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Abstract

In this paper, we consider r-generalization of the central factorial numbers
with odd arguments of the first and second kind. Mainly, we obtain various
identities and properties related to these numbers. Matrix representation and
the relation between these numbers and Pascal matrix are given. Further-
more, the distributions of the signless r-central factorial numbers are derived.
In addition, connections between these numbers and the Legendre-Stirling
numbers are given.
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1. Introduction

Riordan ([1], pp. 213-217), defined the central factorial numbers of the first and
second kind t(n; k) and T (n; k) , respectively

xﬁ(x+ﬂ—ij=it(n,k)x", (1)
i=1 2 k=0
n k-1 k i
X" :2T(n,k)xH(x+E—|j. (2)
k=0 i=1

Equivalently, the t(n,k) and T(n,k) are determined by the recurrence re-

lations
n-2Y
t(nk)=t(n-2,k-2)- — t(n-2,k), 2<k<n,
K 2
T(n,k):T(n—Z,k—2)+[Ej T(n-2k), 2<k<n,
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with t(n,n)=T(n,n)=1 and t(n,k)=T(nk)=0 for n<k.If n and k are
both odd, then t(n, k) and T (n,k) are not integers. For more details on the
central factorial numbers, see Butzer et al. [2].

Kim et al [3] extended T(n,k) to the r-central factorial numbers of the

second kind, ris a non-negative integer

1 [ S A o
—e"lez—e2 | =T (n+rk+r)—.
k! [ ] r; 3 )n!
In [4], the central factorial numbers with even arguments of both kinds are
given by

u(n,k)=t(2n,2k) and U (nk)=T(2n,2k), 3)
and the central factorial numbers with odd arguments of both kinds are given by

v(nk)=4"*t(2n+1,2k+1) and V(nk)=4"*T(2n+1,2k+1). (4)

Note that v(n,k) and V(n,k) are integers for all n,k>0. The combina-
torial interpretations of these numbers can be found in [4] and the references
therein.

Recently, Shiha [5] introduced the r-cental factorial numbers with even argu-
ments of the first (resp. the second) kind u, (n,k) (resp. U, (n,k)), and in-
troduced many properties and identities for these numbers. For all integers
nk>0,

AN

n—

(x=22) =X u (nk)(x+r)", (5)

l =0

I
o

k-1

(x+r) = k;u, (T (x-7). ©)

(=0

In the next, we consider a polynomial generalization of the cental factorial
numbers with odd arguments of the first and second kind, which we will denote
by Vv,(nk) and V,(n,k), respectively. The distribution of the signless
r-central factorial numbers with odd arguments of the first kind is derived.
Moreover, we give many properties of these new numbers, including a new and
interesting connection between these numbers and the Legendre-Stirling num-

bers.

2. The Generalized Central Factorial Numbers with Odd
Arguments

Definition 1. Given integers r,n>0, the arrays v, (n,k) and V,(n,k) are
defined by

LN

n—

(x=(20+27 )= v, (nk) (x 1), %
(=0 k=0
and
n n k-1 2
(x+1)" = 2V, (k)T (x-(20+2)°). (8)
k=0 (=0
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In particular, if r=0, the numbers Vv, (n, k) are reduced to v(n, k) and
V. (n,k) arereducedto V(nk).
These numbers satisfy the following orthogonality relation:

év,(n,k)Vr(k,é)=Zn:Vr(n,k)vr(k,g):5m. o)

k=¢
The numbers V, (n,k) and V,(n,k) satisfy the following two-term recur-

rence relations.
Theorem 1. The arrays V,(n,k) and V,(nk) for n>k>0 are satisty the

recurrence
v, (n+1,k) =v, (nk=1)=((2n+2) + 1)y, (n.k), nk=1, (10)
and
Vo (n41,K) =V, (nk=1)+((2k+2)° 41V, (n.k), nk>1, (11)

with v, (n,0)=(-1)" ]\ (2¢+1)" +r, V,(n,0)=(1+r)" and
v, (0,k)=V,(0,k)=68,, for nk=>0.
Proof. From (7), we have

n+l n

. I
> s @
R — N

x—(2£+1)2)(x+r—r—(2n +1)2)

T 0
LS

n-1

x=(20+1)" ) (x+ 1) =(r+(2n+2)° )T (x~ (2 +1)°)

(=0

~
Il
o

Il Il Il
M: ;\ —_—

v, (nk)(x+ 1) —(r+(2n+1)2)221vr (nK)(x+1)"

k=0

v, (n k=) (x+ 1) =(r+(20+2)°) 2, (n,k) (x+ 1)

k=0

=

>
+ |l
= o

=~
1
5N

Equating the coefficients of (X+ r)k on both sides, we obtain Equation (10).
For k =0, we find

v, (n+10)= —((Zn +1)2 + r)vr (n,0), n=0,,

Successive application gives Vv, (n,0)= (—l)n H::(Z/ +1)2 +r . The proof for
(11) is similarly.

Moreover, we derive explicit formulas and further recurrences satisfied by
V. (n,k) and V,(n,k) by using the following theorem.

Proposition 2. (Mansour et al [6]) Suppose that the array {y(n,k)}nvk20 is
defined by

y(nk)=y(n-1,k-1)+(a,_, +b)y(n-1,k), nk=>1 (12)

with y(n,O):H;;;(a/+b0) and y(0,k)=&, , for all nk=>=0, where
{aj}j>0 and {bj}j>0 are given sequences with the b, distinct, then
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y(nk)=3

j=0

H::O,(#](bj _bf)

], vnkeN,

and
n-1

y(nk)=3 y(i-Lk-D)]](a +b,)-

i=k =j

Theorem 3. For any integer 0<k <n,

V. (nk)= 22k(2k-+1)'§:( )k+][Zk-f:j((21-+l)24-r)n(2j—r1)

j=0

v, (nk)= g(—l)"'“ v, (£-1k —1)ij((2i +1) + r).

n—/¢

Vr(n,k)=%Vr(é—l,k—l)((2k+1)2+r)
Proof Setting @, =0 and b, =(2j+1)° +r forall jin (13), then
((2j+1f-+ry
T, (2042 (2 +1)2)'

k+j+1)1(k—j)!

M=

V, (n,k)=

since [T,,.,((2i+2)" ~(2i+1)°) = (-1 2* ( Sier e

k 2'+12+rn
v (k)= 2 22k(((k+1j+)1) I(k ) Ay
o Eke(@jry )
22k(2k+1)|,§( 7 (ks jnie ) 2

2 (2k+1)! (2k +1)!

Zi:( )kﬂ(2k+]1]((2j+l) )ﬂ (2j+1).

(13)

(14)

(15)

(16)

(17)

For (16), set a, :—(2i+l) +r, b, =0 in (14), and for (17), set & =0,

b =(2k +1)* +r in (14).

To get the exponential generating function of V, (n,k), multiply both sides

n

of (15) by t—' and summing over n>k,
n:

© tﬂ

2V (k)= 22k(2k+1).i( )k+j(ikjleQj+1)e((2“”2”)‘.

j=0

3. The Distribution of ‘vr (n, k)‘

(18)

The signless r-central factorial numbers of odd arguments of the first kind is de-

fined as
o, (k) =(-1)""v, (n.k) =|v, (n.k)|.

Theorem 4. The array v, (n,k) has a Poisson-binomial distribution.
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Proof. Define the random variables X , n=1,2,---, such that
o (nk) o, (n,k)

CTin (k) (e ey

The probability generating function of X, is given by

P(X, =k) k=01--n (19

n n-1 s+r+(2€+1)2
E(s*)=YsP(X =k)=T]———Z..
( ) é (%0 =k) !:£1+r+(2£+1)2
(20)
n-1
_ 1- 1 S

2 + 2 "
/=0 1+r+(20+1) 1+r+(20+1)

Then X, can be represented as a total number of successes in 1 independent

Bernoulli trials where
1
="
1+r+(2i+1)

is the probability of success at trial 7 Thus, the random variable X has a Pois-

son-binomial distribution and hence, the array b, (n,k).

4. Generating Function Formulas

In this section, we give the generating function formulas and some related iden-
tities for the numbers Vv, (n, k) and V, (n, k) .
Theorem 5. If n>0, then

é(—l)k v, (nn—k)z* :ﬁ(l+((2f+l)2+r)z). (21)
V, (nk)z"* =]£[((1—(2€+1)2+r)z)71, k>0. (22)

n>k /=0

Proof Replacing xby z™' in (7), and multiplying both sides by 2", gives
n n-1
DV, (n, k) AL H(l—((ZE +1)2 + r) z),
k=0 =0
an hence replace zby -z,

n n-1

> (D) v (nk) 2 =T (202 +r)2),

k=0 (=0
then replacing & by n—k gives (21). For (22), let Vr(k)(Z)=ZnZer (nk)z",

hence the initial condition is given by

VO(2)= 3V, (n0)2" = Y (L+r) 2" = (1-(1+1)2) .

n>k n>k
By virtue of (11),
YV, (nK)2" =XV, (n-1k-1)2" +((2k+1) +1) 2V, (n-1k)2", k=1
n>k nxk n>k
hence

Vi (2) =20 (2) +((2k+1) 4 1) 2% (2), k=1
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v (z) = - v (2), k=1,

1—((2k +1)2 +r)z '

Iterating this recurrence, gives (22).

For a set of variables y,,V,,--,Y,, the &th elementary symmetric function
e, (yl, Youte, yn) and the 4-th complete homogeneous symmetric function
he (Y1 Yz,-,Y,) are given, respectively, by

k
e (VYo ¥a)= 2 Ilv, 1<k<n

1< <ly<-<ly<n i=1

k
hk(Ylezv"':yn): Z Hy/i, k>1

1< <lp <<l <n i=1

with € (Y1, Yoo 0 Yo ) =R (Yo Yoo ¥a) =1 and & (VY5 ¥,)=0 for
k>n or k<O.
The generating functions of e, and h, are given by, see [7]

>

n

e (Yo VoY) 2 = [1(1+y,2). (23)
k=0 /=1
S0 (Y Yo ) 2 =[]0 y,2) " (24)
k=0 =1

Using (21) and (22), it is not difficult to show that v, (n,k) and V, (n, k)

are the specializations of the elementary and complete symmetric functions, Ze,,
Vo (nn=k)=(-1)" g (12 47,8 41,00, (20-1) +1), (25)
V,(n+k,n)=hk(lz+r,32+r,~--,(2n+1)2+r). (26)

In particular, at r =0, the central factorial numbers with odd arguments
of the first kind are the elementary symmetric functions of the numbers
2,3, (2n-1), ie,

v(nn-k)=(-1)" g (1,8, (20-1)), (27)
and the central factorial numbers with odd arguments of the second kind are the
complete homogeneous symmetric functions of the numbers 12,3, ,(2n +1)2 ,
ie,

V(n+kon)=h, (11,8, (2n+2)7), (28)
Theorem 6. (Merca [8]) Let k and n be two positive integers, then
&(n-t k—¢
ek(y1+t,y2+t,-~~,yn+t)=z k g e/(yl!yZI'“!yn)t 1 (29)
/=0 -

and

k(n-1+k
hk(y1+t,yz+t,--~,yn+t)=2[ Kt jhﬁ(yl,yz,---,yn)tk“, (30)
/=0 -

where t,y,,Y,,-,Y, are variables.

DOI: 10.4236/0jmsi.2020.83005 66 Open Journal of Modelling and Simulation


https://doi.org/10.4236/ojmsi.2020.83005

Y. H. Zaid et al.

In the next theorem, we prove that the central factorial numbers with odd ar-
guments can be expressed in terms of r~central factorial numbers with odd ar-
guments and vice versa.

Theorem 7. For n,k,r >0, we have

S
2 vini)=3L, j(r ),
3 o= e

. v<n,k>=22-k[2j<—r>““v

Proof. By using (25) and Equation (29)
v, (n,n—k) :(—1)k e, (12 +1r,3% 41, (2n-1)° +r)

:(—1@@:3% (18, (on-1f )
zg([g(_ly o (18 (201 ) ()
=§[Eiﬁjv<n n—)(-n)"

gives the first identity. From (27) and (29), we get

v(nn-k)=(-1) g (2,8 (2n-1)")
= (-2 Zk:[::ije[ (12 +1,3% 41, (2n 1)’ Jrr)(—r)H
= :ZO(E:JU)“ v, (n,n-7),

By replacing £ by n—k and then n—/ by /, we get the second identity.
The last two identities can be proven similarly by using the relations (26), (28)
and (30).

5. The Generalized Central Factorial Matrices with Odd
Arguments

Matrix representation and factorization for the special numbers are well devel-
oped by many authors, see for example [5] [8] [9] [10] [11]. In the following, we
define the r-central factorial matrices with odd arguments of both kinds and give
factorizations for them.
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Definition 2. The r-central factorial matrix with odd arguments of the first
kind is the nxn matrix defined by

Y (n) = Vl(r) (n) = [Vr (i’ j)]osi,jgn—l '

Similarly, the r-central factorial matrix with odd arguments of the second kind

isthe nxn matrix defined by
% (n)= 1" (n)= [Vf (i, j)]ogi,jsn—l

When r =0, we obtain the central factorial matrices with odd arguments of
both kinds,

M) =[V(03) ]y ad M) =[V ()]

For example,

1 0 0 0
-r-1 1 0 0
1)1(4): 2 '
r?+10r+9 ~2r-10 1 0
—r®-35r* —259r-225 3r®+70r+259 -3r-35 1
and

1 0 0 0

1+r 1 0 0

v (4)= (L+r)’  2r+10 1 of

(1+r) 3r2+30r+91 3r+35 1

The orthogonality property (9) gives the following identity
(2(m)* =% (n). n=1

The generalized nxn Pascal matrix P [X] (see [12]) is defined as:

n

()],

with P, =P, [1], the Pascal matrix of order . Moreover,

r=f (]

From Theorem 7, we have the important matrix representations

Y(n)=M/(n)P,[-r], nx1, (32)
and
Y, (n)=PR,[r]M,(n), n>1. (33)
For example
1 0 0 O 1 0 0 0O
-1 1 0 0 —-r 1 0 0O
HW=e 20 1 ofr - o o M@RLT
225 259 -35 1 -r* 3r? 3r 10
and
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1 0 00010 0 0
r 1 00011 0 0
v (4) = —PR[rIM, (5).
2M=l2 5 1 0 0110 1 o Rl1M0O)
r® 3r2 3r 1 0] |1 91 35 10

6. The Generalized Central Factorial Numbers and
Legender-Stirling Numbers

The Legendre-Stirling numbers were introduced by [13], and many properties of
these numbers have been studied later in [14] [15].
The Legendre-Stirling numbers of the first kind Ps¥ are defined by

= n
[T(x=i(i+1))=2Psyx¥,

j=0 k=0

and the Legendre-Stirling numbers of the second kind PS¥  are defined by

X" =ZPsnkﬁ(x—j(j+1)).

k=0 j=0
In fact, the Legendre-Stirling numbers are specializations of the elementary
and complete homogeneous symmetric functions, Ze.,

Psi ™ =(-1) e, (2.6,--,n(n-1)), .
PS!

n+k

=h (2,6,---,n(n+1)). (35)

We next give some connections between the r~central factorial numbers with
odd arguments and the Legendre-Stirling numbers.
Theorem 8. For n,k,r >0,

A e
v, (nk)= En“zn: l‘(][/](—l)/k 4"'r*ps! (37)

J@j r'v, (¢,k) (38)
v, (k)= zz[“}@w FipSK, (39)

:(_1)kg(2::jei %'2+%v'-,n(n—1)+%j(%lj“
z(‘”kg(ﬁin@i o (13 en-17)( )

2o i) W TR N I
> ) (A R}
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Then

For (37), by virtue of (25),

Vo (nn=k) = (-1)" & (17 41,3 41, (2n-1)" +7)
SEUP N EEE I
SEI 4[%@}
o3[ e e 3]
- B e e

Hence

ACORETR il W CIRTNS

The proofs of (38) and (39) are similar.
For example, for n=3k =2, from (37) we have

v, (32)= ii[;][lj(—l)'z 4*'r2ps) = -35-3r,

and for (36),

For example, for n=4,k =3, from (39) we have
S (A1) jis e
V, (4,3):22 il 47r"'PS; = 4r + 84,

and for (38),

i=31=3

= :%ii(—l)“" m[:] rV, (1,3) = 20.
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7. Conclusion

The r-central factorial numbers with odd arguments of both kinds are defined.

We obtained recurrence relations, generating functions and explicit formulas of

these numbers. Matrix representation and the relation between these numbers

and Pascal matrix are given. The distribution of the signless r-central factorial

numbers of odd arguments of the first kind is derived. Finally, connections be-

tween the r-central factorial numbers with odd arguments and the Legen-

dre-Stirling numbers are investigated.
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