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Abstract

The improved Dirac equation is completely solved in the case of the hydrogen
atom. A method of separation of variables in spherical coordinates is used.
The angular functions are the same as with the linear Dirac equation: they
account for the spin 1/2 of the electron. The existence of a probability density
governs the radial equations. This gives all the quantum numbers required by
spectroscopy, the true number of energy levels and the true levels obtained by
Sommerfeld’s formula.
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1. Introduction

The improved Dirac equation was obtained from Lochak’s theory of a leptonic
magnetic monopole [1] [2] [3]. In this theory, the quantum wave has two U(1)
gauge invariances. The mass term of the leptonic magnetic monopole is then
able to replace the usual mass term of the Dirac equation. First, the non-linear
mass term was read in the frame of Hestenes’s space-time algebra [4] [5] [6]-[11].
The improved equation may be obtained from the simplification of the Lagran-
gian density of the Dirac equation, where the myy =mcos(f)p mass term is
replaced by mp . The Dirac wave of the linear equation or of the improved equ-
ation may be read as functions of space-time with values in the Clifford algebra
Cl, [12]-[34].

Since 1928, the relativistic invariance of Dirac’s theory used the previous Pauli

matrices for the spin of the electron: the space-time variable x = (xo,xl,xz,x3)
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was replaced by

o o [x+x X -’ 0
x=x+X=| L |x =ct (1)
X +ix* x —x

This is equivalent to saying that the three Pauli matrices:

(0 lj [0 —ij (1 Oj
0, = 50, =, 5 03 = > (2)
1 0 i 0 0 -1

form a orthogonal oriented basis in space. We shall put arrows on vectors in

space, so any vector reads
N S 2 3
v=vlo,=vo +vio,+vo;. (3)

The geometric algebra of space Cl; and M, (C) are isomorphic algebras
on the real field; the sum and the product of matrices are familiar in quantum
physics. This matrix representation identifies complex numbers and scalar ma-
trices in the Pauli algebra. With this identification, we write the x of (1) as
x= x"oﬂ , we consider (00,01,02,03) as a basis in space-time and we use the
Einstein summation convention, with superscripts and subscripts, where Latin
indices are in space and Greek indices in space-time. Any element z in the Clif-
ford algebra of space CI, is a sum of a real part x, a vector part v, an axi-
al-vector part iw and a pseudo-scalar part 7y; and we need:

Z=X+V+iw+iy; Z=x—V+iw—iy,

1 (4)

=z =x+V—iw—iy; Z=x—-V—iw+iy.

N

The application z >z is the main automorphism of CI;. The reverse is al-

so the adjoint (transposed conjugate matrix), so z+> Z=z" is the reversion.

The third conjugation, z+>Z is the product of the two previous ones and we
shall need:

E:ET:;;ZI\?:AE;E:EZ; MM = MM = det(M) (5)
Space-time is then made of the auto-adjoint part of the space algebra. We use:

F=x=x"-%x"=x, (6)
2 2 2 2 2
det(x)=xt=x-x= (xo) -3 = (xo) —(xl) —(xz) —(x3) .
The main reason to use the geometric algebra C/, is the ability to read all re-
lativistic quantum physics in this algebra: the electron wave is a function of space

and timein CL:

xH¢=¢(x)eCl3. (7)

The link between CI; and the complex formalism is simple only if we use the

left and right Weyl spinors 7 and &, by letting:

¢=2(¢ ﬁ)=ﬁ(§‘ "%];ﬁ{"%j,

& 7 7

AN S ?
A:\/E z :\/5(1 _2]’ A:[_Zj.
$=2(n ¢) n EJ7lE
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The usual formalism usesa w and y* matrices defined as following:

_5'0__01‘[_0__10 )
'//—7777—7/0—109_0_0-0—01a

yo=—y = 0 o ,j=123. (10)
/ o 0

J

Our improved wave equation of the electron, which has the Dirac equation as

linear approximation, reads [6]-[19]:
J(Vg);)o-ﬂ +dqAd+mp =0;V = 040,50, =0,0,;p= |det(¢)|. (11)
where g=e/nc, m=myc/h, o' =0,, 0/ =-0;, j=1,2,3. This equation is

invariant under any transformation D defined by an element M of the Lie group

CI; (group of invertible elements of CI, ):

x"=D(x) =MxM* =x"0,; 0, = P ; x" = Dpxt, (12)
V=MV'M, V'=O'”8;l; qA=Mq'A'M. (13)
¢ (x")=Mp(x); &'=ME; n'=Mn. (14)

Multiplying (11) on the left side by ¢ ', we obtain the usual form in the Pauli

algebra of the improved equation:
Vo, +qAdp+me P $=0; det(¢) = pe”, (15)

where [ is the Yvon-Takabayasi angle. In the usual formalism of complex
4x4 matrices, much more complicated than the Pauli algebra, this wave equa-

tion reads:
O:[),!‘(ay +iqu)+imexp(—ﬁy07/1;/27/3 )J’/’ (16)

Our wave equation has the Dirac equation as linear approximation: if £ is
null or negligible, the improved Equation (15) is reduced to the Dirac equation

that reads in the Pauli algebra and in the Dirac algebra:
0= Vo, +qAd+mg, (17)

0=[r"(0,+igd,)+im . (18)

Our equation is an improvement from the linear Dirac equation for many rea-
sons explained in our previous papers [6]-[34]: Charge conjugation gives a posi-
tron with positive mass-energy. The gauge group comprises a local electric gauge
linked to the conservative current of probability and a second gauge (only glob-
al) that is the chiral gauge of the Yvon-Takabayasi angle, linked to a second
conservative current. This U (1) gauge invariance corresponds to the first part
of the U(1)xSU(2) group of electro-weak interactions. Therefore, our im-
proved equation allows us a generalization, with mass term, to all fermion waves
of leptons and quarks. In this paper, we shall show how this improved,

non-linear wave equation is nevertheless able to obtain the following results: the
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true quantum numbers, the true number of energy levels and the true energy le-
vels in the case of the hydrogen atom. This was previously never obtained from a
non-linear wave equation; therefore, everyone was thinking that the linearity of
quantum mechanics was necessary, even for the linking to the non-linear relati-

vistic gravitation.

2. Separating Variables

To solve the Dirac equation or the improved equation in the case of the hydro-
gen atom, two methods exist. We shall use here, not the initial method based on
the non-relativistic approximation of the wave equation, but the new method

invented by H. Kriiger [35], separating the variables in spherical coordinates:
x' =rsin@cosg; x* =rsinfsing; x’ =rcosb. (19)

We use the following notation:

iy =0, =i0y; i, = 0y, =10,; i, =0}, =i0;, (20)
- A L
S=e2e?;Q=Q=r"(sing) 25, (21)
= =, 1 1
0=0,0,+0,0,+0,05; 0' =030, +—0,0, +———0,0,,. (22)
r rsin@

H. Kriiger obtained the remarkable identity:

0=00Q", (23)
which with
V'=9,-0'=0, —(035,, +%alag +$aza¢j, (24)
gives also:
Q'lv=val (25)

Aiming for the separation of the temporal variable x’ =ct and the angular va-
riable ¢ from the radial variable rand the other angular variable &, we let:

(l:p—Exo +5)i3 .

¢ =QXe ;X =(&7), (26)

where Xis a function (with value in the Pauli algebra) of only rand 8, hcE is
the energy of the electron, J is an arbitrary phase (that plays no role here be-
cause the wave equations are electric gauge-invariant), and A is a real constant
which will be interpreted as the magnetic quantum number (we name here this
quantum number A because mis used in the mass term). We then get:

(l:p—Exo +§)i3

Qlg=Xe , (27)
Qfl¢? _ )A(e(m-gxﬂﬂs)i_g . (28)
We also have:
: Ao-Ex0+5)i
pe”’ = det(¢) = det(Q)det (X )det [e( ooil o)y }, (29)
DOI: 10.4236/jmp.2020.117068 1078 Journal of Modern Physics


https://doi.org/10.4236/jmp.2020.117068

C. Daviau et al.

5 det(X
pe = r’ s(in9)'
Then if we let
pye’ =det(X),
we get:

p=—LE . p=p,.

72 sin 6

(30)

(31)

(32)

(33)

Then with the form (26) of the wave, the Yvon-Takabayasi angle f depends
neither on the time nor on the ¢ angle. It depends only on rand 6. Hence

the separation of variables can be similarly obtained for the Dirac equation or for

the improved equation. We have:

A A — x0+ i
V'Q*1¢ = (80 -0,0, —%O’lag —.;028¢J|:Xe(lw E; 5)3 i|’

We then get:

b Y v 1 % ot — x0+ 1%
Vs Q(_EXI.S _0-38’)(__‘715«9)(_—./1 O'inJG(M - 5)3.
r rsin@

For the hydrogen atom we have:
qA:qAO :—Z; oa=—,
r he

where « is the fine structure constant. We have:

A n ~ (20-E16)i R s
S S RS A
r r

7

Also the wave Equation (15) becomes:

. L1 . . . .
—EXi, —0,0,X ——0,0,X — O'ZAXZ'S—ZAX%-FMe*lﬂ)(i} =0,
r r

rsin @

which means:

. -~ 1 . . .
(E+Zin3 +0'35rX+—0'169X+_L0'2Xi3 = meilﬂXlﬁ’
r r rsiné

The Dirac equation, in contrast, gives:

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)
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. L 1 .
[E+£)Xi3 +0,0, X +—0,0,X +
r rsiné

7

0'2)?1'3 = mXi;. (44)

Now we let, z being the complex conjugate of z

X = (a __bJ (45)
c d
where a,b,c,d are functions with complex values of the real variables rand 6.
We get:
~ (d -¢
X = . 46
. @
We then obtain the following equations:
A , b
ime”ﬂXU3 =je '’ (ma " _], (47)
me —md
. (d -<\(i 0) (id it
Xl3 = — . = . e (48)
b a )0 —i ib —ia
~ (1 0)od -0¢ od -0¢
0,0, X = "= | (49)
0 -1){o,b 0O,a —-0b —0.a
~ (0 1\(o,d -0,¢ o,b O,a
5,0,X = 0T T |2 Cof (50)
1 0)\o,b Oya o,d —0,¢

A s (0 lj(d —Ej(l O] {b —Ej
o, Xi, =i, X0, = _ = _ | (51)
-1 0)\b a Jl0 -1 -d —c¢

Therefore, the improved equation is equivalent to:

a\(id ic od -0¢) 1(0,b 0,a
E+— |+ _|+= _
r ){ib —ia -0b -0a) r\o,d -0,¢
A (b -a) __(ma mb
+— _|=ie |
rsind\{-d -¢ me  —md

Conjugating the equations containing the terms of the right columns we get the

(52)

system:

i[E+gjd +0.d +l(86 +.ij =ime " a,

r r sin
—i[E+gjc—6rc+l(69— ,/1 Ja:—ime’ﬁb,
r r sin @
(53)
. a 1 A )
i|E+—|b-0b+—|0,—— d=ime "¢,
r r sin @
—i(E+Zja+5ra+l(5g+ ,/1 jC=—ime’ﬁd.
r r sin @
Moreover we have:
. det(X d+cb
pe’” =det(¢) = (X) _ad+e (54)

r2sin@  r*sinf

then we get:
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. _+ b
g - 2dreh (55)
|ad + cb|
In the Equation (53) only two angular operators are present, then we let:
a=AU; b=BV; ¢=CV; d=DU, (56)

where A, B, Cet D are functions of rwhile Uand V are functions of &. The (53)

system becomes:

i e+ \pUuspu+i|v+ _’1 V |B=ime AU,
r r sin &
. a ' 1 ' ﬂ“ . i
—i| E+— |CV-C'V+—-| U ———U |4 =—ime” BV,
7 r sin @
(57)

i(EJrﬂjBV—B’VJrl(U’— A UJD = ime P CV,
r r sin @

—i(E+Z)AU+A'U+l(V'+ A VJC:—ime’ﬁDU.

r r sin @

Thenifa x constant exists such that:

U'-

—U=—xV; V'+—
sin @ sin @

V=xU, (58)
the (57) system becomes:

i(E+3)D+D'+fB=ime"'ﬂA
r r

—i(E+ﬁj0—C'—fA — —ime” B
r r
(59)

i(E+3)B—B'—5D=ime"ﬁc

r r

—i(E +3jA+ A+EC=—ime’D
r r

To get the system equivalent to the Dirac equation it is enough to suppress the
S angle. This does not change the angular system (58), while in the place of (59)

we get the system:
i[E+ng+D'+£B — imd,
7 r

—{E+ZJC—C'—5A=—imB,

r r

(60)

i(E+ZjB—B’—£D:imC,
r r

—i(E+ng+A'+£C=—imD.
r r

3. Kinetic Momentum Operators

We established in [8] the form that the operators of kinetic momentum have in

space-time. With the Pauli algebra we have (a detailed calculation is in [13] A.3):

DOI: 10.4236/jmp.2020.117068 1081 Journal of Modern Physics


https://doi.org/10.4236/jmp.2020.117068

C. Daviau et al.

J\p :[dl +10'23j¢0215 d, = x263 —x362 =—sinpd, _waw’ (61)
2 tand
J,p= (dZ +10—31j¢0'215 d, = x381 —x163 =C0spJ, _wa ) (62)
2 tang *
1
Jip= (d3 +EO-12J¢O_21; dy=x'0,-x'0, = 0,- (63)

We indeed have also:
JP=Jl+ T+ JL. (64)
From (26) we have the following equivalence for J,:

Jip=Ap < p=(x,r,0)". (65)

Then the ¢ wave satisfying (26) is a proper vector of J, and A is the mag-

netic quantum number. Moreover for a wave ¢ satisfying (26), we have:

Jp=j(i+1)4, (66)
if and only if:
1Y A2 cos@
X+ j+=| - X-2 c,Xo, =0. 67
o H] 2) sin’ 9} sinzg 2P (67)
And (58) implies at the second order:
2
0=U"+| -2 v+ 280y (68)
sin” @ sin” 6
2
0=p| L |20y (69)
sin” @ sin” @
A cosf
0= aggx{,cz - er—ﬂ,Sinz 9012)(012, (70)

therefore ¢ is a proper vector of J*, with the proper value j( j+1), if and
only if:

1Y 1 1
K =[1+5) =+ g == (71)

with the definition of S'in (21) and with (26) we can see that the change of ¢
into @+2m conserves the same value for the wave if and only if A has a
half-integer value. It is only in this case that the wave is correctly defined. The
general results on the angular momentum operators imply then:

Jj =%,%,%,---; k=x1,£2,+3,--; A=—j,—j+1,--- j—1, . (72)
To solve the angular system we let, if A >0 and with C=C(6):

U =sin* @ sin(ng'—(K+l—ljcos(gJC ,
2 2 2

V =sin* 6 COS(E]C'+(K+l—l)sin(gjc .
2 2 2

(73)
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whileif 4 <0 we let:

U=sin""80 cos(ng’+(K+l+ﬂ]sin(ng ,
2 2 2

(74)
V =sin"" @ —sin(ng'+(K+l+/1jcos(ng .
2 2 2
The angular system (58) is then equivalent [6] to the differential equation:
2|4 ’
0:C"+ﬂc’+{(ml) —/12}0. (75)
tan 2
The change of variable:
z=cos6; f(z):C[H(z)], (76)
gives then the differential equation of the Gegenbauer polynomials':
(K' + ljz -7
y 1+2|4] , 2
0= () -2 2 (o2, )
1-z 1-z
And we get, as only integrable function:
1 1
Al—x—=| | |A|+Kx+=
c(0) w(" 21(" 21 (0
c(0) - 2 1 7)) (78)
(0) = (+|ﬂ,|j n!
2 n
with:
(a)ozl, (a)n:a(a+l)---(a+n—l). (79)

The C(0) term is a factor of Uand V; its argument may be absorbed by the
o0 of (26), and its modulus may be transferred to the radial functions. We can
thenlet C(0)=1, which gives:

[-x-3) (11eee3) (9

C(0)=§: sin
= [lﬂﬂjn!
2 n

Since we have the (71) conditionson A and x, an integer 11 always exists such

(80)

5 )

as:

1
A = —|.
|| +n K+2 (81)

This constrains the (80) series to be a finite sum, so then Uand Vare integrable.
And since Uand V'have real values, we have:
iy ADU’ +CBV’
ef —

=T=" = (82)
ADU* + CBV

"When we solve the Dirac equation with Darwin’s method, that means with the ad-hoc operators, we
get some Legendre polynomials and spherical harmonics. Here, working with ¢, which is equiva-
lent to working with the Weyl spinors & and 77, we get the Gegenbauer polynomials, and it is the
degree of these polynomials that gives the needed quantum number.
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4. Resolution of the Linear Radial System

We employ the following transformations:

x = mr; ezs; a(x)= A(r):A(%j,

(83)
b(x) = B(r); c(x) = C(r); d(x) = D(r).
The (60) system becomes:
i(e+g)d+d'+£b=ia,
X X
—i(e+gjc—c'—£a:—ib,
X x (84)
i(e+ng—b'—£d = ic,
X X
—i(e+z)a+a’+£c:—id.
X X
And the (59) system becomes:
i[e+ﬁjd+d'+5b —ic’a, (85)
X X
—i(e +gjc—c’ P —ibe” (86)
X x
i[e+ﬁjb—b'—5d =ice™”, (87)
X X
—i[e+gja+a'+£c:—ideiﬂ. (88)
x X

Since this radial system has the same asymptotic behavior as its linear ap-
proximation (84) we are left with the following as the only integrable solution:

a=e ™y (a0+a1x+---+anx”)

b=ex" (by +bx+-+b,x")

c=eMx (co +c1x+~-+cnx”) ®
d =e”\"xs(d0 +d1x+~-+dnx”);A= 1-¢*.
We now study the case where n > 0. The (88) equation is equivalent to:
ie( +agx+-+a, x" +anx””)+ia(a0 +a1x+---+anx”)
+A( +agx+-+a, x" +anx””)—s(a0 +a1x+---+anx") 00)

—( +a,x-|—---+nanx”)—K(c0 +clx+---+cnx")
= ie"ﬂ( +dyx+-+d, x"+d x"" )
Similarly, Equation (87) is equivalent to:
ie( +hyx+-+b _x" +bnx"”)+ia(b0 +b1x+m+b,,x”)

+A( +hyx+-+b X" +bnx"“)—s(b0 +b1x+---+bnx”)
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—( +b,x+-~-+nbnx”)—zc(d0+d1x+---+dnx")
. (91)
:ie_"g( +CX+...+c, X" +c¢ x””)

Next, Equation (86) is equivalent to:

ie( +cox+---+cn_1x"+cnx"”)+ia(co+clx+---+cnx")

—A( +cox+---+cn_1x"+cnx””)+s(co+clx+---+cnx")

(92)
+( +clx+---+ncﬂx")+/c(a0+a]x+---+aﬂx")
= ie' ( +byx+---+b, x" +bx"+1)

Finally, Equation (85) is equivalent to:
ie( +dyx+-+d, X" +dnx””)+ia(do +d1x+---+dnx”)
—A( +dyx+e+d, X" +alnx”“)+s(d0 +d1x+---+dnx")
+( +d,x+---+ndﬂx")+/c(b0+b,x+~--+bﬂx”) )
=ie”’ ( +agx+-+a, x"+a,x" )
We then arrive at three kinds of systems: index 0, index between 0 and n, and
index n. For the null index the system is independent of f:
(ia—s)a,—kc, =0; (ia—s)b, —Kkd, =0,
ka, +(ic+s)c, =0; kb, +(ia+s)d, =0. (94)
This system is the same as in the linear case. We obtain a non-null solution only
if the determinant is null, then only if s satisfies:
0=rx"+(ia+s)(ia—s);s =Nk’ —a’. (95)
And the system (94) is then equivalent to:
io—s ia—s

00=Ta0;d0= - by. (96)

For the nindex the resulting system is:
(ie+A)a, =ie”d,; (ie+A)b, =ie c,;
(ie—A)d, =ie’a,; (ie—A)c, =ie”b,.

no

(97)

From the definition of A in (89) we obtain the cancellation of the determi-

nants in the two previous sub-systems, and the (97) system is equivalent to:

d,=(e- iA)e’iﬁan,

: (98)
c, =(e—iA)e”b,.
Next the system with index between 0 and 2 reads:

(ie+A)a,_, +(ia—s—n)a, —xc, =ie”d, _,, (99)

(ie—A)d, ,+(ia+s+n)d,+xb, = ﬁaH, (100)

(l€+A)b +(1a - ) —Kd, cH, (101)

(ie=A)c, , +(ia+s+n)c, +xa, =ie”b, . (102)
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Now we multiply (99) by ie—A:

(ie—A)(ie+A)a,_, +(ie—A)(ia—s—n)a, —(ie— A)xc, =ie” (ie—=A)d,_

Next (100) implies:
(ie—-A)d, , =ie’a,_ —(ia+s+n)d, —«b,.

And (103) becomes:
—a,_ +(ie—=A)(ia—s—n)a, —x(ic—A)c

=i’ [ie”ﬁaml —(ia+s+n)d, —«b, }

n

(ie—A)(ia—s—n)a, —«x(ic—A)c, =—ie” (ia+s+n)d, —ixe”b,.

Using (97) we get:

¢’d, =(e-iA)a,,
e”’b, =(e+iA)c,.

Substituting these relations into (105) we obtain:
(e+ih)[—a—i(s+n)]a, —ix(e+iA)c,
=—i(ia+s+n)(e—iA)a, —ik(e+il\)c,.

Since a, #0 we get:

—(e+iA)[a+i(s+n)|=[a—i(s+n)](e—iA),
iNa-i(s+n)—a—-i(s+n)]=e[a—-i(s+n)+a+i(s+n)],
A(s+n)=ea.
Squaring the equation and substituting the definition of A we get:

(1—62)(S+I’l)2 =é*a’,
(s+n)2 =¢ [az +(s+n)2},

E* (s+rz)2

>

m' o’ +(s+n)
which gives the Sommerfeld energy levels:

Ee s = ma e = s e

2
1+

(s+n)2

5. Constant Radial Polynomials

..(103)

(104)

(105)

(106)

(107)

(108)
(109)

(110)

(111)

(112)

(113)

(114)

To arrive at all the results of the Dirac equation, there is one last thing to explain:

why we have 2n® different bound states with principal quantum number

n= |K‘| +n. For this we must return to the particular case where the radial poly-

nomial is reduced to a constant. We begin directly from (84), and we let:

_ —-Ax _s ., _ —-Ax _s ., _ —-Ax _s ., _ —-Ax _s
a=a,e"x ; b=be "X’ ; c=ce X" ; d=de X

(115)
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We obtain the following set of equations from (59):

s

e™ (iedoxs tiadyx’™ — Adyx* +sdyx’ + kbyx*! ) =ia,e ™x",
—Ax . s . s—1 s s—1 s=1y _ _ » —Ax s
e (—zecox —iocyx” + Acyx’ —scyx’ —Kkayx )— ibye " x",
—Ax [+ s . s—1 s s—1 s=1\ _ - —-Ax _s
e (1eb0x +iabx"" + Abyx* —sbyx’" —Kdyx ) =ic,e X", (116)
—Ax . : . s—1 S s—1 s—1 . —Ax s
e ™ (—leaoxY —iaayx’" —Aayx’ +sa,x" + Kkepx’ ) =—id,e " x".

This is equivalent to the set formed by the four following systems:

Kb, +(ia+s)d, =0,

(i —s)b, —Kd, =0, (17
—ka, —(ia+s)c, =0, (118)
—(ia—s)a, +xc, =0,

—ia, +(ie—A)d, =0, (119)
—(ie+A)ay +idy =0,

iby —(ie=A)c, =0, (120)

(ie+A)by—ic, =0.

The cancellation of the determinant in (117) and (118) gives again (95). The
cancellation of the determinant in (117) and (118) is simply equivalent to
A? =1—-¢€*, which results from the definition of A . Each system (117) to (120)
is then reduced to only one equation:

kd, = (ia—s)b,,

Kc, = (ia —s)ao,

121
dy =(e—iA)ay, (120
by = (e+iA)c,.
We then obtain:
2
. ‘A
kd, = k(e—ilN)a, = (i —s)), = (ia—s)(e+iA)c, :Mao. (122)
We have a non-null solution only if:
2
. ‘A
c(emin) @) (erin)
K
«? (.s—iA)2 = (S—ioz)2 ,
k(e—iN)=%(s—ia). (123)
Since e,5,A and a are positive we finally get:
s a
_S_2 124
=== (124)

This equality gives again the formula of the energy levels (114) with n=0.
Since x comes with an absolute value, we can so well have x<0 as x>0.

But Darwin’s solutions, which work with real constants and not with complex
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ones at this stage of the calculation, forbid x to be negative and it is this inter-

diction which induces, for a principal quantum number n = n+|K , a result of

n(n+1)+n(n-1)=2n> states. This is what really happens: The change of sign
of x is equivalent to changing Vinto —V. And if we change the sign of x
and of V, then a,b,c,d are invariant if n=0, and the wave remains un-
changed. Changing the sign of x brings no more supplementary solution and
we can then use only the solutions with x >0, in the case n=0. And this al-

lows us to get the true number of states.

6. Concluding Remarks

Sommerfeld’s formula (114) for energy levels does not account for the Lamb ef-
fect which is, if n> 0, a very small shift between the energy levels with the same
quantum numbers but with opposite values of « . If the (114) formula was not
the same for opposite values of x, we should not be able to get four polynomial
radial functions with only one condition which gives the quantification of the
energy levels. The Standard Model has a precise answer using vacuum polariza-
tion. But the calculation must be revised, both to avoid divergences and to em-
ploy the improved wave equation which accounts also for weak interactions [33]
[34]. Since the Lamb shift is of the same order as the hyperfine structure coming
from the interaction between the magnetic moment of the proton and that of the
electron, a true calculation must account for the origin of the magnetic moment
of the proton from the waves of the three quarks inside, and for the true poten-
tial seen by the electron wave, with both the electric charges and the potential

vector of the moving charges.
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