

! !/ I !/
Ay Qp = Gy - Gy, alvaleAla"'aanaaneAn

imply that a1 = a},...,a, = al,. Let B be a subset of G. If the
product Aj --- A, is direct and it is equal to B, then we say that B
is factored into the subsets Ay, ..., A, or equivalently we say that the
equation B = Ay --- A, is a factorization of B. In algebra books the
most commonly occurring situation is when an entire abelian group is
factored into a direct product of its subgroups.

The span of a subset A of G is the smallest subgroup of G that
contains A. The span of A is denoted by (A). A subset A of G is
called normalized if the identity element e of G is an element of A. If
A is a normalized subset of G for which (A) = G, then we say that
A is a full-rank subset of G. A factorization G = A --- A, is called a
full-rank factorization if each factor is a full-rank subset of G.

Full-rank factorizations of finite abelian groups are intimately con-
nected with the theory of error correcting, variable length codes and
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cryptography. For further details see for instance [1-4], respectively.
Let p be a prime. The direct product of n isomorphic copies of a cyclic
group of order p is an abelian group and it is called an elementary p-
group of rank n. In a letter Professor Claude Carlet asked me if there
were full-rank factorizations of elementary 2-groups into two factors
of equal sizes [5]. He could use such a factorization for constructing
substitution boxes, or S-boxes, in block ciphers.

The next few words try to explain how the S-box is built from a full-
rank factorization. For more detail the reader should consult with [6].
Let G = A; As be a full-rank factorization of the elementary 2-group G
of rank 2n such that |A;| = [A3] = 2™. Let F» be the finite Galois field
with two elements and let m : F) — Ay and 72 : FJ' — As be bijective
maps. Using 7 and 72 we define F : F2" — Fi" by F((a1,a2)) =
m1(a1)+m2(az). The fact that the factorization G = A; As is a full-rank
factorization is a necessary condition that the S-box has a non-zero
linearity. The non-linearity of the S-box is the desired property with
cryptographic significance. (Problem 3 in Section 3 at the end of the
paper is related to this issue.) The group theoretic argument we use
to prove Theorem 1 does not give any useful hint how to increase the
degree of non-linearity. It seems that more sophisticated techniques
like polynomial type reasoning required.

In this note we will construct full-rank factorizations G = AB of
the elementary 2-group G of rank 6n, where |A| = |B| and n > 3.

2. A Construction

The main result of this paper is the following theorem.

Theorem 1. Ifn > 3, then the elementary 2-group of rank 6n admits
full-rank factorization into two factors of equal sizes.

Proof. Let n be an integer such that n > 3. Let G be an elementary
2-group of rank 6n with basis elements

,’1,‘1’17. . ,!’1,‘1’67. . 7xn,17~ .. ,,’En’g.
Let
H, = (251,%2,%3),
K, = (T4,%i5, Tig),
L,L' = <mi,17~-~;$i,6>7

for each i, 1 <14 < n. It is clear that |H;| = |K;| = 2% = 8. Further it
is clear that the product H;K; is direct and it is equal to L; for each
i, 1 <i<n.

From the subgroup H; of G we construct a subset A; of G by re-
moving and adding certain elements.

Remove : Add :
T5.1 T3 1T54
Z4,2 T2 5
Z4,3 X3,3%4,6

In other words we set

A= (Hz \ {5Ci,1, T2, 3313}) U {%’,1%’,47 Ti,2T; 5, $¢,3$¢,6}a

for each 7, 1 <1i < n.
We claim that the product A;K; is direct and it is equal to L; for
each i, 1 <1i < n.
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As the product H;K; is direct and it is equal to L; it follows that
the sets
hiKi7 h; € H; (1)

form a partition of L;. We have constructed A; from H; by removing
elements and adding elements. In the partition (1) we replace the set
z;1K; by the set z; 12; 4K;. Note that z; 4K, = K; as z;4 € K;. In

general,
i1 Ky = w14,
TiolK; = w01 5K,
3K = x3w;6K;,
and so the sets
aiKi, a; € Al (2)

form a partition of L;. The partition (2) is equivalent to that the
product A;K; is direct and it is equal to L;, as required.
Let
A=A,---A,, K=K ---K,.

We claim that the product AK is direct and it is equal to G. Indeed,

G Ly---Ly,
(AlKl)"'(AnKn)
= (Al"‘An)(Kl"‘Kn)

AK.

Thus the product AK is direct and it is equal to G, as required. In
particular the product A; --- A4, is direct and so |A| = |A41]---|4,| =
(23)" = 23" In the above argument we used the observation that
if the product A;K; is direct and is equal to L; and if the product
Lq--- L, is direct and is equal to G, then the product A1 K7 --- A, K,
is direct and is equal to G.

Next we claim that (A;) = L; foreach i, 1 <i <n. Asz; 2z, 3 € A;
and Ti1%52%4,3 € Ai, it follows that Ti1 € <Az> As Ti1Ti4 € A; and
x;1 € (A4;), it follows that x; 4 € (A;). A similar reasoning gives that

in general
Ti,Tia € (A;),
Ti2,Ti5 € (A;),
T3, Tis € (A;).

Thus (A;) = L;, as we claimed.

Since e € Ay,...,e € A,, we get that Ay,..., A, C A;--- A, = A.
It follows that (A) = G. In other words A is a full-rank subset of G.

Let f be the cyclic permutation of the numbers 1,...,n defined by

1 2 ... n-1 n]_{12... n—1 n
f) f©2 ... fn—1) f(n) 23 ... n 1

From the subgroup K of G we construct a subset B of G. We do
this by removing certain subsets from K and adding certain subsets

to K.
Remove : Add :

TiaKypay  wiazpa) 1 Ky
TisKpay  TisTre) 2K
6Ky TieTre)3 K

We claim that

TiaK i) A = i 275y 1 K50 A, (3)
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Tis KA = 25750y 2K p(5) A, (4)

Ti6 K i) A = 267 (i) 3K 5 (i) A, (5)

for each i, 1 < i < n. There are 3n equations to check. But the
number of essentially distinct cases can be reduced to 3. For the sake
of definiteness we verify the first equation. We compute the left hand
side and we compute the right hand side.

xi,4Kf(i)A = xi,4Kf(i)(A1 o én)
= 24Ky Apa)Ara
= @ialsiyAs)

Here Zf(i) is computed in the following way. We delete Ay ;) from
the list A;,..., A, and multiply the remaining sets.

Tiavriy 1 KryA = TiaxpKray (AL Ap)
= Tiamso)1 (K@ Ag( z))Af(z
= T 49€f<z)1}f<z Agi

ZT; 4Lf )A

The last step hinges on the fact that z;;) 1 € Lyu) and so
TgiyaLys) = Lyi)- The remaining cases can be settled in an analo-
gous way.

We claim that the sets

zi 4Ky A,

zis Ky A,
2i6 K 5 (i) A
are pair-wise disjoint. This claim is of course the same as the claim
that the sets
REFIORE SIONS
o5 p(i) 2K 1) A
i 5 )38 p(i) A
are pair-wise disjoint. There are 3n sets and we claim that (3") pairs
of sets are disjoint. However, the number of the essentially different
cases is not more than (g) = 28.
In order to prove the claim let us assume on the contrary that two

distinct subsets are not disjoint. Among the many possible cases let
us consider the following case first.

s Ky ANz sKpnA#0
It follows that
i a(Ky i) Ap) Ariy) 0 2is(Kpy Apiy) Agy # 9,
zialgiyAp) N 2is Ly Asiiy 7 0.
For the sake of definiteness suppose that f(i) = 1. Consequently,

i =n and - -
Tpali1 Ay Ny 501 A # 0.
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There are elements ly,1] € Ly and
aj,ay € Ay,...,an,a, € A, (6)

such that
i I
lag - apTpa =lay - a,Ty 5.

Using the fact that the product Ly - - - L,, is direct and that
Ay CLy,...,A, CL,
we get that
=1, aa=ab,...,an_1 =al_q, GnTpa = ATy 5.

The last equation means that 4,2z, 4 N Ap2zy 5 # 0. On the other
hand after listing the elements of Az, 4+ and A,x,, 5 a routine inspec-
tion reveals that Az, 4 N Apz,5 = 0. The details of the inspection
are listed in Table 1. Let us consider another case among the many
possibilities.

Table 1. The elements of the subsets Hy, An, AnTn 4, AnTn,s.

Hn An Anxn,4 Anxn,S
& e Tn,4 Tn,5
Tn,1 Tn,1Tn,4 Tn,1 Tn,1Tn,4Tn,5
Tn,2 Tn,2Tn,5 Tn2Tn,5Tn,4 Tn,2
Tn,3 Tn,3Tn,6 Tn,3%n,6Tn, 4 Tn,3Tn,6Ln,5
Tn,1Tn,2 Tn,1Tn,2 Tn,1%n,2Tn 4 Tn,1Tn 2Tn.5
Tn,1Tn,3 Tn,1Tn,3 Tn,1Tn,3%n 4 Tn,1Tn,3Tn,5
Tn,2Tn,3 Tn,2Tn,3 Tn,2Tn 3Tn 4 Tn,2Tn,3Tn,5

$n,lxn,2xn,3 xn,lxn,Z‘rn,S xn,lwn,2mn,3mn,4 xn,lxn,an,an,S

$i74Kf(i)A n :Ej74Kf(j)A ?é 0
It follows that

wiaLyayApey N@jaLlyy Ay # 0.

In order to avoid unnecessary notational difficulties let us suppose

that f(i) =1,i=mn, f(j) =3, j =2. Now
Tpali Ay NwoaLsAs # 0.
There are elements l; € Ly, I5 € L3 and (6) such that
!

1! /
Lay - apntna =lzajasay - a, T2 4.

It follows that

i / i / ! A
i =a}, ax =ayT24, a3 =13, as =ay,...,0n—1 = Qp_1, ATy 4 = G-

The last equation means that A,z, 4N A, # 0. On the other hand
after listing the elements of A, x,, 4 and A,, a routine inspection reveals

that A,x,4 N A, =0.

A similar argument can be used in connection with all the remaining

cases.
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We claim that the product AB is direct and it is equal to G. In
order to verify the claim note that the sets

Ak, keK (7)

form a partition of G. We have constructed B from K by replacing
certain subsets Ak by certain subsets Ab. Using the Equations (3),
(4), (5) we can see that the sets

Ab, beB (8)

form a partition of G. Partition (8) simply means that the product
AB is direct and it is equal to G, as required.

From the above result it follows that |B| = |K| = |Ky|---|K,| =
237 The point we would like to stress is that |A| = | B| holds.

We claim that (B) = G. Since z;5z;6 € B and x; 47,576 € B, it
follows that x; 4 € (B). As z;4 € (B) and x;423;y,1 € B, it follows
that ¢y, € (B). In general

Ti4,Tr(i),1 € (B),

Ti5, Tfey,2 € (B),
Ti6, Ty € (B),

for each i, 1 <4 < n. Thus (B) = G, as required. In other words B
is a full-rank subset of G.
O

3. Open Problems

We close the paper with a number of open problems. The smallest
elementary 2-group G for which the construction of the paper works
has 2'® elements and so the factors A and B have 2° elements. The
word length in the commonly used computers is a power of 2. Professor
C. Carlet has advanced the following problem.

Problem 1. Is there a full-rank factoring G = AB of the elementary
2-group G of order 216 with |A| = |B|?

Here is a more ambitious problem.

Problem 2. Determine the minimum order of all elementary abelian
2-groups that admit full-rank factorizations with equal size factors.

In cryptography not the full-rank property of the factors is the key
concept but rather the non-linearity of the factors.

Problem 3. In a factorization G = AB of an elementary 2-group with
|A| = |B| try to mazimize the deviation of the factors from linearity.

The next questions are motivated by pure group theoretical curios-
ity.

Problem 4. Can a finite abelian 2-group be factored into more than
two full-rank factors of equal size?

Problem 5. Can a finite abelian p-group be factored into full-rank
factors of equal size?
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