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Abstract

Obtaining the new solutions for the nonlinear evolution equation is a hot
topic. Benjamin-Bona-Mahony-Burgers equation is this kind of equation, the
solutions are very interest. Several new exact solutions for the nonlinear equ-
ation are obtained by using truncated expansion method in this paper. The
numerical simulations with different parameters for the new exact solutions
of Benjamin-Bona-Mahony-Burgers equation are given.
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1. Introduction

Nonlinear partial differential equations are very important in the natural world;
the solutions are the important way for us to know the nature. However, the dif-
ferent initial condition means different solutions exit. People had found out
many powerful methods to obtain the solutions for nonlinear partial differential
equations. Such as the useful methods-Soliton-Like Solutions, complex travelling
wave, truncated expansion method, hyperbolic tangent method [1] [2] [3] [4] [5],
high-order multi-symplectic schemes, simple fast method, Invariant-conserving
finite difference algorithms, stable bound states [6]-[11], which help us deeply
study the relation of the nature.

The Nonlinear Benjamin-Bona-Mahony-Burgers equation was proposed by Pe-
regrine [12] and Benjamin [13], long waves on the surface of water in a channel
with small-amplitude can be described by the nonlinear equation. The form of

the Benjamin-Bona-Mahony-Burgers equation [14] is read as
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u, +u +uu, —mu, —u, , =0 (1)

ot
where the subscripts denote the partial derivatives of position x and time £
u(x,t) isareal-valued function and u,, is considered as dissipative term. The
following structure of this work is organized as follows: Section 2 is a brief in-
troduction to the truncated expansion method and its Properties. In Section 3,
applying the truncated expansion method, some new exact wave solutions for
Nonlinear Benjamin-Bona-Mahony-Burgers equation are given The conclusion

is summarized in the final.

2. The Truncated Expansion Method and Its Properties

The nonlinear partial differential equation with independent variables position x

and time ¢is generally in the following form
O (st 1yttt o) = 0 (2)

The above equation is a function about u(x,7) variable with position x and
time ¢ the subscripts denote the partial derivatives with xand ¢ respectively. The
wave variable & =ax+bt is applied to the Equation (2), which is changed into
the following ordinary differential equation

Q(”ﬂ”é’”é@”&&f"“):o (3)

where u.,u,., -+ denotes the derivative with respect to the same variable &.
Generally, the function u(x,t) in terms of truncated expansion method [15]

[16] can be expressed as follow
u(€)= Loy 4" (&) @)
where A, is constant parameter; Nis determined by balancing the linear term of

the highest order derivative with nonlinear term of Equation (3).
The function (p((—:,t) has the nature

Q. =A+¢’ (5)

where the A is a constant. The second and third derivative of ¢ are read as
the follow

0. =2p+2¢° (6)
Do =217 +800° + 69" 7)

The function (p(e,t) with the form of Equation (5) has the follow form with
different A

1 1
p=—(-2) tanh{(—ﬁ)z e}, A<0 (8)
1 1
p=—(-2) coth|:(—i)2 e}, A<0 9)
1
p=—, 1=0 (10)
€
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o——(A) tan{(i);e}, 250 an
(o:—(/l)% co'{(/l); e}, A>0 (12)

3. The Truncated Expansion Method for
Benjamin-Bona-Mahony-Burgers Equation

Consider the Nonlinear Benjamin-Bona-Mahony-Burgers equation in the form

of Equation (1) with € = ax+ bt , we obtain
bu, +au, +auu, —ma’u,, —a’bu,, =0 (13)
By using NV to balance the highest order derivative term and the nonlinear
term of Equation (13), that means uu, and u__ are the nonlinear term and

the highest order derivative, 2N +1= N +3, we have N = 2. Then, Equation (4)

reduced as
u(e)= A4, + Ao+ 4,0’ (14)

Substituting Equation (14) into the equation Equation (13) and collecting all
terms with the same power term together and equating each coefficient of ¢ to

zero, a set of simultaneous algebraic equations are yielded as follows:

add +ad A4 + AAb—2a" 2> Ab—2ma* 4,27 =0 (15)

alA’ +2ad A, +2aA A A, +2AA,b—16ba’ A, A7 —2ma’ 42 =0 (16)
ad, +adyA +3ad A 4, + Ab—8ba’ A1 —8ma’ 4,4 =0 (17)

adl +2ad, +2aA4 4, +2A4;a +2bA, —2ma’ 4, —40ba’ 4,4 = 0 (18)
3a4 4, —6a’ Ab—6ma’ 4, =0 (19)

24} —24ab4, =0 (20)

Solving the above algebraic equations, we get the results:

L N24b’ +24ab-1004a’b’ h= 2001a°h’ —a*m* —ab—b*

a 25ab (21)

4 =120 1oa
5
By using Equations (8)-(10) and (14), we obtained the solution of Equation
(1) as the follow:

272 2.2 g g2 1 1
T —lzglm(—ﬂ)ztanh{(—l)z(aerbt)}

1 (22)

+ 12ab[(—/1)2 tanh{(—/i); (ax+bt)D2 L 4<0

212 2.2 5 g2 1 1
T —12:’"(—/1)2coth{(—/l)Z(a)Hbt)}

(23)

1

+12ab((—/1)2 coth [(-4)2 (ax+bt)D2 , 4<0
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u(x,t),

272 2 2 2 2
_2004a’b” —a’m’ —ab—b"  12am +12ab[ -1 j CA=0 (24)
25ab 5(ax+bl) ax+ bt
212 2.2 3 g2 1 1
u(x,t)4 2004Aa°b 2;zarbn ab->b N 12am (/1)5 tan{(ﬂ)2 e}
1 TV (25)
+12ab[(/1)2 tan{(/l)ZeD 250
2004a°h* —a*m* —ab-b* 12am, ! 1
u(x,t)5 25ab - (/1)2 cot[(ﬂ)2 e}
(26)

+12ab[—(i); cot [(z)i eD L 450

The rest section is the numerical simulation for the above sol are determined

randomly in the corresponding interval. The contour plot of numerical simula-
tion for Equation (22) with a=1; b=0.5; 1=-2; xe€ [—5,5] and
te[-5,5] is shown in Figure 1.

The contour plot of numerical simulation for Equation (23) with a=1;
b=05; A=-1; xe[3,4] and re€[3,4] isshown in Figure 2.

The contour plot of numerical simulation for Equation (24) with a=1;
b=0.5; xe[,2] and te[L,2] isshown in Figure 3.

The contour plot of numerical simulation for Equation (25) with a=2;
b=6; A=0.05; xe[-11] and te[-11] isshown in Figure 4.

[\S)

S

7| T T T T T T T T T T T 1§ T
47
-2+
—4+
L. | I L I | I L 1 L 1 I L |
-4 -2 0 2 4

Figure 1. The numerical simulation for Equation (22) with xe [—5,5] and te [—5,5] .
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Figure 2. The numerical simulation for Equation (23) with xe [3,4] and te [3,4] .
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Figure 3. The numerical simulation for Equation (24) with x e [1,2] and fe [1,2] .
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Figure 4. The numerical simulation for Equation (25) with xe [—1,1] and fe [—1,1] .
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Figure 5. The numerical simulation for Equation (26) x e [2,3] and te [2,3] .
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The contour plot of numerical simulation for Equation (26) with a =10;
b=6; 1=0.01; xe [2,3] and fe [2,3] is shown in Figure 5.

4. Conclusion

The Nonlinear Benjamin-Bona-Mahony-Burgers equation in the given form Equ-

ation (1) have been further studied, some new exact solutions for the equation

are obtained by means of the truncated expansion method, which are shown in

Equations (22)-(26). The numerical simulation results with contour plot are ap-

pended with Figures 1-5. The evolutions of the travelling wave are clear shown.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-

per.

References

(1]

(2]

(4]

(5]

(8]

(10]

[11]

Zhu, Z.N. (1992) Soliton-Like Solutions of Generalized KdV Equation with External
Force Term. Acta Physica Sinca, 41, 1561-1566.

Demiray, H. (2005) A Complex Travelling Wave Solution to the KdV-Burgers Equ-
ation. Physics Letters A, 344, 418-422.
https://doi.org/10.1016/j.physleta.2004.09.087

Zhang, J.F. and Chen, F.Y. (2001) Truncated Expansion Method and New Exact So-
liton-Like Solution of the General Variable Coefficient KdV Equation. Acta Physica
Sinca, 50, 1648-1650.

Halim, A.A. and Leble, S.B. (2004) Analytical and Numerical Solution of a Coupled
KdV-MKdAV System. Chaos, Solitons & Fractals, 19, 99-108.
https://doi.org/10.1016/S0960-0779(03)00085-7

Malfliet, M. and Wieers, E. (1996) A Nonlinear Theory of Charged-Particle Stop-
ping in Non-Ideal Plasmas. Journal of Plasma Physics, 56, 441-443.
https://doi.org/10.1017/S0022377800019401

Wang, Y.S. and Wang, B. (2005) High-Order Multi-Symplectic Schemes for the
Nonlinear Klein-Gordon Equation. Applied Mathematics and Computation, 166,
608-632. https://doi.org/10.1016/j.amc.2004.07.007

Gegenhasi, Hu, X.B. and Wang, H.Y. (2007) A (2+1)-Dimensional Sinh-Gordon
Equation and Its Pfaffian Generalization. Physics Letters A, 360, 439-447.
https://doi.org/10.1016/j.physleta.2006.07.031

Liu, S.K,, Fu, Z.T. and Liu, S.D. (2001) A Simple Fast Method in Finding Particular
Solutions of Some Nonlinear PDE. Applied Mathematics and Mechanics, 22, 326-331.
https://doi.org/10.1007/BF02437971

Zhang, J.L. and Wang, Y.M. (2003) Exact Solutions to Two Nonlinear Equations.
Acta Physica Sinca, 52, 1574-1578.

Vu-Quoc, L. and Li, S. (1993) Invariant-Conserving Finite Difference Algorithms
for the Nonlinear Klein-Gordon Equation. Computer Methods in Applied Mechan-
ics and Engineering, 107, 341-391. https://doi.org/10.1016/0045-7825(93)90073-7
Bonanno, C. (2010) Existence and Multiplicity of Stable Bound States for the Non-
linear Klein-Gordon Equation. Nonlinear Analysis. Theory, Methods & Applica-
tions, 72, 2031-2046. https://doi.org/10.1016/j.na.2009.10.004

DOI: 10.4236/0japps.2020.108038

549 Open Journal of Applied Sciences


https://doi.org/10.4236/ojapps.2020.108038
https://doi.org/10.1016/j.physleta.2004.09.087
https://doi.org/10.1016/S0960-0779(03)00085-7
https://doi.org/10.1017/S0022377800019401
https://doi.org/10.1016/j.amc.2004.07.007
https://doi.org/10.1016/j.physleta.2006.07.031
https://doi.org/10.1007/BF02437971
https://doi.org/10.1016/0045-7825(93)90073-7
https://doi.org/10.1016/j.na.2009.10.004

C. H. Xiang, H. L. Wang

(12]

(13]

Peregrine, D.H. (1966) Calculations of the Development of an Undular Bore. Jour-
nal of Fluid Mechanics, 25, 321-330. https://doi.org/10.1017/S0022112066001678

Benjamin, T.B., Bona, J.L. and Mahony, J.J. (1972) Model Equations for Long
Waves in Nonlinear Dispersive Systems. Philosophical Transactions of the Royal
Society A, 272, 47-78. https://doi.org/10.1098/rsta.1972.0032

Vaneeva, O., Posta, S. and Sophocleous, C. (2017) Enhanced Group Classification of
Benjamin-Bona-Mahony-Burgers Equations. Applied Mathematics Letters, 65, 19-25.

Yan, Z.Y. and Zhang, H.Q. (1999) Exact Soliton Solutions of the Variable Coeffi-
cient KdV-MKdV Equation with Three Arbitrary Functions. Acta Physica Sinica,
48, 1957-1961.

Chen, F.J. and Zhang, J.F. (2003) Soliton-Like Solution for the (2+1)-Dimensional

Variable Coefficient Kadomtsev-Petviashvili Equation. Acta Armamentarii, 24, 389-
391.

DOI: 10.4236/0japps.2020.108038

550 Open Journal of Applied Sciences


https://doi.org/10.4236/ojapps.2020.108038
https://doi.org/10.1017/S0022112066001678
https://doi.org/10.1098/rsta.1972.0032

	New Exact Solutions for Benjamin-Bona-Mahony-Burgers Equation
	Abstract
	Keywords
	1. Introduction
	2. The Truncated Expansion Method and Its Properties
	3. The Truncated Expansion Method for Benjamin-Bona-Mahony-Burgers Equation
	4. Conclusion
	Conflicts of Interest
	References

