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Abstract 
In this work we will use a recently developed non relativistic (NR) quantiza-
tion methodology that successfully overcomes troubles with infinities that 
plague non-renormalizable quantum field theories (QFTs). The ensuing me-
thodology is here applied to Newton’s gravitation potential. We employ here 
the concomitant mathematical apparatus to formulate the NR QFT discussed 
in the well known classical text-book by Fetter and Walecka. We emphasize 
the fact that we speak of non relativistic QFT. This is so because we appeal to 
Newton’s gravitational potential, while in a relativistic QFT one does not em-
ploy potentials. Our main protagonist is the notion of propagator. This no-
tion is of the essence in non relativistic quantum field theory (NR-QFT). In-
deed, propagators are indispensable tools for both nuclear physics and con-
densed matter theory, among other disciplines. In the present work we deal 
with propagators for both fermions and bosons. 
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1. Introduction 
1.1. Preliminaries 

In this work we will use a recently developed non relativistic quantization me-
thodology that successfully overcomes all troubles of non-renormalizable QFT 
[1]. The essential result of such procedures is that we can dispense with renor-
malization and counter-terms. The reader can consult the recent references [1] 
[2] [3] [4] [5]. The proofs given there are conclusive.  
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The above claims are validated because infinities in Feynman diagrams, that 
arise in the convolution of quantum propagators (QP), disappear if one 1) represents 
QP by ultra-hyperfinctions (a generalization of Schwartz’ distributions) and fol-
lows this technique with an appropriate Laurent expansion. The facts 1) and 2) 
above are clearly explained, with all kind of details, in [1] [2] [3] [4] [5]. Accor-
dingly, no more mathematical aspects of the procedure need to be given in this 
paper.  

The techniques of [1] [2] [3] [4] [5] are here applied to Newton’s gravitation 
potential. We strongly emphasize the fact that, since we will be inserting a gravi-
tational potential into a Schrödinger Equation (SE), the ensuing discussion is per 
force non-relativistic, and as such is the character of SE. 

1.2. Organizing Our Material 

In Section 2 we revisit Newton’s gravity. Section 3 is devoted to an explicit dis-
play of results belonging to [6], concerning non relativistic quantum field theory 
(NR-QFT). In Section 4 we apply the results of Sections 2 and 3 so as to obtain 
the N-QFT of Newton’s gravity. We discuss, as examples, the calculation of the 
self-energy for fermions and of the dressed propagator for both, bosons and 
fermions, to first order in perturbation theory. Some conclusions are drawn in 
Section 5. 

2. Newton’s Gravity 

As stated above, 1r−  is viewed here as  

 ( ) ( )1 11 1 10 0 .
2

r r i r i PV
r

− −−  = − + + =                  (2.1) 

Remember also that  

 ( ) 0.rδ =                             (2.2) 

We need now the Fourier transform of 1r− . We have  
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Integrating over φ  one finds  
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Evaluating now for θ  we reach  
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Finally, dealing with the variable r we arrive at  
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( ) ( )2 20
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                     (2.6) 

As an example, consider now the anti transform of 24 k −π  and verify that it is 
1PV
r

.  
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One has  
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so that  
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or  

 1 1 1e d ,ikri PV PV k PV
r k r

∞
−

∞

=
π ∫                     (2.10) 

where we used (see Ref. [7])  

 ( )1 e d ,ikxPV k Sgn x
k i

∞
−

∞

π
=∫                     (2.11) 

together with ( ) 1Sgn r = , where ( )Sgn x  is the function sign of x. 

3. Materials Needed from Fetter and Walecka’s Book 
3.1. Self Energies 

The energy that a particle gains as the result of environment-modifications that 
it itself generates is called a self-energy Σ . This quantity denotes the contribu-
tion to the particle’s effective mass due to interactions particle-surrounding me-
dium (SM). Consider the particular (and common) condensed matter scenario: 
electrons moving in a material. Σ  represents there the potential felt by a given 
electron due to the SM’s interactions with it. Given that electrons repel each 
other, a moving electron does polarize the electrons in its vicinity, This, in turn, 
changes the potential of the moving electron fields. Such effects necessarily in-
volve self-energy. 

3.2. Fermion Dressed Propagators 

The dressed propagator is defined to be the two-point function to all orders of 
the perturbation expansion. It changes the bare mass to the physical mass. We 
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will use this notion here. For an accessible discussion of the concept we recom-
mend the book [8]. In Fetter and Walecka’s (FW) [6] one, this idea is compre-
hensively discussed for a fermion’s NR QFT. In the case of free fermions, FW 
defined the following (current) propagator  

 ( ) ( ) ( )0 , ; , 0 , , 0 .iG t t T t tαβ α βψ ψ + ′ ′ ′ ′=  x x x x              (3.1) 

One has  

( )
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( ) ( ) ( ) ( ) ( ) ( )
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e e d .
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 (3.2) 

Θ  is the Heaviside’s step function. We appeal now to the very well known rela-
tion  
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and find  
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Thus, the pertinent expression in momentum space reads  

 ( ) ( ) ( )0ˆ , ,
0 0

F F
F

k k

k k k k
G

i iαβ αβω δ
ω ω ω ω
Θ − Θ − 

= + − + − − 
k              (3.5) 

with  

 ( )1 1 ,
0 k

k k

PV i
i

δ ω ω
ω ω ω ω−

π= −
± −

                (3.6) 

where k = k  and 2 2k k mω =  We already stated above that PV  signifies 
‘‘principal value of a function’’. The system’s interaction’s Hamiltonian is de-
fined by a two-body FV  potential such that  

 ( ) ( ) ( ) ( )1 2 1 2 1 2 ,F FV V− = −x x x x 1 1                 (3.7) 

where 1  is the unity matrix. The dressed propagator here verifies  

 ˆ ˆ ,F FG Gαβ αβδ=                           (3.8) 

so that the dressed propagator becomes diagonal. Then, ( ( ) ( )0 0ˆ ˆ,F FG G kω ≡k )  

 ( ) ( ) ( ) ( ) ( )0 0 0ˆ ˆ ˆ ˆ ,F F F F FG k G k G k k G k= + Σ              (3.9) 

with ( )F kΣ  the self-energy. We can pass now to its perturbative expansion at 
first order  

 ( ) ( ) ( ) ( ) ( )
( )

( ) ( )1 1 3
3

1ˆ ˆ0 d ,
2

F F F
nk V V k k k′ ′ ′Σ ≡ Σ = − − Θ −

π
∫k k k





  (3.10) 

with n N V=  and  

https://doi.org/10.4236/jmp.2020.116056


M. C. Rocca, A. Plastino 
 

 

DOI: 10.4236/jmp.2020.116056 924 Journal of Modern Physics 
 

 ( ) ( ) 3ˆ e d .i
F FV V x− ⋅= ∫ k xk x                      (3.11) 

Consequently (up to first order),  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 10 0 0ˆ ˆ ˆ ˆ .F F F F FG k G k G k k G k= + Σ               (3.12) 

3.3. Bosons’ Dressed Propagators from FW’s Book 

For free bosons FW introduce the propagator in momentum space as  

 ( ) ( ) ( )0 , ; , 0 , , 0 .iG t t T t tφ φ+ ′ ′ ′ ′=  x x x x              (3.13) 

It reads  

 ( )0

0

1ˆ ,
0B

k

G k
k iω

=
− +

                      (3.14) 

with 2 2k k mω = . One has then  

 ( ) ( ) ( ) ( )4
0 0

ˆ ˆ2 , ,B BG k n i k k G kδ ′+π= −                (3.15) 

where the primed part refers to the noncondensate ( 0 0n N V= )  

 ( ) ( ) ( ) ( ) ( ) ( )4 10
0 0

ˆ ˆ ˆ2 , ,B B BG k n i k k G k G kδ ′= − + +π          (3.16) 

( ) ( ) ( ) ( ) ( ) ( )1 0 00ˆ ˆ ˆˆ ˆ0 ,B B B B B
n

G k G k V V G k
h

 ′ = + k            (3.17) 

and  

 ( ) ( ) 3ˆ e d .i
B BV V x− ⋅= ∫ k xk x                      (3.18) 

4. Non-Relativistic QFT of Newton’s Gravity  
4.1. Fermions 

We wish to calculate ( )1Σ  for the potential 
2Gm

r
− .  

 ( )
2

.F
GmV r

r
= −                          (4.1) 

One has  

 ( ) ( ) 3ˆ e d ,ik x
F FV k V x x⋅= ∫                       (4.2) 

and then  

 ( )
2

2

4ˆ ,F
GmV k
k
π

= −                         (4.3) 

with  

 ( )ˆ 0 0.FV =                            (4.4) 

Starting here, a father lengthy manipulation leads to  

 
( ) 22 2

2 3 2 2
24 d 8 ln ,
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F F F

F

k k k k k kGm k Gm
k k k

′Θ −  − +′− = −  −′− 
π π


∫ k k
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so that the self energy reads  
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 ( ) ( )
22 22

1 ln .
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F F
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Accordingly, one writes for the dressed propagator  

 ( ) ( ) ( ) ( )
22 22 21 0 0ˆ ˆ ˆln ,

2
F F

F F F
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k k k kGmG k G k G k
k k k
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noting that  
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F F
F F
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k k k k
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i i
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ω ω ω ω
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We recall at this stage that, in Ref. [9], it was been proved that  
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11 ! .
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mPV x x
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Then, using the result  

 ( )
1 1 1 ,n m n m
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we reach  
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i i
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If V →∞ , Fk →∞ , n finite, we find  

 3
2

1 d 0,k ′ =
′−

∫ k k
                        (4.13) 

so that  

 ( ) ( )1 0,F kΣ                             (4.14) 

and thus 
( ) ( ) ( )1 0ˆ ˆ .F FG k G k                          (4.15) 

4.2. Bosons’ Potential ( )BV r  

We calculate now the dressed propagator for 

( )
2

.B
GmV r

r
= −                          (4.16) 

Since  

 ( )
2

2

4ˆ ,B
GmV k
k
π

= −                         (4.17) 

one has  
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 ( )ˆ 0 0.BV =                          (4.18) 

For this result, we have used the relation of [7] concerning the regularization 
of integrals that depend upon a power of x. Thus, for the dressed propagator we 
find, up to first order  

 ( ) ( ) ( )
2 21 00

2

4ˆ ˆ .B B
n GmG k G k
h k

 ′ = −  
π                (4.19) 

We must proceed from here as we did for the fermion case to obtain  

 ( )
( )

20
2

0

1ˆ ,
0

B
k

G k
k iω

  =  − +
                 (4.20) 

and we obtain for the dressed propagator the relation  

 ( ) ( ) ( ) ( )
2 24 0 00

0 0 2

4ˆ ˆ ˆ2 , .B B B
n GmG k in k k G k G k
h k

δ π
π  = − + −       (4.21) 

5. Conclusions 

We have here applied a recently developed non relativistic quantization metho-
dology [2] [9] [10] [11] [12] to Newton’s gravitation potential. 
• We emphasize that our methodology successfully tackles all renormalization 

issues. We made full use ultra-hyperfunctions’ theory, in particular the re-
sults reported in [2].  

• With such tools we have been able to construct a non-relativistic quantum 
field theory (NR QFT) of Newton’s gravitation (NG). 

• This was done for pairs of fermions or bosons that interact between them-
selves via NG. 

• Our manipulations were based on the results of the classical book [6]. 
• As special examples, we have obtained the dressed propagators for both types 

of particles, up to first order in perturbation theory, and also the fermions’ 
self-energy. 

• The examples indicate that we have indeed constructed, both for fermions 
and bosons, a viable non-relativistic quantum field theory of gravitation. 

• Remark that we were here concerned only with Newton’s gravitation. 
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