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Abstract 
This paper proposes a fixed-time control scheme to ensure that the dynamic 
positioning can accurately reach the specified position under external inter-
ference. A fixed-time state observer was developed to accurately estimate the 
total external unknown interference. Based on the dynamic positioning ship 
motion model, the inversion design method is used to ensure the stability of 
the system and eliminate various uncertain effects. A fixed-time backstepping 
sliding mode controller is designed. Finally, the simulation results show that 
the method has good performance and advantages. 
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1. Introduction 

Due to factors such as changeable marine environment, complicated operating 
conditions, and increasing water depth, the types of marine operating equip-
ment are becoming more and more abundant. With the increase in offshore 
engineering operations, ships need to enter a more severe environment, and 
traditional anchorage positioning can no longer meet reality needs. Dynamic 
positioning has become an indispensable key technology for marine engineer-
ing equipment [1] [2]. At the same time, many ships have the characteristics of 
non-linearity and strong coupling as under-driven systems, so higher require-
ments are placed on the control system, and there is more and more research on 
this aspect in academia. 

In recent years, nonlinear control theories such as pushback control and slid-
ing mode control have attracted wide attention. Sliding mode control is based on 
the desired dynamic characteristics of the system to design the switching hyper-

How to cite this paper: Xu, P. (2020) 
Fixed Time Control of Dynamic Position-
ing Ship with Unknown Interference. Open 
Journal of Applied Sciences, 10, 246-257. 
https://doi.org/10.4236/ojapps.2020.105019 
 
Received: April 13, 2020 
Accepted: May 24, 2020 
Published: May 27, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ojapps
https://doi.org/10.4236/ojapps.2020.105019
https://www.scirp.org/
https://doi.org/10.4236/ojapps.2020.105019
http://creativecommons.org/licenses/by/4.0/


P. Xu 
 

 

DOI: 10.4236/ojapps.2020.105019 247 Open Journal of Applied Sciences 
 

plane of the system, so that the sliding mode controller makes the system state. 
The beam is switched to the hyperplane to overcome the uncertainty and exter-
nal interference of the system, and the system can quickly reach the origin of the 
system along the hyperplane. However, SMC is prone to chattering, resulting in 
wear of actuators [3] [4]. However, the backstepping method [5] has no defects 
in this respect. It decomposes the nonlinear system into subsystems not exceed-
ing the order, and designs virtual control to achieve global stability. 

In the traditional method, the fastest form of convergence of the closed-loop 
system is exponential stability, and many problems in the backstepping me-
thod are discussed in the case where the closed-loop system satisfies the Lip-
schitz continuity and achieves gradual stability. The control results obtained in 
infinite time are not satisfied. Practical needs, and finite time stability are 
equivalent to the quantification of traditional control results. From the pers-
pective of time optimization, the performance of the control system is analyzed, 
so that the closed-loop system’s limited time convergence control method is the 
time-optimal control method [6] [7] [8]. In [9], a time-limited controller was 
developed by introducing an integral sliding mode manifold. The combination 
of non-singular fast terminal sliding mode control and backstepping control 
achieves finite time convergence. However, in finite-time control, the conver-
gence time depends largely on the initial conditions of the system under consid-
eration. At the same time, as the initial value changes, the convergence time may 
tend to be infinite, and in actual life many initial values cannot be obtained in 
advance, which limits the practical application. Therefore, fixed-time control 
occurs in actual demand. Fixed-time control can provide transition time inde-
pendent of the operating domain and maintain convergence time without read-
justing control parameters. 

Polyakov et al. [10] first introduced fixed-time stability, and the upper bound 
of the convergence time no longer depended on the initial conditions of the sys-
tem. A fixed-time non-singular terminal sliding mode control scheme with 
matching lumped disturbances is proposed. In [11], by designing a fixed-time 
controller to make multiple vehicles reach a fixed-time consistency on their re-
spective scales, a class of multi-scale fixed-time coordinated control problems is 
realized. In [12], a fixed-time disturbance observer (FTDO) is proposed to deal 
with actuator dead zones and disturbances. 

Based on the above conclusions, this paper solves the design problem of dy-
namic positioning ship controller under unknown interference, and makes the 
ship stable in a fixed-time. The main contributions of this article are: 

1) Use fixed-time observer (FTXO) to estimate external interference, so that 
the estimation time is not limited by the initial error. 

2) Based on the observer, a fixed-time sliding mode control method based on 
the Backstepping method is proposed to get rid of the constraints of the initial 
conditions on the system and achieve the ultimate bounded stability of the sys-
tem. 
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2. Problem Formulation and Preliminaries  
2.1. Preliminaries 

Assume that there is a nonlinear system: 

( ) ( )( ) ( ) ( ), 0 0, 0 0x t f x t x f= = =                 (1) 

where [ ]T1 2, , , nx x x x=  . ( )f x  is a continuous nonlinear function. 
Definition If system ( )f x  satisfies the following points, the equilibrium 

0x =  of System (1) is fixed-time stable: 
System ( )f x  it has global finite time stability and ( )T x  converges to the 

origin within a finite convergence time; 
There is a stable time equation ( )T x , Guaranteeing ( ) maxT x T≤ , where 

maxT  is a constant. 
Lemma 1 If there is a Lyapunov function ( )V x  satisfied  
( ) ( ) ( )( )kp qV x V x V xα β≤ − + , it shows that the origin of the system is stable at 

a fixed-time, which means that ( )V x  can converge to ( ) 0V x =  in a fixed 
time based on any initial value. The convergence time boundary is: 

( ) ( )
1 1

1 1
T

p qα β
≤ +

− −
                      (2) 

where , , ,p qα β  are positive constant, and 0 1, 1p q< < > . 
Lemma 2 For any nonnegative real constants [ ]1 2, , , nx x x R∈ , the following  

inequality we can holds: ( )1 1
n n

i ii ix x
υ υ

= =
≤∑ ∑ , where ( ], 0,1Rυ υ+∈ ∈ . 

If , 1Rυ υ+∈ > , and ( ) 1
1 1

n n
i ii ix n x

υ υυ−
= =

≤∑ ∑ .                     (3) 

Lemma 3 For arbitrary positive real constants a, b, and c and positive real 
constants p and q satisfying 1 1 1p q+ = , the following inequality holds: 

p q
p qa bab c c

p q
−≤ +                         (4) 

2.2. Ship Dynamic Positioning Mathematical Model 

The ship’s motions are described in two right-hand coordinate frames as 
shown in Figure 1. The earth-fixed frame indicated by 0 0 0OX Y Z  is an inertial 
frame and the ship-fixed frame indicated by AXYZ is a non-inertial frame. The 
origin O of the earth-fixed frame can be chosen as any point on the earth’s 
surface. The axis 0OX  is directed to the north, the axis 0OY  is directed to 
the east, and the axis 0OZ  points towards the center of the earth. When the 
ship is port-starboard symmetric, the origin A of the ship-fixed frame is located 
at the gravity center of the ship. The axis AX is directed from aft to fore, the axis 
AY is directed to starboard, and the axis AZ is directed from top to bottom. The 
planes 0 0X Y  and XY are parallel to the still water surface. 

The mathematical model that describes the ship motions in DP mode is 

( )
( ) ( )

R

M C D b

η ψ ν

ν ν ν ν ν τ

=

+ + = +





                  (5) 
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Figure 1. North-east-down frame and ship-fixed frame [13]. 

 
[ ]T, ,x yη ψ=  represents the ship position vector in the north-east-down 

frame; [ ]T, ,u v rν =  represents the ship velocity vector in the ship-fixed frame; 
[ ]T1 2 3, ,τ τ τ τ=  and [ ]T1 2 3, ,b b b b=  respectively represent propeller thrust and 

external environmental force. ( )R ψ  is a transformation matrix between coor-
dinate systems. ( )M v  is mass matrix, ( )C v  is Coriolis centripetal matrix. 
( )D v  is damping coefficient matrix and the following equalities hold 

( )
0 0

0
0

u

v G r

G v z

m X
M m Y mx Y

mx N N
v

I τ

− 
 = − − 
 − − 

               (6) 

( )
( )

( )

0 0

0 0
0

G v r

u

G v r u

m x v Y v Y r

C mu X u
m x r v Y v Y r m

v
u X u

 − + + +  
= − 
 + − − − +  

 

( )
0 0

0
0

u

v r

v r

X
D v Y Y

N N

− 
 = − − 
 − − 

 

2.3. Formula Conversion 

Define dynamic positioning formula: 

( )z R vψ=                           (7) 

where [ ]T1 2 3, ,z z z z= . 
So the formula can become: 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1 1 1
d d

z
z R M

z

R s r v R M C v v R M D v v R M b

η

ψ τ δ
η

δ ψ ψ ψ ψ

−

− − −

=


= +
 =
 = − − +







  (8) 
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where δ  denotes unknown concentrated interference, and [ ], ,d d d dx yη ψ=  
denotes the desired position. 

Assume that the concentrated interference δ  is continuously differentiable, 
that satisfies nHδ ≤ , nH  is Upper limit constant. 

2.4. Design of Fixed-Time State Observer 

The fixed-time state observer obtains accurate information of speed and un-
known disturbance in a comprehensive manner, so the observer can be designed 
as: 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1

2 2

3 3

1 1

1
2 2

3 3

ˆ ˆ ˆˆ

ˆ ˆˆ

ˆ ˆ ˆ ˆ

z k sig c sig

z R M k sig c sig

k sig c sig sign

α β

α β

α β

η η η η η

ψ τ δ η η η η

δ η η η η γ η η

−

 = − − − −
 = + + − + −


= − + − + −







         (9) 

where ˆˆ ˆ, ,zη δ  are estimated value, parameter  
( ) ( )1 , 1 , 1,2,3i ii i i i iα α β β= − − = − − = . Where ( ) ( )1 21 ,1 , 1,1α ε β ε∈ − ∈ +   

and 1 2,ε ε  are sufficiently small positive real number, and nH γ< . 
The state observer gain is Hurwitz matrix: 

1

2

3

1 0
0 1
0 0

k
A k

k

− 
 = − 
 − 

                       (10) 

1 2 30, 0, 0k k k> > >  

The observation error of the observer converges to the origin within a fixed 
time, and convergence time is: 

,1 ,2

1 1 1 1
1 1i

i i i i

T
k kα β

≤ +
− −

                   (11) 

The resulting estimation error 1 2ˆ ˆ,e e z zη η= − = −   and 3
ˆe δ δ= − . Follow-

ing equations hold: 

( ) ( )
( ) ( )
( ) ( ) ( )

1 1

2 2

3 3

1 2 1 1

2 3 2 2

3 3 3

ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ

e e k sig c sig

e e k sig c sig

e k sig c sig sign

α β

α β

α β

η η η η

η η η η

δ η η η η γ η η

 = − − − −
 = − − − −


= − − − − − −



 



 

 



       (12) 

If there are positive definite matrices 1P  and 1Q  make: 
T
1 1 1 1 1A P P A Q+ = −                        (13) 

where 1A  is Hurwitz matrix: 

1

1 2

3

1 0
0 1
0 0

k
A k

k

− 
 = − 
 − 

                       (14) 

According to Lemma 1, we can conclude that the error converges to zero 
within a fixed time, and the boundary time is: 

https://doi.org/10.4236/ojapps.2020.105019


P. Xu 
 

 

DOI: 10.4236/ojapps.2020.105019 251 Open Journal of Applied Sciences 
 

( ) ( )
( )( )

( )
( )( )

2
max 1 min 1

min 1 min 21 1

i

f
i i

P P
T

Q Q

αλ λ
λ α λ β ρ

−

= +
− −

              (15) 

where ρ  is positive and ( )min 1Pρ λ≤  
When 0ie =  happen after fT , ie  will remain zero. Then you can get

1 1 2 30, 0e e e e= = = = . In other words, for all values of 1t T≥ , there is a upper 
limit time 1T . 

( )3 1ˆ 0,e sign t Tδ γ η η= − − = ≥

                   (16) 

In reality, it is impossible to strictly implement 3 0e =  due to defects such as 
noise, sampling steps, delay and interference. Therefore, a small range of con-
vergence region 3|e τ  is proposed, Allow to reach the convergence area 3e  in a 
short time. 

3|
d

n

e
T

H
τ

γ
=

−
                           (17) 

Therefore, the upper bound of the convergence time u f dT T T= +  of the 
fixed-time extended state observer is obtained, completing the proof of the 
theorem. 

3. Design of Fixed-Time Sliding Mode Controller with  
Backstepping 

3.1. Controller Design 

Using backstepping technology to solve the system status tracking problem, the 
design is as follows: 

Make 1 ds η η= − , therefore  

1 d ds zη η η= − = −                          (18) 

Designing the virtual control rate: 

( ) ( )*
1 1 1 1 ˆp qz k sig s c sig s z= − − +                  (19) 

where p, q, 1k  and 1c  are designing parameters. 
We can get  

*
2s z z= − .                          (20) 

Because ( ) 1 *
2s R M zψ τ δ−= + −  , we can design control input: 

( ) ( )( ) ( ) 1*
2 2 2 2 1

p qk sig s c sig s z s R Mτ δ ψ −= − − + − −


        (21) 

where 2k , 2c  designing parameters. 
The system can be summarized as follows: 

( ) ( )
( ) ( )

1 1 1 1 1 2

2 2 2 2 2 1

p q
d

p q

s k sig s c sig s s z

s k sig s c sig s s

η

δ δ

 = − − + + −


= − − + − −









            (22) 

As shown in the structural design shown in Figure 2, the impact of unknown 
interference on the ship is clearly reflected. 
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Figure 2. Controller structure of the dynamic positioning. 

3.2. Stability Analysis 

System Lyapunov function 2 2
1 2

1 1
2 2

V s s= + . 

We have: 

( ) ( ) ( ) ( )
( ) ( )

1 1 2 2

1 1 1 1
1 1 1 1 2 2 2 2 1 2

1 1 1 1
1 1 1 1 2 2 2 2 1 2

p q p q
d

p q p q
d

V s s s s

k s c s k s c s s z s

k s c s k s c s s z s

η δ δ

η δ δ

+ + + +

+ + + +

= +

= − + − + + − + −

≤ − + − + + − + −



 













 (23) 

According to the lemma 3: 

( )

( )

11
11 1

1

1
1

11 2
2

1 1

1 1

qp
q dp

d

q
p

qp

zss z l l
p q

ss h h
p q

η
η

δ δ
δ δ

++
− ++

+
+

− ++

 −
 − ≤ +

+ +


−
− ≤ +

+ +













              (24) 

where 0H >  Represents the upper limit of *z . 
From the above formula: 

( ) ( )

1 1
1 1 1 1

1 1 1 1 2 2 2 2

1 1 11

1 1

1 1

p p
p q p q

q q qq
d

l hV k s c s k s c s
p p

l hz
q q

η δ δ

+ +
+ + + +

− + − +
++

   
≤ − − − − − −   + +   

+ − + −
+ +









    (25) 

Choosing design parameters such that 
1

1 1

plk
p

+

>
+

, 1 0c > , 
1

2 1

phk
p

+

>
+

, 2 0c > .             (26) 

According to the lemma 4: 

( ) ( )

1 1
2 2

1 1 1 1
1 1 2 2 1 2 3

1 1 1 1
2 2 2 22 2 2 2

1 1 2 2 1 2 3

1 1
2 2

33 3
p q

p p q q

p p q q

p q

V s s s s

s s s s

V V

ζ ζ ζ

ζ ζ ζ

ζ
+ +

+ + + +

+ + + +

− −

≤ − + − + +

   
= − + − + +   

   

≤ − − +



        (27) 

where 
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{ }
( ) ( )

1 1

1 1 2

2 1 2

1 1 11
3

min ,
1 1

min ,

1 1

p p

q q qq
d

l hk k
p p

c c

l hz
q q

ζ

ζ

ζ η δ δ

+ +

− + − +
++

      = − −     + +      
 =

 = − + − + +







             (28) 

Because the global scope of dz η−   and δ δ−


 are bounded, 3ζ  is 
bounded, so: 

1 1
2 2

1 1
2 2

33 3
p qp q

V V V ζ
+ +− −

≤ − − +                   (29) 

For all { }1 2max ,t T T≥  cases, the limit range of the system can be calculated: 
1 1

2 2
1 1

2 2
33 3 0

p qp q

V V ζ
+ +− −

− − + =                   (30) 

So we can get the equations: 
1

2

1
2

1
32

1
32

3 0
2

3 0
2

p

q

p

q

V

V

ζ

ζ

+

+

−

−


− + =

− + =

                      (31) 

We have: 

( )

2 2
1 1

3 3
1 1

2 2

lim 2min ,
2 3 2 3

p q

p qt
V t

ζ ζ
− −

− −→∞

 
        ≤      × ×     

           (32) 

3 1 1
2 2

1 1
1 13 3

2 2

p qT
p q− −≤ +
− −   

   
   

 

Because of the fixed-time observer, all state errors are limited and the formu-
las show that dz η−   and δ δ−



 can converge to zero in finite times 1T  and 

2T . Therefore, the final settling time of the system is { }1 2 3max , ,T T T T= . 

4. Simulation 

In order to verify the effect of the controller under unknown interference and 
the accuracy of estimation of external interference, assuming the initial position 
of the ship, ( ) [ ]T0 0 m,0 m,0 radη = , ( ) [ ]0 0 m s,0 m s,0 rad sv = , desired po-
sition [ ]T10 m,20 m, 3 raddη = π , observer parameter selection:  

2 2 216k c= = , 3 3 864k c= = . 1 0.8α = , 2 0.6α = , 3 0.6α = , 1 1.2β = ,  

2 1.4β = , 3 1.6β = . The controller parameters are: 1 9 5p
q

= = , 1 1 50k c= = ,  

2 2 25k c= = . 

External interference is: 
( ) ( )
( ) ( )

( ) ( )

1.1 2sin 0.05 1.3sin 0.1

0.5 1.6sin 0.03 2.1cos 0.02

4sin 0.06 3sin 0.04

t t

d t t

t t

+ + 
 

= − + + 
 − 

, and includes  
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white noise in the range [−0.5, 0.5]. 
In Figure 3 and Figure 4, the ship’s tracking to the target position under un-

known interference and the actual interference under white noise interference 
are shown. 
 

 
Figure 3. Ship’s desired position dη  
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Figure 4. Estimated and actual values of external interference. 

5. Conclusion 

This paper studies the problem of dynamic positioning control with unknown 

https://doi.org/10.4236/ojapps.2020.105019


P. Xu 
 

 

DOI: 10.4236/ojapps.2020.105019 256 Open Journal of Applied Sciences 
 

external disturbances. The conclusion shows that using a fixed-time observer to 
estimate the unknown disturbance force outside the ship can help improve the 
accuracy and response speed of the ship control, and make the ship control sta-
ble in a short time. In the future, further research can be conducted on the basis 
of under drive. 
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