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Abstract 
In this paper, we focus on a new approach based on new generalized hesitant 
fuzzy hybrid weighted aggregation operators, in which the evaluation infor-
mation provided by decision makers is expressed in hesitant fuzzy elements 
(HFEs) and the information about attribute weights and aggregation-associated 
vector is unknown. More explicitly, some new generalized hesitant fuzzy hy-
brid weighted aggregation operators are proposed, such as the new genera-
lized hesitant fuzzy hybrid weighted averaging (NGHFHWA) operator and 
the new generalized hesitant fuzzy hybrid weighted geometric (NGHFHWG) 
operator. Some desirable properties and the relationships between them are 
discussed. Then, a new algorithm for hesitant fuzzy multi-attribute decision 
making (HF-MADM) problems with unknown weight information is intro-
duced. Further, a practical example is used to illustrate the detailed imple-
mentation process of the proposed approach. A sensitivity analysis of the de-
cision results is analyzed with different parameters. Finally, comparative stu-
dies are given to verify the advantages of our method. 
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1. Introduction 

Hesitant fuzzy multiple attribute decision making (HF-MADM) can be charac-
terized as a process of choosing or selecting or ranking a finite number of alter-
natives to attain the best one(s), in which alternative evaluations are expressed in 
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HFEs by decision makers. It has been successfully applied in various areas, such 
as risk investment [1], pattern recognition [2], assessing the risk of rockbursting 
[3], energy storage technologies [4]. Due to the increasing complexity of the de-
cision making problems, Torra and Narukawa [5] [6] introduced the concept of 
hesitant fuzzy sets (HFSs), which permit the membership degree of an element 
to a set of several possible values between 0 and 1. The concept of HFSs is more 
objective and effective in expressing decision makers’ inherent hesitancy. Many 
theoretical studies on HF-MADM problems have been put forward in recent 
years. Xu and Xia [7] [8], Li et al. [9] investigated a variety of distance measures 
for HFSs. Chen et al. [10] derived some correlation coefficient formulas for HFSs 
and applied them to clustering analysis. Sun et al. [11] constructed the innova-
tive TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) 
based on hesitant fuzzy correlation coefficient. Best worst method (BWM) was 
extended to hesitant fuzzy environment by Mi and Liao [12]. In addition to the 
aforementioned research for hesitant fuzzy decision making methods, Xu and 
Zhang [13] developed a novel approach based on TOPSIS for solving HF-MADM 
problems, in which the information about attribute weights was obtained by the 
maximizing deviation method. Extended hesitant fuzzy set using the Cartesian 
product of HFSs was re-defined by Farhadinia [14], and a HF-MADM method 
with unknown weight information was proposed. 

Aggregation operators are widely used in HF-MADM problems, which can 
calculate the actual aggregation values of the alternatives. Xia et al. [15] [16] gave 
an intensive study on hesitant fuzzy aggregation techniques. They introduced a 
series of hesitant fuzzy aggregation operators, such as hesitant fuzzy weighted 
averaging (HFWA) operator, hesitant fuzzy hybrid averaging (HFHA) operator, 
hesitant fuzzy hybrid geometric (HFHG) operator, and utilized these operators 
to develop an approach to solve decision making problems. Some new hesitant 
fuzzy hybrid weighted aggregation operators and extended hesitant fuzzy hybrid 
weighted aggregation operators were developed in [17] [18], the properties of 
these operators were investigated. Prioritized operators, power aggregation op-
erators, Bonferroni mean, Heronian mean, Choquet integral aggregation opera-
tors were extended into hesitant fuzzy environment by Wei [19], Jin et al. [20], 
Zhang [21], Zhu et al. [22] [23], Yu [24], Yu et al. [25], Liao et al. [26], respec-
tively. Qin et al. [27] developed some hesitant fuzzy aggregation operators based 
on Frank triangular norms. So far, the research on hesitant fuzzy aggregation 
operators has been well explored. 

It is noted that the weight vector of these hesitant fuzzy aggregation operators 
should play an important part of decision making problems. Then, an impor-
tant issue related to the hesitant fuzzy aggregation operators is to choose an 
optimal method to gain their associated weights. For example, Xu and Zhang 
[13] determined objective attribute weights by maximizing deviation method 
under hesitant fuzzy environment. Xu [28] obtained the OWA weights by 
normal distribution based method. Zhou [29] proposed the accurate weighted 
method to calculate the weights of HFEs and aggregation operator. Motivated 
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by the above ideas, the purpose of this paper is to give a new algorithm to deal 
with HF-MADM problems based on new generalized hesitant fuzzy hybrid 
weighted aggregation operators, in which aggregation-associated weight vector 
and attribute weights are unknown. The main advantages of our approach can 
be summarized as follows: 

1) The new generalized hesitant fuzzy hybrid weighted aggregation operators 
satisfy some desirable properties, including the properties of idempotency and 
boundedness. 

2) The new algorithm can deal with HF-MADM problems with unknown 
weights information. Especially, aggregation-associated weight vector and attribute 
weights are calculated by the known HFEs. 

This paper is organized as follows. In Section 2, we review some basic con-
cepts of HFSs, the distance measure of HFEs, the generalized hesitant fuzzy hy-
brid averaging (GHFHA) operator, the generalized hesitant fuzzy hybrid geo-
metric (GHFHG) operator, the generalized hesitant fuzzy hybrid weighted aver-
aging (GHFHWA) operator and the generalized hesitant fuzzy hybrid weighted 
geometric (GHFHWG) operator. Section 3 proposes some new generalized he-
sitant fuzzy hybrid weighted aggregation operators, investigates properties and 
relationships of these operators. Section 4 presents a new algorithm to imple-
ment the proposed operators to MADM, in which aggregation-associated weight 
vector and attribute weights are unknown. In Section 5, a practical example is 
illustrated to verify the effectiveness and practicality of our approach. In Section 
6, comparative studies are given to clarify the advantages of our proposed me-
thod. Some conclusions and future works are made in Section 7.  

2. Preliminaries 

Definition 1. ([15]) Let X be a fixed set. A hesitant fuzzy set (HFS) A on X is a 
function [ ]( ): 0,1h X →  , where [ ]( )0,1  is a family of all subsets of [ ]0,1 . 
A HFS can be represented as the following mathematical symbol: 

( ){ }, |AA x h x x X= ∈  

where ( )Ah x  is a set of values in [ ]0,1 , denoting the possible membership de-
grees of the element x X∈  to a set A. For convenience, we call ( )Ah x  a he-
sitant fuzzy element (HFE), denoted by h. 

In many decision making problems, the memberships of HFSs are nonempty 
and finite subsets of [ ]0,1 , which are called typical hesitant fuzzy sets (THFSs) 
[30]. In this paper, we utilize THFSs to deal with decision making problems. 
Actually, many aforementioned research, such as [7]-[13], assumed explicitly or 
implicitly that the memberships of HFSs are nonempty and finite subsets of 
[ ]0,1 . So without distinction, we still use HFS. It is customary to assume that all  
the elements in each HFE { }

h
h

γ
γ

∈

=


 are arranged in ascending order, i.e., 

( ) ( ) ( ){ } ( ){ }1 2

1
, , ,

l
l i

i
h γ γ γ γ

=

= =



, where ( ) ( ) ( )1 2 lγ γ γ< < <  and l  is the 
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number of elements in h.  

Definition 2. ([15] [31]) For a HFE ( ){ }
1

l
i

i
h γ

=

=


, the score function of h is 

defined as   

( ) ( )

1

1 .
l

i

i
s h

l
γ

=

= ∑                            (1) 

The hesitant fuzzy order central polymerization degree function of h is defined 
as   

 ( ) ( ) ( )
1

11 ,
l

i

i
p h s h

l
γ

=

= − −∑                      (2) 

where l  is the number of elements in h. Based on the score function ( )s h  and 
the hesitant fuzzy order central polymerization degree function ( )p h , the 
comparison scheme can be developed to rank any HFEs: 

If ( ) ( )1 2s h s h< , then 1 2h h< ; 
If ( ) ( )1 2s h s h= , then 

If ( ) ( )1 2p h p h< , then 1 2h h< ; 
If ( ) ( )1 2p h p h= , then 1 2h h= .  

Definition 3. ([15]) Let 1 2, ,h h h  be three HFEs, and k be a positive number, 
then 

1) { }
1 1 1 2

1 2 1 2 1 2
,h h

h h
γ γ

γ γ γ γ
∈ ∈

⊕ = + −


, 

2) { }
1 1 1 2

1 2 1 2
,h h

h h
γ γ

γ γ
∈ ∈

⊗ =


, 

3) { }k k

h
h

γ
γ

∈

=


, 

4) ( ){ }1 1 k

h
kh

γ
γ

∈

= − −


.  

The above operations are the basic operations laws. However, they some-
times have some drawbacks. We find that if 1 2h h h= = , then 1 2 12h h h⊕ ≠ , 

1 2 22h h h⊕ ≠ . For example, suppose that 1 2,h h  are two HFEs, 1 2h h= =

{ }0.2,0.4,0.5 . Then we get { }1 2 0.36,0.52,0.6,0.52,0.64,0.7,0.6,0.7,0.75h h⊕ =  
and { }1 22 2 0.36,0.64,0.75h h= = . So 1 2 12h h h⊕ ≠ , 1 2 22h h h⊕ ≠ . Both the 
addition and multiplicative operations of HFEs can increase the number of ele-
ments in the derived HFE, and also make the calculation process complicated. 
Liao et al. [32] adjusted them as follows.  

Definition 4. ([32]) Let ( ){ } ( ){ }1 2

1 1 2 2
1 1

,
l l

i i

i i
h hγ γ

= =

= =
 

 be two HFEs, then 

1) ( ) ( ) ( ) ( ){ }1 2 1 2 1 2
1

l
i i i i

i
h h γ γ γ γ

=

⊕ = + −



, 

2) ( ) ( ){ }1 2 1 2
1

l
i i

i
h h γ γ

=

⊕ =



, 

where { }1 2max ,l l l= . If 1 2l l< , an extension of 1h  should be considered op-
timistically by repeating its maximum elements until it has the same length with 
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2h .  

Definition 5. ([7]) Let ( ){ }1

1 1
1

l
i

i
h γ

=

=


 and ( ){ }2

2 2
1

l
i

i
h γ

=

=


 be two HFEs,  

{ }1 2max ,l l l= . Then the hesitant Hamming distance is defined as follows:   

 ( ) ( ) ( )
1 2 1 2

1

1, .
l

i i

i
d h h

l
γ γ

=

= −∑                       (3) 

Definition 6. ([15] [18]) For a collection of HFEs ( )1,2, ,jh j n=  , let 
( )T

1 2, , , nλ λ λ λ=   be the weight vector of HFEs ( )1,2, ,jh j n=   with 
[ ]0,1jλ ∈  and 1 1n

jj λ
=

=∑ , ( )T
1 2, , , nω ω ω ω=   be the aggregation-associated 

vector such that [ ]0,1jω ∈  and 1 1n
jj ω

=
=∑ . Then 

1) the generalized hesitant fuzzy hybrid averaging (GHFHA) operator:   

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )( )

1 1 2 2

1

1 2
1

1

1, , ,

GHFHA , , ,

1 1 ,
j

n n

n p
p

n j j
j

n p
p

j
jh h h

h h h h

σ σ σ σ σ σ

σ

ω

σ
γ γ γ

ω

γ

=

=∈ ∈ ∈

 
=  
 

 
  = − −  
  
 

⊕

∏
  

  










          (4) 

where 0p > , ( )jhσ  is the jth largest of ( )1,2, ,k kh n h k nλ= =

 . 
2) the generalized hesitant fuzzy hybrid geometric (GHFHG) operator:   

 

( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )
( )( )

1 1 2 2

1 2 1

1

1, , ,

1GHFHG , , ,

1 1 1 1 ,

j

j

n n

n
n jj

n pp

j
jh h h

h h h ph
p

σ σ σ σ σ σ

ω

σ

ω

σ
γ γ γ

γ

=

=∈ ∈ ∈

 =  
 

 
   = − − − −       

⊗

∏
  

  










     (5) 

where 0p > , ( )jhσ  is the jth largest of ( )1, 2, ,kn
k kh h k nλ= =

 . 
3) the generalized hesitant fuzzy hybrid weighted averaging (GHFHWA) op-

erator:   

 

( )
( )

( )

( )
( )

( )1

1 1 2 2

1

1
1 2

1

1

1, , ,

GHFHWA , , ,

1 1 ,
j j

n
j jj

n n

n pp
j jj

j
n n

j jj

pn
p
j

jh h h

h
h h h

ε

ε

ε

ε

λ ω

λ ω

γ γ γ

λ ω

λ ω

γ =

=

=

=∈ ∈ ∈

∑

 
 
 =
 
 
 

 
  
 = − −    
 

⊕

∑

∏






            (6) 

where { } { }: 1, 2, , 1, 2, ,n nε →   is a permutation such that jh  is the ( ) thjε  
largest element of the collection of HFEs ( )1,2, ,jh j n=  , and p is a parameter 
such that ( ),p∈ −∞ +∞ . 

4) the generalized hesitant fuzzy hybrid weighted geometric (GHFHWG) op-
erator:   

( ) ( )
( )

( )1

1

1 2
1

GHFHWG , , ,
j j

n
j jj

pn
p

n j
j

h h h h
ε

ε

λ ω

λ ω=

=

∑
 
 =
 
 
⊗  
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( )
( )

( )1

1 1 2 2

1

1, , ,
,

j j
n

j jj

n n

p pn

j
jh h h

ε

ε

λ ω

λ ω

γ γ γ
γ =

=∈ ∈ ∈

∑

 
  
 =     
 

∏




             (7) 

where { } { }: 1, 2, , 1, 2, ,n nε →   is a permutation such that jh  is the 
( ) thjε  largest element of the collection of HFEs ( )1,2, ,jh j n=  , and p is a 

parameter such that ( ),p∈ −∞ +∞ .  

3. New Generalized Hesitant Fuzzy Hybrid Weighted  
Aggregation Operators  

In this section, we replace operations ⊕  and ⊗  in Equation (6) and Equation 
(7) by ⊕  and ⊗  respectively, get the new generalized hesitant fuzzy hybrid 
weighted averaging (NGHFHWA) operator and the new generalized hesitant 
fuzzy hybrid weighted geometic (NGHFHWG) operator.  

Definition 7. For a collection of HFEs ( ){ }
1

l
i

j j
i

h γ
=

=


, { }max ,jj
l l=

( )1,2, ,j n=  , the following new generalized hesitant fuzzy hybrid weighted 

aggregation operators are defined by the mapping: nH H→  with an associated 

weight vector ( )T
1 2, , , nω ω ω ω=   such that [ ]0,1jω ∈  and 1 1n

jj ω
=

=∑ . 

Then 
1) the NGHFHWA operator:   

 ( ) ( )

( )

1

1
1 2

1

NGHFHWA , , ,
n pp

j jjj
n n

j jj

h
h h h

ε

ε

λ ω

λ ω
=

=

 
 =
 
 

⊕
∑





             (8) 

2) the NGHFHWG operator:   

 ( ) ( )
( )

( )11 2 1

1NGHFHWG , , ,
j j

n
j jj

n
n jj

h h h ph
p

ε

ε

λ ω

λ ω=
=

∑
 
 =
 
 
⊗           (9) 

where { } { }: 1, 2, , 1, 2, ,n nε →   is a permutation such that jh  is the ( ) thjε  
largest element of the collection of HFEs ( )1,2, ,jh j n=  , ( )T

1 2, , , nλ λ λ λ=   
is the weight vector of HFEs ( )1,2, ,jh j n=   with [ ]0,1jλ ∈  and 1 1n

jj λ
=

=∑ , 
p is a parameter such that 0p > .  

Notice that p is positive parameter, since the negative multiplication of HFE 

jh  has no meaning.  
Especially, if 1p = , then the NGHFHWA and NGHFHWG operators reduce to 

the new hesitant fuzzy hybrid weighted averaging (NHFHWA) operator and the 
new hesitant fuzzy hybrid weighted geometric (NHFHWG) operator, respectively: 

( ) ( )

( )

1
1 2

1

NHFHWA , , ,
n

j jjj
n n

j jj

h
h h h

ε

ε

λ ω

λ ω
=

=

= ⊕
∑





 

( )
( )

( )1
1 2 1

NHFHWG , , ,

j j
n

j jjn
n jj

h h h h
ε

ε

λ ω

λ ω=

=

∑=⊕   
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Remark 1. In some decision making problems, t HFEs are the same for a collec-
tion of HFEs ( )1,2, ,jh j n=  , denoted by 

1 2 ti i ih h h= = = . According to  
Definition 7, we get ( ) ( ) ( )1 2 ti i iε ε ε= = = , thus ( ) ( ) ( )1 2 ti i i aε ε εω ω ω= = = = , 

but ( )1 1n
jj bεω=
= ≠∑ . In order to meet ( )1 1n

jj εω=
=∑ , notice 

1 2 ti i ih h h= = = , 

we assume that 1 b−  can be equally distributed to ( ) ( ) ( )1 2
, , ,

ti i iε ε εω ω ω , so  

( ) ( ) ( )1 2

1
ti i i

ba
kε ε εω ω ω −

= = = = + .  

Theorem 1. For a collection of HFEs ( ){ }
1

l
i

j j
i

h γ
=

=


, { }max ,jj
l l=

( )1,2, ,j n=  , the aggregated value by using the NGHFHWA operator or the 
NGHFHWG operator is also a HFE, and   

 ( ) ( )( )
( )

( )1

1

1 2
11

NGHFHWA , , , 1 1 ,
j j

n
j jj

p
l n pi

n j
ji

h h h
ε

ε

λ ω

λ ωγ =

==

∑

 
     = − −          

∏



   (10) 

( ) ( )( )
( )

( )1

1

1 2
11

NGHFHWG , , , 1 1 1 1 ,
j j

n
j jj

p
l n pi

n j
ji

h h h
ε

ε

λ ω

λ ωγ =

==

∑

 
     = − − − −          

∏



 (11) 

where ( )T
1 2, , , nω ω ω ω=   is an associated weight vector with [ ]0,1jω ∈  

and 1 1n
jj ω

=
=∑ , { } { }: 1, 2, , 1, 2, ,n nε →   is a permutation such that jh  

is the ( ) thjε  largest element of the collection of HFEs ( )1,2, ,jh j n=  , 
( )T

1 2, , , nλ λ λ λ=   is the weight vector of HFEs ( )1,2, ,jh j n=   with 
[ ]0,1jλ ∈  and 1 1n

jj λ
=

=∑ , p is a parameter such that 0p > .  
In the following, we show that both the NGHFHWA operator and the 

NGHFHWG operator satisfy the properties of idempotency and boundedness, 
and other desirable properties.  

Theorem 2. (Idempotency) If ( )1, 2, ,jh h j n= =  , then 

( )1 2NGHFHWA , , , nh h h h= , 

( )1 2NGHFHWG , , , nh h h h= . 

Theorem 3. (Boundedness) For a collection of HFEs ( ){ }
1

l
i

j j
i

h γ
=

=


, 

{ }max ,jj
l l= ( )1,2, ,j n=  , the following inequations hold:   

 ( )1 2NGHFHWA , , , ,nh h h h h− +≤ ≤            (12) 

( )1 2NGHFHWG , , , ,nh h h h h− +≤ ≤            (13) 

where ( )
1 1
min min i

ji l j n
h γ−

≤ ≤ ≤ ≤
= , ( )

1 1
max max i

ji l j n
h γ+

≤ ≤ ≤ ≤
= .  

Lemma 1. ([33]) If 0jx > , 0jω > , 1,2, ,j n=  , and 
1

1
n

j
j
ω

=

=∑ , then 
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11

j
n n

j j j
jj

x xω ω
==

≤ ∑∏ , with equality if and only if 1 2 nx x x= = = .  
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where ( )T
1 2, , , nω ω ω ω=   is an associated weight vector with [ ]0,1jω ∈  and 

1 1n
jj ω

=
=∑ , { } { }: 1, 2, , 1, 2, ,n nε →   is a permutation such that jh  is the 

( ) thjε  largest element of the collection of HFEs ( )1,2, ,jh j n=  , 
( )T

1 2, , , nλ λ λ λ=   is the weight vector of HFEs ( )1,2, ,jh j n=   with 
[ ]0,1jλ ∈  and 1 1n

jj λ
=

=∑ .  

Theorem 6. For a collection of HFEs ( ){ }
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The proofs of Theorems 1-6 and Lemma 2 can be found in the Appendix. 
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4. Decision Making Based on New Generalized Hesitant  
Fuzzy Hybrid Weighted Aggregation Operators with  
Unknown Weight Information  

4.1. Problem Description  

Consider that decision makers intend to evaluate a collection of alternatives 
{ }1 2, , , mA A A A=   with respect to the attributes { }1 2, , , nG G G G=  . Suppose 

that ijh  is an attribute value given by decision makers, which is a HFE for al-
ternative iA  with respect to attribute jG . All ( )1,2, , ; 1, 2, ,ijh i m j n= =    

form the hesitant fuzzy decision matrix ( )ij m n
H h

×
= , ( ){ }

1

ijl
t
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t

h γ
=

=
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. Based on  

the assumption that all the decision makers are optimistic. Optimists anticipate 
desirable outcomes and add the maximum value of the membership degrees. We  

obtain a normalized decision matrix ( )ij m n
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( )1,2, , ; 1,2, ,i m j n= =  . Weight vector ( )T
1 2, , , nλ λ λ λ=   is the impor-

tance degree for the relevant attribute, such that [ ]0,1jλ ∈  and 1 1n
jj λ

=
=∑ . 

Meanwhile ( )T
1 2, , , nω ω ω ω=   is the aggregation-associated weight vector, 

which [ ]0,1jω ∈  and 1 1n
jj ω

=
=∑ . 

In the following, we first determine the weights of attributes and the aggrega-
tion-associated weight vector by optimal methods, then give an algorithm for 
MADM problems based on new generalized hybrid weighted aggregation oper-
ators under unknown weight information. 

4.2. Obtaining the Attribute Weight Vector  

The attribute weight vector plays an important role in MADM, which not only 
represent the relative importance of attributes, but also the preferences of deci-
sion-makers. In order to get the optimal weight vector ( )T

1 2, , , nλ λ λ λ=   of 
attributes under completely unknown information, we extend the maximizing 
deviation method [34] under hesitant fuzzy environment based on the hesitant 
Hamming distance. 

For the nonlinear programming model (M-1): 
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As the calculation in [13], weight vector ( )T
1 2, , , nλ λ λ λ=   is obtained as 

follows:   
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4.3. Obtaining the Aggregation-Associated Weight Vector  

Determining the aggregation-associated weight vector ( )T
1 2, , , nω ω ω ω=   by 

a proper method is also an important step composed by new generalized hesitant 
fuzzy hybrid weighted aggregation operators. The normal distribution based 
method was introduced by Xu [28], which can relieve the influence of unfair ar-
guments on decision results by weighting these arguments with small values. So 
we choose the normal distribution based method [28] to obtain the aggrega-
tion-associated weight vector ( )T

1 2, , , nω ω ω ω=  . When the values of n from 2 
to 20, the weights of the aggregation operator were calculated in [28] (We list the 
aggregation-associated weight vector ω  in Table 1 when n from 2 to 10). 

4.4. An Approach to HF-MADM Based on New Generalized  
Hesitant Fuzzy Hybrid Weighted Aggregation Operators with  
Unknown Weight Information  

Algorithm: 
Step 1. Obtain a normalized decision matrix ( )ij m n

H h
×

= 
  from ( )ij m n

H h
×

= . 

Step 2. Determine ( )T
1 2, , , nω ω ω ω=   according to the number of n in Ta-

ble 1. 
Step 3. Utilize Equation (16) to obtain the weights of attributes  
( )T

1 2, , , nλ λ λ λ=  . 
Step 4. Utilize the new generalized hybrid weighted aggregation operators, such 

as NGHFHWA, NGHFHWG, to synthesize ijh  into overall ( )1,2, ,ih i m=

  
for alternatives ( )1,2, ,iA i m=  . 

Step 5. Calculate the scores ( )is h  of the overall hesitant fuzzy values ih  by 
Equation (1). If any two scores of alternatives are the same, calculate their 

( )ip h  functions according to Equation (2) ( )1,2, ,i m=  . 
Step 6. Rank all the alternatives ( )1,2, ,iA i m=   in accordance with ( )is h  

and ( )( )1,2, ,ip h i m=

 .  
 

Table 1. Aggregation-associated weight vector ( )T
1 2, , , nω ω ω ω=   for n from 2 to 10. 

n the aggregation-associated weight vector ( )T

1 2, , , nω ω ω ω=   

2n =  ( )T0.5,0.5ω =  

3n =  ( )T0.2429,0.5142,0.2429ω =  

4n =  ( )T0.1550,0.3450,0.3450,0.1550ω =  

5n =  ( )T0.1117,0.2365,0.3036,0.2365,0.1117ω =  

6n =  ( )T0.0865,0.1716,0.2419,0.2419,0.1716,0.0865ω =  

7n =  ( )T0.0702,0.1311,0.1907,0.2161,0.1907,0.1311,0.0702ω =  

8n =  ( )T0.0588,0.1042,0.1525,0.1845,0.1845,0.1525,0.1042,0.0588ω =  

9n =  ( )T0.0506,0.0855,0.1243,0.1557,0.1678,0.1557,0.1243,0.0855,0.0506ω =  

10n =  ( )T0.0443,0.0719,0.1034,0.1317,0.1487,0.1487,0.1317,0.1034,0.0719,0.0443ω =  
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5. Illustrative Example  
5.1. Case Study  

As the development of the internet technology, more and more people are tend-
ing to use smartphone to get information rather than reading paper. Newspapers, 
as a traditional industry, must expand their business by new-media to keep pace 
with the times. As a government procurement function department, Public Re-
source Trading Center decided to purchase WeChat live broadcasting system for 
Haimen Daily newspaper. The aim of our example is to help government deci-
sion makers to select a proper supplier according to the following six attributes: 
1) 1G  is the price; 2) 2G  is the quality; 3) 3G  is the technology; 4) 4G  is 
the green development degree; 5) 5G  is the reputation and 6) 6G  is the after 
sales service. It is assumed that four suppliers ( )1,2,3,4iA i =  are participating 
in the tender according to the tender request. In real world applications, decision 
makers found that it is hard for him to decide which supplier should be selected 
due to his limited knowledge. Hesitant fuzzy set may represent this data. The 
evaluation values of four suppliers with respect to six attributes are shown in the  
hesitant fuzzy decision matrix ( )4 6ijH h

×
=  (see Table 2). 

In what follows, we utilize the developed method to select the most desirable 
supplier. 

Step 1. The normalized decision matrix ( )
4 6ijH h
×

= 
  from ( )4 6ijH h

×
=  is 

shown in Table 3. 
Step 2. According to Table 1, since 6n = , the aggregation-associated weight 

vector ( )T0.0865,0.1716,0.2419,0.2419,0.1716,0.0865ω = . 
Step 3. Utilize Equation (16), we obtain the weights of the attributes  
( )T0.2389,0.1327,0.2743,0.1416,0.0885,0.1239λ = . 

Step 4. Utilize the NGHFHWA operator to obtain HFEs ih  for the cars 

1 2 3 4, , ,A A A A . We take 2A  as an example. 
 
Table 2. Hesitant fuzzy decision matrix. 

 1G  2G  3G  4G  5G  6G  

1A  { }0.3,0.5  { }0.6,0.7  { }0.4,0.6  { }0.7,0.8,0.9  { }0.4,0.5  { }0.5,0.6  

2A  { }0.6,0.7,0.8  { }0.5,0.6,0.8  { }0.5,0.7  { }0.6,0.7  { }0.4,0.5,0.6  { }0.4,0.5,0.6  

3A  { }0.4,0.5,0.6  { }0.6,0.7,0.8  { }0.5,0.6,0.7  { }0.7,0.8  { }0.4,0.6  { }0.3,0.5  

4A  { }0.5,0.6,0.7  { }0.5,0.6  { }0.8,0.9  { }0.7,0.9  { }0.4,0.6,0.7  { }0.5,0.6  

 
Table 3. Normalized hesitant fuzzy decision matrix. 

 1G  2G  3G  4G  5G  6G  

1A  { }0.3,0.5,0.5  { }0.6,0.7,0.7  { }0.4,0.6,0.6  { }0.7,0.8,0.9  { }0.4,0.5,0.5  { }0.5,0.6,0.6  

2A  { }0.6,0.7,0.8  { }0.5,0.6,0.8  { }0.5,0.7,0.7  { }0.6,0.7,0.7  { }0.4,0.5,0.6  { }0.4,0.5,0.6  

3A  { }0.4,0.5,0.6  { }0.6,0.7,0.8  { }0.5,0.6,0.7  { }0.7,0.8,0.8  { }0.4,0.6,0.6  { }0.3,0.5,0.5  

4A  { }0.5,0.6,0.7  { }0.5,0.6,0.6  { }0.8,0.9,0.9  { }0.7,0.9,0.9  { }0.4,0.6,0.7  { }0.5,0.6,0.6  
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( )
{ } { } { }(

{ } { } { })

2 21 22 23 24 25 26NGHFHWA , , , , ,

NGHFHWA 0.6,0.7,0.8 , 0.5,0.6,0.8 , 0.5,0.7,0.7 ,

0.6,0.7,0.7 , 0.4,0.5,0.6 , 0.4,0.5,0.6 .

h h h h h h h=

=

      

 

According to Equation (1), we get ( )21
0.6 0.7 0.8 0.7

3
s h + +

= = ,  

( )22 0.6333s h = , ( )23 0.6333s h = , ( )24 0.6667s h = , ( )25 0.5s h = , ( )26 0.5s h = . 
Notice ( ) ( )22 23s h s h=  , by Equation (2), we obtain 

( ) ( )22
11 0.5 0.6333 0.6 0.6333 0.8 0.6333 0.8889
3

p h = − − + − + − = , 

( ) ( )23
11 0.5 0.6333 0.7 0.6333 0.7 0.6333 0.9111
3

p h = − − + − + − = . 

Hence, 21 24 23 22 25 26h h h h h h> > > > =      . Thus, ( )21 1ε = , ( )24 2ε = , ( )23 3ε = , 
( )22 3ε = , ( ) ( )25 26 5ε ε= = . By Remark 1, we get  

( ) ( )T
2 0.0865,0.2419,0.2419,0.1716,0.1290,0.1290εω = . Therefore, 
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1 21
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=
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According to Equation (10), choose 1p = , we can calculate that 
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( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

2 21 22 23 24 25 26

0.1210 0.1879 0.38843

21 22 23
1

1
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24 25 26
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1 1 1 1

1 1 1
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p p pi i i
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pp p pi i i

h h h h h h h

γ γ γ
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  

  



{ }3,0.7228 .

 

Similarly, we can calculate { }1 0.4677,0.6165,0.6355h = ,  
{ }3 0.4894,0.6079,0.6837h = , { }4 0.5893,0.7318,0.7605h =  by using the 

NGHFHWA operator for alternatives 1 3 4, ,A A A , respectively. 
Step 5. Calculate the scores ( )is h  of ih  for ( )1,2,3,4iA i = : 

( )1 0.5732s h = , ( )2 0.6312s h = , ( )3 0.5937s h = , ( )4 0.6939s h = . 

Step 6. Rank alternatives ( )1,2,3,4iA i =  in accordance with ( )is h :  

4 2 3 1h h h h> > >    , thus 4A  is the best supplier.  

5.2. Sensitivity Analysis  

In this subsection, the influence of parameter p on the ranking results is investi-
gated and discussed. The detailed results are shown in Table 4. 

From Table 4, it is obvious that the scores obtained by the NGHFHWA operator  
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Table 4. Scores and ranking orders under different parameter. 

 Parameter ( )1s h  ( )2s h  ( )3s h  ( )4s h  Ranking 

NGHFHWA 1p =  0.5732 0.6312 0.5937 0.6939 
4 2 3 1A A A A    

 2p =  0.5799 0.6335 0.5985 0.7020 
4 2 3 1A A A A    

 5p =  0.6045 0.6409 0.6154 0.7286 
4 2 3 1A A A A    

 10p =  0.6480 0.6527 0.6452 0.7673 
4 2 1 3A A A A    

 20p =  0.7056 0.6691 0.6881 0.8080 
4 1 3 2A A A A    

 30p =  0.7339 0.6781 0.7111 0.8260 
4 1 3 2A A A A    

NGHFHWG 1p =  0.5504 0.6207 0.5758 0.6489 
4 2 3 1A A A A    

 2p =  0.5436 0.6157 0.5692 0.6327 
4 2 3 1A A A A    

 5p =  0.5261 0.5978 0.5495 0.6044 
4 2 3 1A A A A    

 10p =  0.5048 0.5716 0.5279 0.5856 
4 2 3 1A A A A    

 20p =  0.4789 0.5427 0.4921 0.5687 
4 2 3 1A A A A    

 30p =  0.4654 0.5295 0.4750 0.5590 
4 2 3 1A A A A    

 
are increasing with respect to p, while those obtained by the NGHFHWG oper-
ator are decreasing. On the other hand, the ranking orders obtained by the 
NGHFHWA operator are somewhat different as p increases. For more detailed 
investigation, Figure 1 and Figure 2 present the influence of different parameter 
p by the NGHFHWA operator and the NGHFHWG operator respectively. From 
Figure 1, we can know that the ranking orders for four alternatives change as p 
increases, the score of each alternative is monotonically increasing with respect 
to p, which verifies Theorem 5. More explicitly, we can find that, 

i) If ( ]0,8.9p∈ , the ranking of the four alternatives is 4 2 3 1A A A A   . 
ii) If ( ]8.9,10.9p∈ , the ranking of the four alternatives is 4 2 1 3A A A A   . 
iii) If ( ]10.9,12.3p∈ , the ranking of the four alternatives is 4 1 2 3A A A A   . 
iv) If ( ]12.3,30p∈ , the ranking of the four alternatives is 4 1 3 2A A A A   . 
In summary, we conclude that the selection of values for parameter p mainly 

depends on decision makers’ risk preferences. Pessimists anticipate desirable 
outcomes and may choose small value of parameter p, while optimistic experts 
may choose big values. For the computational simplicity of HF-MADM prob-
lems, the decision makers can select 1p =  (or 2), which is simple and 
straightforward. 

6. Comparative Studies  

In subsection 5.1, we utilize the proposed method to solve the example success-
fully, which has proven the availability of our method. In addition, we also ana-
lyze the impacts of parameter p on ranking results in subsection 5.2. The sensi-
tivity analysis illustrates the high flexibility of our approach. In order to further 
demonstrate the advantages of the algorithm, we use GHFHWA, GHFHWG 
[18], GHFHA, GHFHG [15] operators to solve the example, in which aggregation 
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Figure 1. Trends of scores for four alternatives by the NGHFHWA operator. 
 

 
Figure 2. Trends of scores for four alternatives by the NGHFHWG operator. 
 
associated weight vector ( )T0.09,0.17,0.24,0.24,0.17,0.09ω =  and attribute 
weights ( )T0.15,0.25,0.14,0.16,0.20,0.10λ =  are given by decision makers.  

1) Compared with the approach based on GHFHWA, GHFHWG operators [18]  
We begin our comparison by employing the method based on GHFHWA, 

GHFHWG operators [18] in example. First, we review the approach of Liao and 
Xu [18].  

Step 1’. Based on the hesitant fuzzy decision matrix ( )4 6ijH h
×

=  (Table 2),  

we use the GHFHWA operator to aggregate all HFEs ( )1,2,3,4,5,6ijh j =  into 
collective HFEs ( )1,2,3,4ih i = . Take 2A  as an example, we have 

( )
{ } { } { }(

{ } { } { })

2 21 22 23 24 25 26GHFHWA , , , , ,

GHFHWA 0.6,0.7,0.8 , 0.5,0.6,0.8 , 0.5,0.7 ,

0.6,0.7 , 0.4,0.5,0.6 , 0.4,0.5,0.6 .

h h h h h h h=

=  

Since ( )21 0.7s h = , ( )22 0.6333s h = , ( )23 0.6s h = , ( )24 0.65s h = ,  
( )25 0.5s h = , ( )26 0.5s h = , then 21 24 22 23 25 26h h h h h h> > > > = . Thus by Re-

mark 1, we get ( ) ( )T
2 0.09,0.24,0.24,0.17,0.13,0.13εω = . Therefore, 
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( )

( )

1 21
6

21

0.0779
j jj

ε

ε

λ ω

λ ω
=

=
∑

, ( )

( )

2 22
6

21

0.3462
j jj

ε

ε

λ ω

λ ω
=

=
∑

, ( )

( )

3 23
6

21

0.1939
j jj

ε

ε

λ ω

λ ω
=

=
∑

, 

( )

( )

4 24
6

21

0.1570
j jj

ε

ε

λ ω

λ ω
=

=
∑

, ( )

( )

5 25
6

21

0.1500
j jj

ε

ε

λ ω

λ ω
=

=
∑

, ( )

( )

6 26
6

21

0.0750
j jj

ε

ε

λ ω

λ ω
=

=
∑

. 

According to Equation (6), choose 1p = , we can calculate that 

( )

( ) ( ) ( )({
( ) ( ) ( ) )

2 2

2 21 22 23 24 25 26

0.0779 0.3462 0.1939

21 22 23

1
0.1570 0.1500 0.0750

24 25 26

GHFHWA , , , , ,

1 1 1 1

1 1 1 ,

j j

p p p

h

pp p p

h h h h h h h

γ
γ γ γ

γ γ γ

∈

=

= − − − −

× − − − 




 

where we don’t list all of values in 2h  since the number of values in 2h  is 324. 
Similarly, we can calculate 1 3 4, ,h h h  by using the GHFHWA operator for alter-
natives 1 3 4, ,A A A , respectively. Notice that the number of values in 1 3 4, ,h h h  
are 96, 216, 144, respectively. 

Step 3’. Calculate the scores ( )( )1, 2,3, 4is h i =  of ( )1,2,3,4ih i = : 

( )1 0.5786s h = , ( )2 0.6201s h = , ( )3 0.6067s h = , ( )4 0.6619s h = . 

Step 4’. Rank all of the alternatives ( )1,2,3,4iA i =  in accordance with ( )is h : 

4 2 3 1h h h h> > > , thus 4A  is the most desirable supplier.  
If parameter p changes, choose the GHFHWA operator for example, trends of 

scores for the alternatives can be obtained, which is shown in Figure 3. From 
Figure 3, we can see that, 

i) If ( ]0,6.5p∈ , the ranking of the four alternatives is 4 2 3 1A A A A   . 
ii) If ( ]6.5,9.6p∈ , the ranking of the four alternatives is 4 3 2 1A A A A   . 
iii) If ( ]9.6,11.1p∈ , the ranking of the four alternatives is 4 3 1 2A A A A   . 
iv) If ( ]11.1,30p∈ , the ranking of the four alternatives is 4 1 3 2A A A A   . 
Comparing with our proposed method based on NGHFHWA and NGHFHWG 

operators in this article, we can conclude that: 
 

 
Figure 3. Trends of scores for four alternatives by the GHFHWA operator. 
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i) Our new generalized hybrid weighted aggregation operators have the prop-
erty of idempotency, which is one of the most important properties for aggrega-
tion operators; 

ii) The dimensions of the overall hesitant values aggregated by our new gene-
ralized hybrid weighted aggregation operators are less than that of GHFHWA 
and GHFHWG operators. Hence the computation of our proposed method is 
more simple than that of [18]. This demonstrates that the new generalized hesi-
tant fuzzy hybrid weighted aggregation operators are effective and reasonable to 
deal with decision making problems.  

2) Compared with the approach based on GHFHA and GHFHG operators [15]  
In the following, we utilize Xia and Xu’s GHFHA and GHFHG operator to get 

the ranking result of our example, in which weight vectors ,ω λ  are given by 
decision makers.  

Step 1’’. Based on the hesitant fuzzy decision matrix ( )4 6ijH h
×

=  (Table 2),  

calculate ( ) ( )1,2,3,4,5,6ijh jσ =  for each ( )1,2,3,4iA i = , which is the jth larg-
est of ( )6 1, 2,3, 4,5,6k ikh h kλ= = . We also take 2A  as an example. First, we 
calculate ( )2 1, 2,3, 4,5,6jh j = : 

( )
( ) ( ) ( ){ }

{ }

21 21

0.9 0.9 0.9

6 0.15

1 1 0.6 ,1 1 0.7 ,1 1 0.8

0.5616,0.6616,0.7651 .

h h= ×

= − − − − − −

=



 

Similarly, { }22 0.6464,0.7470,0.9106h = , { }23 0.4414,0.6363h = ,  
{ }24 0.5851,0.6852h = , { }25 0.4583,0.5647,0.6670h = ,  
{ }26 0.2640,0.3402,0.4229h = . 

Next, calculate the scores ( )( )2 1, 2,3, 4,5,6js h j = : ( )21 0.6628s h = ,  

( )22 0.7680s h = , ( )23 0.5388s h = , ( )24 0.6351s h = , ( )25 0.5633s h = ,  

( )26 0.3424s h = , then 22 21 24 25 23 26h h h h h h> > > > >      . Hence, we have ( )2 jhσ  as 
follows: 

( ) { }2221 0.6464,0.7470,0.9106h hσ = =  , ( ) { }2122 0.5616,0.6616,0.7651h hσ = =  , 

( ) { }2423 0.5851,0.6852h hσ = =  , ( ) { }2524 0.4583,0.5647,0.6670h hσ = =  , 

( ) { }2325 0.4414,0.6363h hσ = =  , ( ) { }2626 0.2640,0.3402,0.4229h hσ = =  . 

Step 2’’. According to Equation (4), we can use the GHFHA operator to ag-
gregate all HFEs ( ) ( )1, 2,3, 4,5,6ijh jσ =  into collective HFEs ( )1,2,3,4ih i = . 
Take 2h  as an example, choose 1p = . 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

2 2

2 21 22 23 24 25 26

0.09 0.17 0.24

21 22 23

1
0.24 0.17 0.09

24 25 26

GHFHA , , , , ,

1 1 1 1

1 1 1 ,

j j

p p p

h

pp p p

h h h h h h h

σ σ

σ σ σ σ σ σ

σ σ σ
γ

σ σ σ

γ γ γ

γ γ γ

∈

=

= − − − −


× − − −  
 





      

  

  


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where we don’t list all of values in 2h  since the number of values in 2h  is 324. 
Similarly, we can calculate 1 3 4, ,h h h    by using the GHFHA operator for alterna-
tives 1 3 4, ,A A A , respectively. 

Step 3’’. Calculate the scores ( )( )1, 2,3, 4is h i = : 

( )1 0.5764s h = , ( )2 0.6139s h = , ( )3 0.6625s h = , ( )4 0.7081s h = . 

Step 4’’. Rank the alternatives ( )1, 2,3, 4iA i =  in accordance with ( )is h : 

4 3 2 1h h h h> > >    , thus 4A  is the most desirable supplier.  
The ranking result obtained by the GHFHA operator is different from our 

method. Notice that weight vectors ω  and λ  in [15] [18] are given by deci-
sion makers, which is subjective and may lead to unreasonable ranking result. 

By the above comparison, we can see that weight vectors given by decision 
makers may lead to different ranking result. In the following Table 5, we com-
pare these three methods in which aggregation-associated vector is calculated by 
normal distribution based method and attribute weights are obtained by max-
imizing deviation method, as our method. 

From Table 5, we can know that the proposed NGHFHWA and NGHFHWG 
operators have the same ranking result with Liao and Xu’s GHFHWA and 
GHFHWG operators and Xia and Xu’s GHFHA and GHFHG operators. It de-
monstrates that the weight determined by the evaluation information itself can 
reduce the influence of the subjectiveness of decision makers. This is an impor-
tant advantage of our proposed method. 

7. Conclusions  

In this paper, we first proposed some new generalized hesitant fuzzy hybrid 
weighted aggregation operators, such as NGHFHWA, NGHFHWG. Some prop-
erties of these operators have been investigated. Then, we apply our proposed 
operators to deal with HF-MADM problems, in which aggregation-associated 
weight vector and attribute weights are unknown. Furthermore, an illustrated 
example is given to show the effectiveness and validness of our proposed deci-
sion making method. By comparing with Liao and Xu’s method [18] and Xia 
and Xu’s method [15], our proposed algorithm has following advantages: 

1) the new generalized hesitant fuzzy hybrid weighted aggregation operators 
satisfy idempotency; 

 
Table 5. The ranking results calculated by the NGHFHWA, GHFHWA, GHFHA opera-
tors. 

the aggregation operator scores the ranking result 

the NGHFHWA operator ( 1p = ) 1 2

3 4

0.5732, 0.6312,
0.5937, 0.6939

s s
s s
= =
= =

 
4 2 3 1A A A A    

the GHFHWA operator ( 1p = ) 1 2

3 4

0.5560, 0.6232,
0.5881, 0.6890

s s
s s
= =
= =

 4 2 3 1A A A A    

the GHFHA operator ( 1p = ) 1 2

3 4

0.5678, 0.6181,
0.6009, 0.6833

s s
s s
= =
= =

 
4 2 3 1A A A A    
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2) the calculating procedure is more simple than that of others; 
3) the aggregation-associated weight vector and the attribute weights are cal-

culated by the information itself. 
In the future, the application of these operators with different hesitant fuzzy 

decision making or group decision making methods will be developed, such as 
TOPSIS, VIKOR, ELECTRE, PROMETHEE. In addition, we can also extend our 
method to hesitant fuzzy linguistic set, Pythagorean hesitant fuzzy set, and so on.  
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Appendix A 
A.1. Proof of Theorem 1 

Proof We first prove that   

 ( )
( )( ) ( )

1
11

1 1
j jl n pn ip

j j jjj
ji

h
ελ ω

ελ ω γ
=

==

   = − −   
   

∏⊕ 

            (17) 

by using mathematical induction on n. 
For 2n = , we show that   

 ( )
( )( ) ( ) ( )( ) ( )1 21 22
1 21

1
1 1 1 .

l p pi ip
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ε ελ ω λ ω
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γ γ

=
=

=

    = − − + − −       
      − − − − −              

    = − − ⋅ −        

⊕ 



 

which means Equation (18) holds. 
If Equation (17) holds for n k= , i.e., 

( )
( )( ) ( )

1
11

1 1
j jl k pk ip

j j jjj
ji

h
ελ ω

ελ ω γ
=

==

   = − −   
   

∏⊕ 

. 

Then if 1n k= + , based on Definition 7, we can deduce that 

( )( ) ( )( )
( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( )

1 1

1 1

1
( ) 1 111 1

1
11

1
1

1

11

1 1 1 1

1 1 1 1

1 1

j kj k

j kj k

k kp p p
j j j j j k kj kj j

l k p pi i
j k

ji

k p pi i
j k

j

l k pi
j

ji

h h h

ε ε

ε ε

ε ε ε

λ ω λ ω

λ ω λ ω

λ ω λ ω λ ω

γ γ

γ γ

γ

+ +

+ +

+
+ ++= =

+
==

+
=

+

==

=

    = − − + − −    
   

     − − − − −      
      

= − −


⊕ ⊕ ⊕

∏

∏

∏

  





( )
,

j jελ ω  
   

  

 

i.e., Equation (17) holds for 1n k= + . Hence, Equation (17) holds for all n. 
Furthermore, using Definition 3, we have 

( )

( )

( )( ) ( ) ( )

( )( )
( )

( )

1

1

1

1

111

11

1 1 1 1

1 1 .

nj j j jj

j j
n

j jj

n
l n pj jjj i

jn
jij jj

l n pi
j

ji

h ε ε

ε

ε

λ ω λ ωε

ε

λ ω

λ ω

λ ω
γ

λ ω

γ

=

=

=

==
=

==

∑

∑

 
    = − − − −          

 
 
  = − −   

   

⊕ ∏
∑

∏






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Therefore, 

( ) ( )

( )

( )( )
( )

( )1

1

1
1 2

1

1

11

NGHFHWA , , ,

1 1 ,
j j

n
j jj

n pp
j jjj

n n
j jj

p
l n pi

j
ji

h
h h h

ε

ε

ε

ε

λ ω

λ ω

λ ω

λ ω

γ =

=

=

==

∑

 
 =
 
 
 
     = − −          

⊕
∑

∏







 

i.e., Equation (10) holds. The proof of Equation (11) is similar.  

A.2. Proof of Theorem 2 

Proof Suppose ( ) ( ) ( ){ }1 2
1 2 , , , l

nh h h h γ γ γ= = = = =  , we can get  

( ) ( )( )
( )

( )

( )( )
( )

( )

( )( )
( )

( )

1

1

1 1

1

1 2
11

1

11

1

1

NGHFHWA , , , 1 1

1 1

1 1

j j
n

j jj

j j
n

j jj

n j j
nj j jj

p
l n pi

n j
ji

p
l n pi

ji

p
l pi

i

h h h
ε

ε

ε

ε

ε

ε

λ ω

λ ω

λ ω

λ ω

λ ω

λ ω

γ

γ

γ

=

=

= =

==

==

=

∑

∑

∑
∑

 
     = − −          
 
     = − −          

 

  = − −    
 

∏

∏









( )( ) ( ){ }
1

1 1
1 1 .

l lp pi i

i i
hγ γ

= =


  
 
 
  
 
   = − − = =        
 

 

The proof of ( )1 2NGHFHWG , , , nh h h h=  is similar.  

A.3. Proof of Theorem 3 

Proof Let ( )1 2NGHFHWA , , , nh h h h=  ,  

( ) ( )( )
( )

( ) ( )1

1

1
1 1 1,2, ,

j j
n

j jj

p
n pi i

j
j

i l
ε

ε

λ ω

λ ωγ γ =

=

∑
 

  = − − =    
 

∏
 . 

For any 1,2, , ; 1, 2, ,i l j n= =  , we have ( )i
jh hγ− +≤ ≤ . Since ay x=

( )0a >  is a monotonic increasing function when 0x > , then we get 

( )( )
( )

( ) ( )( )
( )

( ) ( )( )
( )

( )11 1

1 1 1
1 1 1

j jj jj j
nn nj jjj jj jj j

n n npp pi
j

j j j
h h

εε ε

εε ε

λ ωλ ω λ ω

λ ωλ ω λ ωγ == =− +

= = =

∑∑ ∑ − ≥ − ≥ − 
 ∏ ∏ ∏ , 

i.e., 

( ) ( )( )
( )

( ) ( )1

1
1 1 1

j j
n

j jj
n pp pi

j
j

h h
ε

ε

λ ω

λ ωγ =− +

=

∑ − ≥ − ≥ − 
 ∏ . 
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Then we get 

( )( )
( )

( )1

1

1
1 1

j j
n

j jj

p
n pi

j
j

h h
ε

ε

λ ω

λ ωγ =− +

=

∑
 

  ≤ − − ≤    
 

∏ . 

i.e., 
( ) , 1, 2, ,ih h i lγ− +≤ ≤ =

 . 

According to Definition 2, we have 

( )

1 1 1

1 1 1l l l
i

i i i
h h h h

l l l
γ− − + +

= = =

= ≤ ≤ =∑ ∑ ∑ , 

i.e., 

( ) ( ) ( )s h s h s h− +≤ ≤ . 

Thus 

( )1 2NGHFHWA , , , nh h h h h− +≤ ≤ , 

which completes the proof of Equation (12). Similarly, we can prove Equation 
(13).  

A.4. Proof of Theorem 4 

Proof For any ( )i
j jhγ ∈ , by Lemma 1, we have 

( )( )
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p
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p
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j
j

εε

εε

ε

ε

λ ωλ ω
λ ωλ ω

ε

ε

ε

ε

λ ω

λ ω

γ γ

λ ω
γ

λ ω

λ ω
γ

λ ω

γ

==

=

= =

=
=

=
=

=

∑∑

∑

 
  =     

 

 
 ≤
 
 

 
  = − −   

 

 
  ≤ − −    

 

∏ ∏

∑
∑

∑
∑

∏

 

By Definition 2, we can conclude that  
( )( ) ( )( )1 2 1 2NHFHWG , , , NGHFHWA , , ,n ns h h h s h h h≤  , which implies that 

( ) ( )1 2 1 2NHFHWG , , , NGHFHWA , , ,n nh h h h h h≤  . Similarly, we can prove 
( ) ( )1 2 1 2NGHFHWG , , , NHFHWA , , ,n nh h h h h h≤  .  

A.5. Proof of Theorem 5 

Proof By Theorem 1, we have 
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( ) ( )( )
( )

( )1

1

1 2
11

NGHFHWA , , , 1 1
j j

n
j jj

p
l n pi

n j
ji

h h h
ε

ε

λ ω

λ ωγ =

==

∑

 
     = − −          

∏



. 

For any ( ) , 1, 2, , ; 1, 2, ,i
j jh i l j nγ ∈ = =  , let  

( ) ( )( )
( )

( )1

1

1
1 1

j j
n

j jj

p
n pi

j
j

f p
ε

ε
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∏ . In order to prove ( )f p  is monotoni-

cally increasing with respect to the parameter p, we calculate the derivative of 
( )f p  respect to p as follows: 
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ε
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∏

( )( )
( )

( )1

=1
1 1

j j
n

j jj
n pi

j
j

ε

ε

λ ω

λ ωγ =∑
 
  − −      

∏

 

     

( )
( )( )

( )

( )

( )( )
( )

( )

( )

( )

( )( ) ( )( )
( )( )

( )( )
( )

( ) ( )( )
( )

( )

1

1

1 1

1
2

1 1

1

1 1

1 ln

1
1 1

1 1 ln 1 1

j j
n

j jj

j j
n

j jj

j jj j
n n

j jj jj j

n pi p pi ij n j jj jj
n pijn jp jj ji

j
j

n np pi i
j j

j j

f p
p

ε

ε

ε

ε

ε ε

ε ε

λ ω

λ ω

ε
λ ω

ελ ω

λ ω λ ω

λ ω λ ω

γ γ γλ ω

λ ω γ
γ

γ γ

=

=

= =

=

=
=

=

= =

∑

∑

∑ ∑

 −  
  = 

−  − − 
 

   
     − − − −          

   −

∏
∑
∑

∏

∏ ∏

( )( )
( )

( )

( ) ( )

( )
( ) ( )

1

1

0
02

10 1

1

1

j j
n

j jj
n pi

j
j

n j j
jn

j j jj

f p x
g x g x

xp

ε

ε

λ ω

λ ω

ε

ε

γ

λ ω

λ ω

=

=

=
=

∑


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where ( ) ln
1
x xg x

x
=

−
, ( )( ) pi

j jx γ= , ( )( )
( )

( )1
0

1
1 1

j j
n

j jj
n pi

j
j

x
ε

ε

λ ω

λ ωγ =

=

∑ = − − 
 ∏ . 

Next, we take the first and second derivatives of ( )g x : 

( ) ( )( )
( ) ( )2 2

1 ln 1 lnln 1 ln
1 1 1

x x x xx x x xg x
x x x

+ − + − + ′ = = = −  − −
, 
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( )
( )

( ) ( ) ( )

( )

( )

2

2 4

2

3

1 1 1 1 ln 2 1
1 ln

1 1

1 2 ln
1

x x x x
x x xg x

x x

x x x
x x

 − − + − + ⋅ −  − +  ′′ = = 
− −  

− +
=

−

. 

Let ( ) 21 2 lnh x x x x= − + , ( ]0,1x∈  and ( )1 0h = . We also calculate the 
first and second derivatives of ( )h x : ( ) 2 2 2lnh x x x′ = − + , ( )1 0h′ =  and  

( ) ( )2 1 x
h x

x
−

′′ = . When ( )0,1x∈ , we have ( ) 0h x′′ > . Hence, ( )h x′  is mo-

notonically increasing, i.e., ( ) ( )1 0h x h′ ′< =  for any ( )0,1x∈ , which implies  

that ( )h x  is monotonically decreasing. Therefore, ( ) ( )1 0h x h> =  and 
( ) 0g x′′ >  for any ( )0,1x∈ . 

Because ( ) 0g x′′ >  for any ( )0,1x∈ , ( )g x′  is monotonically increasing 
in ( )0,1 , i.e., 

( )
( )

[ ]

( ) ( )21 1 1 12

111 ln1 ln 1 1lim lim lim lim
2 1 2 21 1

x x x x

x xx x xg x
x xx x

→ → → →

− +′− +− +′ < = = = − = −
−′−  − 

. 

Because ( ) 0g x′′ >  for any ( )0,1x∈ , ( )g x  is strictly convex, and the in-
equality ( ) ( ) ( ) ( )0 0 0j jg x g x x x g x′> + − ⋅  holds for all 0 , 0jx x >  and 0 jx x≠ . 
Therefore, we have 
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∑
∑

∑ ∑
∑ ∑

∑
∑

∑ ∏
∑
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By Lemma 1, we get 
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( )
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1 11 1 1
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n
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=

= ==
= =

∑   − ≤ − = −   
   ∑ ∑∏

∑ ∑
. 

Notice that ( )0
1 0
2

g x′ < − < , we have 

 ( ) ( )
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0

1 11
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j j

n
j jj

nn p pj j i i
j jn

j jj jj
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ε

ε

λ ω

ε λ ω

ε
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=

= =
=

∑
 

  ′ − + − >   
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∑ ∏
∑
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Hence, ( )

( )
( ) ( )0

1 1

0
n j j
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j j jj

g x g xε

ε

λ ω

λ ω=
=

− >∑
∑

, thus ( ) 0f p′ > , which indicates  
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that ( )f p  is monotonically increasing with respect to the parameter p. There-
fore, the NGHFHWA operator is monotonically increasing with respect to the 
parameter p. Similarly, the NGHFHWG operator is monotonically decreasing 
with respect to the parameter p.  

A6. Proof of Lemma 2 

Proof By L’Hospital rule, we have 

( )

( )
( )

( )1
=1

0

ln 1 1

lim

0
lim e

j j
pn ni j jj

j
j

p p

p
f p

λ ωε

λ ωεγ ∑ =

→

 
     − −       
 

→

∏

=   

in which, 

( )( )
( )

( ) ( )( )
( )

( )

( )( )
( )

( )

( )( )
( )

( )

11

1

1

11

0 0

1

0 1

1

ln 1 1ln 1 1

lim lim

1
1lim

1
1 1

j jj j
nn

j jjj jj

j j
n

j jj

j j
n

j jj

nn pp ii
jj

jj

p p

n pi
jn

j

p jn pi
j

j

p p

εε

εε

ε

ε

ε

ε

λ ωλ ω

λ ωλ ω

λ ω

λ ω

λ ω

λ ω

γγ

γ

γ
γ

==

=

=

==

→ →

=

→ =

=

∑∑

∑

∑

   
      − −− −                   =

′

 − 
 

=
− − − 

 

∏∏

∏
∑

∏
( )( )

( )

( )

( )( ) ( )

( )( )
( )

( ) ( )

( )

( )

( )

( )

( )

( )( )
( )( )

( )

( )
( )

1

1

1

0 11 1

0 1 11

ln

ln
lim 1

1

1
lim ln

1

j j
n

j jj

j j
n

j jj

pj j i i
j jp ni

j jjj

in np j j ji
j n ip jj jj jj

pi
nn kj j i

jn pp ij kj jj j

ε

ε

ε

ε

ε

ε

λ ω

ελ ω

ε

λ ω

λ ω
ε

ε

λ ω
γ γ

λ ω

λ ω γ
γ

γλ ω

γλ ω
γ

λ ω γ

=

=

=

→ ==
=

→ = =
=

∑

∑

 = − 
  −

 − =  
 − 

∑

∑∏
∑

∑ ∏
∑

 

( )

( )

( )( )
( )( )

( )

( )
( )

( )

( )

( )( )
( )( )

( )

( )
( )

( )

( )

( )

( )

1

1

01 11

( )

0 ( )1 11

1 11

1
lim ln

1

ln
lim ln

ln

ln
ln

j j
n

j jj

j j
n

j jj

pi
nn kj j i

jn pp ij kj jj j

pi i
nn k kj j i

jn pp i ij kj jj j j

inn j j k
n i

j k jj jj

ε

ε

ε

ε

λ ω

λ ω
ε

ε

λ ω

λ ω
ε

ε

ε

ε

γλ ω
γ

λ ω γ

γ γλ ω
γ

λ ω γ γ

λ ω γ
γλ ω

=

=

→= =
=

→= =
=

= =
=

∑

∑

 − =  
 − 

 − =  
 − 


=



∑ ∏
∑

∑ ∏
∑

∑ ∏
∑

( )

( ) ( )

( )

( )

( )( )
( )

( )

( )( )
( )

( )

1

1

1

1 11

1

ln

ln

ln

j j
n

j jj

j j
n

j jj

j j
n

j jj

i
j

nn j j i
kn

j kj jj

n
i

k
k

ε

ε

ε

ε

ε

ε

λ ω

λ ω

λ ω
ε λ ω

ε

λ ω

λ ω

γ

λ ω
γ

λ ω

γ

=

=

=

= =
=

=

∑

∑

∑






=

=

∑ ∏
∑

∏

 

https://doi.org/10.4236/apm.2020.107025


S. Q. Jiang et al. 
 

 

DOI: 10.4236/apm.2020.107025 431 Advances in Pure Mathematics 
 

Thus 

( )( )
( )

( )

( )
( )

( )1
11

1

ln

0 1
lim 1 1 e

j j
nj j i n j jjjn

jj jj

p
n pi

jp j

λ ωε
ε λ ωε

ε

λ ω
γ

λ ωγ
∑ =

==

  
 

→ =

∏
∑

 
  − − =    

 
∏  

which completes the proof of Equation (14). Similarly, we can prove Equation 
(15).  
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By Lemma 1, we get 
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By Definition 2, we get 

 ( )( ) ( )( )1 2 1 2NGHFHWG , , , NGHFHWA , , ,n ns h h h s h h h≤  , 

i.e., 

 ( ) ( )1 2 1 2NGHFHWG , , , NGHFHWA , , ,n nh h h h h h≤  . 

This completes the proof.  
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