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Abstract 
Obtaining the new solutions for the nonlinear evolution equation is a hot 
topic. Benjamin-Bona-Mahony-Burgers equation is this kind of equation, the 
solutions are very interest. Several new exact solutions for the nonlinear equ-
ation are obtained by using truncated expansion method in this paper. The 
numerical simulations with different parameters for the new exact solutions 
of Benjamin-Bona-Mahony-Burgers equation are given. 
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1. Introduction 

Nonlinear partial differential equations are very important in the natural world; 
the solutions are the important way for us to know the nature. However, the dif-
ferent initial condition means different solutions exit. People had found out 
many powerful methods to obtain the solutions for nonlinear partial differential 
equations. Such as the useful methods-Soliton-Like Solutions, complex travelling 
wave, truncated expansion method, hyperbolic tangent method [1] [2] [3] [4] [5], 
high-order multi-symplectic schemes, simple fast method, Invariant-conserving 
finite difference algorithms, stable bound states [6]-[11], which help us deeply 
study the relation of the nature. 

The Nonlinear Benjamin-Bona-Mahony-Burgers equation was proposed by Pe-
regrine [12] and Benjamin [13], long waves on the surface of water in a channel 
with small-amplitude can be described by the nonlinear equation. The form of 
the Benjamin-Bona-Mahony-Burgers equation [14] is read as 
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0t x x xx xxtu u uu mu u+ + − − =                    (1) 

where the subscripts denote the partial derivatives of position x and time t. 
( ),u x t  is a real-valued function and xxu  is considered as dissipative term. The 

following structure of this work is organized as follows: Section 2 is a brief in-
troduction to the truncated expansion method and its Properties. In Section 3, 
applying the truncated expansion method, some new exact wave solutions for 
Nonlinear Benjamin-Bona-Mahony-Burgers equation are given The conclusion 
is summarized in the final. 

2. The Truncated Expansion Method and Its Properties 

The nonlinear partial differential equation with independent variables position x 
and time t is generally in the following form 

( ), , , , , , 0x t xt xx ttQ u u u u u u =�                    (2) 

The above equation is a function about ( ),u x t  variable with position x and 
time t, the subscripts denote the partial derivatives with x and t, respectively. The 
wave variable ax btξ = +  is applied to the Equation (2), which is changed into 
the following ordinary differential equation 

( ), , , , 0Q u u u uξ ξξ ξξξ =�                      (3) 

where , ,u uξ ξξ �  denotes the derivative with respect to the same variable ξ . 
Generally, the function ( ),u x t  in terms of truncated expansion method [15] 

[16] can be expressed as follow 

( ) ( )0 ,N n
nnu A tϕ

=
= ∑                       (4) 

where An is constant parameter; N is determined by balancing the linear term of 
the highest order derivative with nonlinear term of Equation (3). 

The function ( ), tϕ   has the nature 
2ϕ λ ϕ= +                           (5) 

where the λ  is a constant. The second and third derivative of ϕ  are read as 
the follow 

32 2ϕ λϕ ϕ= +                         (6) 
2 2 48 62ϕ λ λϕ ϕ= + +                      (7) 

The function ( ), tϕ   with the form of Equation (5) has the follow form with 
different λ  

( ) ( )
1 1
2 2tanh , 0ϕ λ λ λ = − − − <  

                  (8) 

( ) ( )
1 1
2 2coth , 0ϕ λ λ λ = − − − <  

                  (9) 

1 , 0ϕ λ= − =


                        (10) 
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( ) ( )
1 1
2 2tan , 0ϕ λ λ λ = − >  

                  (11) 

( ) ( )
1 1
2 2cot , 0ϕ λ λ λ = − >  

                   (12) 

3. The Truncated Expansion Method for  
Benjamin-Bona-Mahony-Burgers Equation 

Consider the Nonlinear Benjamin-Bona-Mahony-Burgers equation in the form 
of Equation (1) with ax bt= + , we obtain 

2 2 0bu au auu ma u a bu+ + − − =                   (13) 

By using N to balance the highest order derivative term and the nonlinear 
term of Equation (13), that means uu  and u  are the nonlinear term and 
the highest order derivative, 2 1 3N N+ = + , we have N = 2. Then, Equation (4) 
reduced as 

( ) 2
0 1 2u A A Aϕ ϕ= + +                     (14) 

Substituting Equation (14) into the equation Equation (13) and collecting all 
terms with the same power term together and equating each coefficient of ϕ  to 
zero, a set of simultaneous algebraic equations are yielded as follows: 

2 2 2 2
1 0 1 1 1 22 2 0a A aA A A b a A b ma Aλ λ λ λ λ+ + − − =          (15) 

2 2 2 2
1 2 0 2 2 2 12 2 2 16 2 0a A a A a A A A b ba A ma Aλ λ λ λ λ λ+ + + − − =     (16) 

2 2
1 0 1 1 2 1 1 23 8 8 0aA aA A a A A A b ba A ma Aλ λ λ+ + + − − =         (17) 

2 2 2 2
1 2 0 2 2 2 1 22 2 2 2 2 40 0aA aA aA A A a bA ma A ba Aλ λ+ + + + − − =     (18) 

2 2
1 2 1 23 6 6 0aA A a A b ma A− − =                  (19) 

2
2 22 24 0A abA− =                       (20) 

Solving the above algebraic equations, we get the results: 
2 2 2 2 2 2 2 2

0

1 2

24 24 100 200; ;
25

12 ; 12
5

b ab a b a b a m ab bm A
a ab

amA A ab

λ λ+ − − − −
= =

= =

   (21) 

By using Equations (8)-(10) and (14), we obtained the solution of Equation 
(1) as the follow: 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2 1 1
2 2

1

21 1
2 2

200 12, tanh
25 5

12 tanh , 0

a b a m ab b amu x t ax bt
ab

ab ax bt

λ λ λ

λ λ λ

− − −  = − − − +  

  + − − + <    

 (22) 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2 1 1
2 2

2

21 1
2 2

200 12, coth
25 5

12 coth , 0

a b a m ab b amu x t ax bt
ab

ab ax bt

λ λ λ

λ λ λ

− − −  = − − − +  

  + − − + <    

 (23) 
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( ) ( )

22 2 2 2 2

3

200 12 1, 12 , 0
25 5

a b a m ab b amu x t ab
ab ax bt ax bt

λ λ− − − − = − + = + + 
 (24) 

( ) ( ) ( )

( ) ( )

2 2 2 2 2 1 1
2 2

4

21 1
2 2

200 12, tan
25 5

12 tan , 0

a b a m ab b amu x t
ab

ab

λ λ λ

λ λ λ

− − −  = +   

  + >    





    (25) 

( ) ( ) ( )

( ) ( )

2 2 2 2 2 1 1
2 2

5

21 1
2 2

200 12, cot
25 5

12 cot , 0

a b a m ab b amu x t
ab

ab

λ λ λ

λ λ λ

− − −  = −   

  + − >    





    (26) 

The rest section is the numerical simulation for the above sol are determined 
randomly in the corresponding interval. The contour plot of numerical simula-
tion for Equation (22) with 1a = ; 0.5b = ; 2λ = − ; [ ]5,5x∈ −  and  

[ ]5,5t∈ −  is shown in Figure 1. 
The contour plot of numerical simulation for Equation (23) with 1a = ;  

0.5b = ; 1λ = − ; [ ]3,4x∈  and [ ]3,4t∈  is shown in Figure 2. 
The contour plot of numerical simulation for Equation (24) with 1a = ;  

0.5b = ; [ ]1,2x∈  and [ ]1,2t∈  is shown in Figure 3. 
The contour plot of numerical simulation for Equation (25) with 2a = ;  

6b = ; 0.05λ = ; [ ]1,1x∈ −  and [ ]1,1t∈ −  is shown in Figure 4. 
 

 
Figure 1. The numerical simulation for Equation (22) with [ ]5,5x∈ −  and [ ]5,5t∈ − . 
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Figure 2. The numerical simulation for Equation (23) with [ ]3,4x∈  and [ ]3,4t∈ . 

 

 

Figure 3. The numerical simulation for Equation (24) with [ ]1,2x∈  and [ ]1,2t∈ . 
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Figure 4. The numerical simulation for Equation (25) with [ ]1,1x∈ −  and [ ]1,1t∈ − . 

 

 
Figure 5. The numerical simulation for Equation (26) [ ]2,3x∈  and [ ]2,3t∈ . 
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The contour plot of numerical simulation for Equation (26) with 10a = ;  
6b = ; 0.01λ = ; [ ]2,3x∈  and [ ]2,3t∈  is shown in Figure 5. 

4. Conclusion 

The Nonlinear Benjamin-Bona-Mahony-Burgers equation in the given form Equ-
ation (1) have been further studied, some new exact solutions for the equation 
are obtained by means of the truncated expansion method, which are shown in 
Equations (22)-(26). The numerical simulation results with contour plot are ap-
pended with Figures 1-5. The evolutions of the travelling wave are clear shown. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Zhu, Z.N. (1992) Soliton-Like Solutions of Generalized KdV Equation with External 

Force Term. Acta Physica Sinca, 41, 1561-1566. 

[2] Demiray, H. (2005) A Complex Travelling Wave Solution to the KdV-Burgers Equ-
ation. Physics Letters A, 344, 418-422. 
https://doi.org/10.1016/j.physleta.2004.09.087 

[3] Zhang, J.F. and Chen, F.Y. (2001) Truncated Expansion Method and New Exact So-
liton-Like Solution of the General Variable Coefficient KdV Equation. Acta Physica 
Sinca, 50, 1648-1650. 

[4] Halim, A.A. and Leble, S.B. (2004) Analytical and Numerical Solution of a Coupled 
KdV-MKdV System. Chaos, Solitons & Fractals, 19, 99-108. 
https://doi.org/10.1016/S0960-0779(03)00085-7 

[5] Malfliet, M. and Wieers, E. (1996) A Nonlinear Theory of Charged-Particle Stop-
ping in Non-Ideal Plasmas. Journal of Plasma Physics, 56, 441-443. 
https://doi.org/10.1017/S0022377800019401 

[6] Wang, Y.S. and Wang, B. (2005) High-Order Multi-Symplectic Schemes for the 
Nonlinear Klein-Gordon Equation. Applied Mathematics and Computation, 166, 
608-632. https://doi.org/10.1016/j.amc.2004.07.007 

[7] Gegenhasi, Hu, X.B. and Wang, H.Y. (2007) A (2+1)-Dimensional Sinh-Gordon 
Equation and Its Pfaffian Generalization. Physics Letters A, 360, 439-447. 
https://doi.org/10.1016/j.physleta.2006.07.031 

[8] Liu, S.K., Fu, Z.T. and Liu, S.D. (2001) A Simple Fast Method in Finding Particular 
Solutions of Some Nonlinear PDE. Applied Mathematics and Mechanics, 22, 326-331.  
https://doi.org/10.1007/BF02437971 

[9] Zhang, J.L. and Wang, Y.M. (2003) Exact Solutions to Two Nonlinear Equations. 
Acta Physica Sinca, 52, 1574-1578. 

[10] Vu-Quoc, L. and Li, S. (1993) Invariant-Conserving Finite Difference Algorithms 
for the Nonlinear Klein-Gordon Equation. Computer Methods in Applied Mechan-
ics and Engineering, 107, 341-391. https://doi.org/10.1016/0045-7825(93)90073-7 

[11] Bonanno, C. (2010) Existence and Multiplicity of Stable Bound States for the Non-
linear Klein-Gordon Equation. Nonlinear Analysis: Theory, Methods & Applica-
tions, 72, 2031-2046. https://doi.org/10.1016/j.na.2009.10.004 

https://doi.org/10.4236/ojapps.2020.108038
https://doi.org/10.1016/j.physleta.2004.09.087
https://doi.org/10.1016/S0960-0779(03)00085-7
https://doi.org/10.1017/S0022377800019401
https://doi.org/10.1016/j.amc.2004.07.007
https://doi.org/10.1016/j.physleta.2006.07.031
https://doi.org/10.1007/BF02437971
https://doi.org/10.1016/0045-7825(93)90073-7
https://doi.org/10.1016/j.na.2009.10.004


C. H. Xiang, H. L. Wang 
 

 

DOI: 10.4236/ojapps.2020.108038 550 Open Journal of Applied Sciences 
 

[12] Peregrine, D.H. (1966) Calculations of the Development of an Undular Bore. Jour-
nal of Fluid Mechanics, 25, 321-330. https://doi.org/10.1017/S0022112066001678 

[13] Benjamin, T.B., Bona, J.L. and Mahony, J.J. (1972) Model Equations for Long 
Waves in Nonlinear Dispersive Systems. Philosophical Transactions of the Royal 
Society A, 272, 47-78. https://doi.org/10.1098/rsta.1972.0032 

[14] Vaneeva, O., Posta, S. and Sophocleous, C. (2017) Enhanced Group Classification of 
Benjamin-Bona-Mahony-Burgers Equations. Applied Mathematics Letters, 65, 19-25. 

[15] Yan, Z.Y. and Zhang, H.Q. (1999) Exact Soliton Solutions of the Variable Coeffi-
cient KdV-MKdV Equation with Three Arbitrary Functions. Acta Physica Sinica, 
48, 1957-1961. 

[16] Chen, F.J. and Zhang, J.F. (2003) Soliton-Like Solution for the (2+1)-Dimensional 
Variable Coefficient Kadomtsev-Petviashvili Equation. Acta Armamentarii, 24, 389- 
391. 

 
 

https://doi.org/10.4236/ojapps.2020.108038
https://doi.org/10.1017/S0022112066001678
https://doi.org/10.1098/rsta.1972.0032

	New Exact Solutions for Benjamin-Bona-Mahony-Burgers Equation
	Abstract
	Keywords
	1. Introduction
	2. The Truncated Expansion Method and Its Properties
	3. The Truncated Expansion Method for Benjamin-Bona-Mahony-Burgers Equation
	4. Conclusion
	Conflicts of Interest
	References

