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Abstract 
In the current work, we study two infectious disease models and we use non-
linear optimization and optimal control theory which helps to find strategies 
towards transmission control and to forecast the international spread of the 
infectious diseases. The relationship between epidemiology, mathematical 
modeling and computational tools lets us to build and test theories on the 
development and fighting with a disease. This study is motivated by the study 
of epidemiological models applied to infectious diseases in an optimal control 
perspective. We use the numerical methods to display the solutions of the op-
timal control problems to find the effect of vaccination on these models. Fi-
nally, global sensitivity analysis LHS Monte Carlo method using Partial Rank 
Correlation Coefficient (PRCC) has been performed to investigate the key 
parameters in model equations. This present work will advance the under-
standing about the spread of infectious diseases and lead to novel conceptual 
understanding for spread of them. 
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1. Introduction 

Recently, due to the fast spread of pandemic diseases, mathematical modeling in 
the field of epidemiology has attracted many scientists in different areas. Many 
mathematical models have been developed to describe the transmission of 
communicable diseases [1] [2] [3]. These mathematical models describe the 
mechanisms of infectious diseases and also, they are helpful to analyze the effect 
of public health interventions to control the spreading of diseases. In mathemat-

How to cite this paper: Azizi, T. and Alali, 
B. (2020) Studying the Impact of Vaccina-
tion Strategy and Key Parameters on Infec-
tious Disease Models. Open Journal of Opti-
mization, 9, 86-104. 
https://doi.org/10.4236/ojop.2020.93007 
 
Received: July 20, 2020 
Accepted: September 1, 2020 
Published: September 4, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ojop
https://doi.org/10.4236/ojop.2020.93007
https://www.scirp.org/
https://doi.org/10.4236/ojop.2020.93007
http://creativecommons.org/licenses/by/4.0/


T. Azizi, B. Alali 
 

 

DOI: 10.4236/ojop.2020.93007 87 Open Journal of Optimization 
 

ical perspective, we describe biological systems by converting them into mathe-
matical and theoretical framework with biological parameters and then using 
computer code to solve the model system computationally to predict the future 
of infectious diseases, one needs to study the behavior of each individual which 
plays a key role to understand the behavior epidemiology of infectious diseases 
[4]. 

One of the new approaches in modeling dynamic systems is the theory of op-
timal control. For the first time, R. E. Bellman introduced a new method to solve 
dynamic systems by using the principle of optimality which reduces significantly 
the computation of the optimal controls [5]. In optimal control (OC) theory, for 
a dynamic system, we define a control problem and its state trajectories over a 
period of time to minimize a performance index [6]. In optimal control theory, 
the problem of determining the control would be turned to an extension of the 
calculus of variations [7]. One of the most interesting applications of the calculus 
of variations was in the Hamilton’s principle or the Principle of Least Action. 
The Russian mathematician Lev S. Pontryagin and his colleagues V. G. Bol-
tyanskii, R. V. Gamkrelidz and E. F. Misshchenko generalized the calculus of 
variations to optimal control theory by proposing the Pontryagin Maximum 
Principle [8] which defines appropriate conditions for optimization problems 
with differential equations as constraints. OC can be used for the problems 
where the calculus of variations is not applicable, such as the problems which in-
clude constraints on the derivatives of functions [9]. With increasing the num-
ber of variables and parameters of system, optimal control problems cannot be 
solved analytically and one may need to apply numerical methods. 

To model a dynamic system, we usually use a set of ordinary differential equa-
tions. A system of ODEs for 0 ft t t≤ ≤  can be described by 
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Based on how the conditions at the endpoints of the domain are specified, we 
classify an ODE solving problem into initial value problems (IVP) and boundary 
value problems (BVP). For an initial-value problem, all the conditions are speci-
fied at the initial point. For a boundary-value problem, the conditions are needed 
for both initial and final points. There are many numerical methods to solve ini-
tial value problems, such as Euler, Runge-Kutta or adaptive methods and boun-
dary value problems, such as shooting methods [10] [11]. 

Euler method is the most common used single-step method. In this discretiza-
tion technique, for differential equation ( )( ),x f x t t= , we can make a conve-
nient approximation of this:  

( )( )1 , :n n n nx x h f x t t+ +
 

The approximation 1nx +  of ( )x t  at the point 1nt +  has an error of order h2. 
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There exists a trade-off between accuracy and complexity of calculation which 
depends heavily on the chosen value for h. As h is decreasing, the calculation 
would be longer however more exact. One of the disadvantages of this method is 
for many higher order systems. It is very difficult to have an effective Euler ap-
proximation. Thus, we need to use more accurate and elaborate methods and 
one of them is the Runge-Kutta method. 

Runge-Kutta method is a multiple-step method. In this technique, we obtain 
the solution at time 1kt +  from the values , ,j k kt t−   and j is the number of 
steps. To approximate a differential equation of the form ( )( ),x f x t t= , we can 
use the second order Runge-Kutta method  

( )( ) ( )( )1 1 1, , ;
2n n n n n n
hx x f x t t f x t t+ + + + +   

or the fourth order Runge-Kutta method  

 ( )1 1 2 3 42 2
6n n
hx x k k k k+ + + + +  

where  

( )( )1 ,k f x t t=  

( )2 1,
2 2
h hk f x t k t = + + 

 
 

( )3 2 ,
2 2
h hk f x t k t = + + 

 
 

( )( )4 3 ,k f x t hk t h= + +  

For the second and fourth order Runge-Kutta method, the approximation 1nx +  
of ( )x t  at the point 1nt +  has an error of order 3h  and 5h . 

In this research, we study the most basic epidemiological models S-I-R model 
(composed by Susceptible-Infected-Recovered) and S-E-I-R model (Suscepti-
ble-Exposed-Infected-Recovered). For these models, we develop some analytical 
results that are useful in understanding of simple epidemic diseases. We contin-
ue this study by proposing the equivalent optimal control problems of the men-
tioned epidemic models and we numerically solve them using the back-
ward-forward sweep method with fourth order Runge-Kutta. Finally, we per-
form global sensitivity analysis by LHS Monte Carlo method using PRCC to 
identify the key parameters that contribute most significantly to the spread or 
control of the infectious diseases. 

2. Kermack-McKendrick SIR Epidemic Model (S-I-R Model) 

Recently, due to the fast spread of pandemic diseases, mathematical modeling in 
the field of epidemiology has attracted many scientists in different areas. Many 
mathematical models have been developed to describe the transmission of commu-
nicable diseases and among these models, the classical Kermack-McKendrick 
SIR epidemic model builds the basic skeleton of all of them [12]. 
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S := Susceptible (People who could potentially catch the disease)  
I := Infective (People who currently have the disease) 
R := Removed (People recovered or have died)  
Assumptions:  
1) Total population remains constant  
2) Rate of increase in the infectives is proportional to the contact between 

susceptible and infective  
3) Removal rate (death rate is constant)  
Using these assumptions, the classical S-I-R model has the following form:  

 

d
d
d
d
d
d

S IS R
t
I IS I
t
R I R
t

β δ

β γ

γ δ

 = − +

 = −



= −

                         (2.1) 

where, β  demonstrates rate of infection, γ  implies to rate of recovery and 
δ  represents rate of immunity loss. If 0δ = , we assume a model without im-
munity loss. In the first equation of system (2.1), susceptible S decreases accord-
ing to the number of contacts between infective I and susceptible S. Therefore, 
because of decreasing the rate of change of susceptible over time, in the first eq-
uation we get ISβ− . The rate of change of infective I increases by IS and de-
creases by Iγ . The term ISβ  has been added to the second equation of system 
(2.1) which is due to the increasing the contact between S and I. The negativity 
of Iγ  is showing decreasing the rate of change in infective I by moving to the 
next stage which is recovered or died. The term Iγ  has been added t the third 
equation which means that the rate of changing the recovered R is increasing by 
this factor. The time-evolution of system (2.1) over 300 days have been demon-
strated in Figures 1-4. 

Will the Disease Spread? What Is the Max Number of Infectives  
Imax? How Many People Catch the Disease? 

To answer these questions consider the following general S-I-R model:  

 

d
d
d
d
d
d

S IS
t
I IS I
t
R I
t

β

β γ

γ

 = −

 = −



=

                         (2.2) 

At the start of outbreak we have 0S S= , 0I I=  and 0R = . Total population 
size remains constant during epidemic; therefore, the rate of change of S I R+ +  
must be zero: 

 ( ) 0 0
d 0,
d

S I R S I R S I
t

+ + = + + = +                (2.3) 
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Figure 1. The SIR schematic model for system (2.1). S := Susceptible Compartment, I := 
Infective Compartment, R := Removed Compartment. 
 

 

Figure 2. The time-evolution of disease over 300 days 95 10β −= × , 0.12γ = , 0.016δ = .  
 

 
Figure 3. The time-evolution of disease over 300 days 95 10β −= × , 0.12γ = , 0.0δ = . 
 
To find out if the disease will spread, we need to check that  

( ) 0
d 0,
d
I I S S S
t

β γ= − < ≤  

Therefore, if 0
1S
q

γ
β

> = , then disease will spread. Here, 1
q

 is the contact ration  
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Figure 4. The time-evolution of disease over 300 days 95 10β −= × , 0.07γ = , 0.0δ = . 
 
which is the fraction of population that comes to contact with individual during 
the period of infectious. However, if the reproductive number or the ratio number  

0
0 1

S
R

β
γ

= > , we have epidemic. This ratio represents the number of secondary  

infection in the population caused by initial primary infection, i.e. how many 
other people get the disease. 

To find the maximum number of infectives or maxI , we combine 
d
d
S
t

 and 

d
d
I
t

:  

d 11 1
d

I IS I
S IS S qS

β γ γ
β β
−

= = − + = − +
−

 

Assuming  

 0 0 0
1 1ln lnI S S I S S
q q

+ − = + −                  (2.4) 

Then  

( )( )max 0 0 0
1 1 lnI I S qS
q

= + − +  

Here, maxI  represents the maximum number of people who have the disease at 
a given time. For COVID-19, or similar worldwide diseases the value for q (con-
tact parameter) is high since disease easily transmits. When q is large, it means 
that the number of people get infected is a lot. 

To reduce the reproduction rate, one can reduce the number of susceptible, 

0S . One way to decrease the number of susceptible is using vaccination which is 
a common method to eradicate of infectious diseases. Vaccination can go further 
than being used for just individuals, but it can be beneficial in large scale com-
munities by preserving the effective reproduction rate below the level which 
would allow an epidemic to spread. However, an epidemic can start and spread 
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very quickly if the reproduction rate rises beyond the critical value for an epi-
demic [13]. 

To find out how many people catch the disease, based on the first assumption, 
the total population is constant and to end the disease, the number of infected 
need to go down to zero (end of out break):  

0 0S I R S I+ + = +  

and  

( ) ( ) 0 0R end S end I S= − + +  

Here, ( )S end  is unknown. From (2.4), we have  

 ( ) ( )( ) 0 0 0
1 1ln lnS end S end I S S
q q

− = + −  

The graph of ( )S end  is decreasing and shows at small value of ( )S end  and 
larger q, we have larger value for ( )R end . 

3. The S-E-I-R Model 

An SIR model is an epidemiological model that represents the number of people 
infected with a contagious illness in a closed population over time. In another 
word, there are some other important infections which include a significant la-
tency or incubation period during which individuals have been infected but are 
not yet infectious themselves (for example this latency period is zero for cold). 
During incubation period the individual is exposed. See Figure 5.  

Here, we write the total population as N S E I R= + + + . So, the S-E-I-R 
model has the form  

 

d
d
d
d
d
d
d
d

S IS S
t
E IS E E
t
I E I I
t
R I R
t

β δ

β ε δ

ε γ δ

γ δ

 = Λ − −

 = − −

 = − −


 = −


                      (3.1) 

 

 
Figure 5. The transport diagram for S-E-I-R model (2.1). S := Susceptible Compartment, 
E := Exposed Compartment, I := Infective Compartment, R := Removed Compartment. 
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where 
S := Susceptible (People who could potentially catch the disease)  
E := Exposed (People who are infected but are not yet infectious) 
I := Infective (People who currently have the disease) 
R := Removed (People recovered or have died) 
δ  := Constant death rate 

NµΛ = ×  := Constant influx of new susceptible ( µ  Constant birth rate) 
ε  := Latency transfer rate to infectious 
γ  := Recovery rate of infectious 

ISβ  := The bilinear (mass action) incidence. 
For simplicity, we assume that the death rates are equal S E I Rδ δ δ δ= = = . 
If we have 0S >  and 0E I R= = = , we have a disease free population or 

disease free equilibrium, which means that there is no disease. To find disease or 
endemic equilibrium point, we look for a feasible region Σ  such that:  

( )dd d d d d0 0
d d d d d d

S E I RN S E I R
t t t t t t

+ + +
> → = + + + >  

Therefore, from (5) we have  

( ) ( ) ( ) ( )
( ) 0

IS S IS E E E I I I R

S E I R S E I R N

β δ β ε δ ε γ δ γ δ

δ δ δ δ δ δ

Λ − − + − − + − − + −

= Λ − − − − = Λ − + + + = Λ − >
 

Thus  

d 0
d
N N N N S E I R
t

δ δ
δ
Λ

= Λ − ≥ ⇒ Λ ≥ ⇔ ≥ = + + +  

Therefore, the feasible region Σ  would be:  

( ) 4, , , |S E I R S E I R
δ
Λ Σ = ∈ + + + ≤ 

 
  

From equation three we have,  

( ) *I I Eεε δ γ
δ γ
 

= + ⇒ =  + 
 

From equation four,  

*0I R R Eγ εγ δ
δ δ γ
 

− = ⇒ =  + 
 

1) Case 1: If * 0E =  No Exposed. So, * 0I =  and * 0R = . 
From equation one,  

* *0 S Sδ
δ
Λ

= Λ − ⇒ =  

Therefore, the diseases free equilibrium would be:  

0 ,0,0,0P
δ
Λ =  

 
 

2) Case 2: If * 0E ≠ , then * 0I ≠  and * 0R ≠ . 
If we add equation two and three, we get  
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( ) ( )* * * * * * * 0 0 0I S E E E I Iβ ε δ ε γ δ− − + − − = + =  

( )* * * * 0I S I Eβ δ γ δ⇒ − + − =  

( )* * * 0I S Eβ ε δ⇒ − + =  

( )* * * 0E S Eεβ ε δ
δ γ
 

⇒ − + = + 
 

( )* * 0S Eεβ ε δ
δ γ

  
⇒ − + =  +  

 

( )* 0Sεβ ε δ
δ γ
 

⇒ − + = + 
 

( )( )*S
ε δ δ γ

εβ
+ +

⇒ =  

General replication number 0R  is the number of new cases any single infected 
individual is going to create and produce or infect susceptible. To find 0R , at  

equilibrium we have *S
δ
Λ

≥ . For 
( )( )*S
ε δ δ γ

εβ
+ +

= , we have:  

( )( )
( )( ) 01 R

ε δ δ γ εβ
εβ δ δ ε δ δ γ

+ + Λ Λ
≥ ⇔ ≥ =

+ +
 

1) 0 1R ≤  ⇒  Disease Free equilibrium 0 ,0,0,0P
δ
Λ =  

 
; we can control 

and there is no disease. 
2) 0 1R >  ⇒  Endemic equilibrium ( )* * * * *, , , 0P S E I R= > .  
The time-evolution of system (5) over 300 days have been demonstrated in 

Figure 6.  
 

 

Figure 6. The time-evolution of system (3.1) over 300 days 95 10β −= × , 0.07γ = , 1 60δ =  and 
1 50µ = .  
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4. Optimal Control Problem 

A general optimal control (OC) problem needs a cost functional ( ) ( )( ),J x t u t   , 
a set of state variables ( )( )x t X∈ , a set of control variables ( )( )u t U∈  in a 
time t, with 0 ft t t≤ ≤ . The main goal is finding a piecewise continuous control 
( )u t  and the associated state variable ( )x t  to maximize a given objective 

functional.  
Definition 4.1 (Basic OC Problem in Lagrange formulation). An OC 

problem is in the form  

( ) ( ) ( ) ( )( )
0

max , , , dft

tu
J x t u t f t x t u t t= =   ∫  

( ) ( ) ( )( )s.t , ,x t g t x t u t=  

( )0 0x t x=  

( )fx t  could be free, which means that the value of ( )fx t  is unrestricted, or 
could be fixed, i.e., ( )fx t x=  [14].  

We consider f and g to be continuously differentiable functions. We suppose 
that the control set U is a Lebesgue measurable function. Therefore, as long as 
the controls will always be piecewise continuous, the associated states will be 
piecewise differentiable. 

We can change the maximization problem to a minimization problem by 
making the cost functional negative:  

{ } { }min maxJ J= −  

Definition 4.2 (Bolza formulation). The Bolza formulation of the OC prob-
lem can be defined as  

( ) ( ) ( ) ( )( ) ( ) ( )( )
0

0 0max , , , , , , dft
f f tu

J x t u t t x t t x t f t x t u t t= = Φ +   ∫  

( ) ( ) ( )( )s.t , ,x t g t x t u t=  

( )0 0x t x=  

where Φ  is a continuously differentiable function [15].  
Definition 4.3 (Mayer formulation). [16] The Mayer formulation of the OC 

problem can be defined as  

( ) ( ) ( ) ( )( )0 0max , , , ,f fu
J x t u t t x t t x t= = Φ    

( ) ( ) ( )( )s.t , ,x t g t x t u t=  

( )0 0x t x=  

4.1. Pontryagin’s Maximum Principle 

Pontryagin proposed the idea of adjoint functions to append the differential eq-
uation to the objective functional which was one of the most important results of 
Mathematics in the 20th century and illustrates the necessary conditions to find 
the optimal control. Similar to Lagrange multipliers in multivariate calculus, 
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Adjoint functions append constraints to the function of several variables to be 
maximized or minimized [7].  

Definition 4.4 (Hamiltonian). Consider the OC problem in definition (4.1). 
The function  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ), , , , , , ,H t x t u t t f t x t u t t g t x t u tλ λ= +  

is called Hamiltonian function and λ  is the adjoint variable.  
Theorem 4.5 (Pontryagin’s Maximum Principle). [8] [17] Let ( )*u t  and 
( )*x t  be optimal for problem in definition (4.1), then there exists a piecewise 

differentiable adjoint variable ( )tλ  such that  

 ( ) ( ) ( )( ) ( ) ( ) ( )( )* * *, , , , , ,H t x t u t t H t x t u t tλ λ≤  

for all controls u at each time t, where H is the Hamiltonian previously defined 
and  

( )
( ) ( ) ( )( )* *, , ,H t x t u t t

t
x

λ
λ

∂
′ =

∂
 

( ) 0ftλ =  

The last condition, ( ) 0ftλ = , called transversality condition, is only used 
when the OC problem does not have terminal value in the state variable, i.e., 
( )fx t  is free. 
This Pontryagin’s Maximum Principle converts the problem of finding a con-

trol which maximizes the objective functional subject to the state ODE and ini-
tial condition into the problem of optimizing the Hamiltonian pointwise. 
Therefore, with this adjoint equation and Hamiltonian, we have  

 0H
u

∂
=

∂
 

at *u  for each t, meaning that the Hamiltonian has a critical point and we call 
this condition as optimality condition. Therefore, to find the necessary condi-
tions, we do not need to calculate the integral in the objective functional and we 
only use the Hamiltonian. 

4.2. Existence of a Finite Objective Functional Value at the  
Optimal Control and State Variables 

Theorem 4.6. [18] [19] Consider  

( ) ( ) ( ) ( )( )
0

max , , , dft

tu
J x t u t f t x t u t t= =   ∫  

( ) ( ) ( )( )s.t , ,x t g t x t u t=  

( )0 0x t x=  

Suppose that ( ), ,f t x u  and ( ), ,g t x u  are both continuously differentiable 
functions in their three arguments and concave in x and u. Suppose *u  is a 
control with associated state *x , and λ  a piecewise differentiable function, 
such that *u , *x  and λ  together satisfy on 0 ft t t≤ ≤ :  
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0,u uf gλ+ =  

( ) ,x xf gλ λ′ = − +  

( ) 0,ftλ =  

( ) 0.tλ ≥  

Then for all controls u, we have ( ) ( )*J u J u≥   
Based on how the conditions at the endpoints of the domain are specified, we 

classify an ODE solving problem into initial value problems (IVP) and boundary 
value problems (BVP). For an initial-value problem, all the conditions are speci-
fied at the initial point. For a boundary-value problem the conditions are needed 
for both initial and final points. There are many numerical methods to solve ini-
tial value problems such as Euler, Runge-Kutta or adaptive methods and boun-
dary value problems, such as shooting methods [10] [11]. 

Numerical methods for solving OC problems started from the 1950s with the 
works of Bellman [10]. We can divide these methods into two major groups: di-
rect methods and indirect methods. Indirect methods indirectly solve the prob-
lem by converting the optimal control problem to a boundary-value problem, 
using the PMP. However, direct method solves the OC by transcribing an infi-
nite-dimensional optimization problem to a finite-dimensional optimization 
problem.  

5. OC Problem for S-I-R Model 

In this section, we present an optimal control (OC) problem to study the dy-
namics of S-I-R model, using a vaccination process (u) as a measure to control 
the disease. Let 1x  represents the susceptible population, 2x  represents the 
proportion of population that is infected and 3x  represents the proportion of 
population that is recovered or dead. The optimal control problem can be de-
fined as:  

 ( ) ( ) ( )
0

2
2min , dft

tu
J x t u t x u t= = +   ∫                  (5.1) 

 1
1 2 3 1

d
s.t

d
x x x x ux
t

β δ= − + −                       (5.2) 

 2
1 2 2

d
d
x x x x
t

β γ= −                           (5.3) 

 3
2 3

d
d
x

x x
t

γ δ= −                             (5.4) 

 ( ) ( ) ( ) ( )( )0 1 2 30 , 0 , 0x t x x x=                      (5.5) 

with ( ) ( ) ( ) ( )( )1 2 3, ,x t x t x t x t=  and ( ) ( ) ( ) ( )( )1 2 3, ,t t t tλ λ λ λ= , with initial 
conditions ( ) 7

1 0 6 10x = × , ( ) 7
2 0 10x = , ( )3 0 10x =  and the parameters 

95 10β −= × , 0.12γ = , 1 60δ = . 
Let consider the problem (5.1) and constraints (5.2)-(5.4). With  
( ) ( ) ( ) ( )( )1 2 3, ,x t x t x t x t=  and ( ) ( ) ( ) ( )( )1 2 3, ,t t t tλ λ λ λ= , the Hamiltonian 
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of this problem can be written as  

 
( ) ( ) ( )( ) ( )

( ) ( )

2
2 1 1 2 3 1

2 1 2 2 3 2 3

, , ,H t x t u t t Ax u x x x ux

x x x x x

λ λ β δ

λ β γ λ γ δ

= + + − + −

+ − + −
 

A is a weight parameter describing the comparative importance of the two terms 
in the functional. Using the PMP the optimal control problem can be studied 
with the state variables  

1 1 2 3 1x x x x uxβ δ= − + −  

2 1 2 2x x x xβ γ= −  

3 2 3x x xγ δ= −  

The adjoint variables are:  

( )1 1 2 2 2u x xλ λ β λ β= + +  

( )2 1 1 2 1 3A x xλ λ β λ β γ λ γ= − + − − −  

3 3 1λ λ δ λ δ= −  

with transversality conditions ( ) 0ftλ = . Figure 7 demonstrates the optimal 
curves for the states variables and optimal control corresponding to S-I-R model 
(2.1).  

6. OC problem for S-E-I-R Model 

In this section, we present an optimal control (OC) problem to study the dy-
namics of S-E-I-R model, using a vaccination process (u) as a measure to control 
the disease. Let 1x  represents the susceptible population, 2x  represents the  

 

 
Figure 7. Solutions of optimal control problem for S-E-I-R model (2.1). u := Vaccination related variable, S := Susceptible Popula-
tion, I := Infective Population, R := Removed Population. 
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proportion of population that is in the incubation period, 3x  represents the 
proportion of population that is infected and 4x  represents the proportion of 
population that is recovered or dead. The optimal control problem can be de-
fined as:  

( ) ( ) ( )
0

2
3min , dft

tu
J x t u t x u t= = +   ∫                 (6.1) 

1
1 3 1 1

d
s.t

d
x x x x ux
t

β δ= Λ − − −                     (6.2) 

 2
1 3 2 2

d
d
x x x x x
t

β ε δ= − −                        (6.3) 

 3
2 3 3

d
d
x

x x x
t

ε γ δ= − −                         (6.4) 

 4
3 4

d
d
x x x
t

γ δ= −                           (6.5) 

 ( ) ( ) ( ) ( ) ( )( )0 1 2 3 40 , 0 , 0 , 0x t x x x x=                   (6.6) 

with initial conditions ( ) 7
1 0 6 10x = × , ( ) 7

2 0 10x = , ( )3 0 10x = , ( )4 0 1x =  
and the parameters 95 10β −= × , 0.12γ = , 1 60δ = . 

Let consider the problem (6.1) and constraints (6.2)-(6.5). With  
( ) ( ) ( ) ( ) ( )( )1 2 3 4, , ,x t x t x t x t x t=  and ( ) ( ) ( ) ( ) ( )( )1 2 3 4, , ,t t t t tλ λ λ λ λ= , the 

Hamiltonian of this problem can be written as  

 
( ) ( ) ( )( ) ( )

( ) ( )
( )

2
3 1 1 3 1 1

2 1 3 2 2 3 2 3 3

4 3 4

, , ,H t x t u t t Ax u x x x ux

x x x x x x x

x x

λ λ β δ

λ β ε δ λ ε γ δ

λ γ δ

= + + Λ − − −

+ − − + − −

+ −

 

A is a weight parameter describing the comparative importance of the two terms 
in the functional. Using the PMP the optimal control problem can be studied 
with the state variables  

1 1 3 1 1x x x x uxβ δ= Λ − − −  

2 1 3 2 2x x x x xβ ε δ= − −  

3 2 3 3x x x xε γ δ= − −  

4 3 4x x xγ δ= −  

The adjoint variables are:  

( )1 1 3 2 3u x xλ λ β δ λ β= + + −  

( )2 2 3λ λ ε δ λ ε= + −  

( )3 4 3 2 1 1 1A x xλ λ γ λ γ δ λ β λ β= − − + + − +  

4 4λ λ δ=  

with transversality conditions ( ) 0ftλ = . Figure 8 displays the optimal curves 
for the states variables and optimal control corresponding to the S-E-I-R model 
(5).  
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Figure 8. Solutions of optimal control problem for S-E-I-R model (3.1). u := Vaccination related variable, S := Susceptible Popula-
tion, E := Exposed Population, I := Infective Population, R := Removed Population. 

7. Global Sensitivity Analysis 

Global sensitivity analysis allows us to change all parameters simultaneously 
over the entire parameter interval. This is a way to evaluate the relative effects of 
each input parameter and also to identify the interactions between parameters to 
the model output. In global sensitivity analysis we determine that with variation 
of input parameters in a certain range, which parameters and interactions have 
the most influential impact on the overall behavior of our model [20]-[26]. 

There are several types of global sensitivity analyses, such as weighted average 
of local sensitivity analysis, partial rank correlation coefficient, multi parametric 
sensitivity analysis, Fourier amplitude sensitivity analysis (FAST) and Sobol’s 
method, which can be used for systems pharmacology models [20]. The Latin 
hypercube sampling (LHS) method has been used frequently for global sensitiv-
ity analysis. There are also some other methods for calculating main effect and 
total effect sensitivity indices and one of the most important one is the method 
of Sobol [25]. 

LHS method is a sampling method and requires fewer samples compare to 
simple random sampling to achieve the same accuracy [20]. In LHS method, we 
divide the random parameter distributions into N equal probability intervals. 
Here, N is the sample size. The choice for N should be at least k + 1, where k is 
the number of parameters which are varied. For the case that the interval of var-
iation for some parameter is very large, the sampling can be done on a log form. 

In LHS method, sampling is independent for each parameter and can be done 
by randomly selecting values from each pdf. We may sample each interval once 
for each parameter without any replacement. The LHS matrix is consisting of N 
rows corresponding to the number of simulations or sample size and also it in-
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cludes k columns corresponding to the number of varied parameters. Then, N 
model solutions may be simulated, using each combination of parameter values 
which they represent each row of the LHS matrix [20]. 

7.1. Partial Rank Correlation Coefficient (PRCC) Results for S-I-R  
Model (2.1) 

Here, a parameter sensitivity analysis has being conducted to identify the bio-
logical parameters that have the most significant effect on our model system by 
the LHS Monte Carlo method using PRCC with uniform distributions for the 95 
percent confidence intervals. The global sensitivity results with p-values corres-
ponding to S compartment, I compartment and R compartment have been 
demonstrated in Figure 9. 

7.2. Partial Rank Correlation Coefficient (PRCC) Results for  
S-E-I-R Model (3.1) 

According to LHS, we simulated the responses of the model for each organ by 
randomly selecting values for the parameter set from the 95 percent confidence 
intervals. These analyses were done by developing a LHS/PRCC method with 
uniform distributions for the 95 percent confidence intervals. We found that 
some parameters illustrate significant performance in terms of sensitivity of the 
output to the variations of these parameters in some compartments while they 
do not have this effect for others. These results have been depicted in Figure 10, 
are statistically significant with p-values much smaller than 0.01. 

8. Conclusions 

Infectious diseases can be defined as diseases that can be transmitted from hu-
man to human, from human to animal, or from animal to animal. The mathe-
matical modeling of infectious disease spread has been studied for many years  
 

 
Figure 9. Global uncertainty and sensitivity analysis of calculated different parameters for 
S-I-R model (2.1).  
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Figure 10. Global uncertainty and sensitivity analysis of calculated different parameters 
for S-E-I-R model (3.1).  

 
and recently it has been widely discussed due to the spread of the COVID-19 
pandemic. To build up an appropriate infectious disease dynamic model, we 
may need to use a system of ordinary differential equations that cover the spread 
process, spread law, and spread trend of infectious diseases. 

In this paper, we considered the S-I-R and S-E-I-R models and for these, we 
could develop some analytical results which can be useful in studying the simple 
epidemics. We displayed the evolution of these two compartmental models over 
time, Susceptible-Infected-Recovered and Susceptible-Exposed-Infected-Recovered 
for interesting values of parameters. We followed the optimal control perspec-
tive to study these models and because of the complexity of the presented op-
timal control problems, we could no longer solve them analytically and we 
ended up looking at the numerical solutions. The optimal curves for the states 
variables and optimal control were obtained and demonstrated for each control 
problem separately. 

An uncertainty analysis can be applied on the epidemiological models to in-
vestigate the uncertainty in system output that is generated from uncertainty in 
parameter inputs. Sensitivity analysis assesses how variations in model outputs 
can be apportioned, qualitatively or quantitatively, to different inputs. The final 
objective of this study was to determine the key parameters in spread of infec-
tious diseases using sampling-based method (Partial Rank Correlation Coeffi-
cient-PRCC). In this research, we applied LHS/PRCC method with uniform dis-
tributions for the 95 percent confidence intervals on the model Equation (2.1) 
and Equation (3.1). As we have seen, some parameters have positively and some 
others negatively affected the spread of disease. 
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