

# **On the Uphill Domination Polynomial of Graphs**

## Thekra Alsalomy, Anwar Saleh, Najat Muthana, Wafa Al Shammakh

Department of Mathematics, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia

Email: talsalomy.stu@uj.edu.sa, math.msfs@gmail.com, nmuthana@uj.edu.sa, wsalshamahk@uj.edu.sa

How to cite this paper: Alsalomy, T., Saleh, A., Muthana, N. and Al Shammakh, W. (2020) On the Uphill Domination Polynomial of Graphs. *Journal of Applied Mathematics and Physics*, **8**, 1168-1179. https://doi.org/10.4236/jamp.2020.86088

**Received:** April 20, 2019 **Accepted:** June 20, 2020 **Published:** June 23, 2020

Copyright © 2020 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

CC ① Open Access

## Abstract

A path  $\pi = [v_1, v_2, \dots, v_k]$  in a graph G = (V, E) is an uphill path if  $deg(v_i) \leq deg(v_{i+1})$  for every  $1 \leq i \leq k$ . A subset  $S \subseteq V(G)$  is an uphill dominating set if every vertex  $v_i \in V(G)$  lies on an uphill path originating from some vertex in *S*. The uphill domination number of *G* is denoted by  $\gamma_{up}(G)$  and is the minimum cardinality of the uphill dominating set of *G*. In this paper, we introduce the uphill domination polynomial of a graph *G*. The uphill domination polynomial of a graph *G* of *n* vertices is the polynomial  $UP(G, x) = \sum_{i=\gamma_{up}(G)}^{n} up(G,i) x^i$ , where up(G,i) is the number of uphill domination number of *G*, we compute the uphill domination polynomial and its roots for some families of standard graphs. Also, UP(G, x) for some graph operations is obtained.

## **Keywords**

Domination, Uphill Domination, Uphill Domination Polynomial

## **1. Introduction**

In this paper, we are concerned with simple graphs which are finite, undirected with no loops nor multiple edges. Throughout this paper, we let |V(G)| = n and |E(G)| = m. In a graph G = (V, E), the **degree** of  $v \in V(G)$  denoted by deg(v) is the number of edges that incident with v. A **path** in G is an alternating sequence of distinct vertices. A path is an **uphill path** if for every  $1 \le i \le k$  we have  $deg(v_i) \le deg(v_{i+1})$  [1].

The **bistar** graph  $S_{k_1,k_1}$  with  $n = 2k_1 + 2$  vertices is obtained by joining the non-pendant vertices of two copies of star graph  $S_{k_1}$  by new edge. The **corona** of two graphs  $G_1$  and  $G_2$  with  $n_1$  and  $n_2$  vertices, respectively, denoted by

 $G = G_1 \circ G_2$  is obtained by taking one copy of  $G_1$  and  $n_1$  copies of  $G_2$  and joining the *i*th vertex of  $G_1$  with an edge to every vertex in the *i*th copy of  $G_2$ . The corona  $G \circ K_1$  (in particular) is the graph constructed by a copy of G, where for each vertex  $v \in V(G)$  a new vertex v' and a pendant edge vv' are added. The *tadpole* graph  $T_{s,k}$  is a graph consisting of a cycle graph  $C_s$  on at least three vertices and a path graph  $P_k$  on k vertices connected with bridge. The *wheel* graph  $W_{e}$  is a graph formed by connecting a single vertex to all vertices of a cycle graph  $C_s$ . The **book** graph is a Cartesian product  $B_m = S_m \times P_2$ , where  $S_m$  is the star graph with m+1 vertices and  $P_2$  is the path graph on two vertices. Also, the *windmill* graph Wd(s,k) is a graph constructed for  $s \ge 2$  and  $k \ge 2$  by joining k copies of the complete graph  $K_s$  at a shared universal vertex. The **dutch windmill** graph D(s,k) is the graph obtained by taking k copies of the cycle graph  $C_s$  with a vertex in common. Also, the *friendship*  $F_k$  is a graph that constructed by joining k copies of the cycle graph  $C_3$  and observes that  $F_k$  is a special case of D(s,k). Finlay, the *firefly* graph  $F_{s,t,k}$  with  $s,t,k \ge 0$  and n = 2s + 2t + k + 1 vertices is defined by consisting of s triangles, t pendent paths of length 2 and k pendent edges, sharing a common vertex. Any terminology not mentioed here we refer the reader to [2].

A set  $S \subseteq V$  of vertices in a graph *G* is called a *dominating set* if every vertex  $v \in V$  is either  $v \in S$  or *v* is adjacent to an element of *S*, The *uphill dominating set* "UDS" is a set  $S \subseteq V$  having the property that every vertex  $v \in V$  lies on an uphill path originating from some vertex in *S*. *The uphill domination number* of a graph *G* is denoted by  $\gamma_{up}(G)$  and is defined to be the minimum cardinality of the UDS of *G*. Moreover, it's customary to denote the UDS having the minimum cardinality by  $\gamma_{up}(G)$ -set, for more details in domination see [3] and [4].

Representing a graph by using a polynomial is one of the algebraic representations of a graph to study some of algebraic properties and graph's structure. In general graph polynomials are a well-developed area which is very useful for analyzing properties of the graphs.

The domination polynomial [5] and the uphill domination of a graph [6], motivated us to introduce and study the uphill domination polynomial and the uphill domination roots of a graph.

## 2. Uphill Domination Polynomial

**Definition 2.1.** For any graph G of n vertices, the uphill domination polynomial of G is defined by

$$UP(G,x) = \sum_{i=\gamma_{up}(G)}^{n} up(G,i) x^{i}$$

where up(G,i) is the number of uphill dominating sets of size *i* in *G*. The set of roots of UP(G,x) is called uphill domination roots of graph *G* and denoted by  $Z_{up}(G)$ .

Example 2.2. The uphill domination polynomial of House graph H(as shown

in Figure 1) with 6 vertices and  $\gamma_{up}(H) = 2$  is given by

 $UP(H, x) = 2x^2 + 7x^3 + 9x^4 + 5x^5 + x^6$ . Furthermore,  $Z_{uv}(H) = \{0, -1, -2\}$ .

The following theorem gives the sufficient condition for the uphill domination polynomial of *r*-regular graph.

**Theorem 2.3.** Let G be connected graph with  $n \ge 2$  vertices. Then,  $UP(G, x) = (1+x)^n - 1$  if and only if G is r-regular graph.

*Proof.* Let *G* be a connected graph of  $n \ge 2$  vertices. Suppose that the uphill domination polynomial of *G* is given by

$$UP(G, x) = (1+x)^n - 1 = nx + \binom{n}{2}x^2 + \dots + x^n$$
.

Since the first coefficient of the polynomial is *n*, then it is easily verified that for every  $v \in V(G)$ , the singleton vertex set  $\{v\}$  is an UDS in *G*. Assume that *G* is not *r*-regular graph. Hence there exists a vertex  $u \in V(G)$  such that  $deg(u) = s \neq r$ . Now, we have two cases:

Case 1: If s > r, then the set  $\{u\}$  is not UDS which contradict that every singleton vertex set is an UDS in *G*.

Case 2: If s < r, then for all  $u \neq v$  with deg(v) = r, we get the set  $\{v\}$  is not UDS which is also contradict that every singleton vertex set is an UDS in *G*.

Thus, *G* must be *r*-regular graph.

On the other hand, suppose that *G* is *r*-regular graph with  $n \ge 2$  vertices. We have  $\gamma_{up}(G) = 1$ , then there exist *n* UDS of size one, while for i = 2 there are  $\binom{n}{2}$  UDS and so on. Thus, we can write the uphill domination polynomial as

$$UP(G, x) = nx + \binom{n}{2}x^2 + \binom{n}{2}x^3 + \dots + \binom{n}{n}x^n = (1+x)^n - 1.$$

**Corollary 2.4.** Let G ba a graph with s vertices. If G is a cycle  $C_s$  or complete graph  $K_s$ , then  $UP(G, x) = (1+x)^s - 1$ .

**Corollary 2.5.** The uphill domination polynomial for the regular graph  $G = C_s \times C_k$  with sk vertices is given by  $UP(G, x) = (1+x)^{sk} - 1$ .

Corollary 2.6. [6] Let G be a graph with m components. Then,

$$\gamma_{up}\left(G\right) = \sum_{j=1}^{m} \gamma_{up}\left(G_{i}\right).$$

**Proposition 2.7.** If a graph G with n vertices consists of m components  $G_1, G_2, \dots, G_m$ , then

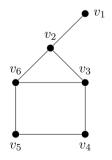


Figure 1. The House graph.

$$UP(G, x) = \prod_{i=1}^{m} UP(G_i, x).$$

*Proof.* By using mathematical induction we found that for m = 1 the statement is true and the proof is trivial. Suppose that the statement is true when m = k such that

$$UP(G, x) = \prod_{i=1}^{k} UP(G_i, x).$$

Now, we prove that the statement is true when m = k + 1. Let *G* consists of k + 1 components that mean  $G = G_1 \cup G_2 \cup \cdots \cup G_{k+1}$ . If the set  $\{r_1, r_2, \cdots, r_{k+1}\}$  represent the uphill domination number for the components of *G* respectively, such that  $\gamma_{up}(G_i) = r_i \quad \forall 1 \le i \le k+1$ . Then, by Corollary (2.6) it easily to see that

$$\gamma_{up}\left(G\right) = \gamma_{up}\left(\bigcup_{1 \le i \le k+1} G_i\right) = \sum_{1 \le i \le k+1} \gamma_{up}\left(G_i\right) = r_1 + \dots + r_{k+1} = r_k$$

Thus, up(G,r) is exactly equal the number of way for choosing an UDS of size  $r_1$  in  $G_1$  and an UDS of size  $r_2$  in  $G_2$  and so on. Hence, up(G,r) is the coefficient of  $x^r$  in  $UP(G_1, x)UP(G_2, x)\cdots UP(G_{k+1}, x)$  and in UP(G, x). In the same argument we can proof for all up(G, j), where  $r \le j \le n$  that

$$up(G, j) = up(G_1, j) \cdots up(G_{k+1}, j) = \prod_{i=1}^{k+1} up(G_i, j).$$

Thus, for m = k + 1 the statement is true and the proof is done.

**Theorem 2.8.** For any path  $P_n$  with  $n \ge 3$  vertices,

 $UP(G, x) = x^{2} (1+x)^{n-2}$ . Furthermore,  $Z_{up}(P_{n}) = \{0, -1\}$ .

*Proof.* Let G be a path graph  $P_n$  with  $n \ge 3$ . We know that  $\gamma_{up}(P_n) = 2$ , then there is only one UDS of size two. For i = 3 there are n-2 UDS of size three and so on. Thus, we get

$$UP(G, x) = x^{2} + {\binom{n-2}{1}}x^{3} + {\binom{n-2}{2}}x^{4} + \dots + {\binom{n-2}{n-2}}x^{n}$$
$$= x^{2} \left[1 + \sum_{i=1}^{n-2} {\binom{n-2}{i}}x^{i}\right]$$
$$= x^{2} \left[\sum_{i=0}^{n-2} {\binom{n-2}{i}}x^{i}\right]$$
$$= x^{2} (1+x)^{n-2}.$$

**Theorem 2.9.** For any graph G.  $UP(G, x) = x^n$  if and only if  $G \cong \overline{K}_n$ . *Proof.* Let G be a graph with  $UP(G, x) = x^n$ . Since,  $UP(\overline{K}_1, x) = x$ , then we can write that

$$UP(G, x) = x^{n}$$

$$= \underbrace{x \cdot x \cdots x}_{n \text{ times}}$$

$$= \underbrace{UP(\overline{K}_{1}, x) \cdot UP(\overline{K}_{1}, x) \cdots UP(\overline{K}_{1}, x)}_{n \text{ times}}$$

$$= UP(\overline{K}_{n}, x).$$

Thus,  $G \cong \overline{K}_n$ . On the other hand if  $G \cong \overline{K}_n$ , then by Proposition (2.7) we get  $UP(G, x) = x^n$ .

**Corollary 2.10.** A graph G has one uphill domination root if and only if  $G \cong \overline{K}_n$ .

**Theorem 2.11.** Let G be a bistar graph  $S_{k_1,k_1}$  with  $n = 2k_1 + 2$  vertices. Then,  $UP(G, x) = x^{2k_1} (1+x)^2$ . Furthermore,  $Z_{up}(G) = \{0, -1\}$ .

*Proof.* Let *G* be a bistar graph  $S_{k_1,k_1}$  with  $n = 2k_1 + 2$  vertices, we have  $\gamma_{up}(G) = 2k_1$ . Then, there is only one UDS of size  $2k_1$  and for  $i = 2k_1 + 1$  there are two UDS. Finally, for  $i = 2k_1 + 2 = n$  there is only one UDS. Thus, the result will be as following

$$UP(G, x) = x^{2k_1} + 2x^{2k_1+1} + x^{2k_1+2}$$
$$= x^{2k_1} [1 + 2x + x^2]$$
$$= x^{2k_1} (1 + x)^2.$$

**Theorem 2.12.** For any graph  $G \cong K_{r,s}$  with r < s and  $r + s \ge 3$  vertices,  $UP(G, x) = x^{s} (1+x)^{r}$ . Furthermore,  $Z_{up}(K_{r,s}) = \{0, -1\}$ .

Proof. Let G is a complete bipartite graph  $K_{r,s}$  with r < s, then we have  $\gamma_{up}(K_{r,s}) = s$ . There is only one UDS of size s. Now, for i = s + 1 there exist r UDS. For i = s + 2 there exist  $\binom{r}{2}$  UDS and so on. Thus, we get  $UP(G, x) = x^s + \binom{r}{1}x^{s+1} + \binom{r}{2}x^{s+2} + \dots + \binom{r}{r}x^{s+r}$   $= x^s + \sum_{i=1}^r \binom{r}{i}x^{s+i}$   $= x^s \left[\sum_{i=0}^r \binom{r}{i}x^i\right]$  $= x^s (1+x)^r$ .

**Corollary 2.13.** For any graph  $G \cong S_r$  with r+1 vertices,  $UP(G, x) = x^r (1+x)$ . Furthermore,  $Z_{up}(G) = \{0, -1\}$ .

The generalization of Theorem 0.12 is the following result.

**Theorem 2.14.** For any graph  $G \cong K_{r_1, \dots, r_k}$  where  $r_1 < r_2 < \dots < r_k$  with  $n = \sum_{i=1}^k r_i$  vertices,  $UP(G, x) = x^{r_k} (1+x)^{n-r_k}$ . Furthermore,  $Z_{up}(K_{r_1, \dots, r_k}) = \{0, -1\}$ .

Proof. Let G be a complete k-partite graph  $K_{r_1, \dots, r_k}$  with  $r_1 < r_2 < \dots < r_k$ , we have  $\gamma_{up} \left( K_{r_1, \dots, r_k} \right) = r_k$ . There is only one UDS of size  $r_k$  for  $i = r_k + 1$  there are  $n - r_k$  UDS of size  $r_k + 1$ . Also, for  $i = r_k + 2$  there are  $\binom{n - r_k}{2}$  and so on. Thus,

$$UP(G, x) = x^{r_k} + {\binom{n-r_k}{1}} x^{r_k+1} + {\binom{n-r_k}{2}} x^{r_k+2} + \dots + {\binom{n-r_k}{n-r_k}} x^n$$
  
=  $x^{r_k} + \sum_{i=1}^{n-r_k} {\binom{n-r_k}{i}} x^{r_k+i}$   
=  $x^{r_k} \left[ \sum_{i=0}^{n-r_k} {\binom{n-r_k}{i}} x^i \right]$   
=  $x^{r_k} (1+x)^{n-r_k}$ .

**Proposition 2.15.** For any graph  $G \cong K_{r_1, r_2, \dots, r_k}$  with  $n = \sum_{i=1}^k r_i$  vertices we have the following:

1) If  $r_1 \le r_2 \le \dots \le r_{k-1} < r_k$ , such that at least two partite sets of the same size, then  $UP(G, x) = x^{r_k} (1+x)^{n-r_k}$ .

2) If  $r_1 = r_2 = \cdots = r_k$ , then the graph is regular and  $UP(G, x) = (1 + x)^n - 1$ .

**Theorem 2.16.** For any graph  $G \cong K_{r_1, r_2, \dots, r_k}$  with  $n = \sum_{i=1}^k r_i$  vertices, where  $r_1 \leq r_2 \leq \dots < r_{k-1} = r_k$ . Then,

$$UP(G, x) = \sum_{h=1}^{n} \left[ \sum_{\substack{n \geq 1 \\ n_1 + r_2 = h}} \binom{2r_k}{r_1} \binom{n-2r_k}{r_2} \right] x^h.$$

*Proof.* Let G be a complete k-partite graph  $K_{n,\dots,n_k}$  with

 $r_1 \leq r_2 \leq \cdots < r_{k-1} = r_k$ , then we have  $\gamma_{up}(K_{r_1,\cdots,r_k}) = 1$ . Let divide the vertices of a graph into two sets  $R_1$  and  $R_2$  where  $R_1$  contains the vertices of  $r_k$  and  $r_{k-1}$  which means  $R_1$  is of cardinality  $2r_k$  while  $R_2 = V(G) \setminus R_1$  this implies that  $R_2$  is of cardinality  $n - 2r_k$ . Thus, we get

$$up(G,1) = \binom{2r_k}{1} \binom{n-2r_k}{0} = 2r_k.$$

We have for up(G,2),

$$up(G,2) = \binom{2r_k}{2}\binom{n-2r_k}{0} + \binom{2r_k}{1}\binom{n-2r_k}{1}.$$

Also, for up(G,3) we get

$$up(G,3) = \binom{2r_k}{3}\binom{n-2r_k}{0} + \binom{2r_k}{2}\binom{n-2r_k}{1} + \binom{2r_k}{1}\binom{n-2r_k}{2}.$$

And so on we get for all up(G,h), where  $1 \le h \le n$ 

$$up(G,h) = \sum_{\substack{r_1 \geq 1 \\ r_1+r_2=h}} \binom{2r_k}{r_1} \binom{n-2r_k}{r_2}.$$

Thus, the proof is done.

**Theorem 2.17.** For any graph  $G \cong W_s$  with s+1 vertices and s>3, then  $UP(G, x) = (1+x) [(1+x)^s - 1].$ 

*Proof.* Let G be a wheel graph  $W_s$  (s > 3), then we have  $\gamma_{up}(W_s) = 1$ . There

are *s* UDS of size one. For i = 2 there are  $\binom{s+1}{2}$  UDS of size two and so on.

Thus,

$$UP(G, x) = sx + {\binom{s+1}{2}}x^2 + {\binom{s+1}{3}}x^3 + \dots + {\binom{s+1}{s+1}}x^{s+1}$$
$$= \left[\sum_{i=0}^{s+1} {\binom{s+1}{i}}x^i\right] - (x+1)$$
$$= (x+1)^{s+1} - (x+1)$$
$$= (x+1)\left[(x+1)^s - 1\right].$$

**Corollary 2.18.** For any wheel graph  $W_s$  and s > 3 we have

$$Z_{up}\left(W_{s}\right) = \begin{cases} \left\{0, -1, -2\right\}, & \text{if } s \text{ is even.} \\ \left\{0, -1\right\}, & \text{if } s \text{ is odd.} \end{cases}$$

## 3. Uphill Domination Polynomials of Graphs under Some Binary Operations

**Theorem 3.1.** Let  $G \cong P_r \times P_s$  be a grid graph with rs vertices and  $r, s \ge 4$ . Then,  $UP(G, x) = x^4 (1+x)^{rs-4}$ .

*Proof.* Let *G* be a grid graph with *rs* vertices and  $r, s \ge 4$ , then we have  $\gamma_{up}(G) = 4$ . Note that, there is only one UDS of size four. For i = 5, there are rs - 4 UDS of size five and so on. Thus, we get

$$UP(G, x) = x^{4} + {\binom{rs-4}{1}}x^{5} + \dots + {\binom{rs-4}{rs-4}}x^{rs}$$
$$= x^{4} \left[\sum_{i=0}^{rs-4} {\binom{rs-4}{i}}x^{i}\right]$$
$$= x^{4} (1+x)^{rs-4}.$$

**Theorem 3.2.** Let  $G \cong C_r \circ \overline{K}_s$  be a corona graph with rs + r vertices. Then,  $UP(G, x) = x^{rs} (1+x)^r$ .

*Proof.* Let  $G \cong C_r \circ \overline{K}_s$  with rs + r vertices, we have  $\gamma_{up} (C_r \circ \overline{K}_s) = rs$ . For *rs* vertices, there is only one UDS of size *rs*. For rs + 1 vertices, there are *r* UDS and so on. Thus, we get

$$UP(G, x) = x^{rs} + \binom{r}{1} x^{rs+1} + \dots + \binom{r}{r} x^{rs+r}$$
$$= \sum_{i=0}^{r} \binom{r}{i} x^{rs+i}$$
$$= x^{rs} \left[ \sum_{i=0}^{r} \binom{r}{i} x^{i} \right]$$
$$= x^{rs} (1+x)^{r}.$$

**Corollary 3.3.** Let  $G \cong C_r \circ K_1$  be a corona graph with 2r vertices. Then,  $UP(G, x) = x^r (1+x)^r$ .

Theorem 3.2 can generalize in the following result.

**Theorem 3.4.** For any nontrivial connected graph H with r vertices, if  $G \cong H \circ \overline{K}_s$ , then,  $UP(G, x) = x^{rs} (1+x)^r$ .

*Proof.* The proof similarly to the proof of Theorem 3.2.

**Theorem 3.5.** Let G be a book graph  $B_m = P_2 \times S_m$  with 2m+2 vertices. Then,

$$UP(G, x) = 2^{m} x^{m} + \left[ m(2^{m-1}) + 2^{m+1} \right] x^{m+1} + \sum_{i=2}^{2m-1} \left[ \binom{m}{i} 2^{m-i} + \binom{m}{i-1} 2^{m-i+2} + \binom{m}{i-2} 2^{m-i+2} \right] x^{m+i} + \left[ 1 + m2^{2} + \binom{m}{2} 2^{2} \right] x^{2m} + (2m+2) x^{2m+1} + x^{2m+2}.$$

*Proof.* Suppose we have the book graph  $B_m = P_2 \times S_m$  with 2m+2 vertices, then we have  $\gamma_{up} (P_2 \times S_m) = m$ . Let divide the vertices of  $B_m$  into m+1 sets "as shown in **Figure 2**" let the set  $R_i = \{u_i, v_i\}$  *i.e.*,  $1 \le i \le m$  while  $R_{m+1} = \{u, v\}$ . Since  $\gamma_{up} (P_2 \times S_m) = m$ , then for up (G, m) we have to take one vertex from each  $R_i$   $(i \ne m+1)$  so, there exist  $2^m$  UDS of size m. For up (G, m+1) we have,

$$up(G, m+1) = \underbrace{\binom{2}{1} \cdots \binom{2}{1}}_{(m+1) \text{ times}} + \underbrace{\sum_{\substack{\sum r_i = m+1 \\ r_1 \cdots r_m \ge 1}} \binom{2}{r_1} \cdots \binom{2}{r_m} \binom{2}{0}$$
$$= 2^{m+1} + m(2^{m-1}).$$

Also, for up(G, m+2) we get

$$up(G, m+2) = \sum_{\substack{\sum r_i = m+2 \\ r_1 \cdots r_m \ge 1}} {\binom{2}{r_1} \cdots {\binom{2}{r_m}} {\binom{2}{0}} + \sum_{\substack{\sum r_i = m+1 \\ r_1 \cdots r_m \ge 1}} {\binom{2}{r_1}} \cdots {\binom{2}{r_m}} {\binom{2}{2}} \\ + \sum_{\substack{\sum r_i = m \\ r_1 \cdots r_m \ge 1}} {\binom{2}{r_1}} \cdots {\binom{2}{r_m}} {\binom{2}{2}} \\ = {\binom{m}{2}} 2^{m-2} + {\binom{m}{1}} 2^m + {\binom{m}{0}} 2^m \\ = {\binom{m}{2}} 2^{m-2} + m2^m + 2^m.$$

Figure 2. A Book Graph Bm.

Therefore, for up(G, m+3) we have

$$up(G, m+3) = \sum_{\substack{\sum r_i = m+3 \\ r_1 \cdots , r_m \ge 1}} \binom{2}{r_1} \cdots \binom{2}{r_m} \binom{2}{0} + \sum_{\substack{\sum r_i = m+2 \\ r_1 \cdots , r_m \ge 1}} \binom{2}{r_m} \binom{2}{1} \\ + \sum_{\substack{\sum r_i = m+1 \\ r_1 \cdots , r_m \ge 1}} \binom{2}{r_1} \cdots \binom{2}{r_m} \binom{2}{2} \\ = \binom{m}{3} 2^{m-3} + \binom{m}{2} 2^m + \binom{m}{1} 2^m \\ = \binom{m}{3} 2^{m-3} + \binom{m}{2} 2^m + m2^m.$$

And so on, we use the same argument until up(G, 2m-1). After that, for up(G, 2m) we have

$$up(G, 2m) = \binom{2}{2} \cdots \binom{2}{2} \binom{2}{0} + \sum_{\substack{\sum r_i = 2m-1 \\ r_1 \cdots , r_m \ge 1}} \binom{2}{r_1} \cdots \binom{2}{r_m} \binom{2}{1} \\ + \sum_{\substack{\sum r_i = 2m-2 \\ r_1 \cdots , r_m \ge 1}} \binom{2}{r_1} \cdots \binom{2}{r_m} \binom{2}{2} \\ = 1 + m2^2 + \binom{m}{2} 2^2.$$

Finally,

$$up(G, 2m+1) = {2m+2 \choose 2m+1} = 2m+2 \& up(G, 2m+2) = 1.$$

Thus, the proof is completed.

**Theorem 3.6.** Let G be a graph. If  $G \cong P_k \times C_s$  with sk vertices, then

$$UP(G,x) = \sum_{t=2}^{sk} \left| \sum_{\substack{\eta, r_2 \geq 1 \\ r_1 + r_2 + r_3 = t}} {s \choose r_1} {s \choose r_2} {sk-2s \choose r_3} \right| x^t.$$

*Proof.* Let  $G \cong P_k \times C_s$  with *sk* vertices, then we have  $\gamma_{up}(P_k \times C_s) = 2$ . We first divide the vertices of *G* into three sets called them  $R_1, R_2$  and  $R_3$ , where  $R_1$  (resp.  $R_2$ ) is contains the vertices of the outer cycle (resp. inner cycle) which every vertex is of degree three. The third set  $R_3$  contains the vertices of the middle cycles, where every vertex is of degree four. Note that, any UDS should contain at least one vertex form  $R_1$  and one vertex from  $R_2$ . Thus, for up(G,2)

$$up(G,2) = \binom{s}{1}\binom{s}{1}\binom{sk-2s}{0} = s^2.$$

For up(G,3) we have

$$up(G,3) = \sum_{\substack{r_1,r_2 \ge 1\\r_1+r_2+r_3=3}} \binom{s}{r_1} \binom{s}{r_2} \binom{sk-2s}{r_3}.$$

And so on, we use the same argument for all up(G,t) *i.e.*,  $3 \le t \le sk$  and

the proof is done.

**Theorem 3.7.** Let G ba a tadpole graph  $T_{s,k}$  with s+k vertices. Then,

$$UP(G, x) = (s-1)x^{2} + \sum_{t=3}^{s+k} \left[ \sum_{\substack{r_{1}+r_{2}=t-1\\r_{2}\geq 1}} \binom{k}{r_{1}} \binom{s-1}{r_{2}} \right] x^{t}.$$

**Proof.** Let G be a tadpole graph  $T_{s,k}$  with s+k vertices, we have  $\gamma_{up}(T_{s,k}) = 2$ . We first divide the vertices of  $T_{s,k}$  into three sets called them  $R_1, R_2$  and  $R_3$  such that  $R_1$  is a singleton set that contains the pendant vertex,  $R_2$  has k vertices each of them is of degree two except one vertex is of degree three while the last set  $R_3$  has s-1 vertices each of them of degree two which are the vertices that lies in a cycle part of a graph. Notice that, any UDS of  $T_{s,k}$  should contains the pendant vertex and at least one vertex from  $R_3$ . Now, for up(G,2) we have to take the pendant vertex with one vertex from  $R_3$ , so there exist s-1 UDS of size two. For up(G,3) we get

$$up(G,3) = \sum_{\substack{r_3 \ge 1\\r_2+r_3=2}} \binom{k}{r_2} \binom{s-1}{r_3}.$$

And so on, we use the same argument for all up(G,t) *i.e.*,  $3 \le t \le s+k$  and the proof is completed.

**Theorem 3.8.** Let G be a windmill graph Wd(s,k) with k(s-1)+1 vertices. Then,

$$UP(G, x) = (s-1)^{k} x^{k} + \sum_{t=k+1}^{k(s-1)+1} \left[ \sum_{\substack{\eta_{1}, \dots, \eta_{k} \geq 1 \\ r_{1}+\dots+r_{k+1}=t}} {s-1 \choose r_{1}} \cdots {s-1 \choose r_{k}} {1 \choose r_{k+1}} \right] x^{t}.$$

*Proof.* Let *G* be a windmill graph with center vertex *w*, we have  $\gamma_{up}(G) = k$ . Any minimum uphill domination set must contains one vertex from each copy of  $K_s$  without the center vertex *w*, that means, we have  $(s-1)^k$  uphill dominating set of size *k*. Suppose  $R_i$  be the set of vertices of the i-th copy of  $K_s$  without the center vertex *w* and  $R_w$  be the singleton, with the center vertex *w*. To get the number of uphill dominating sets of size t = k + j, where  $j = 1, 2, \dots, (k(s-2)+1)$ , we need to select  $r_i$  vertices from each  $R_i$ , and  $r_{k+1}$  from  $R_w$  where  $i = 1, 2, \dots, k$ ,  $\sum_{i=1}^{k+1} r_i = t$  and  $r_i \ge 1$  for all  $i = 1, 2, \dots, k$ . Hence,

$$up(G,t) = \sum_{\substack{r_1,\dots,r_k \geq 1\\r_1+\dots+r_{k+1}=t}} \left[ \binom{s-1}{r_1} \cdots \binom{s-1}{r_k} \binom{1}{r_{k+1}} \right].$$

Thus,

$$UP(G, x) = (s-1)^{k} x^{k} + \sum_{t=k+1}^{k(s-1)+1} \left[ \sum_{\substack{\eta, \dots, \eta_{k} \geq 1 \\ r_{1} + \dots + r_{k+1} = t}} {s-1 \choose r_{1}} \cdots {s-1 \choose r_{k}} {1 \choose r_{k+1}} \right] x^{t}.$$

**Proposition 3.9.** Let G be a dutch windmill graph D(s,k) with s > 3 and k(s-1)+1 vertices. Then,

$$UP(D(s,k),x) = UP(Wd(s,k),x).$$

**Theorem 3.10.** Let G be a firefly graph  $F_{s,t,k}$  with  $s,t,k \ge 0$ , n = 2s + 2t + k + 1 vertices and  $\gamma_{up}(G) = s + t + k = b$ . Then,

$$Up(G, x) = 2^{s} x^{b} + \left[2^{s}(t+1) + 2^{s-1}(s)\right] x^{b+1} + \sum_{h=b+2}^{n} \left[\sum_{\substack{r_{1}, \dots, r_{s} \ge 1\\ r_{1} + \dots + r_{s+1} = h-(t+k)}} {s \choose r_{1}} {s \choose r_{2}} \cdots {s \choose r_{s}} {t+1 \choose r_{s+1}} \right] x^{h}.$$

*Proof.* Let G be a firefly graph  $F_{s,t,k}$  with n vertices and

 $\gamma_{up}(G) = s + t + k = b$ . First, let us divide the vertices of G into s + 2 sets and let u be the shared vertex in G. Suppose that  $R_1 \subset V(G)$  contains the vertices of the first triangle without u, this implies  $R_1$  has two vertices each of them are of degree two, also we mean by  $R_2 \subset V(G)$  the set that contains the vertices of the second triangle without u and so on for all  $R_i$ , where  $1 \le i \le s$ . Now, the subset  $R_{s+1} \subset V(G)$  contains u in addition the t vertices of the pendant paths that adjacent to u which means  $R_{s+1}$  is of cardinality t+1. Finally,  $R_{s+2} \subset V(G)$  contains all the leaves vertices of G which be exactly of cardinality t+k. Notice that, any UDS of G should contain all the vertices of  $R_{s+2}$  with at least one vertex from each  $R_i$ . Thus, for up(G,b) we have

$$up(G,b) = \sum_{\substack{\sum_{i=1}^{s+2} r_i = b}} \left[ \binom{2}{r_1} \cdots \binom{2}{r_s} \binom{t+1}{r_{s+1}} \binom{t+k}{r_{s+2}} \right]$$
$$= \left[ \binom{2}{1} \cdots \binom{2}{1} \binom{t+1}{0} \binom{t+k}{t+k} \right]$$
$$= \underbrace{2 \times 2 \times \cdots \times 2}_{s \text{ times}} = 2^s.$$

For up(G, b+1) we get

$$up(G, b+1) = \sum_{\sum_{i=1}^{s+2} r_i = b+1} \left[ \binom{2}{r_1} \cdots \binom{2}{r_s} \binom{t+1}{r_{s+1}} \binom{t+k}{t+k} \right]$$
  
= 
$$\sum_{\sum_{i=1}^{s+1} r_i = (b+1) - (t+k)} \left[ \binom{2}{r_1} \cdots \binom{2}{r_s} \binom{t+1}{0} \right] + \underbrace{\binom{2}{1} \cdots \binom{2}{1}}_{s \text{ times}} \binom{t+1}{1}$$
  
= 
$$2^{s-1}(s) + 2^s (t+1).$$

And for up(G, b+2) we have

$$up(G,b+2) = \sum_{\sum_{i=1}^{s+2} r_i = b+2} \left[ \binom{2}{r_1} \cdots \binom{2}{r_s} \binom{t+1}{r_{s+1}} \binom{t+k}{t+k} \right]$$
$$= \sum_{\sum_{i=1}^{s+1} r_i = (b+2) - (t+k)} \left[ \binom{2}{r_1} \cdots \binom{2}{r_s} \binom{t+1}{r_{s+1}} \right].$$

In the same argument we can find all up(G,h), where  $b+2 \le h \le n$  and the proof is completed.

**Corollary 3.11.** Let G be a friendship graph  $F_k$  with 2k+1 vertices. Then,

$$UP(G, x) = 2^{k} x^{k} + \left[2^{k} + k 2^{k-1}\right] x^{k+1} + \sum_{t=k+2}^{2k+1} \left[\sum_{\substack{r_{1}, \dots, r_{k} \geq 1 \\ r_{1} + \dots + r_{k+1} = t}} \binom{2}{r_{1}} \cdots \binom{2}{r_{k}} \binom{1}{r_{k+1}}\right] x^{t}.$$

## 4. Open Problems

Finally, for feature work we state the following definition.

**Definition 4.1.** Two graphs G and H are said to be uphill-equivalent if UP(G, x) = UP(H, x). The uphill-equivalence classes of G noted by

 $[G]_{up} = \{H : H \text{ is uphill-equivalent to } G\}.$ 

## Example 4.2.

1)  $[K_n]_{un} = \{H : H \text{ is regular graph of } n \text{ vertices}\}.$ 

2) The windmill graph Wd(s,k) and Dutch windmill graph D(s,k) are uphill-equivalent.

We state the following open problems for feature work:

- 1) which graphs have two distinct uphill domination roots?
- 2) which families of graphs have only real uphill domination roots?
- 3) which graphs satisfy  $[G]_{uv} = \{G\}$ ?
- 4) determine the uphill-equivalence classes for some new families of graphs.

## **Conflicts of Interest**

The authors declare no conflicts of interest regarding the publication of this paper.

#### **References**

- [1] Deering, J. (2013) Uphill & Downhill Domination in Graphs and Related Graph Parameters. Thesis, East Tennessee State University, Johnson.
- [2] Balakrishnan, R. and Ranganathan, K. (2012) A Textbook of Graph Theory. Springer Science & Business Media, New York. https://doi.org/10.1007/978-1-4614-4529-6
- [3] Haynes, T.W., Hedetniemi, S.T. and Slater, P.J. (1998) Fundamentals of Domination in Graphs. Marcel Dekker, Inc., New York.
- [4] Hedetniemi, S.T., Haynes, T.W., Jamieson, J.D. and Jamieson, W.B. (2014) Downhill Domination in Graphs. *Discussiones Mathematicae, Graph Theory*, 34, 603-612. <u>https://doi.org/10.7151/dmgt.1760</u>
- [5] Alikhani, S. and Peng, Y.H. (2009) Introduction to Domination Polynomial of a Graph. Ars Combinatoria, 114. arXiv:0905.2251
- [6] Alsalomy, T., Saleh, A., Muthana, N. and Al shammakh, W. On the Uphill Domination Number of Graphs. (Submitted)