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Abstract 
GMM inference procedures based on the square of the modulus of the model 
characteristic function are developed using sample moments selected using 
estimating function theory and bypassing the use of empirical characteristic 
function of other GMM procedures in the literature. The procedures are rela-
tively simple to implement and are less simulation-oriented than simulated 
methods of inferences yet have the potential of good efficiencies for models 
with densities without closed form. The procedures also yield better estima-
tors than method of moment estimators for models with more than three pa-
rameters as higher order sample moments tend to be unstable. 
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1. Introduction and an Overview of GMM Procedures Based  
on Empirical Characteristic Function 

1.1. Introduction 

In many applied fields, data analysts often have to use distributions with density 
functions having complicated forms. They are often expressed using mean of se-
ries representations but model characteristic functions are simpler and have 
closed form expressions. For actuarial sciences, the compound Poisson distribu-
tions are classical examples and for finance, the stable distributions fall into the 
same category. These are infinitely divisible and many infinitely divisible distri-
butions share the same property of having much simpler characteristic functions 
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than density functions. We shall examine in more details using the Generalized 
Normal Laplace (GNL) distribution which is obtained by adding a normal com-
ponent to the GAL random variable hence can be viewed as created by a convo-
lution operation. The GNL distribution was introduced by Reed [1] and we shall 
use it to motivate inferences procedures based on characteristic functions in-
stead of densities. Both the GNL and GAL distributions provide better fit to log 
returns data in finance. The density of the GNL distribution is more complicated 
than the density of the GAL distribution. The book by Kotz et al. [2] gives a very 
comprehensive account of the GAL distribution. Obviously, if these distribu-
tions with properties just mentioned are used for modelling, we still want to be 
able to estimate the parameters and perform tests for validating the models used. 
Often maximum likelihood (ML) procedures are difficult to implement due to 
the lack of closed form for the density functions for the models being used and 
even the ML estimators are available, when they are used with the Pearson 
chi-square statistics in general do not lead to distribution free statistics further 
complicate ML procedures. Therefore, it is natural that we aim at a unified ap-
proach to estimation and testing. Inferences developed in this paper will be uni-
fied using GMM approach but with the use of estimating function theory to se-
lect sample moments using moment conditions extracted from model characte-
ristic function or more precisely the square of its modulus for constructing the 
GMM objective function. Subsequently, estimation and testing can be carried 
out. Before giving more details of the developed GMM procedures of this paper 
and how they differ from GMM procedures in the literature and the advantages 
of the new procedures, we shall give more details about the GNL distribution 
where the use of characteristic function appears to be more natural than the use 
of the model density. The GMM methods developed are also less simulation in-
tensive than simulated methods which appear in the paper by Luong and Bilo-
deau [3] and faster in computing time for implementing. 

The GNL generalizes the GAL distribution, the density of the GAL can be ob-
tained in closed form but depend on Bessel functions, see Kotz et al. [2] (page 
189), Luong [4] and since the GAL distribution can also be obtained from the 
distribution of the difference of two gamma random variables, we shall consider 
first the characteristic function of the gamma distribution in example 1 and sub-
sequently in example 2 and example 3, we shall consider respectively the charac-
teristic function of the GAL and GNL distributions. 

First, recall that the characteristic function ( )sφ  of a random variable X is a 
complex function defined as 

( ) ( )eisXs Eφ =  

and it can be expressed as 

( ) ( ) ( )s Re s iIm sφ φ φ= +   

with the real and imaginary parts of ( )sφ  given respectively by ( )Re sφ  and 
( )Im sφ . We can also use polar forms instead of algebraical forms to express 
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complex numbers or functions. 
The modulus of ( )sφ  is defined as 

( ) ( )( ) ( )( )
1 22 2

s Re s Im sφ φ φ = +  
 

and the argument ( )sω  of ( )sφ  is defined as ( ) ( )
( )

arctan
Im s

s
Re s
φ

ω
φ

= . This  

allows to express ( ) ( ) ( )ei ss s ωφ φ=  and depending on situations, the polar 
form of ( )sφ  can be simpler to handle than its algebraical form as illustrated in 
example 1 which gives the characteristic function of the gamma random variable 
using both representations for the gamma distribution. 

Example 1 (characteristic function of the gamma distribution) 
It is well known than the characteristic function of the Gamma distribution in 

algebraical form is given by 

( ) ( ) ( )1 , ,s i s ρφ β ρ β− ′= − =γ γ  

with β  being the scale parameter and ρ  being the shape parameter, 0β >  
and 0ρ > . Now before giving the polar form of ( )sφ , we give the polar form 
of ( ) 1z s i sβ= −  first and using properties of the modulus as well as properties 
of the argument of a complex number we then give the polar form for ( )sφγ . 
The modulus of ( )z s  is denoted by 

( )
1 22 21z s sβ = +    

and the argument of ( )( ) ( )arg arctanz s sβ= −  and since the function ( )arctan x  
is odd, ( )( ) ( )arg arctanz s sβ= − . This allows the representation in polar form 
for ( )z s .  

Using properties of the modulus, since ( ) ( )( )s z s
ρ

φ
−

= , so ( ) ( )s z s
ρ

φ
−

= . 
With ( ) ( )( )1 2 arctan2 21 ei sz s s ββ − = +   and since ( ) ( )( )s z s

ρ
φ

−
= , it is easy to see 

that the characteristic function of the gamma distribution is given by  
( ) ( )( )2 arctan2 21 ei ss s

ρ ρ βφ β
−

 = + γ , ( ),β ρ ′=γ  using polar form. 
Using the characteristic function of the gamma distribution in polar form, we 

can find the characteristic function of the GAL distribution which can be consi-
dered as the difference of two independent gamma random variables.  

Example 2 (characteristic function of the GAL distribution) 
Among many representations in distribution of the GAL distribution, the one 

which makes use of two independent random gamma random variables allows 
the following representation for the GAL random variable X, see proposition  

4.1.3 given by Kotz et al. [2] (p 183), 1 22 2
dX G Gσ σκθ

κ
= + −  with d=  being  

an equality in distribution, 1G  and 2G  are independent and identically dis-
tributed as G which follows a gamma distribution with scale parameter equals to 
one and shape parameter being ρ , the parameter θ  is a location parameter 
with θ−∞ < < ∞ . The parameter κ  controls the skewness of the GAL distri-
bution, 0κ >  and if 1κ = , the distribution is symmetric. The parameter σ  
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is a scale parameter with 0σ > . Using the representation with gamma random 
variables it is easy to see that by letting 

1 1,
2 2

σ σκ
α βκ
= =  and 1 2

1 1dX G Gθ
α β

= + − , 1κ =  if α β= . 

The characteristic function ( )sφ  for the GAL distribution in polar form is giv-
en by 

( ) ( ) ( )( ) ( )1 2

2 22 2

2 21 1 e , , , ,i s ss ss
ρ ρ

θ ρω ρωφ θ α β ρ
α β

− −
+ +    ′= + + =   

   
γ γ    

( )1 arctan ssω
α
 =  
 

, ( )2 arctan ssω
β

 
= − 

 
, using the characteristic function of  

the gamma distribution in polar form as given by example 1. Instead of using, 
replace it by ρµ  then  

( ) ( ) ( )( ) ( )1 2

2 22 2

2 21 1 e , , , ,i s ss ss
ρ ρ

ρ µ ω ρωφ µ α β ρ
α β

− −
+ +    ′= + + =   

   
γ γ   

Using this parametrization, it is easier to connect with the GNL distribution 
with the representation of the GNL random variable as the convolution of a 
normal random variable with a GAL random variable. The GAL is symmetric if 
α β=  and its characteristic function can be further simplified and reduced to 

( )
2

21 eiss
ρ

ρµφ
α

−
 

= + 
 

γ  or ( )
2

21 eiss
ρ

θφ
α

−
 

= + 
 

γ . 

Observe that often it is relatively simple to find characteristic function of a 
distribution of a convolution of two independent random variables using cha-
racteristic functions of the component independent random variables and also 
the characteristic function of the GAL distribution does not depend on the Bes-
sel functions and is much simpler than its density despite the density of the GAL 
density has closed form expression. The GNL random variable X can be created 
by adding an independent normal random variable to a GAL random variable 
and allows the following representation as introduced by Reed [1] (p 475),  

1 2
1 1dX Z G Gσ ρ ρµ
α β

= + + −   

or equivalently,  

1 2
1 1dX Z G Gσ ρ θ
α β

= + + − . 

Z is a standard normal random variable and independent of 1G  and 2G  with 

1G  and 2G  are as defined as in example 2. Since the characteristic function for  

the standard normal random variable is 
21

2e
s

 and the characteristic function of  
the GAL distribution is already obtained, the polar form of the GNL distribution 
can be also obtained and it is given in the following example. 

Example 3 (characteristic function of the GNL distribution) 
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From the representation of the GNL random variable it is easy to see that the 
characteristic function of the GNL distribution in algebraical form is 

( )
2

2
2 1 1e

1 1

si s
s

is is

ρ ρ
ρ µ ρσ

φ
α β

−    
=    − +   

γ   

which is given by Reed [1] (p 474) and in polar form 

( ) ( ) ( )( )
2

2
1 2

2 22 2
2

2 2e 1 1 e
s

i s ss ss
ρ ρ

ρσ ρ µ ω ρωφ
α β

− −
− + +   

= + +   
   

γ  

with ( )1 sω  and ( )2 sω  are as defined in example 2.  
Using the modulus of ( )sφγ ,  

( )
2

2
2 22 2

2
2 2e 1 1

s s ss
ρ ρ

ρσ
φ

α β

− −
−    

= + +   
   

γ , 

we also have 

( ) ( ) ( ) ( )( ) ( )1 2 2e , , , , ,i s ss s ρ µ ω ρωφ φ µ α β σ ρ+ + ′= =γ γ γ  

As for the GAL distribution, if α β= , the GNL distribution is symmetric and 
its characteristic function is further simplified and is given by 

 ( )
2

2 2
2

2e 1 e
s

iss
ρ

ρσ θφ
α

−
−  

= + 
 

γ  with θ ρµ=  

Reed [1] using the characteristic function also established expressions for the 
k-th cumulants , 1, 2,kc k =   with 

 2
1 2 2 2

1 1 1 1,c cρ µ ρ σ
α β α β

  
= + − = + +  

   
, 

( ) ( )2

1 11 ! 1 , 3r
r rc r rρ

α β
 

= − + − > 
 

 

The GNL distribution provides a better fit to log returns data than the GAL 
distribution and both these distributions provide much better fit to log returns 
data than the normal distribution. In addition, all integer moments exist for 
these distributions and they are also infinitely divisible like the normal distribu-
tion which makes them being good alternatives to the normal distribution. From 
the characteristic function of the GNL distribution, it is easy to see that the real 
and imaginary part of the characteristic function are given respectively as 

( ) ( ) ( ) ( )( )( )1 2cosRe s s s sφ φ ρ µ ω ρω= + +γ γ  

and  

( ) ( ) ( ) ( )( )( )1 2sinIm s s s sφ φ ρ µ ω ρω= + +γ γ . 

1.2. Empirical Characteristic Function and GMM Procedures in the  
Literature 

For inferences, we assume that we have a random sample of size n which con-
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sists of 1, , nX X  of independent and identically distributed continuous ran-
dom variables and they are distributed as X, with common characteristic function 

( )sφγ , γ  is a p by 1 vector of parameters of interests with ( )1, , pγ γ ′= γ , 0γ  
is the vector of the true parameters with 0 ∈Ωγ , the parameter space is as-
sumed to be compact. The number of parameters in the model is p. In fact, most 
inferences procedures based on characteristic function proposed in the literature 
are still valid if X has a discontinuity point with mass attributed at the origin 
such as in the cases of the compound distributions. If X is discrete, it is often pre-
ferred to work with probability generating function rather characteristic function 
and for related procedures using probability generating function, see Luong [5]. 

Commonly proposed GMM procedures in the literature are based on the em-
pirical characteristic function which is the counterpart of the theoretical one and 
it is defined as  

( ) ( ) ( )n n ns Re s iIm sφ φ φ= +   

with the real and imaginary parts given respectively by 

( ) ( )1

1 cosn
n iiRe s sX

n
φ

=
= ∑  and ( ) ( )1

1 cosn
n iiIm s sX

n
φ

=
= ∑ . 

For example, the K-L procedures proposed by Feuerverger and McDunnough 
[6] p 20-23) can be viewed as equivalent to GMM procedures based on 2k sam-
ple moments of the following forms with the first k sample moments which 
make use respectively the chosen points 1, , ks s  from the real part of empiri-
cal characteristic function and the real part of the model characteristic function  

( ) ( ) ( ) ( ) ( )1 1 11 1

1 1cos , , cosn n
i k i ki is X Re s s X Re s

n nγ γφ φ
= =

′ = − − 
 
∑ ∑g γ  

and the rest of moments are similarly formed but based on the imaginary part of 
the empirical characteristic function and the imaginary part of the model cha-
racteristic function, 

( ) ( ) ( ) ( ) ( )2 1 11 1

1 1sin , , sinn n
i k i ki is X Im s s X Im s

n nγ γφ φ
= =

′ = − − 
 
∑ ∑g γ . 

By letting 

( ) ( )
( )

1

2

 
=  
 

g
g

g
γ

γ
γ

  

and define S to be the limit covariance matrix of the vector ( )ng γ  under the 
true parameter 0γ  when n →∞  and let Ŝ  be a preliminary consistent esti-
mate of S  and from which we can obtain a preliminary consistent estimate 

1ˆ −S  for the inverse of S then the related GMM objective function ( )Q γ  can 
be formed, i.e., ( ) ( ) ( )1ˆQ −′= g S gγ γ γ  and minimizing ( )Q γ  will give the 
vector of K-L estimators. 

The following expectation properties are quite obvious and the elements of 
the covariance matrix for ( )g γ  can be found explicitly using the following 

https://doi.org/10.4236/ojs.2020.103035


A. Luong 
 

 

DOI: 10.4236/ojs.2020.103035 587 Open Journal of Statistics 
 

identities which are established using properties of trigonometric functions, we 
have: 

( )( ) ( )nE Re s Re sφ φ= γ , ( )( ) ( )nE Im s Im sφ φ= γ , 

( ) ( )( ) ( ) ( ) ( ) ( )( ), 2 2n nCov Re s Re t Re s t Re t s Re s Re t nφ φ φ φ φ φ= + + − −γ γ γ γ , 

( ) ( )( ) ( ) ( ) ( ) ( )( ), 2 2n nCov Im s Im t Re t s Re t s Im s Im t nφ φ φ φ φ φ= − + + −γ γ γ γ ,  

( ) ( )( ) ( ) ( ) ( ) ( )( ), 2 2n nCov Re t Im s Im t s Im t s Im s Re t nφ φ φ φ φ φ= + − − −γ γ γ γ (1) 

The above identities are results of Proposition 3.1 given by Groparu-Cojocaru 
and Doray [7] (p 1992) or results from Koutrouvelis [8] (p 919). 

Observe that for the K-L procedures or GMM procedures based on the above 
2k sample moments, we need to fix the points 1, , ks s  where we can make use 
of the real and imaginary part of the model characteristic function ( )sφγ  and 
there is still a lack of general criteria on how to choose these points, see discus-
sions by Tran [9] but it is recommended that these points are equally spaced, i.e., 
consider js jτ=  and the optimum choice for τ  has the property that 0τ →  
when k →∞ . 

Koutrouvelis [8] (p 920) has shown that in general, since the variances of 
( )cos sX  and ( )sin sX  have the following properties 

( )( ) ( )( )cos 0nV sX nV Re sφ= →  and ( )( )sinV sX nV= ( )( ) 0nIm sφ →   

as 0s → . 

and argued that we should select points in the range of ( )0,π  as points near 0 
that we need to focus when extracting information from the model characteristic 
functions. Despite that the K-L procedures have good potentials for generating 
good efficiencies for estimators but it is often numerical difficult to implement, 
as the studies of Groparu-Cojocaru and Doray [7] (p 1996) have shown that in 
practice we need at least 10k ≥  which means that at least 20 sample moments 
are needed for the procedures to have good efficiency and in these situations, the 
matrices S  and Ŝ  are often nearly singular and inverting such large matrix 
often create difficulties and we shall see that GMM procedures proposed in this 
paper with the use of theory of estimation function to select sample moments 
will only need a number of sample moments which is less than 10 in general in-
stead of at least 20. In addition, the number of points from the model characte-
ristic function used to construct sample moments also goes to infinity as the 
sample size n →∞ . 

The proposed GMM procedures with the selection of the sample moments 
based on estimating function theory will be developed in the next section. With 
the original sample, we also transform it to a sample of n observations which are 
still independent and we work with the original sample and the transformed 
sample to construct moment conditions. 

Carrasco and Florens [10] have introduced GMM methods with a continuum 
of moment conditions and Carrasco and Kotchoni [11] have used the empirical 
characteristic function and developed GMM procedures based on objective 
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functions which match the empirical characteristic function with the model 
counterpart using points which belong to a continuum interval. Using a conti-
nuum of moment conditions is a solution for the arbitrariness choice of selecting 
points of the characteristic functions to extract information but the procedures 
might be difficult to implement for practitioners meanwhile our procedures re-
main simple and closer to the classical GMM procedures with a finite number of 
moments but we shall use estimation theory to select sample moments and the 
number of points will be selected equally spaced in the interval ( )0,π  and the 
number of points will go to infinity as n →∞ .  

In fact, the points 𝑠𝑠𝑖𝑖of our procedures are selected with 

1 , 1, ,
2is i i n

n
π  − = 


=


   

and observe that the spacing used is 0
n
π
→ , as n →∞  and also observe that  

the spacing mimics the behavior of the optimum spacing and numerically it by-
passes the difficulties of having to find explicitly the value of the optimum spac-
ing by minimizing the determinant of the asymptotic covariance of the K-L es-
timators if the K-L procedures are used.   

For the proposed methods, we need the additional assumption that the first 
four integer moments of the model distribution exist but in practical situations, 
this assumption is often met. 

The proposed procedures make use of sample moments which focus on ex-
tracting information from the square of the modulus of the characteristic function  

( ) 2
sφγ  using the points 1 , 1, ,

2is i i n
n
π  = − = 
 

  and clearly there will be as 

many points as the sample size. 
For model, with a location parameter µ , the modulus ( )sφγ  and conse-

quently ( ) 2
sφγ  will not depend on the location parameter µ  and we need 

another two sample moments beside the sample moments which make use of 
( ) 2
sφγ  to take care of this situation. The example given below will help to cla-

rify the problem that we might encounter when the modulus ( )sφγ  or the 
square of the modulus ( ) 2

sφγ  is used for inferences. 
For the normal distribution with the vector of parameters ( )2,µ σ ′=γ , the 

characteristic function is 

( )
2 2

2e
ti t

s
σµ

φ
−

=γ   

and its modulus is 

( )
2 2

2e
t

s
σ

φ
−

=γ   

and the square of the modulus is 

( ) 2 22
e ts σφ −=γ ,  

The location parameter µ  is missing in ( )sφγ  and consequently, in ( ) 2
sφγ . 
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This is to illustrate that there might be one parameter being left out if inferences 
procedures are solely based on ( )sφγ  or ( ) 2

sφγ . This also means that for 
GMM procedures which make use of sample moments formed using ( )sφγ  or 

( ) 2
sφγ , there should also be other sample moments to take into account the 

parameters being left out and if there are parameters being left out, it only affects 
the location parameter of the model in general, so if we use two additional sam-
ple moments which take care of the parameters being left out beside the sample 
moments which make use of ( ) 2

sφγ , the GMM procedures will be viable. As 
mentioned often at most there is one parameter in the model which is not in-
cluded in ( ) 2

sφγ  so the proposed will make use of additional moments which 
are based on the mean and variance of the model distribution beside the mo-
ments based on 

( ) 2
sφγ  using 1 , 1, ,

2is i i n
n
 = − = 



π


  

We hope to achieve good efficiency yet preserve simplicity by not using more 
than ten sample moments, this achieved by using the theory of estimating func-
tion for building sample moments which make use of 

( ) 2
sφγ  using 1 , 1, ,

2is i i n
n
π  = − = 
 

  

Therefore, it is relatively simple to implement and all can be done within the 
classical context of GMM procedures without having to rely on a continuum of 
moment conditions which the practitioners might find difficult to implement. 
The use of theory of estimating function appears to be new and not included in 
proposed GMM procedures in the literature which focused on the use of the 
empirical characteristic function. The new procedures also make use of trans-
formed observations besides the original observations.  

The paper is organized as follows. Section 1 introduces the commonly used 
GMM procedures which are based on empirical characteristic function, the ap-
proach taken here does not use the empirical characteristic function and relies 
on estimating function theory to select sample moments based on the square of 
the modulus of the model characteristic function. The new GMM procedures are 
introduced in Section 2.1 with the choice of selected sample moments aiming to 
provide efficiency for GMM estimation. In Section 2.2 the chi-square test for 
moment restrictions which can be interpreted as goodness-of-fit is presented. In 
Section 3, illustrations for implementing the methods using the GNL distribu-
tion and normal distribution, the methods appear to be relatively simple to im-
plement yet being very efficient based on the limited studies and appear to be 
better alternatives the method of moments (MOM) in general.  

2. The Proposed GMM Procedures Based on Theory of  
Estimating Functions 

2.1. Estimation 

The theory of GMM procedures are well established in the literature, see Martin 
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et al. [12], Hayashi [13], Hamilton [14] but based on the assumption that sample 
moments are already selected. In this paper, we focus on how to select moments 
for model with characteristic function being simple and has closed form but the 
model density is complicated and we do not make use of the classical empirical 
characteristic function as other GMM procedures being proposed in the litera-
ture. Here, we focus on the square of the modulus of the model characteristic 
function to build sample moments and since the modulus might not include all 
the parameters of the model such as the case when there is a location parameter, 
we shall also include two moments which focus on the model distribution mean 
and variance to complete the set of sample moments and for practical applica-
tions, we do not need more than ten sample moments for the use of the pro-
posed GMM procedures. 

We shall define the sample moments focusing on ( ) 2
sφγ . Let us consider the 

basic estimating functions 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

, ; cos

sin , 1, ,

i i i i i i

i i i i

h x s Re s s X Re s

Im s s X Im s i n

φ φ

φ φ

= −

+ − = 

γ γ

γ γ

γ
 

Clearly, the basic estimating functions are unbiased, i.e., 

( )( ), ; 0, 1, ,i iE h x s i n= = γ γ  

Using ( ) ( )( ) ( )( )
2 22 2

s Re s Im sφ φ φ= +γ γ γ , we can also express 

( ) ( ) ( )( ) ( ) ( )( )
( ) 2

, ; cos sin

, 1, ,

i i i i i i i i

i

h x s Re s s X Im s s X

s i n

φ φ

φ

= +

− = 

γ γ

γ

γ
         (2) 

Now we can construct the optimum estimating functions for estimating γ  or 
more precisely for parameters which appear in ( ) 2

sφγ  using results of Go-
dambe and Thompson [15] (p 139) or Morton [16] (p 229). The optimum esti-
mating functions which are linear combinations of elements of the set  

( ){ }, ; , 1, ,i ih x s i n= γ  and with ( )1, , pγ γ ′= γ  can be expressed as  

( )

( )

( )( )1

, ;

1 , ; , 1, ,
, ;

i i

jn
i ii

i i

h x s
E

h x s j p
n v h x s

γ
=

 ∂
  ∂  =∑ 

γ

γ

γ

γ
γ

             (3) 

and ( )( ), ;i iv h x sγ γ  denote the variance of ( ), ;i ih x s γ  and can be obtained 
explicitly, see expression (1). 

We would like to make a few remarks here. First note that it is easy to show 
that 

( ) ( ) 2
, ; 1

2
i i

j j

sh x s
E

φ

γ γ

∂ ∂
= −  ∂ ∂ 

γ
γ

γ
  

using ( )( ) ( )cosE sX Re sφ=γ γ  and ( )( ) ( )sinE sX Im sφ=γ γ  and clearly if there 
is one parameter of the model says lγ  which does not appear in ( ) 2

sφγ  then  

( ), ;
0i i

j

h x s
E

γ

 ∂
=  ∂ 

γ

γ
 and there is no optimum estimating function for this pa-
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rameter and if we want to estimate all the parameters, we need an extra estimat-
ing function. We use the following notation for the vector of optimum estimat-

ing function discarding the ones with 
( ), ;

0i i

j

h x s
E

γ

 ∂
=  ∂ 

γ

γ
. The vector of op-

timum estimating functions for parameters included in ( ) 2
sφγ  adopting the 

convention discarding those with 
( ), ;

0i i

j

h x s
E

γ

 ∂
=  ∂ 

γ

γ
 is given by 

( )

( )

( )( )
1

1

, ;

1 , ;
, ;

i i

n
i ii

i i

h x s
E

h x s
n v h x s=

 ∂
 ∂ ∑

γ

γ

γ
γ

γ
γ

  

where we partition the vector γ  into two components, 1

2

 
=  
 

γ
γ

γ
 with the prop-

erty that all the parameters appear in ( ) 2
sφγ  form the vector 1γ  and all the  

remaining parameters are included in the vector 2γ . In general, if 1≠γ γ  in 
then 2γ  is reduced to a scalar. Therefore, the vector of optimum estimating 
function in general is either a vector of p elements or 1p −  elements and con-
sequently when these estimating functions are converted to sample moments, we 
shall have either p or 1p −  sample moments. 

We shall let ( )1g γ  be vector the sample moments which make use of points 
of ( ) 2

sφγ  as  

( ) ( )

( )

( )( )
1

1 1

, ;

1 , ;
, ;

i i

n
i ii

i i

h x s
E

h x s
n v h x s=

 ∂
 ∂ = ∑g

γ

γ

γ
γ

γ γ
γ

, 

( )( ), ;i iv h x sγ γ  can be obtained using the real and imaginary parts of the model 
characteristic function and from the definition of ( ), ;i ih x s γ , it then follows that 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( ) ( )( )( ) ( ) ( )( )

2 2
, ; cos sin

2 cos ,sin

i i i i i i i i

i i i i i i

v h x s Re s var s X Im s var s X

Re s Im s cov s X s X

φ φ

φ φ

= +

+

γ γ γ

γ γ

γ
 (4) 

Using the identities as given by expression (1), the variance of ( )cos i is X  is 

( )( ) ( ) ( )( )( )2
cos 2 1 2 2i i i ivar s X Re s Re sφ φ= + −γ γ           (5) 

and the variance of ( )sin i is X  and the covariance ( ) ( )( )cos ,sini i i icov s X s X  
are given respectively by 

( )( )
( ) ( )( )( )2

1 2 2
sin

2

i i

i i

Re s Im s
var s X

φ φ− −
=

γ γ
,           (6) 

( ) ( )( ) ( ) ( )( ) ( )( )( )cos ,sin 2 2 2i i i i i i icov s X s X Im s Re s Im sφ φ φ= −γ γ γ .  (7) 

These variances and covariance terms can also be obtained using results given by 
Groparu-Cojocaru and Doray [7] (p 1993). Asymptotic properties of estimators 
obtained by solving estimating equations have been given by Yuan and Jennrich 
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[17] but we emphasize GMM estimation in this paper. 
Now define two additional sample moments ( )2g γ  and ( )3g γ  

( ) ( )( )2 1

1 n
iig X E X

n =
= −∑ γγ , 

The location parameter if it belongs to the model but is not included in 1γ , it 
will appear in ( )E Xγ  which is the mean of the model distribution and it can 
be obtained by differentiating the model characteristic function and for GMM 
procedures we prefer to have the number of sample moments exceeding the 
number of parameters in the model, so we also consider the following sample 
moment which makes use of the variance of the model distribution ( )V Xγ  and 
it can also be obtained by differentiating twice the model characteristic function, 
i.e., 

( ) ( )( )3 1

1 n
iig X V X

n =
= −∑ γγ . 

The vector sample moments for the developed GMM procedures is given by 

( )
( )
( )
( )

1

2

3

g
g

 
 =  
 
 

g
g

γ
γ γ

γ
  

and notice ( )1g γ  makes use of the transformed observations , 1, ,i is X i n=   
but ( )2g γ  and ( )3g γ  make use of the original sample observations  

, 1, ,iX i n=  . 
The vector of the proposed GMM estimators γ̂  is obtained by minimizing 

the criterion function, 

( ) ( ) ( )1ˆQ −′= g S gγ γ γ  

with 1ˆ −S  being a positive definite matrix with probability one and it will be de-
fined subsequently after the definition of S  and its inverse 1−S , 1ˆ −S  is a 
consistent estimate of 1−S . 

For finding elements of the matrix, we can first express the components of the 
vector of sample moments as  

( )
( )
( )
( )

1

2

3

g
g

 
 =  
 
 

g
g

γ
γ γ

γ
  

with 

( ) ( )1 11

1 ; ,n
i iig x s

n =
= ∑ mγ γ , ( ) ( )

( )

( )( )
1

1

, ;

; , , ;
, ;

i i

i i i i
i i

h x s
E

x s h x s
v h x s

 ∂
 ∂ =m

γ

γ

γ
γ

γ γ
γ

, 

( ) ( )2 21

1 ;n
iig m x

n =
= ∑γ γ , ( ) ( )2 ;i im x X E X= − γγ , 

( ) ( )3 31

1 ;n
iig m x

n =
= ∑γ γ , ( ) ( )( ) ( )2

3 ;i im x X E X V X= − −γ γγ , 
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and let 

( )
( )
( )
( )

1

2

3

; ,
; , ; ,

; ,

i i

i i i i

i i

x s
x s m x s

m x s

 
 =  
 
 

m
m

γ
γ γ

γ
. 

The matrix S  is defined as  

( ) ( )( )0 0 01

1lim ; , ; ,n
n i i i ii E x s x s

n→∞ =
′= ∑S m mγ γ γ . 

Now if we have a preliminary consistent estimate ( )
( )

( )

0
0 1

0
2

 
 =
 
 

γ
γ

γ
 for the vector 

0γ  then an estimate for S  which is Ŝ  can be defined with 

( )( ) ( )( )( )0 0
1

1ˆ ; , ; ,n
i i i ii x s x s

n =
′= ∑S m mγ γ   

and its inverse which is 1ˆ −S  is a consistent estimate of 1−S , often a numerical 
algorithm is used to minimize ( ) ( ) ( )1ˆQ −′= g S gγ γ γ , the vector of the GMM 
estimators is obtained after the convergence of a numerical iterative process, at 
each iteration we might want to readjust ( )0γ  in a similar way as when per-
forming an iteratively feasible nonlinear weighted least-squares procedures where 
the weights are re-estimated at each step of the iterations. 

The vector of the GMM estimators γ̂  is consistent in general, this follows 
from general theory of GMM procedures, i.e., we have 0ˆ p→γ γ , with p→  
denotes convergence in probability. In addition, under suitable differentiability 
imposed on the vector ( γ ), the vector of GMM estimators γ̂  has an asymp-
totic multivariate normal distribution, i.e., 

( ) ( )0ˆ 0,Ln N− → Vγ γ , ( ) 11 −−′=V D S D   

L→  denotes convergence in law with 

( )
0

0limn E→∞

 ∂
=   ′∂ 

g
D γ

γ
γ

  

which is a r by p matrix, r is the number of sample moments used or equivalent-
ly the number of elements of the vector ( )g γ . D  can be estimated by 

( )ˆˆ ∂
=

′∂
g

D
γ
γ

  

and V  can be estimated by 

( ) 11ˆˆ ˆ ˆ −
−′=V D S D   

and consequently, the asymptotic variance of γ̂  can be estimated. 

2.2. Testing Moment Restrictions  

One of the advantages of GMM procedures is that it can lead to distribution free 
chi-square test. The asymptotic null distribution of the statistic no longer de-
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pends on the parameters using statistic based on the same objective function to 
obtain the vector of GMM estimators γ̂ . Howewer, the test for moment restric-
tions when used as goodness-of-fit test, it might not be consistent as it might fail 
to detect departures from the specified model even as the sample size n →∞ . 
The inclusion of some more relevant sample moments so that the number of 
sample moments used r is still manageable and as results of this will make the 
test more powerful yet without creating too many numerical difficulties on in-
verting the matrix Ŝ  in the same vein as for chi-square test for count models 
using probability generating function as given by Luong [17] is a topic for fur-
ther studies. 

For testing the moment restrictions 

( )( )0 : ; , 0.i iH E m X s =γ γ  

Assuming we have already minimized ( ) ( ) ( )1ˆQ −′= g S gγ γ γ  to obtain γ̂ , it 
follows from standard results of GMM theory that the following statistic can be 
used and the statistic has an asymptotic chi-square distribution with r p−  de-
grees of freedom, assuming r p> , i.e., 

( ) 2ˆ L
r pnQ χ −→γ .                      (8) 

3. Numerical Illustrations and Simulations 

For illustrations of the newly developed methods, we shall examine the symme-
tric GNL distribution and compare the efficiencies of GMM estimators vs the ef-
ficiencies of method of moment estimators (MOM) as given by Reed [1] (p 47). 
The characteristic function of the symmetric GNL distribution only has 4 para-
meters as α β= , it is easy to see that its characteristic function is reduced to  

( )
2

2 2
2

2e 1 e
s

i sss
ρ

ρσ θφ
α

−
−  

= + 
 

γ , ( )2, , ,θ α σ ρ ′=γ . 

The location parameter instead of being ρµ  we can use θ ρµ=  and Reed’s 
MOM estimator for θ  can be obtained independently of ρ . 

It is not difficult to see that 

( ) ( )
2

2 2
2

2e 1 cos ,
s sRe s s

ρ
ρσ

φ θ
α

−
−  

= + 
 

γ                 (9) 

( ) ( )
2

2 2
2

2e 1 sin ,
s sIm s s

ρ
ρσ

φ θ
α

−
−  

= + 
 

γ                (10) 

The vector of parameters of the symmetric GNL distribution is ( )2, , ,θ α σ ρ ′=γ . 
Since the model has a location parameter it is expected that the modulus of the 
characteristic function only has three parameters, it is easy to see that indeed this 
is the case with 

( )
2

2 2
2

2e 1 ,
s ss

ρ
ρσ

φ
α

−
−  

= + 
 

γ   
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( ) 2 2
222

2e 1s ss
ρ

ρσφ
α

−

−  
= + 

 
γ  

which gives the following derivatives 

( )
( )

2 12 2 2

3 2

1 2 1
2

s s s s
φ

φ
α α α

−   ∂     − = +    ∂    

γ
γ , 

( )
( )

2
2 2

2

1
2 2

s s s
φ

ρ φ
σ

 ∂   − =   ∂   

γ
γ  

( )
( )

2
22 2 2
2

1 1 2ln 1
2 2

s ss s
φ

φ σ
ρ α

 ∂    − = + +    ∂    

γ
γ   

and the variance of the basic estimating equation ( )( ); ,i iv h x sγ γ  can be ob-
tained using expression (1), the number of sample moments will be 5r = , i.e. 
there will be 5 elements for the vector ( )g γ . 

The first two cumulants which give the mean and the variance of the distribution  

are 1c θ= , 2
2 2

2c ρ σ
α

 = + 
 

 and the method of moment estimators (MOM) 

estimators can be obtained in closed form. Let ik  be the i-th sample cumulant, 

the MOM estimators have been given by Reed [1] (p 477) with MOM 1
ˆ kθ = , 

1 2
4

MOM
6

ˆ 20
k
k

α
 

=  
 

, 
3
4

MOM 2
6

100ˆ
3

k
k

ρ =  and 2 2
MOM 2

MOM MOM

2ˆ
ˆ ˆ
k

σ
ρ ρ

= − .  

Reed [1] (p 477) also noted that the MOM estimators often give a negative 
sign value for positive parameters like ρ  or 2σ . It might be due to the lack of 
efficiency for MOM estimators for these parameters and therefore it is natural to 
consider alternatives like the GMM estimators. For financial applications with 
log returns data recorded as percentages being small in magnitudes, the para-
meters 2, ,θ ρ σ  tend to have small values in magnitude only α  is around 18. 
GMM procedures with a number of sample moments larger than 20 might lead 
to the inverse of the matrix Ŝ  difficult to obtain numerically. 

By fixing 18, 0.1α ρ= =  we consider the ranges  
0.04, 0.03, ,0, ,0.03,0.04θ = − −    and 2 0.10,0.11, ,0.15σ =  . We simulate 
50M =  samples of size 100n =  each and compute the MOM estimators and 

the GMM estimators. The GMM estimator for the location parameter θ  is 
identical to the MOM estimator and only with this parameter that MOM esti-
mator performs well. For other parameters, GMM estimators perform much 
better than MOM estimators. 

Using simulated samples, we can estimate the individual mean square error 
for each parameter for each estimator. The vector of GMM estimators is denoted 
by ( )2ˆˆ ˆ ˆ ˆ, , ,θ α ρ ρ ′=γ . For GMM estimators, the following mean square errors are 
estimated using simulated samples, ( )ˆMSE θ , ( )ˆMSE α , ( )ˆMSE ρ , ( )2ˆMSE σ . 
Similarly, we also estimate 
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( )MOM
ˆMSE θ , ( )MOMˆMSE α , ( )MOMˆMSE ρ , ( )MOM

ˆMSE θ , ( )2
MOMˆMSE σ . 

with these quantities estimated, we can estimate the asymptotic overall relative 
of efficiency of these two methods as 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2

2
MOM MOM MOM MOM MOM

ˆ ˆ ˆ ˆMSE MSE MSE MSE
ARE

ˆ ˆˆ ˆ ˆMSE MSE MSE MSE MSE

θ α ρ σ

θ α ρ θ σ

+ + +
=

+ + + +
. 

Since GMM procedures perform better than MOM procedures for estimating 
2, ,α σ ρ  and consequently overall GMM procedures perform much better 

based on the limited simulation study. More numerical studies should be con-
ducted but it appears that the GMM procedures have the potentials to outper-
form MOM procedures for many models especially with models with more than 
3 parameters as sample moments of order greater than 3 often are not stable in 
general. The results are displayed in table A in the Appendix. 

In the second limited study, we consider the normal distribution which is also 
used for modelling log-returns data. The normal distribution is ( )2,N µ σ , the 
ML estimators for µ  and 2σ  are MLµ̂  and 2

MLσ̂ . They are given respec-
tively by the sample mean and the sample variance. The characteristic function 
for the normal distribution is 

( )
2 2

2e
si s

s
σµ

φ
−

=γ , ( )2,µ σ ′=γ , 

( ) ( )
2 2

2e cos
s

Re s s
σ

φ µ
−

=γ , ( ) ( )
2 2

2e sin
s

Im s s
σ

φ µ
−

=γ ,       (11) 

( )
2 2

2e
s

s
σ

φ
−

=γ  and ( ) 2 22
e ss σφ −=γ  and 

( ) 2 2

2
2

2

1 e
2 2

s
s s σ

φ

σ
−

∂
− =

∂
γ    (12) 

We only have 3 sample moments for GMM estimation for the normal model 
and we also use 50M =  simulated samples each with size 1000n =  to obtains 
GMM estimators and ML estimators for µ  and 2σ  for the range of parame-
ters with 0.04, 0.03, ,0,0.01, ,0.04µ = − −    and 2 0.10, ,0.15σ =  . The 
ranges of the parameters are often encountered for financial data and we esti-
mate the individual mean square errors for the GMM estimators 2ˆ , ˆµ σ  and ML 
estimators 2

ML MLˆ ˆ,µ σ . We found GMM estimator for µ  is slightly less efficient 
than ML estimator but overall, GMM estimators are nearly as efficient as ML es-
timators based on the simulation results obtained and we estimate the overall 
relative efficiency 

( ) ( )
( ) ( )

2

2
ML ML

ˆ ˆMSE MSE
ARE

ˆ ˆMSE MSE

µ σ

µ σ

+
=

+
,  

the estimate ARE is close to 1 for the parameters being considered in Table A1 
& Table A2. 

4. Conclusion 

Based on theoretical results and numerical results, it appears that: 
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1) The new GMM procedures are relatively simple to implement. The number 
of sample moments can be kept below the number ten yet the methods appear to 
have good efficiencies and offer good alternatives to MOM procedures which in 
general are not efficient for models with more than three parameters. 

2) The proposed procedures are simpler to implement than GMM procedures 
based on a continuum of moment conditions and consequently might be of in-
terests for practitioner who want to use these methods to analyze date where the 
model characteristic function is simple and have closed form but the density 
function is complicated, these situations often occur in practice.  

3) The methods are less simulation oriented and consequently faster in com-
puting time for implementations. 

4) The estimators obtained have good efficiencies for some models being con-
sidered but more numerical and simulation works are needed to confirm the ef-
ficiencies using different parametric models and larger scale of simulations. In 
addition, further studies are needed for the topic on adding sample moments to 
make the chi-square goodness-of-fit test consistent without creating extensive 
numerical difficulties when it comes to obtaining the efficient matrix which is 
used for the quadratic form of the GMM objective function. 
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Appendix  
Table A1. Overall estimate asymptotic relative efficiencies of the GMM estimators vs 
MOM estimators. 

θ  
2σ  

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04 

0.10 0.3709 0.0084 0.0104 0.2435 0.0419 0.5732 0.5725 0.0006 0.5008 

0.11 0.0000 0.0834 0.0000 0.7649 0.0002 0.4282 0.0025 0.2395 0.0859 

0.12 0.1362 0.2370 0.2177 0.0021 0.3731 0.5520 0.1105 0.0000 0.6634 

0.13 0.0034 0.0880 0.0000 0.1197 0.0002 0.0670 0.2390 0.0188 0.1897 

0.14 0.0530 0.0000 0.0004 0.4699 0.0702 0.0220 0.0001 0.0725 0.2501 

Simulation studies for symmetric GNL distributions with 18, 0.1= =α ρ . 

 
Table A2. Overall estimate asymptotic relative efficiencies of the GMM estimators vs ML 
estimators. 

µ  
2σ  

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04 

0.10 1.0005 1.0009 1.0008 1.0005 1.0012 1.0014 1.0001 1.0011 1.0004 

0.11 1.0005 1.0020 1.0036 1.0021 1.0026 1.0035 1.0020 1.0022 1.0038 

0.12 1.0009 1.0020 1.0015 1.0018 1.0008 1.0032 1.0018 1.0013 1.0031 

0.13 1.0022 1.0021 1.0040 1.0020 1.0040 1.0012 1.0023 1.0020 1.0012 

0.14 1.0017 1.0022 1.0023 1.0025 1.0050 1.0157 1.0008 1.0019 1.0036 

Simulation studies for normal distributions ( )2,N µ σ . 
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