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Abstract 
This article explores controllable Borel spaces, stationary, homogeneous Markov 
processes, discrete time with infinite horizon, with bounded cost functions 
and using the expected total discounted cost criterion. The problem of the es-
timation of stability for this type of process is set. The central objective is to 
obtain a bounded stability index expressed in terms of the Lévy-Prokhorov 
metric; likewise, sufficient conditions are provided for the existence of such 
inequalities. 
 

Keywords 
Discrete-Time Markov Control Process, Expected Total Discounted Cost, 
Stability Index, Probabilistic Metric, Lévy-Prokhorov Metric 

 

1. Introduction 

Let on a Borel space ( ), XX   two following Markov control processes be giv-
en: 

( )1, ,t t t tx F x a ξ−= , 1,2,t =                 (1.1) 

( )1, ,t t t tx F x a ξ−= 

   , 1,2,t =                 (1.2) 

where ( )1t ta A x A−∈ ⊂ , ( )1t ta A x A−∈ ⊂   are the controls forming the control 
policies ( )1 2, ,a aπ =  , ( )1 2, ,a aπ =  

  (see [1] [2] for definitions); { } { },t tξ ξ  
are sequences of independent and identically distributed (i.i.d.) random vectors 
in a separable metric space ( ),S r . In what follows the distributions of 1 1,ξ ξ  
are denoted by Dξ  and Dξ  respectively. Let c be a given bounded measurable 
one-step cost function; for any initial state x X∈  and control policy π ∈Π  
(Π  is the set of all control policies see [1]), the expected total α-discounted cost 
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criterion areas follows: 

( ) ( )1
1

1
, : ,t

x t t
t

V x c x aπ
α π α

∞
−

−
=

= ∑ ,                (1.3) 

( ) ( )1
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V x c x aπ
α π α
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−

−
=

= ∑

  ,                (1.4) 

Under assumptions 3.1 and 3.2 given in section 3, there exist stationary op-
timal policies *f  and *f  such that 

( ) ( )

( ) ( )

*
*

*
*

inf ,

inf ,

V V f V x

V V f V x

α α απ

α α απ

π

π
∈Π

∈Π

= =

= =
  

                  (1.5) 

To set the stability estimation problem, first, suppose that process given in 
Equation (1.2) is interpreted as an “available approximation” to process given in 
Equation (1.1), i.e., Dξ  is an approximation to Dξ . 

Second, the policy *f  (optimal with respect to Equation (1.4)) is applied to 
control the “original process” given in Equation (1.1) (instead of “unavailable” 
optimal policy *f ). 

Following the definition given in [3] [4] [5] [6] [7], we introduce the stability 
index: 

( ) ( )* *: 0V V f V f
α α α∆ = − ≥ , 

where ( )Vα ⋅  is the value function defined in Equation (1.5). This definition 
means that Vα

∆  represents anextra cost paid for using *f  instead of the op-
timal policy *f . 

Under certain Lipschitz conditions it was proved (for the processes with 
bounded costs c) that 

( ),V K D D
α ξ ξπ∆ =



                      (1.6) 

where K  is an explicitly calculated constant, and π  is the Lévy-Prokhorov 
metric (see Section 2 for definition). The convergence in π  is equivalent to 
the weak convergence plus the convergence of first absolute moments (see [8]). 

Inequalities as given in Equation (1.6) have been developed with other types 
of metrics (Kantorovich, total variation, etc.) and optimization criteria (the ave-
range cost) see e.g. in [5] [7] [9] [10]. Other types of criteria used to obtain the 
stability of the process can be consulted in [11] [12] [13]. 

The aim of the present paper is making advantage of boundedness of c and 
using the well-known contractive properties of the operators related to the ex-
pected total discount cost optimality equations to prove the “stability inequality” 
as in Equation (1.6) with the Lévy-Prokhorov distance on its right-hand side. 

This paper is organized as follows: Section 2 defines the control Markov mod-
el and the problem of its stability. Section 3 presents the Lipschitz conditions 
and the assumptions to guarantee the existence of a optimal control to the Mar-
kov control process as well as the mail result of this work, the Theorem 3.1, 
which establishes the conditions to achieve the stability. Section 4 is presented a 
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couple of application examples, for which the assumptions are validated and 
then the result obtained in the Theorem 3.1 is applied. Finally, section 5 has 
presented the proof of the Theorem 3.1 as well as a couple of lemmas that are 
required for this proof. 

2. Setting of the Problem 

In standard way (see for instance [1] [14]), it will denote a Markov Control 
Process (MCP) indiscrete time with infinite horizon, stationary and homogene-
ous as the following fivefold: 

( ){ }( ), , : , ,M X A A x x X p c= ∈                   (2.1) 

where will be assumed that the controllable process components M have the fol-
lowing characteristics: 
 The space state X is a metric space with a metric ρ  and X  denotes the 

sigma-algebra; 
 The actions space A is a metric space with a metric l; 
 The set of admissible actions ( )A x  is compact for every x X∈ ; 
 The pairs set of admissible state-actions ( ){ }, : ,x a X A a A x X= ∈ × ∈ ∈  

is anon-empty (and measurable) Borel subset of the set X A×  and it is 
equipped with the metric { }max , lν ρ= ; 

 p is a stochastic kernel in X given  . This stochastic kernel specifies the 
transition probability: 

( ),p B x a=                          (2.2) 

where XB∈  and ( ),x a ∈ . 
 Finally, :c →   is a bounded and measurable function called a step cost 

function. 
On the other hand, in many applications the evolution of the MCP given in 

Equation (2.1) is specified by the following model: 

( )1, ,t t t tx F x a ξ−= , 1,2,t =                    (2.3) 

where 0x  represents the initial state and { }tξ  it is a sequence of i.i.d. random 
vectors that take values in any Borel space S with a common distribution Dξ . In 
fact, it is considered that S is a metric space equipped with a metric r and 

:F S X× →  is a measurable function. The expression given in Equation (2.3) 
will be denoted as the original process. 

Let x X∈  be the initial state and π ∈Π  the applied control policy, (Π  is 
the set of all control policies, see [1] [14] for definitions), then the performance 
criterion called expected total α-discounted cost is defined as usual, by the fol-
lowing functional: 

( ) ( )1
1

1
, : ,t

x t t
t

V x c x aπ
α π α

∞
−

−
=

= ∑                 (2.4) 

where ( )0,1α ∈  is a fixed discount coefficient; x
π  denotes the expected value 

corresponds to the distribution of the process { }tx  with the initial state x X∈  
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and the control policy π ∈Π  applied. 
Now, the function ( ) ( )* : inf ,V x V xα απ

π
∈Π

=  with x X∈  is called the value 
function and a control policy *π  (provided it exists) is called optimum (with 
respect to the criterionVα ) if it meets the following: 

( ) ( ) ( )*
*, inf ,V x V x V xα α απ

π π
∈Π

= = , x X∈              (2.5) 

Later, conditions will be imposed that will guarantee the existence of an op-
timal stationary policy ( )* * , , , ,f f f fπ = =    for Equation (2.5), (see [14]). 

The stability index and its estimation problem. Estimation of the stability 
problem arises when there is uncertainty about the likelihood of transition p de-
fined in Equation (2.2). The original task of controller consists of the search (or 
approach) of the optimal policy *π  that satisfies Equation (2.5) for the original 
process. In many applications, this task cannot be accomplished directly because, 
among other reasons, any of the following: 

1) Frequently p or some of its parameters are unknown to the controller and 
this transition probability is estimated using some statistical procedures (from 
observations). With the results of these estimates another transition probability 
is generated p , that is interpreted as an approximation accessible to the un-
known p. 

2) There are situations in which p is known but too complicated to have a 
hope to solve the problem of optimization of control policy. In such cases, some-
times p is replaced by “a theoretical approach” p , resulting in a controllable 
process with a more simple structure. 

In both cases, in the optimization policies the controller is to work with the 
controllable Markov process ( ){ }( ), , : , ,M X A A x x X p c= ∈

  defined by the 
accessible transition probability p . This means that instead of the original 
process tx , given in Equation (2.3), the controller uses an approximate process 
given by the following equation: 

( )1, ,t t t tx F x a ξ−= 

   , 1,2,t =  , with 0x X∈  given         (2.6) 

where 1,t tx x X− ∈   are states of the processes; ( )1t ta A x −∈   is an action of the 
corresponding state; and { }tξ  is a sequence of random vector i.i.d. with values 
in S. The only difference between the given processes in Equations (2.3) and (2.6) 
is possible, the different distributions Dξ  and Dξ  from the random vector 
{ }tξ  and { }tξ  respectively. 

Changing tx  for tx  in Equations (2.4) and (2.5), it is defined as the corres-
ponding optimization criterion Vα

  for approximate processing M  

( ) ( )1
1

1
, : ,t

x t t
t

V x c x aπ
α π α

∞
−

−
=

= ∑

  , with 0x X∈ . 

Suppose now, that it is possible (at least theoretically) to find an optimal poli-
cy *π  for the process M , i.e., the value for the approximate process function is 
defined as  

( ) ( ) ( )* *
*, : inf , ,V x V x V x x Xα α απ

π π
∈Π

= = ∈  

               (2.7) 
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The control policy *π  in Equation (2.7) is used as approximation to the 
nonaccessible optimal policy *π  (assuming it exists). In other words, the policy 

*π  is used to control the original process M instead of the unknown policy *π . 
The increase in the cost for such an approach is estimated by means of the 

following stability index, (see [3] [4]): 

( ) ( ) ( ) ( ) ( )*
* * *: , , , 0,V x V x V x V x V x x X

α α α α απ π π∆ = − ≡ − ≥ ∈       (2.8) 

As proposed in [5] [6], the estimation of the stability problem consists of the 
search of some inequalities of the following type (stability inequalities): 

( ) ( ) ( ), ,V x K x p p x X
α

ψ µ∆ ≤ ∈                  (2.9) 

where: 
( ),p pµ   is a “distance” between the probabilities of transition p and p  

(expressed in terms of a probabilistic metric). 
( ),p pψ µ    is a continuous function such that ( ) 0sψ →  when 0s → ; 

and ( ) ,K x x X∈  is a function with values calculated explicity. 
The results presented in [4] [5] provide inequalities such as the one given in 

the inequality (2.9) using ( )s sγψ =  for 0 1γ< ≤ , and the so-called “strong 
metrics”: total variation metric and the weighted total variation metric. 

The aim of this article is obtaining inequalities of stability such as given in the 
inequality (2.9) with ( )s sψ =  and the use of “metric weak” probabilistic, spe-
cifically, the Lévy-Prokhorov metric ( π ). 

For instance, the Theorem 3.1 presented in the next section, see inequalities 
(3.1) and (3.2), ensure that under appropriate conditions it complies 

( ) ( ) ( ), ,V x K x D D x X
α ξ ξπ∆ ≤ ∈



               (2.10) 

where: 

( ) ( ) ( ){
( ) ( ) }

, : inf 0 : ,

for every S

D D D A D A

D A D A A

ε
ξ ξξ ξ

ε
ξξ

π ε ε

ε

= > ≤ +

≤ + ∈

 






 

is the Lévy-Prokhorov metric; ( ){ }: : ,A s S r s Aε ε= ∈ <  and S  denotes the 
sma-algebra of Borel of metric space ( ),S r . 

It is well-known (see [15]) that π  metrizes weak convergence in any se-
parable metric space. A succession of random vectors that converge under the 
metric π , converges weakly. 

3. Assumptions and Results 

The Hausdorff distance (h) between compact subsets ,B C  of the metric space 
( ),A l is given by 

( ) ( ) ( ), : max sup , ,sup ,
x B y C

h B C l x C l B y
∈ ∈

 =  
 

, 

where ( ) ( ), inf ,
Z C

l x C l x z
∈

= . 
Likewise the so-called “strong metric”, the total variation metric ( ( ),⋅ ⋅ ) is 
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given by  

( ) ( ) ( ){ }, : sup : 1D Dξ ξ φ ξ φ ξ φ
∞

 = − < 

  , 

where ,D Dξ ξ  are in the space of probability distributions over ( ), SS   and 

∞
⋅  is the supremum norm. Of course under S ≡  , then 

( ) ( ) ( ), dD D D t D t tξ ξξ ξ= −∫ 
 . 

On the other hand, one of the metrics called “weak” is the Kantorovich metric 
(κ ) 

( ) ( ) ( ){ }, : supD Dξ ξ
φ

κ φ ξ φ ξ
∈

= −





  

where the function φ  it is of Lipchitz, namely, the set   is defined as  

( ) ( ) ( ){ }: : , , ,s s r s s s s Sφ φ φ ′ ′ ′= − ≤ ∈ . 

It is well known (see [9]) that in the case of mS ≡  , it is true that  

( ), 0D Dξ ξκ →


 if and only if nξ ξ→  (weak convergence) and that  

nξ ξ⇒  .  
In the remainder of the article, it will be denoted by B to the Banach space of 

all measurable functions :u X →   for which the norm ( ){ }sup
x X

u u x
∞

∈
=  is 

finite. 
The first set of technical assumptions is required to ensure the existence of 

minimizers in the value functions of the original and the approximate model, see 
[16]. 

Assumption 3.1. 
1) The set A is compact for each x X∈ ; also the mapping of values set as 

( )x A x∈  is upper semicontinuous with respect to the Hausdorff metric. 
2) The one-step cost function :c →   is bounded, namely ( )c k b≤  for 

each k ∈ , b∈ ; and for each x X∈ , the one-step cost function  
( ) ( ),c k c x a=  is lower semicontinuous in A. 
3) For each continuous function bounded :u X →  , the functions 

( ) ( )1 , : , , ;u x a u F x a s=     

( ) ( )2 , : , , ,u x a u F x a s=     

with ( ),x a ∈ , ,s s S∈  are continuous in  . 
The second set of assumptions imposes the “Lipschitz conditions” on the 

one-step cost function as well as on the transition probabilities of the original 
and approximate processes. 

Assumption 3.2. 
There are finite constants 0 1 2 3, , , ,b L L L L  such that the following is true: 
1) ( )c k b≤ < ∞  for each k ∈ ; 
2) ( ) ( ) ( )0 ,c k c k L k kν′ ′− ≤  for all ,k k ′∈ ; 
3) ( ) ( )( ) ( )1, ,h A x A x L x xρ′ ′≤  for all ,x x X′∈  where ( ),h ⋅ ⋅  is the Haus-

dorff metric; 

https://doi.org/10.4236/am.2020.116036


Martínez-Sánchez J. E. 
 

 

DOI: 10.4236/am.2020.116036 497 Applied Mathematics 
 

4) ( ) ( )( ) ( )2, , , ,F k s F k s L k kν′ ′≤  for all ,x x X′∈ , s S∈  where ( ),⋅ ⋅  
is the total variation metric; 

5) ( ) ( )( ) ( )3, , , ,F k s F k s L r s sρ ′ ′≤  for all k ∈ , ,s s S′∈ ; 
6) For each x X∈ , s S∈  and the bounded function :u X →  , then the 

function ( ), ,a u F x a s→     is lower semicontinuous in ( )A x . 
For a proof of the following proposition, see [16]. 
Proposition 1 (Well-known result). Under the assumptions 3.1 and 3.2, for 

the control processes given in Equations (2.3) and (2.6) there are optimal statio-
nary control policies denoted by { }* * *, ,f f f=   and { }* * *, ,f f f=  

  respec-
tively, such that ( )*,V x fα  an ( )*,V x fα


  do not depend on the initial state 

x X∈  and 

( ) ( )*
*, inf , , ;V V x f V x x Xα α απ

π
∈Π

= = ∈  

( ) ( )*
*, inf , , .V V x f V x x Xα α απ

π
∈Π

= = ∈    

In addition, the corresponding value functions * *,V Vα α ∈ B . In particular, for 
each fixed ( ),x a ∈ , expected values ( )* , ,V F x a sα     and ( )* , ,V F x a sα     
are well defined. 

Now, we are in position to formulate the main result of the paper. 
Theorem 3.1. Under the assumptions 3.1 and 3.2, the stability index given in 

Equation (2.8) meets the following inequality: 

( ) ( )sup ,x X V x K D D
α α ξ ξπ∈ ∆ ≤



 ,                 (3.1) 

where the stability constant is 

( )
( ) ( )( )3 1 0 23

4 1 1
1

K b L L L bLα
α α α
α

 = + + − + −
          (3.2) 

Note that if 1α → , then the constant Kα  in the inequality (3.2) it is of or-
der ( )31O α− . 

4. Some Examples 
4.1. The Process of Regularization of the Water Level in a Dam 

An important application of control problems (deterministic and stochastic) are 
those related to water reserve operations. An excellent introduction to many of 
these problems, including the connection between these and inventory systems, 
is given in [17]. 

In the simplest case of regularization of the water level in a dam, the following 
modeling can be used for the original process: 

{ }1min ;t t t tx x a Uξ−= + − , 1,2,t =               (4.1) 

and the respective approximate model remains as 

{ }1min ;t t t tx x a Uξ−= + −   , 1,2,t =               (4.2) 

In this model, the state variable tx  represents the level of the stock (volume) 
of water that the dam has at the beginning of the period t; the control ta  is the 
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amount of water that is released from the dam for family consumption, irriga-
tion, electric power, etc. during the period t; and the “disturbance” tξ  is the 
amount of water that the dam receives, randomly, viarain for instance. 

In this example, we get [ ]0,X U= , [ )0,S = ∞ , ( ) [ ]0,A x x= , with x X∈ , 
where U is the maximum capacity of the dam. 

Let ( )0 ,c x a b≤ ≤ < ∞  be the cost paid for the released water service, for 
example, can be made use of a cost function given by ( ) 0,c x a c a= , proportion-
al to water consumption and where 0c  would represent the cost of a unit of 
water. 

To ensure compliance with assumption 3.2 for this example, it is admitted 
that the following conditions are met: 
 C1. The cost for one step ( ),c x a  satisfies the assumption 3.2 clauses (1) 

and (2). 
 C2. The random variable ξ  has a density gξ , which is: 

1) Bounds by a constant gM < ∞ ;  
2) Satisfies the condition of Lipschitz with a constant gL . 
For ( ) [ ]0,A x x= , the clause (3) in the assumption 3.2 is verified directly 

(using the Hausdorff metric definition) with the constant 1 1L = . Now, denoting 
by :y x a= − , it is easy to see that for each y fixed, the function  
( ) { }, , min ,F x a s y s U= +  is Lipschitz in S with the constant 1. Then the clause 

(5) of this assumption is complied with 3 1L = . Next, the clauses will be verified 
(4) of assumption 3.2. 

Denoting by :y x a= −  and :y x a′ ′ ′= −  with [ ], 0,x x U′∈ , [ ]0,a x∈ , 
[ ]0,a x′ ′∈ , consider the following random variables: 

( ) { }: min ,y y Uζ ξ= + , 

( ) { }: min ,y y Uζ ξ′ ′= + . 

Since 

( )2 ,y y x x a a v k k′ ′ ′ ′− ≤ − + − ≤ , 

it is enough to prove that for a constant L  the following inequality is met 

( ) ( )( ),y y L y yζ ζ ′ ′≤ − ,                  (4.3) 

At the time you will see that, according to the definition of the total variation 
metric, to prove the inequality (4.3) it must be proved that for each measurable 
function : Sφ →  , with 1φ

∞
≤  it is true that 

( ) ( ) .y y L y yφ ζ φ ζ ′ ′− ≤ −          

Now then 

( ) ( ){ } ( ){ }; ; ,y y y U y y Uφ ζ φ ζ ξ φ ζ ξ= + < + + ≥              

where for a random variable η , we get that { }; AA Iη η=  . 
Using the same representation for ( )yφ ζ ′   , we get that 
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( ) ( )

( ){ } ( ){ }
( ){ } ( ){ }

; ;

; ; ,

y y

y y U y y U

y y U y y U

φ ζ φ ζ

φ ζ ξ φ ζ ξ

φ ζ ξ φ ζ ξ

′−      

′ ′≤ + < − + <      

′ ′+ + > − + >      

 

 

 

 

then 

( ) ( ) ( ) ( )1 2, ,y y I y y I y yφ ζ φ ζ ′ ′ ′− ≤ +                  (4.4) 

For the second term on the right side of the last inequality, we get that 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 ,

d d .
U y U y

I y y U U y U U y

U g s s g s sξ ξ

φ ξ φ ξ

φ
∞ ∞

′− −

′ ′= > − − > −

= −∫ ∫

  

        (4.5) 

Let for instance be y y′> . Then from Equation (4.5) and the condition C2, 
we get that 

( ) ( )2 , d .
U y

g
U y

I y y g s s M y yξ

′−

−

′ ′= ≤ −∫               (4.6) 

Let ( )0,z U∈  be an arbitrary but fixed number and dz  that denotes an in-
finitesimal interval with center in z. Since 

{ } { }dy z y Uξ ξ+ ∈ ⊂ + < , 

then 

( ) ( ) ( )d , d d .z y y U z y g z y zξξ ξ ξ∈ − + < = ∈ − = −   

Similary 

( ) ( )d , d .z y y U g z y zξξ ξ′ ′ ′∈ − + < = −  

Then in the inequality (4.4) (taking into account that ( ) 0g xξ =  for 0x < ): 

( ) ( ) ( ) ( ) ( )1 , d d ,
U U

y y

I y y z g z y z z g z y zξ ξφ φ
′

′ ′= − − −∫ ∫  

or then, assuming for example that y y′> , we get that 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 , d d d ,

d d

yU U

y y y

y U

y y

g g

I y y z g z y z z g z y z z g z y z

z g z y z z g z y g z y z

M y y UL y y

ξ ξ ξ

ξ ξ ξ

φ φ φ

φ φ

′

′

′ ′ ′= − − − − −

′ ′≤ − + − − −

′ ′≤ − + −

∫ ∫ ∫

∫ ∫  (4.7) 

(Applying the conditions C1 and C2). 
Joining inequalities (4.4), (4.6) and (4.7) is obtained the inequality (4.3) with

2 g gL M UL= + . 
Finally it has been established that for this example the clause (4) of assump-

tion 3.2 is met with ( )2 2 2 g gL M UL= + . Following similar arguments can be 
shown that the clause (6) of assumption 3.2 is also true. Therefore, in this exam-
ple inequality (3.1) can be applied to the Theorem 3.1, obtaining the following: 
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[ ] ( ) ( )0,sup ,Vx U x K D D
α α ξ ξπ∈ ∆ ≤



                 (4.8) 

where 

( )
( ) ( )03

4 2 1 4 2
1

g gK b L b M ULα
α α α
α

 = + − + + −
          (4.9) 

On the other hand, the distance ( ),D Dξ ξπ


  given in the inequality (4.8) is 
very difficult to calculate. Therefore, the result given in the inequality (4.8) can 
be expressed in terms of other probabilistic metrics as it’s shown in the follow-
ing: 
 Total variation metric. Using the well-known relationship π <  , see [18], 

between the metrics of Lévy-Prokhorov and of total variation and since in 
this example S R≡ , we can narrow the part on the right side of inequality 
(4.8) for the next stability inequality: 

[ ] ( ) ( ) ( ) ( )0,
0

sup , d ,Vx U x K D D K g s g s s
α α ξ α ξξ ξ

∞

∈ ∆ ≤ = −∫ 

        (4.10) 

where constant Kα  is given in the inequality (4.9). 
 Kantorovich metric (κ ). Let be ( 0s ≥ ), 

( ) ( )
0

d
s

G s g z zξ ξ= ∫ ; ( ) ( )
0

d
s

G s g z zξ ξ= ∫ 

, 

the distribution functions of random variables ξ  and ξ , respectively, in Equ-
ations (4.1) and (4.2). Then, using the fact that ( )2π κ≤ , see [18], relates the 
Lévy-Prokhorov metric and the Kantorovich metric (which was defined in Sec-
tion 2), the part on the right side of the inequality (4.8) is bounded as 

[ ] ( ) ( ) ( ) ( )
1 2

1 2

0,
0

sup , d ,Vx U x K D D K G s G s s
α α ξ α ξξ ξκ

∞

∈

  ∆ ≤ = −    
∫ 

 (4.11) 

where constant Kα  is given in the inequality (4.9). 
The integral in the last inequality represents the Kantorovich metric between 

ξ  and ξ . The inequality (4.11) is more informative compared to inequality 
(4.10) since it supports that approximation of Gξ  for the corresponding em-
pirical distribution functions. 

4.2. Example 4.2 

Let be X S= =  , ( )A x A= , x X∈ , with A being a compact set in  . Now, 
define the following processes: 

( ) ( )1 1,t t t t tx H x a G x ξ− −= + , 1t ≥ ; 

( ) ( )1 1,t t t t tx H x a G x ξ− −= + 

    , 1t ≥ ; 

where ( )~ ,1t Nξ θ , ( )~ ,1t Nξ θ  , :H A× →   and :G →   are 
bounded and Lipschitz functions with constants HL  and GL  respectively. 

In [19], it is shown that assumption 3.1 is satisfied for this model.  
Properly selecting a cost function ( ),c x a  that is bounded and Lipschitz, it is 
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assured that the clauses (1) and (2) from assumption 3.2 are fulfilled; for in-
stance, if the following cost function is selected by ( ),c x a x a= − , then given 
that ( ) ( ), , ,k x a k x a′ ′ ′= = ∈ , we get that 

( ) ( ) ( ) ( ) ( )2 , ,c k c k x a x a k kν′ ′ ′ ′− = − − − ≤  

so, by selecting a constant of 2oL = , this clause (2) is satisfied. 
On the other hand, it is clear that the clause (3) is satisfied for any positive 

constant 1L . To validate the clause (4) of assumption 3.2 first, define the fol-
lowing random variables: 

( ) ( ) ( ) ( )1 1 1 1, ,t t ty k F k H x a G xξ ξ− −= = + , ( ),t tk x a= ∈  

( ) ( ) ( ) ( )1 1 1 1, ,t t ty k F k H x a G xξ ξ− −′ ′ ′ ′ ′= = + , ( ),t tk x a′ ′ ′= ∈  

so, it is clear that the probability density of each of the previous random va-
riables is, respectively 

( ) ( ) ( ) ( )( ) ( )
2

1 1 1~ , ,t t t t y ky k N H x a G x G x fθ− − −+ = , 

( ) ( ) ( ) ( )( ) ( )
2

1 1 1~ , ,t t t y kt
y k N H x a G x G x fθ− − − ′′ ′ ′ ′ ′+ = , 

then, since this example S =  , after some direct calculations we get to the next 
result 

( ) ( )( )
( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1 1 1 1

, , ,

, d

2 , , ,

y k y k

t t t t t t

F k F k

y k y k f D f D t

H x a G x H x a G x

ξ ξ

θ θ
π

′

− − − −

′

′= = −

′ ′ ′≤ + − −

∫



  

and as it was assumed that the functions H and G are Lipschitz for the constants 

HL , GL  respectively, then from the last inequality we get that 

( ) ( )( ) ( ) ( )1 1
2, , , , .H GF k F k L L v k kξ ξ θ
π

′ ′≤ +  

So, by selecting the constant ( )2
2

H GL L Lθ
π

= +  the clause (4) of assump-
tion 3.2 is satisfied. To validate the clause (5) of this assumption, let be  

( ),t tk x a= ∈ , ,s s S′∈ and note that 

( ) ( )( ) ( ) ( ) ( ) ( )1 1 1 1, , , , ,t t t t t t t tF k s F k s H x a G x H x a G xρ ξ ξ− − − −′ ≤ + − −  , 

and since the functions H and G are bounded, let GM  be the finite constant, 
such that ( ) GG x M≤  for all x X∈ . Therefore, from the last inequality we 
get that 

( ) ( )( ) ( ), , , ,GF k s F k s M r s sρ ′ ′≤ . 

So for a constant of 3 GL M= , the clause (5) is satisfied. Finally, since the 
function ( ),F k s  is continuous in all its arguments, then the clause (6) is also 
true. 

In conclusion, the example 4.2 satisfies the assumption 3.2, so the result of the 
Theorem 3.1 can be applied, see inequalities (3.1), (3.2), and narrow the stability 
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index using the Lévy-Prokhorov metric 

( )ˆ ,V K D D
α ξ ξπ∆ ≤



 , 

where 

( ) ( ) ( )

( )

1 0

3

24 1 1
ˆ .

1

G H Gb M L L b L L

K

α α α θ
π

α

    + + − + +         =
−

 

5. Proofs 
5.1. Some Preliminary Lemmas 

For the proof of the theorem 3.1, the following lemmas will be used:  
Lemma 5.1. Under assumption 3.2, the value function *Vα  defined in Equa-

tion (2.5) satisfies the condition of Lipschitz in the state space X, with the  

constant ( ) 2
1 `01

1
bLL L L α
α

 = + + − 
. 

Proof. For the assumption 3.2 clause (1), for each π ∈Π  we get that  

( ) ( )1
1

1
, ,f t

x t t
t

V x c x aα π α
∞

−
−

=

= ∑  is bounded by 
1

b
α−

, then 
1

bVα α∞
≤

−
. 

On the other hand, in [16] it is proved that the following operators: 

( )
( )

( ) ( ){ }
( )

( )
( ) ( ){ }

: inf , , ,

: inf , , ,

a A x

a A x

Tu x c x a u F x a

Tu x c x a u F x a

α ξ

α ξ

∈

∈

= +   

= +   




             (5.1) 

are contractive in the space of Banach B with module α . 
Now, of these operators will be selected the terms that are inside the “brackets” 

to define the following function: 

( ) ( ) ( ) ( ), : ,g x a g k c k V F kαα ξ≡ = +    , k ∈ . 

It is claimed that the function ( )g k  is Lipschitz for the constant  
_

2
0 1

bLL L α
α

= +
−

. 
To prove it, let be ( ),k x a= , ( ),k x a′ ′ ′= ∈ , then 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, ,

, , .

g k g k c k V F k c k V F k

c k c k V F k V F k

α α

α α

α ξ α ξ

α ξ ξ

′ ′ ′− = + − −      

′ ′≤ − + −      

 

 
 

Applying the assumption 3.2 clause (2) and the fact that 
1

bVα α∞
≤

−
, we get 

that 

( ) ( ) ( ) ( ) ( )( )0 , , , , .
1

bg k g k L k k F k F kν α ξ ξ
α

′ ′ ′− ≤ +
−

  

Then, applying the assumption 3.2 clauses (4), the previous inequality can be 
expressed as 

( ) ( ) ( ) ( )

( ) ( )

0 2

2
0

, ,
1

, , ,
1

bg k g k L k k L k k

bLL k k L k k

αν ν
α

α
ν ν

α

′ ′ ′− ≤ +
−

  ′ ′= + = − 
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therefore, ( ) ( )g k Lip L∈  in  , where ( )2
0 ,

1
bLL L k kα

ν
α

  ′= + − 
. 

By virtue of which the operators given in Equation (5.1) are contractive, we 
get that 

( )
( ){ }* * inf ,

a A x
V TV g x aα α ∈

= = . 
Then, to prove that the function *Vα  is Lipschitz in X with the constant

( ) ( )
__

2
1 0 11 1

1
bLL L L L Lα
α

 = + + = + − 
, is enough to try the following: 

For the function :g →  , so that ( ) ( ) ( ),g k g k L k kν′ ′− ≤ , with ,k k ′∈ , 
it follows that for all ,x y X∈ , a A∈ : 

( )
( )

( )
( ) ( ) ( ) ( )1inf , inf , , 1 ,

a A x a A y
g x a g y a L x y L L x yρ ρ

∈ ∈
− ≤ = +     (5.2) 

Remark 5.1. Observe that 

( )
( )

( )
( )

( )
( ) ( ){ }

( )
( ) ( ){ }* *

inf , inf ,

inf , , , inf , , , ,

a A x a A y

a A x a A y

g x a g y a

c x a V F x a c y a V F y aα αα ξ α ξ

∈ ∈

∈ ∈

−

= + − +       
 

so, we have that 

( )
( )

( )
( ) ( ) ( )* *inf , inf , .

a A x a A y
g x a g y a V x V yα α∈ ∈

− = −  

So if the inequality (5.2) is met, then it is true that 

( ) ( ) ( ) ( )* *
1 1 ,V x V y L L x yα α ρ− ≤ + , 

which would conclude that *Vα  is Lipschitz in X. 
Next the proof of the inequality (5.2) is presented. 

Let be ( )
( )

( )
( )

( ), : inf , inf ,
a A x a A y

q x y g x a g y a
∈ ∈

= − . 

Then, by the inequality of the triangle we get the following: 

( )
( )

( )
( )

( )
( )

( )
( )

( ), inf , inf , inf , inf ,
a A x a A y a A x a A y

q x y g x a g y a g y a g y a
∈ ∈ ∈ ∈

≤ − + − , 

( ) ( ), ,q x y L x y Iρ≤ + , 

where 

( )
( )

( )
( )inf , inf ,

a A x a A y
I g y a g y a

∈ ∈
= −                 (5.3) 

It will be proven that 

( )1 ,I LL x yρ≤                         (5.4) 

The proof will be done by contradiction. Assuming inequality is not met given 
in (5.4), then there is a 0ε >  such that the following is satisfied: 

( )1 ,I LL x yρ ε> +                       (5.5) 

Due to the compactness of the sets ( )A x , ( )A y  and to the continuity of g, 
there are elements ( )xa A x∈ , ( )ya A y∈  for which the infimum are reached 
in I, see Equation (5.3). 
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If it is admitted for example that 

( )
( )

( )
( ) ( )1inf , inf , ,

a A x a A y
I g y a g y a LL x yρ ε

∈ ∈
= − > + , 

Then 

( ) ( ) ( )
( ) ( ) ( )

1

1

, , , ,

, , , ,

x y

x y

g y a g y a LL x y

g y a g y a LL x y

ρ ε

ρ ε

− > +

> + +
               (5.6) 

Now, for the assumption 3.2 clause (3), as ( ) ( )( ) ( )1, ,h A x A y L x yρ≤ , exists 
( )xa A x∈  such that ( ) ( )1, ,y xa a L x yρ≤  and consequently we get that 

( ) ( ) ( ) ( ) ( )1, , , , , .x y x yg y a g y a L k k Ll a a LL x yν ρ′− ≤ ≤ ≤  

The above implies that 

( ) ( ) ( )1, , ,x yg y a g y a LL x yρ≤  

( ) ( ) ( )1, , , ,y xg y a g y a LL x yρ≥ −  

if this last inequality is substituted in the inequality (5.6), we obtain 

( ) ( ), , ,x xg y a g y a ε> +  

which contradicts the fact that xa  is the element for which the minimum of 
( ),g y a  over ( )A x  is reached. Therefore, the assumption made in the inequa-

lity (5.5) is false. Then, we get that ( )1 ,I LL x yρ≤ , which implies that  
( ) ( ) ( )1, , ,q x y L x y LL x yρ ρ≤ +  and consequently 

( ) ( ) 2
1 0, 1 .

1
bLq x y Lip L L α
α

  ∈ + +  −  
 

Finally, because of the comments made in remark 5.1, we get that 

( )* 2
1 01 ,

1
bLV Lip L Lα

α
α

  ∈ + +  −  
 

which proves lemma 5.1. 
Lemma 5.2. Under assumption 3.2, the value function *Vα  defined in Equa-

tion (2.5) satisfies the condition of Lipschitz in space S with the constant 

( ) 2
* 1 0 31

1
bLL L L Lα
α

 = + + − 
. 

Proof. For proof of lemma 5.2, the following function will be used: Let be 
k ∈ ; define the function kϕ  as ( ) ( )*: , :k V F k Sαϕ ⋅ = ⋅ →   . 

Let be k ∈ , ,s s S′∈ . By the definition of functional kϕ  we get that 

( ) ( ) ( ) ( )* *, ,k ks s V F k s V F k sα αϕ ϕ ′ ′− = −       , 

and because of lemma 5.1, we came to the next inequality: 

( ) ( ) ( ) ( ) ( )( )2
1 01 , , , .

1k k
bLs s L L F k s F k sα

ϕ ϕ ρ
α

 ′ ′− ≤ + + − 
 

Now, applying assumption 3.2 clause (4) to the previous inequality we get the 
following: 
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( ) ( ) ( ) ( )2
1 0 31 ,

1k k
bLs s L L L r s sα

ϕ ϕ
α

 ′ ′− ≤ + + − 
, 

namely 

( )* 2
1 `0 31 in .

1
bLV Lip L L L Sα

α
α

  ∈ + +  −  
 

5.2. The Proof of the Theorem 3.1 

To prove inequality (3.1) we take advantage of method proposed in [7], never-
theless we need to modify this technique and the combination of certain Lyapu-
nov like conditions in the results of the paper allows to use the contractive prop-
erties of the operators related to the discount cost optimality equations, so the 
following are the incorporations and developments required for the proof of the 
Theorem 3.1 obtained in this article, with a bounded cost function. 

Let { }, ,f fπ =  , { }, ,f fπ =  


  be the optimal stationary policies for 

processes given in Equations (2.3) and (2.6) respectively, and * *,V Vα α
  the cor-

responding value functions.  
Then (see chapter 8 of [16]) * *,V Vα α

  and ,f f  satisfy the following optimal-
ity equations (even more, * *,V Vα α

  are the only solutions to these equations): 

( )
( )

( ) ( ){ }
( )( ) ( )( )

* *

*

: inf , , ,

, , , ,

a A x
V x c x a V F x a

c x f x V F x f x

α α

α

α ξ

α ξ

∈
= +   

 = +  




           (5.7) 

( )
( )

( ) ( ){ }
( )( ) ( )( )

* *

*

: inf , , ,

, , , .

a A x
V x c x a V F x a

c x f x V F x f x

α α

α

α ξ

α ξ

∈
 = +  

 = +  

 

 





           (5.8) 

For all ( ),x a ∈  are defined 

( ) ( ) ( )*, : , , ,H x a c x a V F x aαα ξ= +    , 

( ) ( ) ( )*, : , , ,H x a c x a V F x aαα ξ = +  
  . 

As it has been proved in [7], the stability index given in Equation (2.8) can be 
represented as 

( ) 1

1
: t

V x t
i

x
α

πα
∞

−

=

∆ = Λ∑                       (5.9) 

where 

( )
( )

( )
1

1 1: , inf ,
t

t t t ta A x
H x a H x a

−
− −∈

Λ = −                (5.10) 

and { }1, , 1t tx a t− ≥  is the trajectory of the process given in Equation (2.3) ap-
plying the control policy { }, ,f fπ =  


 . 

By the definition given in Equations (5.10) and (5.8) along with the fact that 
π  is optimal for the process given in Equation (2.6), we have that 

( ) ( )
( )

( )
( )

( )
1 1

1 1 1 1, , inf , inf ,
t t

t t t t t t ta A x a A x
H x a H x a H x a H x a

− −
− − − −∈ ∈

Λ = − + −  , 

https://doi.org/10.4236/am.2020.116036


Martínez-Sánchez J. E. 
 

 

DOI: 10.4236/am.2020.116036 506 Applied Mathematics 
 

which implies  

( )
( ) ( )

1
1 12 sup , ,

t
t t t

a A x
H x a H x aα

−
− −

∈
Λ ≤ −  , 

and by the definition of the functions H and H  

( )
( ) ( )

1

* *
1 12 sup , , , , .

t
t t t

a A x
V F x a V F x aα αα ξ ξ

−
− −

∈

  Λ ≤ −   
   

Then, applying the inequality of the triangle 

( )
( ) ( )

( )
( ) ( )

1

1

* *
1 1

* *
1 1

2 sup , , , ,

2 sup , , , , .

t

t

t t t
a A x

t t
a A x

V F x a V F x a

V F x a V F x a

α α

α α

α ξ ξ

α ξ ξ

−

−

− −
∈

− −
∈

  Λ ≤ −   

   + −   



 

 

 
    (5.11) 

Define now, the next pseudo-metric: 

( ) ( ) ( ) ( ){ }* *, : sup , , , , : ,D D V F x a V F x a x aξ α αξµ ξ ξ = − ∈    

     (5.12) 

Then, from Equation (5.12) it is observed that the first summand on the right 
side of Equation (5.11) is bounded by ( )2 ,D Dξ ξαµ



. 
On the other hand, applying the supremum 1tx −  in Equation (5.11), the 

second term on the right side is 

( )
( ) ( )

1

* * * *
1 12 sup , , , , 2 .

t
t t

a A x
V F x a V F x a V Vα α α αα ξ ξ α

−
− − ∞∈

   − ≤ −   
      (5.13) 

As already mentioned, the operators given in Equation (5.1) are contractive in 
B with module a. So, Equations (5.7) and (5.8) can be expressed as * *V TVα α=  
and * *V TVα α=   . Now, given that *Vα  and *Vα

  are fixed points of these operators, 
we get that 

* * * *V V TV TVα α α α∞ ∞
− = −   , 

now, applying the inequality of the triangle 

( )
( ) ( )

* * * * * *

* * * *

* *

* *

,

1
1

sup , , , , .
1 x a

V V TV TV TV TV

TV TV V V

TV TV

V F x a V F x a

α α α α α α

α α α α

α α

α α

α

α
α ξ ξ
α

∞ ∞ ∞

∞ ∞

∞

∈

− = − + −

≤ − + −

≤ −
−

 ≤ −    −

    

 






 

 

Using the definition given in Equation (5.12), we obtain that the previous in-
equality can be expressed as 

( )* * , .
1

V V D Dα α ξ ξ

α µ
α∞

− ≤
− 

  

Substituting this last expression in the inequality (5.13), we get that the second 
term on the right side of inequality (5.11) is bounded by ( )2 ,

1
D Dξ ξ

α µ
α− 

 and 
so inequality (5.11) is bounded by 

( ) ( ) ( )
22 2sup 2 , , , .

1 1t
X

D D D D D Dξ ξ ξξ ξ ξ

α ααµ µ µ
α α

Λ ≤ + =
− −  

   (5.14) 
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Finally, substituting inequality (5.14) in Equation (5.9) we obtain  

( ) ( )
( )

( )1
2

1

2 2sup , , .
1 1

t
V

X i
x D D D D

α ξ ξξ ξ

α αα µ µ
α α

∞
−

=

 ∆ ≤ = 
−  −

∑  

  (5.15) 

To find a dimension for ( ),D Dξ ξµ


, it will be used the definition of the Dud-
ley metric (δ ) in the space of distributions in ( ),S r : 

( ) ( ) ( ) ( ), , : sup ,X Y
D

D D P P X Yξ ξ
ϕ

δ δ ϕ ϕ
∈

= = −


   

where 

{ }: : : 1LD Sϕ ϕ ϕ
∞

= → + ≤ , 

and 

( )
( ) ( )
( )

sup ; sup .
,L

x S x y

x y
x

r x y
ϕ ϕ

ϕ ϕ ϕ
∞

∈ ≠

−
= =  

(See [15] for definition and properties of δ ). 

By the lemma 5.2, we get that ( )* 2
1 0 31

1
bLV Lip L L Lα

α
α

  ∈ + +  −  
 and since

*

1
bVα α∞

≤
−

, then the stability index can be narrowed in terms of Dudley’s 

metric by the following expression: 

( )
( )

( ) ( )2
1 0 32

2 1 , .
1 11

V
bLbx L L L D D

α ξ ξ

αα δ
α αα

  ∆ = + + +  − − −  


 

Now, using the well-known relationship 2δ π≤   between the Dudley metric 
and Lévy-Prokhorov metric (see [18]) and after some direct calculations, the de-
sired inequality (3.1) is obtained with the constant given in Equation (3.2). 

6. Conclusions 

Despite the vast literature that exists on the subject of Markov controllable 
processes, a few studies have been carried out on the subject of estimating stabil-
ity. The study of stability for Markov control processes represents a challenge 
both from a theoretical and a practical point of view. Proposing appropriate 
probabilistic metrics to achieve so-called stability inequalities is an additional 
effort. 

In this article, conditions were found to obtain the stability of a Markov con-
trol process under the optimization criterion of expected total α-discounted cost 
with a bounded cost function using the Lévy-Prokhorov metric. 

The importance of being able to use the Lévy-Prokhorov metric lies in the fact 
that for application problems it allows estimations of the stability index under 
the use of empirical distributions for the random elements, since they converge 
weakly under this metric to the distributions that are it tries to estimate (unlike 
the so-called “strong metrics”). 

On the other hand, since in applications, there is no company that can bear 
unlimited (unbounded) costs, the results found in this work using simple tech-
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niques such as contractive operators provide an estimate of the increase in cost 
(the stability index) to control the “original process” using the optimal policy of 
the “approximate process”. Of course, the stability constant ( Kα ) affects this 
stability index, specifically in this work it was found that this constant is of order 
( ) 31O α −−  if 1α → . There are arguments to support the hypothesis that in the 

left part of the inequality (3.1) (for each initial state fixed x): Vα
∆ → ∞  when 

1α →  and the distribution of ξ  and ξ  are fixed. It is not clear what the rate 
of such growth is. Therefore, it is proposed that in future research, based on par-
ticular (and simple) control processes, to verify the growth rate of Vα

∆  using 
computational experiments and process simulation. 

Acknowledgements 

The author is particularly grateful to Professor Edgar Vladyvosky M.S. for his 
instructive discussions on a generalization of the Markov processes and proper-
ties of the Lévy-Prokhorov metric. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Dynkin, E.B. and Yushkevich, A.A. (1979) Controlled Markov Processes. Sprin-

ger-Verlag, New York. https://doi.org/10.1007/978-1-4615-6746-2 

[2] Hernandez-Lerma, O. (1989) Adaptive Markov Control Process. Springer-Verlang, 
New York. https://doi.org/10.1007/978-1-4419-8714-3 

[3] Gordienko, E.I. (1988) Stability Estimates for Controlled Markov Chains with a 
Minorant. Journal of Soviet Mathematics, 40, 481-486.  
https://doi.org/10.1007/BF01083641 

[4] Gordienko, E.I. (1992) An Estimate of the Stability of Optimal Control of Certain in 
Stochastic and Deterministic Systems. Journal of Soviet Mathematics, 59, 891-899.  
https://doi.org/10.1007/BF01099115 

[5] Gordienko, E.I. and Salem, F.S. (1998) Robustness Inequality for Markov Control 
Processes with Undounded Costs. Systems & Control Letters, 33, 125-130.  
https://doi.org/10.1016/S0167-6911(97)00077-7 

[6] Gordienko, E.I. and Yushkevich, A. (2003) Stability Estimates in the Problem of 
Optimal Switching of a Markov Chain. Mathematical Methods of Operations Research, 
57, 345-365. https://doi.org/10.1007/s001860200258 

[7] Gordienko, E.I., Lemus-Rodriguez, E. and Montes-de-Oca, R. (2008) Discounted 
Cost Optimality Problem: Stability with Respect to Weak Metrics. Mathematical 
Methods of Operations Research, 68, 77-96.  
https://doi.org/10.1007/s00186-007-0171-z 

[8] Rachev, S.T. and Ruschendorfl, L. (1998) Mass Transportation Problem, Vol. II: 
Applications. Springer, New York. 

[9] Gordienko, E.I., Lemus-Rodriguez, E. and Montes-de-Oca, R. (2009) Average Cost 
Markov Control Processes: Stability with Respect to the Kantorovich Metric. Ma-
thematical Methods of Operations Research, 70, 13-33.  

https://doi.org/10.4236/am.2020.116036
https://doi.org/10.1007/978-1-4615-6746-2
https://doi.org/10.1007/978-1-4419-8714-3
https://doi.org/10.1007/BF01083641
https://doi.org/10.1007/BF01099115
https://doi.org/10.1016/S0167-6911(97)00077-7
https://doi.org/10.1007/s001860200258
https://doi.org/10.1007/s00186-007-0171-z


Martínez-Sánchez J. E. 
 

 

DOI: 10.4236/am.2020.116036 509 Applied Mathematics 
 

https://doi.org/10.1007/s00186-008-0229-6 

[10] Montes-de-Oca, R. and Salem-Silva, F. (2005) Estimates for Perturbations of Aver-
age Markov Decision Processes with a Minimal State and Upper Bounded by Sto-
chastically Ordered Markov Chains. Kybernetika, 41, 757-772.  

[11] Aziz, M.M. and Merie, D.M. (2020) Stability and Adaptive Control with Sychroni-
tion of 3-D Dynamical System. Open Access Library Journal, 7, e6075.  
https://doi.org/10.4236/oalib.1106075 

[12] Yilmaz, S., Büyükköroglu, T. and Dzhafarov, V. (2015) On Asymptotic Stability of 
Linear Control Systems. Applied Mathematics, 6, 71-77.  
https://doi.org/10.4236/am.2015.61008 

[13] Engblom, S. (2014) On the Stability of Stochastic Jump Kinetics. Applied Mathe-
matics, 5, 3217-3239. https://doi.org/10.4236/am.2014.519300 

[14] Hernandez-Lerma, O. and Lasserre, J.B. (1996) Discrete-Time Markov Control 
Processes. Basic Optimality Criteria. Springer, New York.  
https://doi.org/10.1007/978-1-4612-0729-0 

[15] Rachev S. T. (1991) Probability Metrics and the Stability of Stochastic Models. Wi-
ley, Chichester. 

[16] Hernandez-Lerma O. and Lasserre J. B. (1999) Further Topics on Discrete-Time 
Markov Control Processes. Springer, New York.  
https://doi.org/10.1007/978-1-4612-0561-6 

[17] Yakowitz, S. (1982) Dynamic Programming Applications in Water Resources. Wa-
ter Resources Research, 18, 673-696. https://doi.org/10.1029/WR018i004p00673 

[18] Dudley, R.M. (1989) Real Analysis and Probability. Wadswort & Brooks Cole, Pa-
cific Grove. 

[19] Arapostathis, A., Borkar, V.S., Fernandez-Gaucherande, G.M.K. and Marcus, S.I. 
(1993) Discrete-Time Controlled Markov Processes with Average Cost Criterion: A 
Survey. SIAM Journal on Control and Optimization, 31, 282-344.  
https://doi.org/10.1137/0331018   

 
 

https://doi.org/10.4236/am.2020.116036
https://doi.org/10.1007/s00186-008-0229-6
https://doi.org/10.4236/oalib.1106075
https://doi.org/10.4236/am.2015.61008
https://doi.org/10.4236/am.2014.519300
https://doi.org/10.1007/978-1-4612-0729-0
https://doi.org/10.1007/978-1-4612-0561-6
https://doi.org/10.1029/WR018i004p00673
https://doi.org/10.1137/0331018

	Stability Estimation for Markov Control Processes with Discounted Cost
	Abstract
	Keywords
	1. Introduction
	2. Setting of the Problem
	3. Assumptions and Results
	4. Some Examples
	4.1. The Process of Regularization of the Water Level in a Dam
	4.2. Example 4.2

	5. Proofs
	5.1. Some Preliminary Lemmas
	5.2. The Proof of the Theorem 3.1

	6. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

