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Abstract 
Listeriosis is an illness caused by the germ Listeria monocytogenes. Generally, 
humans are infected with listeriosis after eating contaminated food. Listeriosis 
mostly affects people with weakened immune systems, pregnant women and 
newborns. In this paper, a model describing the dynamics of Listeriosis is de-
veloped and analysed using ordinary differential equations. The model was 
analysed both quantitatively and qualitatively for its local and global stability, 
basic reproductive number and parameter contributions to the basic repro-
ductive number to understand the impact of each parameter on the disease 
spread. The Listeriosis model has been extended to include time dependent 
control variables such as treatment of both humans and animals, vaccination 
and education of humans. Pontryagin’s Maximum Principle was introduced 
to obtain the best optimal control strategies required for curbing Listeriosis 
infections. Numerical simulation was performed and the results displayed 
graphically and discussed. Cost effectiveness analysis was conducted using the 
intervention averted ratio (IAR) concepts and it was revealed that the most 
effective intervention strategy is the treatment of infected humans and ani-
mals. 
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1. Introduction 

Listeriosis is an illness caused by the germ Listeria monocytogenes. Generally, 
humans are infected with listeriosis after eating contaminated food. Listeriosis 
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mostly affects people with weakened immune systems, pregnant women and 
newborns. The organism was initially described as a cause of epizootics in veld 
rodents from South Africa (Tiger River disease) by Pier and in 1926 [1]. The or-
ganism remained a laboratory problem until the World War II, when it was offi-
cially known to be the cause of neonatal sepsis and meningitis [2]. Listeria 
monocytogenes is mostly found in the environment and it is responsible for 
meningoencephalitis and stillbirths in a number of animals. The disease usually 
occurs in human in the setting of pregnancy, immunosuppressive and as the in-
dividual ages [3]. 

Listeriosis is the major cause of encephalitis in ruminants. This encephalitis is 
usually referred to as “circling disease” because it occurs in the hindbrain and 
can lead to ataxia in infected animals before death [2]. Listeriosis can or may be 
a potential risk for veterinarians who are normally working with infected ani-
mals. This revelation from veterinary medicine has made epidemiologists specu-
late that foodborne infection could be responsible for human Listeriosis [2] [4]. 

The work done by [5] showed that Listeria monocytogenes is a foodborne 
pathogen that is responsible for the cause of serious invasive illness, mostly in 
certain class of individuals including elderly and immune compromised patients, 
new born children and pregnant women. In a study conducted by [6], Listeria 
monocytogenes has been rated among the most increasing and major 
food-associated pathogen and many countries of the European Union have al-
ways recorded an annual case of human Listeriosis. 

The study conducted by [7] on the incidence and transmission of Listeria 
monocytogenes in ready-to-eat products in retail and food services environ-
ments proved that contamination of food products with Listeria monocytogenes 
can exist or show up at multiple stages before consumption. A research con-
ducted by [8] showed that Listeria monocytogenes is among the foodborne 
pathogens responsible for invasive illness in certain class of people. The findings 
revealed an association between preventive measures and reduction on human 
Listeriosis. Listeriosis is an invasive illness that mainly attacks immune com-
promised individuals, neonates and pregnant women. The commonest sources 
of getting infected with the disease are raw milk and meats [9] [10]. 

A study conducted by [11], revealed that Listeriosis in human are rare but it is 
among the top serious foodborne diseases in susceptible and vulnerable individ-
uals in a population such as the immune compromised and pregnant women. 
The resurgence of foodborne Listeriosis was investigated by [12]. The signifi-
cance of separating the pathogens as a necessary requirement for a correct epi-
demiological research and eradicating transmission cannot be overemphasised. 
Moreover, [13], stated Listeriosis as one of leading causes of death from food-
borne pathogens. The disease continues to spread and cause sporadic outbreaks 
of illness. 

Research on the epidemics of Listeriosis revealed that transmission of Listeria 
monocytogenes in food is responsible for human diseases in the early 1980s [3]. 
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An investigation conducted by [14] showed that Listeria monocytogenes are the 
causative agent of gastrointestinal. The intestinal tract can be the main point of 
entry for Listeria monocytogenes. [15] conducted a research on the identifica-
tion and reservoir of pathogens for effective control of sporadic disease and epi-
demics. The dairy farm has been observed as a potential point and reservoir for 
Listeria monocytogenes. 

In recent times, mathematical models describing the phenomenon and dy-
namics of infectious diseases have played a key role in the control of diseases in 
epidemiology. Some of the models are able to explain the dynamics and mode of 
disease transmission [16] [17]. Complex transmission dynamics of some diseases 
such as periodic orbits, Hopf bifurcations and multiple equilibria have been de-
scribed [10] [18]. 

This is a situational report on Listeriosis outbreaks in South Africa. The data 
in Table 1 gives the outcome of persons with laboratory-confirmed Listeriosis 
by province in South Africa. The names of these provinces have been abbreviat-
ed for convenience purposes. The data is from the National Institute for Com-
municable Diseases (NICB), a division of the National Health Laboratory Ser-
vices (NHLS). This data is between January, 2017 and March, 2018. 

 
Table 1. Outcome of 967 persons with laboratory-confirmed Listeriosis by province in 
South Africa between January, 2017 and March, 2018. 

Province Died Discharged Pending Total 
EC 10 18 22 50 
FS 8 19 7 34 
GA 98 261 213 572 
KZ 11 30 27 68 
LP 7 25 15 47 
MP 10 34 2 46 
NC 3 2 1 6 
NW 7 17 5 29 
WC 29 80 6 115 

Total 183 486 298 967 

 
Figure 1 shows the situational report of dead and discharged individuals af-

fected with Listeriosis in South Africa between January, 2017 and March, 2018. 
 

 
Figure 1. Listeriosis in 9 provinces of South Africa between Jan., 2017 and March, 2018. 
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2. Listeriosis Model Description and Formulation 

The Listeriosis model is divided into two parts, human and vector populations as 
shown in Figure 2. The populations at any time t are also divided into six 
subcompartments with respect to their disease status in the system. Human 
population represented by ( hN ), is divided into subpopulations of Susceptible 
humans ( hS ), Infected humans ( hI ), and Recovered humans ( hR ). 

The total human population is given by: 

( ) ( ) ( ) ( ).h h h hN t S t I t R t= + +                    (1) 

The animal population represented by vN , is divided into subpopulations of 
Susceptible animals ( vS ), Infectious animals ( vI ), and Recovered animals ( vR ). 

The total vector population becomes: 

( ) ( ) ( ) ( ).v v v vN t S t I t R t= + +                    (2) 

 

 
Figure 2. Flow diagram of Listeriosis model. 

 
Table 2 shows the Listeriosis model variables and their interpretations as used 

in the model formulation. 
 

Table 2. Listeriosis model variables and their interpretations. 

Variable Interpretations 

( )hS t  Individuals who are at risk of contracting Listeriosis infections. 

( )hI t  Individuals who are showing symptoms of Listeriosis infections. 

( )hR t  Individuals who have recovered from Listeriosis infections. 

( )vS t  Animals that are at risk of contracting Listeriosis infections. 

( )vI t  Animals that are showing symptoms of Listeriosis infections. 

( )vR t  Animals that have recovered from Listeriosis infections. 

 
Table 3 shows Listeriosis model parameters with their interpretations as used 

in model formulation. 
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Table 3. Listeriosis model parameters and their interpretations. 

Parameter Interpretations 

hΛ  Human recruitment rate. 

β  Human contact rate. 

γ  Human recovery rate. 

hδ  Human Listeriosis induced death rate. 

hσ  Human waning immunity. 

hµ  Human natural death rate. 

vΛ  Animal recruitment rate. 

λ  Animal contact rate. 

α  Animal recovery rate. 

hδ  Animal Listeriosis induced death rate. 

hσ  Animal waning immunity. 

hµ  Animal natural death rate. 

 
Humans can be infected with Listeriosis through ingestion of contami-

nated foods from infected animals, inhalation of spores and contact with in-
fected animals and humans at a rate ( )v hI I β+ . Listeriosis can be acquired 
through contacts with infected animals and humans at a rate ( )v hI I λ+ , 
where, ( )*

m h vI Iβ = + . 
The following system of ordinary differential equations is obtained from the 

model: 

( )

( )

( )

( )

*

*

*

*

d
d

d
d
d
d

d
d

d
d
d
d

h
h h h m h h h

h
m h h h h h

h
h h h h

v
v m v v v v v

v
m v v v v v

v
v v v v

S
R S S

t
I

S I I
t
R

I R
t

S
S S R

t
I

S I I
t
R

I R
t

σ β β µ

β β γ µ δ

γ σ µ

β λ µ σ

β λ α µ δ

α σ µ

Λ + − − 

− − + 

= − + 

= Λ − − +


= − − +


= − +


                   (3) 

3. Listeriosis Model Analysis 

3.1. Positivity and Boundedness of Solutions 

The Listeriosis model is epidemically meaningful if all the solutions with 
non-negative initial data remain non-negative at every point in time. 

Theorem 1 Let  
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( ) ( ) ( ) ( ) ( ) ( )( ){
( ) ( ) ( ) ( ) ( ) ( )( ) }

6, , , , , :

0 , 0 , 0 , 0 , 0 , 0 0 ,

h h h v v v

h h h v v v

S t I t R t S t I t R t

S I R S I R

+Θ = ∈

>



 

then the solution of ( ) ( ) ( ) ( ) ( ) ( )( ){ }, , , , ,h h h v v vS t I t R t S t I t R t  is non-negative 
at all time 0t ≥ . 

This implies that, if ( ) ( ) ( ) ( ) ( ) ( )0 , 0 , 0 , 0 , 0 , 0h h h v v vS I R S I R  are non-negative, 
then ( ) ( ) ( ) ( ) ( ) ( ), , , , ,h h h v v vS t I t R t S t I t R t  are also non-negative for all time 

0t > . 
Human population at any time, t is given by: 

( ) ( ) ( ) ( ).h h h hN t S t I t R t= + +                     (4) 

d d d d
d d d d

h h h hN S I R
t t t t
= + +                        (5) 

( ) ( )d
.

d
h

h h h h h h h h h
N

S I R
t

µ µ δ σ µ= Λ − − + − +             (6) 

In the absence of mortality due to Listeriosis infections:  

d
.

d
h

h h h
N

N
t

µ≤ Λ −  

( )0
e .hh h h th

h
h h

N
N µµ

µ µ
−Λ − Λ

≤ −  
 

                 (7) 

As t →∞ , the population size, h
h

h

N
µ
Λ

→ . 

0 h
h

h

N
µ
Λ

≤ ≤  and ( ) h
h

h

N t
µ
Λ

≤ . 

Also, if ( )0 h
h

h

N
µ
Λ

≤ , then ( ) h
h

h

N t
µ
Λ

≤ . 

( ) 3
3, , : h

h h h h h h h
h

S I R S I R
µ

 Λ
Θ = ∈ + + ≤ 

 
              (8) 

Vector (livestock) population at any time (t) is given by: 

( ) ( ) ( ) ( ).v v v vN t S t I t R t= + +                    (9) 

d d d d
.

d d d d
v v v vN S I R

t t t t
= + +                     (10) 

( )d
.

d
v

v v v v v v
N

S I
t

µ µ δ= Λ − − +                   (11) 

In the absence of mortality due to Listeriosis infections: 

d
.

d
v

v v v
N

N
t

µ≤ Λ −  

( )0
e .vv v v tv

v
v v

N
N µµ

µ µ
−Λ − Λ

≤ −  
 

                (12) 

As t →∞ , the population size, v
v

v

N
µ
Λ

→ . 
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0 v
v

v

N
µ
Λ

≤ ≤  and ( ) v
v

v

N t
µ
Λ

≤ . 

Also, if ( )0 v
v

v

N
µ
Λ

≤ , then ( ) v
v

v

N t
µ
Λ

≤ . 

Therefore, 

( ) 3, , : .v
v v v v v v v

v

S I R S I R
µ+

 Λ
Θ = ∈ + + ≤ 

 
             (13) 

Feasible region is given by: 
3 3

h v + +Θ = Θ ×Θ ⊂ ×                       (14) 

where, 

( ) 3
3, , : h

h h h h h h h
h

S I R S I R
µ

 Λ
Θ = ∈ + + ≤ 

 
              (15) 

and 

( ) 3, , : v
v v v v v v v

v

S I R S I R
µ+

 Λ
Θ = ∈ + + ≤ 

 
              (16) 

where Θ  is positively invariant. 

3.2. Disease-Free Equilibrium 

By setting the system of equations in (3) to zero, we obtain the DFE of the model. 
However, DFE, there are no infections. Hence; 

*

*

0
0

h

h

I
R

= 


= 
 and 

*

*

0
0

v

v

I
R

= 


= 
 

The DFE of the Listeriosis model is given by; 

0 ,0,0, ,0,0h v

h v

ξ
µ µ

 Λ Λ
=  
 

                    (17) 

3.3. Listeriosis Reproductive Number 

Using the “Next Generation Matrix” approach, we determine hvR  and its linear 
stability. Listeriosis reproductive number refers to the number of secondary cas-
es produced on average by one infected animal or person in a completely sus-
ceptible population. This combines the biology of infections with the social and 
behavioural factors influencing contact rate [19] [20] [21]. It is the threshold 
parameter that determines or governs the spread of a disease. 

Considering only the infection classes in the system in (3): 

( ) ( )

( ) ( )

d
d
d
d

h
h v h h h h h

v
h v v v v v v

I
I I S I I

t
I

I I S I I
t

β γ µ δ

λ α µ δ

= + − − + 

= + − − +


             (18) 

Let f be the number of new infection coming into the system and v be the 
number of infections that are leaving the system either by death or birth. 
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( )
( )

h v h

h v v

I I S
f

I I S
β
λ

 +
=  + 

, 
( )
( )

h h h h

v v v v

I I
v

I I
γ µ δ
α µ δ
 + +

=  + + 
. 

The Jacobian matrix of f and v at disease free equilibrium is obtained by F and 
V as follows: 

* *

* * ,h h

v v

S S
F

S S
β β
λ λ
 

=  
 

                       (19) 

( )
( )

0
.

0
h h

v v

V
γ µ δ

α µ δ
 + +

=  + + 
                (20) 

( ) ( ) ( ) ( )

( ) ( )

* *

2 41
* *

h h

h h v v

v v

h h v v

S S
u u

FV
S S

β β
γ µ δ α µ δ

λ λ
γ µ δ α µ δ

−

 
 + + + + + + =  
 

+ + + +  

          (21) 

( ) ( )

( ) ( )

* *

1
* *

h h

h h v v

v v

h h v v

S S

FV
S S

β β
γ µ δ α µ δ

λ λ
γ µ δ α µ δ

−

 
 + + + + =  
 

+ + + +  

              (22) 

Now, computing the eigenvalues of 1FV −  and selecting the dominant eigen-
value. Let A represent the eigenvalue of the matrix. 

( ) ( )

( ) ( )

* *

* *
0

h h

h h v v

v v

h h v v

S S
A

S S
A

β β
γ µ δ α µ δ

λ λ
γ µ δ α µ δ

−
+ + + +

=

−
+ + + +

              (23) 

( ) ( )
* *

2 0v h

v v h h

S S
A A

λ β
α µ δ γ µ δ

    
− + =       + + + +     

           (24) 

1 0A =  and 
( ) ( )

* *

2
v h

v v h h

S S
A

λ β
α µ δ γ µ δ

    
= +       + + + +     

. 

Dominant eigenvalue is 2A . This implies that; 

( ) ( )

* *

.h v
hv

h h v v

S S
R

β λ
γ µ δ α µ δ

   
  = +    + +  + +      

            (25) 

Hence, hvR  is given by; 

( ) ( ) ( ) ( )
.h v

hv
h h h v v v

R
β λ

µ γ µ δ µ α µ δ

  Λ Λ
 = +    + +  + +    

         (26) 

where: 

( ) ( )
h

hq
h h h

R
β

µ γ µ δ
 Λ

=   + + 
, for human population. 
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( )
v

vq
v v v

R
λ

µ α µ δ
Λ

=
 + + 

, for animal population. 

3.4. Local Stability of the Disease Free Equilibrium 

Theorem 2. The disease free equilibrium is locally asymptotically stable if 

0 1R <  and unstable if 0 1R > . 

The DFE was obtained as; ,0,0, ,0,0h v

h vµ µ
 Λ Λ
 
 

. 

The Jacobian matrix of the system is given by: 

( )

( )
( )

( )

* * *

*
1

* * * * *

* * *
2

0 0

0 0 0
0 0 0 0

0 0

0 0 0
0 0 0 0

m h h v h h h

m h h

h h

v h m v v h v

v h m

v v

S I S I

r S I

S I S I

S I r

β β µ β σ β

β β β
γ σ µ

λ β λ µ λ σ

λ β λ
α σ µ

 − + −
 
 
 

− + 
 − − + − 
 
  − + 

 (27) 

where:  
( )* *

1 h v h hr S Iβ µ δ γ= − − −  

( )* *
2 v h v vr S Iλ α µ δ= − + +  

Jacobian matrix at disease free equilibrium: ,0,0, ,0,0h v

h v

DFE
µ µ

 Λ Λ
=  
 

 

( )
( )

( )
( )

0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0

h h

h h

h h

v v

v v

v v

µ σ
µ δ γ

γ σ µ
µ σ

α µ δ
α σ µ

− 
 − + + 
 − +
 
 
 − + +
  − + 

  (28) 

Determining the eigenvalues: 

( )
( )

( )
( )

0 0 0 0
0 0 0 0 0
0 0 0 0

0
0 0 0 0
0 0 0 0 0
0 0 0 0

h h

h h

h h

v v

v v

v v

µ σ
µ δ γ

γ σ µ
µ σ

α µ δ
α σ µ

−
− + +

− +
=

− + +
− +

 (29) 

The eigenvalues are as follows: 

( )

v

h

v v

µ
µ

µ δ

−
− 
− + 

, 
( )

( )
( )

h h

v v

h h

µ δ
α µ δ
γ µ δ

− +
− + + 
− + + 

 

All eigenvalues are negative. This implies that disease free equilibrium is lo-
cally asymptotically stable [22] [23] [24]. 
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3.5. Global Stability of the Disease-Free Equilibrium 

Theorem 3. If 1hvR ≤ , the disease-free equilibrium is globally asymptotically 
stable in the interior of Φ . 

Proof: By considering the Lyapunov function: 

( ) ( ) ( )v v h h h vP t I Iα µ δ γ µ δ= + + + + +               (30) 

Computing the time derivative of P along the solutions of the system in (3); 

( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )

d d d
d d d

h v
v v h h

v v h h v h h v

h h v h v v v v

P t I I
t t t

S I I I

S I I I

α µ δ γ µ δ

α µ δ β γ µ δ

γ µ δ λ α µ δ

= + + + + +

= + + + − + +

 + + + + − + + 

 

( ) ( )

( )( )

( ) ( )

( ) ( ) ( )

( ) ( )( )

h h h v
v v v v

h h

v v h h h

v
h h h

v v

v
v h h h h

v v

v h v h v v

I I

I

I

I I

I I

β β
α µ δ α µ δ

µ µ

α µ δ γ µ δ

λ
γ µ δ

µ τ µ

λ
γ µ δ γ µ δ

µ τ µ

γ µ δ γ µ δ α µ δ

Λ Λ
≤ + + + + +

− + + + +

 Λ
+ + +   + 

 Λ
+ + + + + +  + 
+ + + − + + + +

 

( )( )( )
( )( )( )

( )( )( )( )

1

1

1

h h h v v hv

v h h v v hv

h v h h v v hv

I R

I R

I I R

γ µ δ α µ δ

γ µ δ α µ δ

γ µ δ α µ δ

≤ − + + + + −

− + + + + −

= − + + + + + −

            (31) 

The time derivative of P along the solutions of the system of differential equa-
tions in (3): 

( )d
0

d
P t

t
 

≤ 
 

, if and only if 0hvR <  

( )d
1

d
P t

t
 

= 
 

, if and only if 0h vI I+ =  or 1hvR = . 

Highest compact invariant set in 
( )d

, , , , 0
dh h v

P t
S I I

t
  ∈Φ = 
  

, if 1hvR ≤  is the 

singleton 0ξ . 

Hence, 0ξ  globally asymptotically stable in Φ , by LaSalle’s invariant prin-
ciple [10] [25]. 

3.6. Endemic Equilibrium 

Consider the system in (3), at equilibrium, 
* 0.m h vI Iβ = + =  

This corresponds to the DFE or the relation: 
*3 *2 *

0 1 2 3 0.m m mβ β βΦ +Φ +Φ +Φ =                 (32) 

https://doi.org/10.4236/am.2020.117048


S. Osman et al. 
 

 
DOI: 10.4236/am.2020.117048 722 Applied Mathematics 
 

Let 

( ) ( ) ( )* 1
0 1 2 31, 1 , 1 , 1 .w f hv

Q TR R R
C C

χΦ = Φ = − Φ = − Φ = −  

where: 

( ) ( )
( ) ( ) ( ) ( )

( )( ) ( ) ( )
( ) ( ) ( )( )( )

2

2

2
1

2 3

* 1 2

1 22

*

1

,

,

,

,

,

,

h v
hv hq vq

h h h v v

v v v v v v h h h h h h

h h h h v v v v v v

h h h h h h v v v v v

hq vq
w

R R R

C

G

G F

Q G G
G R G R

R
Q

F

β λ
µ γ δ µ α δ µ

βλ µ α δ µ µ δ σ µ γ δ µ µ δ σ

λ γ δ µ µ σ µ α δ µ µ δ σ

βλ µ γ δ µ µ δ σ µ δ τ µ α δ µ

λ

Λ Λ
= + = +

+ + + +

   = + + + + + + + +   
 = + + + + + + + 

 = + + + + + + + + 
= +

+
=

= ( )( ) ( ) ( )
( )( ) ( ) ( )
( ) ( )

( )( ) ( ) ( )
( ) ( ) ( )( )

2

3

1

,

,

,

,

h h h h h v v v v v v

h v v v v h h h h h h

v v v v v v v

h h h h h v v v v v v

v v v h v v h h v v v v

h v v

F

F

T

µ µ σ γ δ µ µ α δ µ µ δ σ

βµ α δ µ µ σ µ γ δ µ µ δ σ

µ α δ µ µ δ σ αµ

λ µ µ σ γ δ µ µ α δ µ µ δ σ

µ σ β αµ σ µ σ α δ µ µ σ

µ µ µ
χ

 + + + + + + + 
 = + + + + + + + 

  = + + + + +  
  = + + + + + + +  
 − Λ + + Λ + + + + + 

=
( )( )( )( )

( ) ( ) ( ) ( )2

2 2
1 12

1

,

,

v h h v v h h

v v v v v v h h h h h h

hq vq
f

F R F R
R

T

σ µ σ α δ µ γ δ µ
βλ µ α δ µ µ δ σ µ γ δ µ µ δ σ

























+ + + + + + 
   + + + + + + + +    
+ =


(33)

 

 
Table 4. Possible positive real roots of ( )*

mP β  for 1hvR >  and 1hvR < . 

Cases 0Φ  1Φ  2Φ  3Φ  hvR  No. of sign 
change 

No. of positive 
real roots 

1 + + + + 1hvR <  0 0 

2 + + + − 1hvR >  1 1 

3 + + − + 1hvR <  2 0.2 

4 + + − − 1hvR >  1 1 

5 + − − + 1hvR <  2 0.2 

6 + − − − 1hvR >  1 1 

7 + − + + 1hvR <  2 0.2 

8 + − + − 1hvR >  3 1.3 

 
Remark. The system in Equation (3) is said to have an EE, ( *E ), if 1hvR > . 

This is satisfied by cases (2, 4, 6) as shown in Table 4. The system in (3) can have 
more than one EE point if 1hvR > . This is satisfied by case (8) as shown in Table 
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4. The system in (3), has more than one equilibrium point if 1hvR > , as satisfied 
by case (3, 5, 7). 

3.7. Global Stability of Endemic Equilibrium 

In this section, the global behaviour of the system in (3) is analysed. 
Theorem 4. The system of differential equations in Equation (3), is said to 

have a unique endemic equilibrium if 1hvR > , and it is globally asymptotically 
stable. 

The EE can only exist if and only if 1hvR > . So by letting 1hvR > , it implies 
that the EE exists. 
 

Considering the Lyapunov function defined by: 

( )* * * * * *

* *
* * * *

* *
* * * *

* *
* * * *

, , ,

ln ln

ln ln

ln ln

h h h v v v

h h
h h h h h h

h h

h v
h h h v v v

h v

v v
v v v v v v

v v

L S I R S I R

S IS S S I I I
S I

R SR R R S S S
R S

I RI I I R R R
I R

   
= − − + − −   
   
   

+ − − + − −   
   
   

+ − − + − −   
   

           (34) 

Computing the derivative of L along the solution of the system in (3) directly; 

* * *

* * *

d d dd
d d d d

d d d
d d d

h h h h h h h h h

h h h

v v v v v v v v v

v v v

S S S I I I R R RL
t S t I t R t

S S S I I I R R R
S t I t R t

     − − −
= + +     
     

     − − −
+ + +     
     

        (35) 

Hence: 

( )

( )

( )

*
*

*
*

*

*
*

*
*

*

d
d

h h
h h h m h h h

h

h h
m h h h h h

h

h h
h h h h

h

v v
v m v v v v v

v

v v
m v v v v v

v

v v

v

S SL R S S
t S

I I S I I
I

R R I R
R

S S S S R
S

I I S I I
I

R R
R

σ β β µ

β β γ µ δ

γ σ µ

β λ µ σ

β λ α µ δ

α

 −  = Λ + − −   
 

 −  + − − +   
 

 −
 + − +   

 

 −  + Λ − − +   
 

 −  + − − +   
 

 −
+  
 

( )v v v vI Rσ µ − + 

           (36) 

This can also be written as: 
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( )

( )

* *
* * * *

* *
* * * *

*
* * *

* *
* * * *

d
d

h h h h h
h h h m h h h m h h h

h h

m h h
m h h h h h h h h h

h

h h h
h h h h h h h v m v v v

h

v v v v v
v v m v v v m v v

v v

S R SL R S S S S
t S S

S I
S I I I I I I

I

I R
R R R S S

R

S R S
R S S S I

S S

σ
σ β β µ β β µ

β
β β γ µ δ γ µ δ γ

γ
σ µ σ µ β λ µ

σ
σ β λ µ β λ α µ

Λ
= Λ + − − − + − +

+ − − + − + + + +

− + − + + + Λ − −

Λ
+ − + − + + − −

* *
* * *

*
* *

v v

m v v
v v v v v v v v v v v v

v

v v
v v v v

v

I

S I
I I I I I R R

I

I R
R R

R

β
δ α µ δ α σ µ

α
σ µ

− − + + + + − −

− + +

  (37) 

Given:  

d
d
L M N
t
= −                        (38) 

where M and N are positive and negative respectively. 
Therefore: 

* * * * *

* * * * * *

* * * * *

h h h h h m h h h h h

h h h h v v v m v v v m v

v v v v v v v v v v

M R S S I I I I

R R R S S S

I I I I R R

σ µ β β γ µ δ γ

σ µ σ β λ µ β λ

α µ δ α σ µ

= Λ + + + + + + +

+ + + Λ + + + +

+ + + + + +

       (39) 

and 

( )

( )

* * * *

* *
*

* * *

*

h h h h h m h h
h h h h h h

h h h

h h h v v
h h h m v v v

h v

v v v m v v
v v v v v

v v

v v
v v v v

v

S R S S IN S I I
S S I

I R SR S S
R S

R S S II I I
S I

I RR R
R

σ βµ γ µ δ

γσ µ β λ µ

σ βα µ δ

ασ µ

Λ
= + + + + + +

Λ
+ + + + + +

+ + + + +

+ + +

       (40) 

Imposing the condition that if M N< , then the derivative of the Lyapunov 
function with respect to time is less than or equal to zero. 

If M N< , then d 0
d
L
t
≤ . 

But d 0
d
L
t
= , if and only if: 

* * * * * *, , , , ,h h h h h h v v v v v vS S I I R R S S I I R R= = = = = =  

The largest invariant set in: 

( )* * * * * * d, , , : 0
dh h h v v v
LS I R S I R
t

 ∈Φ = 
 

                (41) 

is singleton *E , where *E  is the EE. 
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Since all the model parameters are assumed to be non-negative, then the de-
rivative of the Lyapunov function is less than or equal to one, if hvR  of the sys-
tem in (3) is greater than one, ( 1hvR > ). Hence by LaSalle’s Invariant Principle, 
as t approaches infinity, all the solution of the system in (3) approaches the EE 
point if 1hvR > , [25] [26]. Hence, EE is globally asymptotically stable in the in-
variant set if M N< . 

4. Sensitivity Analysis of Rhv 

In this section, we determine the robustness of a model to parameter values. This 
concept identifies parameters with high impact on hvR . Using the approach in 
[20] [27] [28], we determine the sensitivity indices of hvR , with respect to pa-
rameter values in the model. 

In biological models, the value of hvR  determines the tendency of the disease 
to spread within the population. Considering all the parameters of hvR , we 
compute the sensitivity of hvR  to each parameter and are represented in Table 
5. A positive sensitivity index implies that the parameter contributes to the rise 
in the basic reproduction number. 

 
Table 5. Sensitivity indices of parameters to hvR . 

Parameter Description Sensitivity index (+ve/−ve) 

hΛ  Human recruitment rate. +ve 

vΛ  Animal recruitment rate. +ve 

hµ  Human death rate. −ve 

vµ  Animal death rate. −ve 

hδ  Human Listeriosis induced death rate. −ve 

vδ  Animal Listeriosis induced death rate. −ve 

α  Animal recovery rate. −ve 

β  Human transmission rate. +ve 

γ  Human rate of recovery. −ve 

λ  Animal transmission rate. +ve 

5. Listeriosis Model Extension to Optimal Control 

In this section, we carried out an analysis of optimal control to determine the 
impact of all intervention of the control schemes. This is derived by incorporat-
ing the following controls into the model in (3) and the introduction of an ob-
jective functional that seeks to minimise: ( )1 2 3, ,u u u , where 1u  denotes pre-
vention of hS . 2u  denotes treatment of hI  and 3u  denotes treatment of vI . 
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By introducing all the controls, the system in model (3) becomes: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

1

1 2

2

1

1

d 1
d

d 1
d

d
d

d 1
d

d 1
d

d
d

h
h h v h h h h

h
v h h h h h h

h
h h h h

v
v v h v v v v v

v
v h v v v v v

v
v v v v

S u I I S S
t

I u I I S u I I
t

R u I R
t

S u I I S S R
t

I u I I S I I
t

R I R
t

σ β µ

β γ δ µ

γ σ µ

λ µ σ

λ α δ µ

α σ µ

= Λ + − − + − 



= − + − + − + 


= + − +


= Λ − − + − + 



= − + − − + 


= − +


         (42) 

In epidemiological models, the essence of optimal control analysis is to mini-
mise the spread or number of infections and the cost of treatment, preventive 
measures and vaccination controls. The objective functional that can be used to 
achieve this is given by: 

( ) ( )1 2 3

2 2 2
1 2 3 1 4 2 5 3, , 0

min d .ft
v hu u uJ B I B I B u B u B u t= + + + +∫          (43) 

subject to the system of differential equations in (3). 
Where; 1 2 3 4 5, , , ,B B B B B  are weight constants to aid balance terms in integral 

so as to avoid the dominance of one another. 1 2,h vB I B I , are costs associated 
with hI  and vI  respectively. 2

3 1B u , is cost associated with prevention of hS . 
2

4 2B u , is costs of treatment of hI  and 2
5 3B u , is cost associated with treatment 

of vI . Where, ft , is period of intervention. Hence, ( )1 2,h vB I B I  denotes a lin-
ear function for cost associated with infections and ( )2 2 2

3 1 4 2 5 3, ,B u B u B u , denotes 
a quadratic function for the cost associated with controls [29] [30] [31]. 

Control efforts of model in (3) are by linear combination of ( )2
iu t , ( )1,2i = . 

It is assumed to be a quadratic in nature by the assumption that cost is generally 
non-linear in nature. Thus, the aim is to minimise the number of infection and 
reduce cost of treatment. The objective is to find the optimal functions 

( ) ( ) ( )( )* * *
1 2 3, ,u t u t u t  such that; 

( ) ( ) ( )( )
( ) ( )

1 2 3

* * *
1 2 3

1 2 3, ,

, ,

min , ,u u u

J u t u t u t

J u u u= 
                    (44) 

where: ( ){ }: ,0 1, 0, , 1, 2,3i fu u u t t t i = ≤ ≤ ∈ =   denotes the control set. 

Pontryagin’s Maximum Principle 

This principle provides the necessary conditions that an optimal must satisfy. It 
changes the system in (3) and Equation (43) into minimisation problem 
point-wise Hamiltonian (H), with respect to ( )1 2 3, ,u u u . 
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( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ){ }

2 2 2
1 2 3 1 4 2 5 3

1

1 2

2

1

1
h

h

h

v h

S h h v h h h h

I v h h h h h h

R h h h h

H B I B I B u B u B u

M u I I S S

M u I I S u I I

M u I R

σ β µ

β γ δ µ

γ σ µ

= + + + +

+ Λ + − − + −

+ − + − + − +

+ + − +

 

( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ){ }

1

1 3

3

1

1
v

v

v

S v v h v v v v v

I v h v v v v v

R v v v v

M u I I S S R

M u I I S u I I

M u I R

λ µ σ

λ α δ µ

α σ µ

+ Λ − − + − +

+ − + − + − +

+ + − +

      (45) 

where: , , , , ,
h h h v v vS I R S I RM M M M M M  are referred to as the adjoint variables. 

The adjoint (co-state) variables are solutions of adjoint systems below: 

( )( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( ) ( )
( )

( ) ( )( )

( ) ( ) ( ) ( )

1

2 1 2

1

1

1 1 1

d
1

d
d

1
d

1

d
d

d
1

d
d

1 1
d

h
h h h

h
h h h h

h v v v v

h
h h

v
v v v

v
h h v v

S
v h S I h S

I
h S I I R

h h I v S I v V I

R
h S h h R

S
v h S I v S

I
h S I v S I

v

M
u I I M M M

t
M

B u S M M u M M
t

M u S M M b V M M

M
M M

t
M

u I I M M M
t

M
B u S M M u S M M

t

β µ

β γ

µ δ λ λ

σ σ µ

λ µ

β λ

µ δ

= − + − +

= − + − − + + −

+ + + − − + −

= − + +

= − + − +

= − + − − + − −

+ +( ) ( )( )
( )

4

d
d

v v v

v
v v

v I I R

R
h S v v R

M u M M

M
M M

t

α

σ σ µ




















+ + − 



= − + + 

 (46) 

This satisfies the transversality condition: 

( ) ( ) ( ) ( ) ( ) ( ) 0.
h h h v v vS f I f R f S f I f R fM t M t M t M t M t M t= = = = = =   (47) 

By combining the Pontryagin’s Maximum Principle and the existence of the 
optimal control [32] [33] [34]. 

Theorem 5. The optimal control vector ( ) ( ) ( )( )* * *
1 2 3, ,u t u t u t  that maximises 

the objective function (J) over  , given by: 

( )( ) ( )( )

( )
( )

( )
( )

* *
*
1

3 3

*
*
2

4

*
*
3

5

( ) max 0,min 1,
2 2

max 0,min 1,
2

max 0,min 1,
2

I S v h h I S v h vh h v v

I R hh h

I R vv v

M M I I S M M I I S
u t

B B

M M I
u t

B

M M I
u t

B

β λ   − + − +  = +     


   −   =         
  −   =         

(48) 
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where: , , , , ,
h h h v v vS I R S I RM M M M M M  are the solutions of Equation (46) and 

(47). 
Proof. The existence of an optimal control is as a result the convexity of the 

integral of J with respect to 1 2,u u  and 3u , the Lipschitz property of the state 
system with respect to the state variables and a priori Boundedness of the state 
solutions [33]. The system in (46) was obtained by differentiating the Hamilto-
nian function and evaluated at optimal control. However, by equating the deriv-
atives of the Hamiltonian with respect to the controls to zero, the following are 
obtained: 

( )( ) ( )( )

( )

( )

* *

1 1
3 3

*

2 2
4

*

3 3
5

:
2 2

:
2

:
2

I S v h h I S v h vh h v v

I R hh h

I R vv v

M M I I S M M I I S
u u

B B

M M I
u u

B

M M I
u u

B

β λ   − + − +  = = +      


   −   = =          
  −   = =          







 

In conclusion, by standard control arguments involving bounds on controls: 
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1 1 1
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2
*
2 2 2
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3
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3 3 3
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0, if 0
if 0 1

1 if 1

0, if 0
if 0 1

1 if 1

0, if 0
if 0 1

1 if 1

u
u u u

u

u
u u u

u

u
u u u

u

≤
 = < < 
 ≥ 

≤ 
 = < < 
 ≥ 

≤
= < < 

 ≥ 



 





 





 



                    (49) 

The system in (48) leads to system in (47) in Theorem (5). The optimal con-
trol uniqueness for small ft  was gotten as a result of the Lipschitz structure of 
system of equations and the priori boundedness of the state solutions and 
adjoint functions. Existence of optimal control uniqueness is in line with 
uniqueness of optimal system, that comprises of Equations (3), (46), (47) and 
(48) [20] [22]. 

6. Numerical Results 

In this section, the optimal system was solved using Range-Kutta fourth order 
scheme. This was done by solving the state systems, adjoints equations and the 
transversality conditions. 

This is a two point boundary value problem and it has two separate boundary 
conditions at times 0t =  and ft t= . The objective is to solve for the value, 

120ft =  days. This was chosen on the basis of the assumption that a period of 
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four month is enough for the disease spread. 
Numerical simulation was done by solving the state equations of the model in 

Figure 2 using Range-Kutta fourth order scheme by making a guess on controls 
over a simulated time. 

Secondly, the use of current iteration of state equations of Figure 2, the 
adjoint equations and the transversality conditions by a backward method. The-
se controls are then updated by use of convex combination of controls in the 
previous iterations and values from characterizations of the system. 

This process is repeated and iteration is stopped when values of unknowns at 
the previous iteration are close to those at present iteration [35]. 

The following combinations of optimal control were considered and the best 
three most effective selected: Treatment and prevention of humans, treatment of 
animals and prevention of humans, treatment of animals and humans, preven-
tion of humans and treatment of animals, treatment and prevention of humans, 
Prevention of humans only, treatment animals only and treatment humans only. 

Table 6 shows values of parameters and variables used in the simulation of 
the model in Figure 2. Some of these parameters were assumed and others taken 
from published data. 

 
Table 6. Variable and parameter values of Anthrax model. 

Parameter Value Reference 

hµ  0.004 assumed 

hδ  0.2 [31] 

vΛ  0.0273 assumed 

hΛ  0.1 assumed 

vµ  0.002 assumed 

vδ  0.30 [31] 

α  0.002 assumed 

β  0.200 assumed 

λ  0.270 [31] 

b 0.005 assumed 

6.1. Strategy 1: Optimal Prevention of Humans and Treatment of 
Animals 

Objective functional is optimised by using the prevention control on humans, 
( 1u ) and the treatment control on animals (vector), ( 3u ) by setting treatment 
control on humans to zero. Figure 3 shows significant reduction in the number 
of infected animals (vectors), ( vI ) and infected humans, ( hI ). Figure 4 shows 
the dynamics of recovery. The epidemiological implication; the spread of 
Listeriosis can be tackled effectively through treatment of animals and preven-
tion of humans. Hence, there should be effective prevention of humans as well as 
treatment of animals (vectors) in the system. 
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Figure 3. Simulation of Listeriosis model: optimal prevention of humans and treatment 
of animals. 
 

 
Figure 4. Simulation of Listeriosis model: optimal treatment of animals and prevention of 
humans. 

6.2. Strategy 2: Optimal Prevention of Humans and Treatment of 
Humans 

The treatment control, ( 2u ) of infected humans and prevention of humans, ( 1u ) 
were used in optimising the objective functional and setting ( 3u ) to zero. Figure 
5 shows that this strategy has caused a substantial reduction in the number of 
infected animals, ( vI ) and infected humans, ( hI ) drastically. Figure 6 showed 
the dynamics of the recovered population. In order to achieve this optimal 
strategy, there should be more treatment of infected humans and prevention of 
susceptible humans. 
 

 
Figure 5. Optimal treatment of infected humans and prevention of susceptible humans. 
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Figure 6. Optimal treatment of infected humans and prevention of susceptible humans. 

6.3. Strategy 3: Optimal Treatment of Animals and Treatment of 
Humans 

The objective functional was optimised by using ( 3u ) and ( 2u ) and setting the 
prevention control on humans, ( 1u ) to zero. This strategy resulted in reduction 
of both infected animals, ( vI ) and humans, ( hI ) as indicated in Figure 7. Bio-
logical implication; Listeriosis can be controlled by frequent treatment of ani-
mals and humans simultaneously. Moreover, Figure 8 shows the dynamics of 
the recovered populations. 
 

 
Figure 7. Simulation of model: optimal treatment of infected animals and treatment of 
humans. 

 

 
Figure 8. Simulation of model: optimal treatment of animals and treatment of humans. 
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7. Analysis of Cost Effectiveness 

In this section, we conduct an analysis of cost effectiveness to justify the benefits 
associated with treatment of humans, prevention of humans and treatment of 
animals. We consider infection averted ratio (IAR) approach and incremental 
cost effectiveness ratio (ICER) approach. 

7.1. Intervention Averted Ratio (IAR) 

This is the ratio of number of infection averted to the number of recovered. In-
fection averted refers to the difference in infected population without control to 
infected population with control. The ratio for each strategy was computed by 
using the parameter values of the model. Strategy with highest ratio is consid-
ered the most effective intervention to be implemented. 

=
Number of infection avertedIAR

Number of recovered
               (50) 

Table 7 reveals (IAR) for each intervention strategy. Strategy 3 has highest ra-
tio as shown in Table 7 and Figure 9 and therefore considered the best inter-
vention to be implemented in combating the infection in the system. Strategy 2 
has the second highest ratio and should be a priority in a situation where two al-
ternative strategies were to be considered. We can conclude that treatment of 
infected humans and animals should be a priority intervention in fighting the 
spread of Listeriosis infection. This can be achieved by educating farmers on the 
need to report any sign of Listeriosis infection for treatment. Health authorities 
should as well educate the public on the need to treat any suspected Listeriosis 
infection. Moreover, since prevention and treatment control on humans has the 
second highest ratio, there should be campaign on prevention and treatment of 
Listeriosis on humans. 
 

 
Figure 9. A plot of strategies against infection averted ratio. 
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Table 7. Infection averted ratio. 

Strategy Total infection averted Infection Averted Ratio (IAR) 

1 75.3510 2.5117 

2 240.5533 8.9094 

3 216.1587 9.8182 

7.2. Incremental Cost Effectiveness Ratio (ICER) 

It can be both labour and cost intensive to eradicate a disease in an environment. 
It is therefore important to consider the best intervention strategy to be imple-
mented. This calls for cost effectiveness analysis to determine the most interven-
tion approach to be used. We can obtain this by comparing the various costs and 
benefits of these interventions. The analysis of ICER assumes that the costs of 
the various interventions are proportional to the number of controls employed. 
Competing strategies are usually compared incrementally by comparing one 
strategy to the next less effective alternative. The total cost function for each 
strategy is computed from the various costs functions. 

=
Differences in averted cost between strategiesICER

Differeces in total infection averted between strategies
 

Generally, ICER is applied by first arranging all strategies in increasing order 
of infection averted as shown in Table 8. 
 
Table 8. Total infected averted and total cost. 

Strategy Total infection averted Total cost 

1 75.3510 2621.2517 

3 216.1587 3115.0574 

2 240.5533 3298.0511 

 
ICER is implemented by simulating the model with all the interventions or 

strategies. The control strategies are then ranked in increasing order of effec-
tiveness depending on infections averted. 

Considering strategy A as the base line and comparing ICER (1) and ICER (3); 

= =
2621.2517ICER (1) 34.7872

75.3510
 

and 

−
= =

−
3115.0574 2621.2517ICER (3) 3.5070

216.1587 75.3510
 

Comparing the ICER for 1 and 3, we reject intervention strategy 1 since it is 
most expensive to implement as compared to strategy 3. It saves 3.5070 more 
than strategy 1. 
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Now comparing strategy 3 and 2 by computing the ICER (3) and ICER (2); 

= =
3115.0574ICER (3) 14.4110
216.1587

 

and 
−

= =
−

3298.0511 3115.0574ICER (2) 7.5014
240.5533 216.1587

 

Comparing ICER (2) and ICER (3), we reject intervention strategy 3 since it is 
most expensive to implement as compared to strategy 2. It saves 7.5014 more 
than strategy 3. In conclusion, the most expensive intervention strategy to im-
plement is the prevention of humans and treatment of infected animals, strategy 
1. However, the most effective and less cost strategy to be implemented is the 
prevention of susceptible humans and treatment of infected humans, strategy 2. 

8. Conclusions 

It was established that the model exhibited existence of multiple endemic 
equilibria. The epidemiological implications are that, effective control of 
Listeriosis can be achieved if hvR , is less than unity. 

We then carried out the sensitivity analysis of the basic reproduction number, 
( hvR ). This analysis showed that, increasing livestock recovery rate, would cause 
a decrease in the basic reproduction number, ( hvR ). Moreover, decreasing live-
stock recovery rate, would increase the basic reproductive number, ( hvR ). Also, 
increasing human transmission rate and livestock transmission rate, would cause 
an increase in the basic reproduction number, ( hvR ) and decreasing human 
transmission rate and livestock transmission rate, would cause a corresponding 
decrease in the basic reproduction number, hvR . 

The rate of Listeriosis infection can be reduced by ensuring that the rate of in-
teraction between susceptible humans and infected animals, (β) is minimised. 
Moreover, the spread of Listeriosis infection can be curbed by reducing the rate 
of interaction between susceptible animals and contact with infected animals. 

The qualitative analysis of optimal control was performed and the necessary 
conditions for the optimality of Listeriosis disease were analysed. The three most 
effective strategies according to our model are as follows: the combination of 
treatment of infected vectors, ( vI ) and treatment of infected humans, ( hI ), the 
combination of prevention of susceptible humans, ( hS ) and the treatment of 
infected animals, ( vI ) and the combination of prevention of susceptible humans, 
( vS ) and the treatment of infected humans, ( vI ). 

The best and most effective intervention approach is strategy 3 as shown in 
Table 7. Strategy 2 has the second highest ratio and should be a priority in a sit-
uation where two alternative strategies were to be considered. We can conclude 
that the treatment of infected humans and animals should be a priority interven-
tion in fighting the spread of Listeriosis infection. Alternatively, by implement-
ing the incremental cost effectiveness ratio, the best intervention strategy to be 
considered is strategy 2. 
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