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Abstract 

This research effort addresses the social-distancing problem. As the COVID-19 
pandemic continues, we’ve learned the importance of keeping proper dis-
tance, so as to avoid (or minimize) the spread of infection. For this paper, in-
dividuals are represented as positively-charged particles, behaving in accor-
dance with Coulomb’s Law. Additionally, negatively-charged stationary 
(non-moving) particles are positioned such that their attraction to the posi-
tively-charged particles guides the movement of the positively-charged par-
ticles in a desirable fashion. During a simulation process, Coulomb’s Law 
guides particle behavior such that the positively-charged particles arrange 
themselves in a way such that their spacing is essentially optimal. Of course, 
these positively charged particles can be thought of as a surrogate for indi-
viduals, resulting in the optimal spacing of individuals. 
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1. Introduction 

COVID-19 became a major problem in the world in the early months of 2020. 
Countries have used varying approaches in addressing the problem, but the 
concept of “social-distancing” has become one of the most important defenses 
against the virus. Two major factors contribute to the spread of infection: popu-
lation density [1] and transience [2]. The number of cases is disproportionately 
higher in densely-populated areas, such as New York City and Madrid. Addi-
tionally, these two cities also have a lot of “transience.” That is, many people 
move through these cities, due to the transportation infrastructure, leaving these 
cities more exposed to possible infections. New Orleans, Louisiana is a good 
example of transience being a problem. New Orleans is not a large city com-
pared to those mentioned above, but the city held its annual Mardi Gras festival 
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in February, where visitors came from all over the world. In March, public 
health officials realized holding Mardi Gras was a mistake, given that so many 
people in New Orleans became infected, presumably because of the large num-
ber of people who came to New Orleans [3]. 

In short, social-distancing is the best defense against the virus. Because of the 
importance of social distancing, a good social distancing tool is desired. The main 
motivation of this research effort is to assist with social distancing—finding the 
best way to address social distancing via our vast array of mathematical tools. 
These tools can be used to optimize the spacing of individuals in our collective 
attempt to minimize transmission of the virus. The body of literature contains a 
good amount of research relating to the circle-packing problem—a problem 
committed to optimizing placement of circles in a confined area such that the total 
area dedicated to circles is maximized. The research presented here slightly differs 
in that because particles, not circles, are placed into a unit square.  

This research exploits Coulomb’s Law in an attempt to optimize the placement 
of charged particles in a confined environment. In this context, the charged par-
ticles are surrogates for individuals. Coulomb’s Law guides the charged particles 
as to where to go. This process is organized as a part of the meta-heuristic Simu-
lated Annealing—a search process engineered to find near-optimal solutions for 
all sizes of optimization problems. The pursuance of Coulomb’s Law in this en-
deavor is considered the unique feature of this research.  

In short, the contributions of this paper are summarized as follows: 
• The social distancing problem is addressed, specifically via mathematical 

means 
• Coulomb’s Law is employed in a novel fashion 
• Near-optimal results are found for problems proven optimal 
• The presented methodology can be employed to larger problems without loss 

of generality 
The following sections describe Circle-Packing/Particle Arrangement, Cou-

lomb’s Law, and how Coulomb’s Law is used to assist in particle movement via 
the Simulated Annealing search heuristic. The presented methodology is also 
used on sample problems resulting in near-optimal solutions. General conclu-
sions are also offered, along with recommendations for subsequent research.  

It should be noted that there are several terms defined in this paper. Specifi-
cally, Table 1 defines terms related to forces and Coulomb’s Law, Table 2 shows 
an example of this, while Table 3 defines terms related to the Simulated An-
nealing Process. 

2. Circle-Packing and Arrangement of Particles 

In its most general form, “circle-packing” is the practice of placing 
non-overlapping circles in a confined space. The circles need not be of the same 
diameter. The intention is to arrange the circles such that the wasted space 
(non-circle area) is minimized. This practice is important in the steel-stamping  
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Table 1. Coulomb’s law definitions. 

Symbol Description 

ix  horizontal location of particle i 

iy  vertical location of particle i 

n+  number of positively-charged particles 

n−  number of negatively-charged particles 

,i j+ +  indices for positively-charged particles 

,i j− −  indices for negatively-charged particles 

2
ijd  distance between particles i and j 

( )x i
F +  net horizontal force exerted on particle i+ 

( )y i
F

+
 net vertical force exerted on particle i+ 

+
iF  magnitude of force exerted on particle i+ 

ih+  direction of force exerted on particle i+ 

 
Table 2. Net force calculation for example. 

Point Charge x y xi − xj yj − yi 2
ijd  Fx Fy 

(7, 11) + 7 11 N/A N/A N/A N/A N/A 

(3, 17) + 3 17 4 −6 52 0.0769 −0.1154 

(14, 15) + 14 15 −7 −4 65 −0.1077 −0.0615 

(16, 8) + 16 8 −9 3 90 −0.1000 −0.0333 

(4, 4) − 4 4 −3 −7 58 −0.2069 −0.4828 

 
Table 3. Search parameters. 

Symbol Definition 

dij distance between particles i and j 

ZC current solution distance 

ZT temporary solution distance 

ZB best solution distance 

xi x coordinate of particle i 

yi y coordinate of particle i 

q iteration index 

n number of particles to position 

T1 Initial temperature 

TF Final temperature 

T current temperature 

δ relative inferiority of temporary solution 

Iter iterations per temperature level 

CR cooling ratio 

kB Boltzman constant 
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industry, as non-stamped steel is considered a form of waste. From an opera-
tions research perspective, packing some number of circles (n) of equal diameter 
in a confined space (such as a unit square or unit circle) has become a bench-
mark problem. For problems of this type, the objective is to maximize the di-
ameter of the n circles [4] [5] [6]. The circle-packing problem’s optimal solution 
can only be determined via mathematical proof for a specific number of circles, 
and optimality has only been proven for small values of n. Optimal solutions for 
larger values of n remain an unresolved issue [7]. 

The research here differs from the above problem in that we are only inter-
ested in optimally spacing the centers of the n circles of concern. As such, we 
treat the centers of the circles as points on a two-dimensional plane, and wish to 
maximize the distance between centers of the two closest circles. Figure 1 shows 
optimal circle packing for n = 2. 

Figure 1 shows two circles packed in an optimal fashion. The two circles do 
not overlap, and are both confined to the outer square. The inner square can be 
thought of as a unit square (all four sides having length of 1). Note that the cen-
ters of the two circles are contained in the inner unit square. Within the unit 
square the two centers comprise the optimal solution to the problem—the 
maximized distance between centers is 2 21 1 2+ = , and is illustrated by the 
diagonal line between the circle centers. 

Maximizing the distance between the two closest circle centers is the objective 
for this research. Given that the larger values of n result in problems with un-
known optimal solutions, we are motivated to provide a tool for addressing not 
just “large” values of n, but any particular value of n. From this point forward, 
these circle centers are referred to as “particles,” and in the context of social dis-
tancing, we wish to maximize the distance between the two closest particles 
(persons). 

3. Particle Movement 

In the context of this research, there are two ways to move individuals with the 
intent of social distancing in an optimal fashion. First of all, individuals hereafter 
are referred to as “particles,” which are simply points in space. It is desired that 
these particles be arranged such that the minimum pairwise distance between all  
 

 
Figure 1. Two circles in optimal arrangement. 
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particles be maximized. In order to accomplish this objective, the particles are 
moved during a simulation process. For this research effort, two different ways 
to move the particles are pursued. The first is by exploiting the magnetic nature 
of charged particles, which is referred to as “polar movement.” The second way 
to move the particles is via “random movement.” 

3.1. Coulomb’s Law and Polar Particle Movement 

Magnetic particles are either positively charged or negatively charged. Particles 
of the same charge repel each other, while particles of differing charges are at-
tracted to each other. Figure 2 shows this: (a) and (b) show repulsion, while (c) 
shows attraction.  

Coulomb’s Law quantifies the force between the particles according to the 
Coulomb’s Law, which mathematically is as follows: 

2
0

1
4

i j
ij

ij

q q
F

dπε
=                           (1) 

The first term of this (1/4πε0) is essentially a constant, used to convert the re-
sult into units of Newtons (N). This constant is not used here, as we are only in-
terested in relative forces. The value of qi and qj are the charges of two particles, 
measured in Coulombs (C). The value of dij is the Euclidean distance between 
particles i and j. As such, the force between two charged particles reduces to the 
following: 

2
i j

ij
ij

q q
F

d
=                            (2) 

We can state that the force between two charged particles is the product of 
their charges and inversely proportional to the squared distance between them, 
where the squared distance is as follows: 

( ) ( )2 22
ij i j i jd x x y y= − + −                      (3) 

With a basic understanding of Coulomb’s Law, we now need to understand 
how the forces of several charged particles affect a single particle. For this re-
search, only positive particles move, while negative particles remain stationary – 
the forces imposed by the negative particles do, however, affect the movement of 
the positively-charged particles. Table 1 provides some relevant terms: 

It is intended to determine the net force exerted on all positive particles. To do 
this, we combine the forces exerted on all positive particles in terms of horizon-
tal and vertical components. Consider Figure 3, detailing a specific particle at 
the point (7, 11). It is our intent to sum all forces imposed on this specific par-
ticle to determine the net force acting on this particle. 
 

 
(a)                           (b)                           (c) 

Figure 2. Charged particles. 
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Figure 3. Forces imposed on a particle. 

 
The find the net force exerted on some specific positive particle i+, the follow-

ing two equations are used: 

( )
( ) ( )( )

1 1

, ,
n n

i j j i
x i

j ji j i j

x x n n x x
F i j i

d d

+ −
+ + − +

+
+ −+ + + −

+ −

+ +

= =

   − −   = + ∀ ∀ ≠      
   
∑ ∑      (4) 

( ) ( ) ( )( )
1 1

,
n n

i j j i
y i

j ji j i j

y y n n y y
F i j i

d d

+ −
+ + − +

+
+ −+ + + −

+ −

+ +

= =

   − −   = + ∀ ∀ ≠      
   
∑ ∑      (5) 

It is important to note that the first component of the above two formulae re-
lates to the force between the particle i+ and other positively-charged particles, 
while the second component relates to the force between positively-charged par-
ticle i+ and the negatively-charged particles. It is also important to note that the 
(n+/n−) component is used to make sure the total positive force (in Coulombs) is 
the same as the total negative force (in Coulombs). For this example, there are 
four positively-charged particles, and one negatively-charged particle. As such, 
the (n+/n−) multiplier assures the negatively-charged particle has a charge of four 
Coulombs, the same as the sum of the positively-charged particles. 

The magnitude of the resultant net force is as follows: 

( ) ( )2 2 ,x yi i
F F i+ + +

+= + ∀
i

F                     (6) 

The direction, or heading, of this resultant net force is as follows: 

( )
( )

1tan ,y i
i

x i

F
h i

F
+

+
+

− +
 
 = ∀
 
 

                     (7) 

Table 2 shows how the net resultant force acting on the point (7, 11) is de-
termined: 

Using Equations (4) and (5) above, and summing the two right-most columns 
of Table 2, we have ( )x i

F +  of −0.3377, and ( )y i
F

+
 of −0.6263. This results in a 

net force magnitude of 0.7116 ( )+iF , and a heading of −151.67 degrees ( )ih+ . 
Figure 4 details the resultant force. 
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Figure 4. Net force imposed in a single, posi-
tively-charged particle. 

 
The importance of Figure 4 is that the resultant force (both magnitude and 

direction) presents the location to where the particle is inclined to move. He-
reafter, this type of particle movement is referred to as “polar movement.” 

Again, it is important to note that only positively-charged particles are subject 
to movement, so resultant forces are only determined for the positively-charged 
particles. 

3.2. Random Particle Movement 

Unfortunately, polar movement is not always possible, because resultant forces 
may take us outside the realm of feasible solutions (outside the unit square). Be-
cause in polar movement, only the positively-charged particles move, and their 
nature to repel each other will motivate these particles outside the realm of feas-
ible solutions. Figure 5 shows an example of this. 

Figure 5 shows us that the positively-charged particle desires to move outside 
the search space, rendering an infeasible solution. Furthermore, the heading of 
this particle will never change, essentially putting our search at a “dead end.” 

In order to combat this problem, all movable particles are treated as “neutral” 
particles, and they are moved a very small amount according to random-
ly-selected magnitudes and headings. This approach is referred to as random 
movement, and is illustrated in Figure 6. 

This research effort utilizes both polar movement and random movement in 
our attempt to find optimal spacing. 

4. Search Methodology 

This section describes the methodology used for finding the best spacing of par-
ticles according to the movement rules described above. Simulated annealing is 
the general search heuristic used. Simulated annealing starts with a random so-
lution. Minor modifications are made to the random solution. If the modified 
solution is an improvement over the current solution, the modified solution  
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Figure 5. Example of infeasible polar movement. 

 

 
Figure 6. Example of random movement. 

 
replaces the current solution. Otherwise, the modified solution may replace the 
current solution, provided the degree of inferiority is small enough to meet a 
probabilistic threshold [8]. This process continues until a stopping criterion is 
met. At the end of the search, the best solution encountered is reported. The 
reason inferior solutions are sometimes accepted as current is to avoid being 
trapped at local optima in the search for a global optimum [9]. The following 
subsections detail the search. 

4.1. Initialization 

Prior to describing the search process, Table 3 provides definitions, some of 
which are a slight repeat of the definitions from Table 1. 

Values for the following search parameters are chosen: Iter, kB, CR (< 1.0), T1 
and TF (where TF < T1), and T = T1. The iteration index, q, is set to 1. The num-
ber of movable particles for spacing (n) is chosen, and for each particle i, x and y 
coordinates are assigned the following: 

( )~ 0,1 ,ix U i∀                          (8) 

( )~ 0,1 ,iy U i∀                          (9) 

This is the initial solution. The objective function of this initial solution is as 
follows: 

( )( )max min , , , whereijd i j i∀ ≠                   (10) 

( ) ( )2 2
ij i j i jd x x y y= − + −                    (11) 
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Subject to the constraints: 

0 1,ix i≤ ≤ ∀                          (12) 

0 1,iy i≤ ≤ ∀                          (13) 

The values of ZC, ZT and ZB are set equal to the objective function value. 
In layman’s terms, we wish to arrange n particles in the unit square such that 

the distance between the closest two particles is maximized. The mathematics of 
this model shows a scenario where the objective function is both nonlinear and 
discontinuous, meaning conventional solvers are unlikely to guarantee an op-
timal solution, especially for larger problems. This is the reason a search heuris-
tic is pursued. 

4.2. Movement 

Prior to movement, the current solution is copied to the temporary solution. 
Movement is either in the form of polar movement or random movement, both 
described in Section 3. The probability of polar-movement is τ, implying that the 
probability of random movement is (1 − τ). 

In polar movement, only the positively-charged particles move, while the ne-
gatively-charged particles remain stationary. All positively charged particles si-
multaneously move in the direction of their heading ( )ih+  at a distance of 
( )+iF . In random movement, the n-particles move to a nearby, random-
ly-selected location. Regardless of the type of move, infeasible moves are not ex-
ecuted. The result of all movements is the temporary solution. 

4.3. Evaluation 

Once the (previously-described) move is complete, the objective function value 
(ZT) is determined via Equation (10). A determination needs to be made as to 
whether or not to accept the temporary solution as the current solution. If the 
objective function value of the temporary solution is better than the objective 
function value of the current solution—that is, if ZT > ZC, the current solution is 
replaced by the temporary solution. 

Otherwise, further evaluation is needed before accepting the temporary solu-
tion as the current solution. The inferiority of the temporary solution compared 
to the current solution is represented as δ, and is determined as follows: 

T C

C

Z Z
Z

δ −
=                          (14) 

The probability of accepting the inferior temporary solution as the current 
solution occurs with the following probability: 

( ) exp
B

P A
k T
δ 

=  
 

                      (15) 

A uniformly-distributed random number of the interval (0, 1) is generated. If 
this value is less than P(A), the inferior temporary solution is accepted as the 
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current solution. Otherwise, the inferior temporary solution does not replace the 
current solution. The content provided by Equations (14) and (15) cuts to the 
uniqueness of Simulated Annealing. Inferior solutions are occasionally ac-
cepted as current solutions so as to avoid being trapped at local optima. The 
probability of accepting inferior solutions decreases as the search progresses. 
The Boltzmann Constant (kB) controls the probability of accepting inferior solu-
tions [10]. 

A test step compares the temporary solution to the best solution. If the tem-
porary solution objective function value exceeds the best solution objective func-
tion value (that is, if ZT > ZB), the temporary solution replaces the best solution. 

4.4. Search Status 

If q is less than the specified number of iterations per temperature level (Iter), 
the value of q is incremented by one (q = q + 1), and control if the search returns 
to that described in Section 4.2. Otherwise, the current Temperature (T) is mul-
tiplied by the cooling rate to set the new current temperature (T = T * CR), and 
q is reset to 1. If the new resultant temperature is greater than TF, control of the 
search returns to that described by Section 4.2, and q is reset to 1. Otherwise, the 
search is over and the best solution is returned. 

4.5. Search in Pseudocode 

For a better understanding of the search process, details are provided in pseu-
docode form. 

initialize(); 

while (T > TF){ 

for(q = 1; q <= Iter; q++){ 

set temp-solution = current-solution(); 

if(~U(0,1)<τ)polar-movement(); 

else random-movement(); 

evaluate temp-solution(); 

if (ZT > ZC) set current-solution = temp-solution(); 

if (ZT > ZB) set best-solution = temp-solution(); 

else {if(~U(0,1)<exp((δ/kBT)))  

set current-solution = temp-solution();} 

    }                       //end else 

  }                         //end q 

T = T * CR 

}                           //end while 

report-best-solution(); 

When the best solution is returned, the x and y-coordinates of all particles as-
sociated with the best solution are reported, along with the objective function 
value. 
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5. Experimentation 

The methodology presented above was carried out via agent-based modeling 
software. Agent based modeling is an extension of traditional object-oriented 
programming (such as Java or C++) in that the modeling environment is a dy-
namic system—the entire system is perpetually in a state of change [11]. The 
specific programming environment was NetLogo [12] [13]. 

5.1. Experiment in NetLogo 

The methodology can be used for any value of n. As stated earlier, NetLogo was 
the programming software employed. The images provided via Figure 7 and 
Figure 8 are images from the NetLogo environment. Figure 7 details the ran-
domly-generated initial solution for n = 18. The particles to be arranged are po-
sitively-charged, and shown via a blue “+” symbol. Additionally, the size of the 
particle is proportional to the net force acting on the particle, and the heading of 
the particle is also shown via the arrow at the end of the “+” symbol. The nega-
tively-charged particles are shown in red via “−” symbols. These particles are 
stationary—they do not move, and are only present for their influence on the 
mobile, positively-charged particles.  

After careful inspection of Figure 7, one will notice that the positive particles 
close to the negative particles have larger magnitudes and are pointed toward the 
negative particles. This is affirmation of Coulomb’s Law. Similarly, positive par-
ticle further from other particles have smaller magnitudes, again affirming Cou-
lomb’s Law. Finally, positively-charged particles somewhat near each other are 
pointing in opposing directions. 

After the Simulated Annealing was performed, the final solution was obtained 
and detailed via Figure 8. The is the “best” arrangement of the positive-
ly-charged particles is shown the maximized distance between the two closest  
 

 
Figure 7. Starting solution, n = 18. 
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Figure 8. Final solution, n = 18. 

 
particles was 0.3000, where the proven-optimal distance was found to be 0.3005 
[14]. 

Figure 8 shows what the NetLogo program found to be the best overall solu-
tion. Here, the positively-charged particles are shown via black circles, and the 
negatively-charged particles are not shown. The maximized distance between the 
two closest particles is also shown. 

5.2. Computational Experience 

In finding the best solutions for values of n ≥ 2, the search settings shown in Ta-
ble 3 had to be adjusted for each unique value of n. For the trivial problems in-
volving optimal spacing of 2, 3 and 4 particles (n = 2, 3, 4), the search best re-
sponded by eliminating the negative charge in the unit square. This makes sense, 
because for these values of n, the positively-charged particles are motivated to 
get as far away from each other as possible, regardless of other circumstances. 
Staring with five or more particles (n ≥ 5), the negative force in the central por-
tion of the unit square becomes more important. This is because for larger quan-
tities of particles, some of them need to be attracted toward the central part of 
the unit square for optimal spacing. Adjusting the negative force from problem 
to problem was required to obtain desirable results.  

For all problems, T1 was set to 40, while TF was set to 1. The cooling ratio, CR 
was set to 0.9995, and the number of Iter increased in proportion to n. For all 
problems, the Boltzmann Constant, kB, was set such that a temporary solution 
5% inferior to the current solution had a 5% probability of acceptance when T = 
T1. 

5.3. Experimental Results 

Table 4 shows the results of the methodology presented here as compared to 
results proven to be optimal for several problems.  
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Table 4. Results from several problems. 

n 2 3 4 5 6 7 8 9 10 11 

ZB 1.4142 1.0352 1.0000 0.7071 0.6009 0.5358 0.5174 0.5000 0.4212 0.3978 

Zopt 1.4142 1.0352 1.0000 0.7071 0.6009 0.5359 0.5176 0.5000 0.4213 0.3982 

n 12 13 14 15 16 17 18 20 25 36 

ZB 0.3885 0.3655 0.3476 0.3386 0.3331 0.3057 0.3000 0.2862 0.2495 0.1998 

Zopt 0.3887 0.3661 0.3489 0.3411 0.3333 0.3061 0.3005 0.2866 0.2500 0.2000 

 
For the problems pursued, the presented methodology averaged 99.89% as 

compared to proven optimal. The worst-performance was for n = 15, which was 
99.27% as compared to optimal. 

6. Concluding Comments 

Methodology has been provided to address social distancing via Coulomb’s Law 
and a variant of the circle-packing problem. Results are encouraging. As the 
COVID-19 virus and its social impact continue to evolve, social distancing will 
likely be with us for a while, and what we’ve learned from the effects of social 
distancing will likely be applied to future crises of a similar nature. 

The presented research most certainly can be taken further, particularly with 
regard to scale. While the virus continues to force us into social distancing, 
sporting events will have limited capacity, providing employment for the pre-
sented methodology. The same can be said for worship services. In these larg-
er-scale situations; however, something other than a unit square will be required, 
given the differing shapes of large venues. 

Another opportunity for subsequent research applies to the use of Coulomb’s 
Law, and more effective ways of using the law to find desirable spacing. Scientif-
ic principles of other types could also be investigated in attempt to achieve de-
sirable spacing. 

In summary, the findings of this work are as follows: 
• Social-distancing in an optimal fashion can be addressed via an applied ma-

thematical approach 
• Near-optimal results were found when compared to existing problems with 

known optima 
• A combination of Coulomb’s Law and random movement was needed to ob-

tain desirable solutions 
• The presented methodology can be scaled to larger problems without loss of 

generality 
• The work exploited a novel application of Coulomb’s Law 

It is possible that other scientific principles (other than Coulomb’s Law) 
would be employed to address this problem. 
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