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Abstract

In some clinical applications in oncology randomized, double armed, and
double-blind trials are not possible. In case of device applications, double-blinded
conditions are nonrealistic, and with many times the randomization also has
complications due to the high-line treatments where the reference cohort is
not available; the active “arm” has mainly palliative initiative. Sometimes
highly personalized therapies block the collection of the homogeneous group
and limit its double-arm randomization. Our objective is to discuss the situa-
tions of the single arm evaluation and to give methods for the mining of in-
formation from this to increase the level of evidence of the measured data-
set. The basic idea of the data-separation is the appropriate parameteriza-
tion of the non-parametric Kaplan-Meier survival pattern by the poly-Weibull
fit.
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1. Introduction

Survival studies most frequently use the Kaplan-Meier (KM) non-parametric es-
timate. The KM estimator is fixed by the duration of participation in the obser-
vation. Both the start of the observation time and the end of the observation of
the individual by events (censored due to death or dropped out from the cohort)
are not absolute and have inexplicit values. The precariousness flows from the
differences between real lifetime to observational time. We summarize the charac-

teristic points of the life of a cancer-patient in Figure 1. Periods out of observation
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Figure 1. The time-scale of the individual participant’s lifetime (Periods out of observa-
tion could be zero in any actual case, while the start of the observation could be a group
of dates: the routine screening or the first symptoms and/or the first diagnosis).

could be zero in any actual case. One point (start of the disease) is elusive be-
cause the real symptoms of any disease could be later than the starting point of
the disorder. This situation usually happens because the observation facilities of
malignant diseases are technically limited. We could have only guessed the la-
tency period, which starts with an avascular situation, forming a dormant mi-
croscopic cluster [1]. When the tumor leaves the dormant state by a scaling
transformation [2], growth becomes traceable.

The real survival period in this content is blurry, so the definitions of the real
survival points are the sum of the observation and the post-observation period.
The evaluation may concentrate on disease-related death or any deaths in the
observational period, irrespective of the cause. The observation period may only
contain careful watch, then the treatment, and at the end, a long follow-up too.
The observation period usually is evaluated statistically by the Kaplan-Meier
non-parametric estimates (Figure 2). The end of observation could be decided
by the endpoint of the study (e.g. 5 y survival), irrespective of the actual diagno-
sis of the patients at the end; or could be determined when all involved individu-
als have been censored or dead. In case of survival, the end could be determined
when the patients of the studied group were cured and their state was declared
NED (no evidence of disease). However, long (e.g. five years) survival does not
necessarily mean a cured status [3]; a relapse of new metastases could happen in
the post-observation period when in most of the cases new treatment starts.

The start of the observation could be after the routine screening when patients
complain (about symptoms) and the statistically valuable period starts at the first
diagnosis. The latent period can be long, even years before the discovery of can-
cer [4].

Measuring the effect of the treatment has various approaches, since having
complications of the bio-variability and personal sensitivity of the treated indi-
viduals as well as the variation of the results depends on the social background
and lifestyle of the patients. Randomized clinical trial (RCT) is a commonly used
study design to measure lifetime. In an RCT, the active (investigated) arm can be
statistically compared to the well-randomized control group in a carefully cho-
sen, unified cohort. To evaluate a clinical intervention with the optimal possibil-
ity of RCT has ethical issues [5] [6], justification problems [7], and cohort-forming
limitations. A crucial step of valid evaluation is, of course, selecting a group of
patients who share common characteristics (cohort); otherwise, the variation of
the results does not allow the estimation of the effect; discrepancies arise because
of the patients’ differences and not because of the therapy itself. Forming an
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Figure 2. The time-scale of the group of participants’ life-line (The lines for periods are naturally not definite; these are ranges of

time-periods that could be overlapped too. The measured KM plot is the topic of interest for clinical trials).

appropriate cohort is a complex issue. Cohort forming sometimes uses forced
conditions by reaching a definite toxicity predefined by the protocol (like in
high-dose chemotherapy [8]), expecting the same (unified) reaction on the
stage-selected patients. The RCT approach is devoted to the application of the
most appropriate treatment update and for the reference control is used from
the same cohort (called control-arm). The new therapy (active arm) must show
its superiority over the control in comparison. The equipoise selection into both
arms is mandatory, but the two treatments could be compared by not only their
positive efficacy but their side effects as well, that may adversely affect the treat-
ment [9].

Sometimes, in cancer treatment, a misleading (or at least not complete) evalu-
ation is practiced by measuring the local control of the tumor, instead of the
systemic development of the malignancy in the whole body. The problem of the
overall control of the system is complicated and not even possible with imaging
because of micro-metastases and such adverse effects which cause comorbidities
for the patient. Therefore, parametrization would only be effective if the end-
point of the study is the overall survival and the quality of life combined.

Before deciding on the RCT, both sides of the balance of measured efficacy
and the adverse effects must be taken into account. In case of serious diseases or
terminal cases, no curative treatment is available, or further curative therapy is
simply not possible because of comorbidities like organ-failure, low-blood-count,
etc. Note that some conditions limit the RCT evaluation even in the double arm
construction: the false inclusion and exclusion criteria (sometime “cherry pick-
ing”); the missing normal distributions; or the changing time series that have the
same statistical momentums but their time-fluctuations differ. The data-set in
the last case is out of the applicability of the usual analysis of variance (ANOVA).
Furthermore, the ethical selection issues oppose the randomization, so the trial
must be solved in a simple non-randomized design of single arm.

Due to the possible problems of RCT, some prospective clinical trials register
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the data in the single arm only. The most frequent reason is the targeted far ad-
vanced disease where the conventional curative therapies have failed, and no
other treatment is available except for the newly tried one. In these cases, the
best supportive care (BSC) could be applied [10], like a control group when an
active curative or palliative therapy is under investigation, and retrospectively, a
historical control of the same hospital or large databases are also frequently
compared to the historical data-set of the same hospital or compares to other
large databases, retrospectively. There are some situations where no suitable
historical control is available because of the completely new approach of the
therapy [11], or the disease is so rare, that no comparison could be found [12].
Of course, we know that the single arm without a reference cannot give informa-
tion about the changes that were achieved by the therapy involved. However, it is
also obvious, that the data of the interesting changes are involved in the single
arm spectrum as well but are well hidden without an orientation to measure the
changes.

The single arm design is popular in the Phase I process when safety data is
collected. The goal in this phase of the study is to determine the toxicity, the side
effects and the dose with dose-escalation process. The investigation of efficacy is
not included in Phase I trials. The Phase II studies concentrate on efficacy of the
applied safe process [13]. When the hypothesis to be proved is clearly defined
and the “null hypothesis” could be the zero response, the minimum of the clini-
cally relevant response should define the size of the trial contrary to the simple
design where the evaluation of the data can be rather complicated due to the dif-
ficulty of the missing reference for comparison, which is hard anyway because of
the natural biological variability. The interpretation of the results of single arm
distinguishes the placebo effect or the spontaneous natural history of the disease
from the actual treatment efficacy. However, the single-arm trials may be the
option when placebos are unethical, and opportunities of the controlled trial are
limited, due to the vast variations of the patients. For example, the advanced
diseases in oncology are frequent topics of single-arm trials, due to the massive,
exhausting and mostly variant protocols of failed pretreatments. The reason of
the failure is usually a progressive and refractory disease, or limitations in ap-
plying the conventionally proven methods due to organ-failure or a dangerous
level of blood damages. In these cases, forming appropriate cohorts is very diffi-
cult or even not possible. When a single arm study is chosen due to the certain
drawbacks of RCT, we mostly apply a palliative BSC additive to the active treat-
ment. One of the most important condition of such single arm treatments is that
it must not worsen the results of BSC, and its worst outcome must be the inef-
fectiveness. The best indicator of this condition is the combination of overall

survival time and the quality of life.

2. Methods

Lifetime studies have a surprising universality by the self-organizing [14] [15]
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and consequently by the self-similarity of the morphological structures and dy-
namic processes in living objects. Self-similarity has a morphological conse-
quence, showing the spatiotemporal fractal structure in biological objects [16];
[17]. These ideas are forming the similarities of the species [18], which directly
leads to the expected lifetime universality of well-selected cohorts. The general
allometry is as wide as the cover of the mass, ranging from respiratory complex-
es, through the mitochondria, to the animals with the largest mass [19].

Due to the self-similarity, most of the biological structures and processes can
be described by a simple-power function (like P(X) =ax”), where a and «
are constants, and so the form of P(x) remains only multiplicated by the con-
stant during any m magnification of x P(mx)=a(mx)” =m“ax” =m“P(x).
This magnification process (scaling [20]), could be followed by a few orders of
magnitudes (scale-free behavior) in biosystems.

In consequence of the widely applicable universality behavior, the general on-
togenic growth [21] allows the deduction of the Weibull distribution [22], which
can be used to analytically describe the non-parametric Kaplan-Meier estimate
for tumors. Self-similarity drives the tumor-development, which shows the uni-
versal law of growth [23] [24]. This lays the foundation of our attempt to find
the reason behind the universal parametric regression for the lifetime of the pa-
tients, which is supported by the universal law of growth of the solid tumors [25].
The extension of the Weibull model allows us to estimate the tumor-latency too
[26]. We had shown the self-similarity of bioprocesses in general [27], leading us
to some well-defined mathematical formulas like the Avrami equation, which
has a complete formal correspondence with the function of the cumulative
Weibull distribution (WF) [28]. The two-parameter cumulative Weibull distri-
bution (WF) is a good candidate for the parametrization of the KAM-plot [27]. It
is both theoretically and practically established for clinical applications [29].

The real challenge is how we can reveal the hidden data in the single active
arm in case of the missing randomization that forms reference in double arms.
We have limited possibilities for mining the available information without a ref-
erence set, even though we know it well, that the information is in the data. The
general self-similar behavior of the various tumors has different parametrization
and so can be distinguished from each other. Consequently, the fitting to surviv-
al curves gives hints on how to extract information from the single arm alone.

Experimental data fit well to the empirical data in biology as well as it has
been widely investigated and proven in solid-state reactions (precipitations,
phase-transitions, aggregations, nucleation, growth, and others) [30] [31] [32]
[33] [34]. Indeed, experimental data show that many biological reactions follow
the Avrami equation. It is applied universally to different processes regardless of
the structure and dynamics of the system. Avrami functions are self-similar, and
various comparative functions characterize the exponents [35]. The considerations
of Avrami function explain the parametric approximations of the non-parametric
Kaplan-Meier survival distribution (KM) [27].

The mortality can be approached by the fitting of different distributions [36]
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in epidemiologic modeling. The most popular descriptions are the Gompertz,
Weibull and logistic distributions [37]. These methods are usually used for ge-
rontologic, aging mortalities, modelling the statistics of the ages of death, do not
consider any particular disease or clinical therapy involvements [38] [39] [40]
[41]. A generalized Weibull-Gompertz distribution could derive various distri-
butions [42]. In demographic aging, the Gompertz and Weibull functions de-
scribe different biological causes [39]. The Gompertz model involves a multiplica-
tive aging mortality, while it is additive in Weibull description. The multiplicativity
affects the extrinsic, while the additivity the intrinsic causes in older ages. Our
present modeling does not deal with aging mortality and the connected epidemi-
ologic consequences. Our considerations comprise the cancer-survival, which is
strongly disease and therapy dependent, so it covers the intrinsic causes, on the
actual parametrization of the probability of survival. This non-aging survival
discussion prefers the Weibull distribution in comparison to Gompertz, de-
scribing the intrinsic self-organiziation behaviour of the human living organ-
ism.

In such advanced situations, when the malignancy is double refractory, the
WF provides the best fit to the KA [11]. The cancer incidences significantly fit
Weibull distribution in 18 types of malignancies [43], and so WF is justified to
describe the driver events of the tumor-building process. Extending this idea, we
expect that the best fit parametrization of the survival curve could lead to the
information about the hidden facts in the actual non-parametric KM plot.

The approximation with a simple WF function in real cases of the KA non-
parametric survival curve is not precise enough. The missing preciosity appar-
ently contradicts the WF self-organized basis. When the survival is self-organized in
the same way as we observed in all the biological processes, the fitting to the
non-parametric KM has to show the self-similarity, because it is entirely rigor-
ous due to the universality of the lifetime of the living systems and the growth
dynamics of the tumors. The contradiction is due to the fact that the self-similar
WF only fits to strictly homogeneous patients’ cohorts. WF parameters charac-
terize the group of generally equal participating individuals, which is of course
not acceptable. The KM represents a cohort group of patients with the equipoise
of individuals made as ideal as possible, choosing explicit inclusion and exclu-
sion criteria. Nevertheless, the choosing criteria in the situation when we are not
able to apply RCT cannot be fixed well. The only inclusion is the failure of con-
ventional curative treatments and the only exclusion is when the patient is in
such terminal stage when any extra intervention could be fatal.

Due to the enormous variability of the living conditions (like social, diet, ha-
bits, etc.) and bio-variability of the individuals (like genetic variability, im-
mune-variability, sensing-variability, etc.), any chosen cohort has inhomogenei-
ties. However, it is possible to divide the cohort into more homogeneous sub-
groups than the full set of individuals, expecting that the fitting of the self-similar
WFEF will be better by the growing homogeneity of the subgroup to which it is ap-
plied.
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Usually, the groups of local responses (complete response (CR), partial re-
sponse (PR), no change (NC), or progression of the disease (PD)) come into the
center of the attention automatically at the finishing of the study. We could
make similar subgrouping in systemic (lifetime, survival) measurements, and
WEF fit them individually. The measured data is the summary of the complete
cohort with overlapping data in the experimental non-parametric KA/ estimates,
containing the data of all the subgroups. For simplicity, using the same sub-
grouping as in local response, the subgroup of those patients who could be re-
garded is introduced as “cured” (CP), the subgroup for those whom the treat-
ments helped (they as responding patients (RP), and the patients who had no
benefit from the therapy as non-responding patients (NP). The KM in the real
experiment measures is only the sum of these (in the same way as in the analysis
of the local response). Fit WF for subgroups and sum it for fitting to complete
KM

(cP) ARP)

o A(NP)
,[;J ,[L ,[;}
W(KM)(t)znﬁe t((]cp) +nﬁe t[()RF’) +nﬁe téNP) (1)

and ne +Ngp +Ne =N

where ngp,Ngp, Ny are the number of patients in CP, RPand NP groups, and N
is the number of patients in the complete cohort. Note, that the difference be-
tween the CP and RP groups is only in the definition, just like in the local re-
sponse between the CR and PR categories. Usually CP can be defined to the life-
time of the healthy group of patients in an age-normalized comparison. Conse-
quently, for easy categorizing, usually the CPis the long, RP is the medium and
NPis the short survival.

Simpler and more roboust WF regression received, when the fitting is divided
into only two different functions [44]. Here we define two sub-cohorts com-
posed linearly [45] [46] [47], one that the treatment had no or minor influence
on (NP) and one where the treatment was effective (RP):

(RP) H(NP)
| (RPY

t
WJ
W (1) = cope [ k (2)

where the Weibull parameters denoted by (RP) and (NVP) superscripts, according

t

+Cypl

to their sub-cohorts. Due to the complete set of patients, Cpy +Cyp =1, s0 (2) is:
A(RP) A(NP)

t t
WM (t) = cpe [t‘(’pp) +(1-cgp )e [thp)] (3)
Using the regression with division into only two subgroups by temperature

development criteria was used by others [48] where the patients included in the

hyperthermia cohort were divided into “heatable” and “non-heatable” sub-groups,

where the end of the study was determined by the time when the last patient was

proved to be unaffected by hyperthermia. Two (responding and non-responding)
or more subgroups (including the stabilization, treating a chronic disease, or

other), could be introduced this way as well.

The two-subgroup division has five parameters to fit. Looking for the only
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concentration parameter (C = Cgp ), some examples look like it is shown in Fig-
ure 3.
In that special case when the RP subgroup is cured, meaning no dis-

ease-specific death happen in the whole observation period (including the available
A(RP)
t

7[@

RP

J =1, so the WF-like curve will have the fol-

According to our general knowledge in oncology, the size of the malignant

follow-up time too), the e
lowing form:

,[L
WM (1) = Copre + (1 Cyre )€ ° (4)

cure

tumor certainly affects the lifespan of the cancerous individuals. The ratio of the
actual basal metabolic rate (basal energy consumption) of the malignant lesion
E(t) to the healthy one E, with the same volume modifies the survival dis-
tribution ( Py (t) ) which modifies the simple Weibull-related distribution as fol-
lows [24]:
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Figure 3. Examples of the fitting curves at various c-values, where (a) equal the time-factor: n") =2, t(()NP) =1, n® =15,
t(()RP) =1; (b) equal the shape-factor: n" =2, t(()NP) =1, n® =2, t[()RP) =2; (c) changing by a 20% increase of the time-factor
in real mix n™ =2, téNp) =1, n® =15, téRP) =1.2; (d) changing 100% increase of time-factor: n =2 téNP) =1,

R =2,

n® =15, t
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W, (t) = exp{_%t)[an} 5)

The modification of (5) can be interpreted as the change of the t,, and the

scale factor of the Weibull function:

to=t, [%’t)]y =>W'(t)= exp[—[%}n} (6)

Consequently, the scale-factor of WF (the time-factor of survival fit) contains
the information about the tumor-growth in the way it was shown in (6). The
original Weibull-based parametric approach of KM survival curve from the Oth
stage gives a reference to the E; value.

On this basis we study the changes of the two Weibull-parameters by fitting
the cumulative distribution curve to the hypothetical choice of the survival stu-
dies in different stages of the disease, which is directly connected to the inclusion
criteria of the study. Also, we follow the change of parameters by the endpoint of
the studies fitting to the finishing conditions. The mathematical fit of the curves
uses the least square method by digital stepping of the functions in large number
(n > 1000) steps and optimizing the square of Pearson parameter (maximize)
and also the sum of squares of deviations (minimize). We used two software
supports: the Excel (Microsoft 365) and the MathCad 15.

3. Results

Using the hypothesis, that the self-similar WF follows the real bioprocesses in
survival, the effect of the malignancy staging at the first diagnosis could be fol-
lowed with the Weibull fitting method, hypothesizing, that the staging strongly
correlates with the time of the first actual diagnosis in the same cohort of pa-
tients. Diseases discovered earlier have lower stages than the ones diagnosed lat-
er. First, we are dealing with the survival curves of the patients in the control
arm (reference arm, which in principle could be placebo as well), so the treat-
ment modification will be considered later.

The start of the treatment is not immediate. Even the most accurate and
modern detection methods do not allow the diagnosis in a latent state. The ear-
liest time when the first diagnosis can be made is only after the dormant (untra-
ceable) period of the disease. The traces of the disease cannot be detectable by
imaging (due to its lower sensitivity), but some blood-test could detect the signal
of disseminated circulation cancer cells or its parts. Overall Stage Grouping uses
stages 0, I, II, ITI, and IV to characterize the progression of cancer [49]. Stage 0:
when the cancerous cells are observed very locally without an observation any-
where else (carcinoma in situ); Stage I: cancers are well localized; Stage II: can-
cers are locally advanced and affect the sentinel lymph node or nodes only in
one side of the tumor; Stage III: cancers are regionally advanced, the affected
lymph-nodes are around the tumor; Stage IV: cancers have distant metastases.

WF function could extrapolate the undetectable period from the fittings to the
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actual clinical stage of the tumor [25]. The extrapolation of Weibull regression
considers the time when the study starts, which is of course later (earliest detectable
stage after dormancy) than the start of the tumor-process. The space-resolution
of the most frequent imaging methods in clinical practice resolves the tumor in a
107 m range, which is about 1 cm® volume, having already billions of tumor-cells.
Supposing a cluster contains 30 cells (~3 cells in a diameter) and supposing it
takes 100 days to double its size, the tumor will be in the preclinical (latent) state
for approx. 8 years, without the existing malignant tumor being observable, but
we assume the self-organized growth during this time-period too.

Considering the basic survival curve from the start of the malignant behavior
even from a single “renegade cell” [50], the WF describes the tumor develop-
ment including the dormant period until all the patients deceased or censored,
(we obtain (7):

il
W, (t)=e o )
Following the staging of the tumor status with WF when the diagnosis is

based on the development of the malignant lesion related to (5):

E, (tV

. E, (t K
W (t)=exp —L[LJ (i=1,11, 111, 1V stages) (8)
Hence, according to (6), the measured téi) in subsequent stages from

1 N
0 =t, {E'E—(t)] =W, (t)=exp _{t’%] (i=1L1L1LIV stages) — (9)
0

0

Let us denote the time when the tumor is observed like in carcinoma in situ,
by T,. Due to the supposed continuity of the tumor-growth from the latent to
the observable stage, the WF fit could follow triple parametrization to the KM
non-parametric estimate. In this case a location parameter is added to the shape

and scale parameters:

#
0
W, (t)=e"° (10)

This gives a “truncation” possibility of this basic (Equation (7), hypothetical)
overall survival plot (Figure 4).

Following the complete survival until the last event (or censoring) in the stu-
died group of patients, the start of the study will be at the shifted time, which
determines the truncations of the basic WF to its parts (Figure 5).

The survival studies of different stages could be regarded as studies in shifted
time (T, ), starting the observation of the patients (first diagnosis) a certain time
later than the guessed start (stage 0) of the malignant process. The new start is of
course regarded as a new study, considering again 100% of the patients who are
involved in this stage, with a probability of 1. The truncated curves (Figure 5)
considered as the new studies, that could be WF fitted with modified parameters.
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Figure 4. A hypothetical stage grouping of overall survival. 0: carcinoma
in situ; I: well-localized lesions; II: locally advanced, affected the sentinel
lymph-node; Stage III: regionally advanced, affected lymph-nodes; Stage
IV: distant metastases. Parameters of the original WF are n = 2, ¢, = 316.
(a) cut by stages, (b) various parts are colored.

Screening could be misleading for survival evaluations because sometimes the
elongation of overall survival with a certain time is an addition to the differences
between the first diagnosis [51] and the overall survival. We expect that the ear-
lier discovery of the tumor extends the survival by more than the time difference
between the first diagnosis and the discovery of the symptoms. Consequently, a
certain change of the scale factor (t;) does not consider any treatment in the
truncated periods due to the obvious shortening of the survival when we trun-
cate the constant WF function. Of course, despite the unchanging type of the
tumor, there is no guarantee for the constant shape-factor of survival in various

stages. The change of the tumor-size changes the micro- and macroenvironment
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Figure 5. The remaining parts of the original (basic) WF truncated accordingly
to the subsequent stages. (a) The tumor is diagnosed in stage I; (b) The tumor is
diagnosed in stage II; (c) The tumor is diagnosed in stage III; (d) The tumor is
diagnosed in stage IV.

of the tumor, reorganizes the complete structure in the lesion, so the shape pa-
rameter also changes. Note, that normally different tumors can be detected in
different stages. For example, most of the breast and cervical cancers are de-
tected in the stages 0 or I, while lung cancer is usually detected in stage III or IV,
depending on the observed symptoms or the accident screening without indi-
cated complaints of the patient. Due to the developing technical conditions, the
complete process depends on the historical time of the screening.
Considering T,, the shift for the studies in subsequent stages, we get:
T,

W, (t) = e_[ ¢

(11)

The T, is the start of the observational period: optimally the immediate
treatment, or at least the watchful waiting (watch and wait, WAW period); when
the treatment cannot be decided yet. For simplicity we consider the studies as
time-to-event (TTE) data, where time is denoted from a starting point to a cer-
tain event, such as death. When the end of the study fixed differently, we must
use the fit shown in (2). All studies start as new one, of course, there is no know-
ledge about the unmeasured early treatments; consequently, survival probability
at the start of the treatment is 1, irrespective of when it started. We show the lat-
er starting points in the time-line of the disease in Figure 6.

We start counting the elapsing time from T,, by time-shift in (12). The com-
plete time-scale is shifted by T, value. The number of patients at the starting of
the trial is considered 100% for KA, consequently, the truncated “remains” must
be normalized to 1 to be able to fit with WF fitted. Usually the cancer in T,

does not cause symptoms for the patients. When the symptoms appear, and a
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Figure 6. Late starts and WF-fits to the truncated curves that are shown
in Figure 5. The original WF parameters: n, =2, t®) =316, (solid line).

(a) Curves have the same shape parameter as the original, but the treat-
ment was started in one of the subsequent T, time; T, =0, T, =100,
T,=200, T,=300, T,=400, T,=500, the shape parameter is a fixed
constant as the characteristic value of the actual disease. (b) is the same as
(a), but WF is optimally fitted to the new conditions, therefore the shape
parameter decreases.

patient recognizes the problem, it is usually in a later stage, when a higher num-
ber of cancer cells are already present, or even when they have already been dis-
seminated from the local site. The WF fittings to the truncated “remains” (not
showing the carcinoma in situ Oth stage), are shown in Figure 7. Calculation of
the shape scale factors was made when the shape kept being constant (meaning
the disease is the same in all the studies, irrespective of its starting time). Anoth-
er calculation showed an optimal Weibull fit, when both the scale and shape
factors changed. The idea is that in spite of the same disease, the late start met
different conditions of the disease from the in-time beginning.

The curves in Figure 7 could be considered as the start of the treatment in

various stages (or TNM state) of the disease. The n, and téi) parameters have
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Figure 7. WF fits of late starts on truncations which are shown in Figure 5. The original
WF parameters: n, =2, t((,b) =316, (solid line). (a) Curves have the same shape parame-
ter as the original. Other parameters are: T, =100, tgl) =234.6, (dotted line); T, =200,
) =192.8 , (dashed line); T,=300, t”=156.6, (dashed-dotted line); T, =400,
t" =1305 (dashed-double-dotted line); (b) Curves are modified by shape for best fit.
The parameters: T, =100, n, =157, t =234.3, (dotted line); T,=200, n,=1.35,
t) =176.7 , (dashed line); T,=300, n,=1.23, t¥=137.9 (dashed-dotted line);
T, =400, n,=1.16, t =111.3 (dashed-double-dotted line).

logarithmic dependence on the T, late start time in Figure 8.

In reality, the real KM curve could be decomposed to at least two components
like it is shown in (2). An example is shown in Figure 9, where the disease is
characterized by the same shape factor, only the scale factor changes from 1 y
(non-responding) to 10 y (responding) situations. When the later start of the
study is linearly changed we assume linearity of the decomposition factor too.

The form of Figure 9 shows the general figures of the comparison of studies
started in different stages of the same malignant disease well.

The late (at a more serious stage) start of the treatment is not the only chal-

lenge in the evaluation. Another common challenge at the KA/ evaluation is the
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—-89.58In (T)+ 649.3, (r? =0.999)] (data are from Figure 7(b)).
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Figure 9. The KM curves for different stages (the study started at different times),

where the KM is

decomposed from two WFs. Original WFs for responding and

non-responding patients have: " =3650(10y), t{"” =365(1y); n™ =n"

=2 . The actual decomposition factors from up to down are ¢ =0.9, ¢c!*
=075, c™ =06, ™ =045, ¢ =03, ¢ =0.1 to the late-start times
T,=0, T,=100, T,=200, T,=300, T,=400, T, =500, respectively.

end-time of the study. Most of the clinical studies have limited time for fol-

low-up, so they are

censored, and they

usually finished before all involved patients are deceased or
do not force the TTE condition. At the end of the study, a

certain group of patients remains (patients at further risk, PFR), or patients are

completely cured (PCC). Identifying the PCC group in the practical applications

is very unprecise, and by definition, the PFR at five years point regarded as PCC.

However, there are doubts about this strict limit [3], so we use the PFR only,

without declaring the PCC. The end-time-point of the study is the preplanned
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goal, and the patients in the PFR group are censored at this point. This
time-limit causes a certain early truncation of the hypothetical overall-survival
curve. The hypothetical curve fit to KA is WF when the study goal is TTE; so it
would be continued to the complete end (all patients deceased or censored, no
patients are at risk). The finish-times ( F,) define the PFRsin actual points, when

N patients were involved in the study:

PFR [ (R
T—exp{ (to] J (12)

where the PFR, values are patients that are alive (they are at risk, belonging to
the actual PFR) at the early finish time when the actual study ends. When the
study finishes before all events happen at F,, the patients at risk is PFR,, and
the number of events (loss of patients due to death or censored) until this point
will be: (N —PFR;). The finish of the study ( F,, ) is when a single patient re-

mains at risk ( PFR =1), and censored from the initial set of Nindividuals,

I:Iast :to (_In(%])n (13)

According to the Hardin-Jones-Pauling’s (HJP) biostatistical theory [52] [53],
we expect the death of the last patient by the time of the average survival of the
actual study is after the trial is closed. Consequently, the hypothetical complete
length of the study would be

1 % 1
Foo =1 [—In(ﬁn +F(1+Hj (14)

The early finished studies, when a certain number of patients remain in risk
are shown by an example in Figure 10.

The studies finishing early have a slight shift in t; when elongating them
and the number of patients at risk decrease (Figure 11).

4. Discussion

Both the two independent Weibull parameters change by inclusion criterial of
staging. Both the shape and the scale factors are decreased when treatment starts
later, which is natural. In case of an unchanged n shape-character, the decrease
of the scale factor is less than in case of a changing n.

Using (9) we get:

_ _ A @\
tg'):to[E'E—(t)j :Ei(t):Eo[tto—j (i=1,11,11,1V stages) ~ (15)

0 0

Expression (16) allows an approximating of the metabolic rate from the

change of téi)

by WF fit to various KM non-parametric estimates. Metabolic
activity could be measured approximately by positron emission tomography

(PET), evaluating the standardized uptake value (SUV) of the radiolabeled tracer
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are 83, 71, 50, 30 time units, respectively. The parameters of the complete

KMare n=2; t,=100, N =100.

2-deoxy-2-[18F] fluoro-D-glucose (FDG) uptake in tumors in various stages at

the start of the trial (SUV, ), so:

~

-

J (i=111,11,1V stages) (16)

where SUV, is the FDG uptake of the neighboring healthy tissue. The meta-

(1)

N
t
bolic ratio, calculated by {E—J at the late start process above gives a quite

0
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accurate linear dependence from the T, late start time (Figure 12).

In this way we could also approximate the basic survival curve, when the PET
is actually sensitive enough to measure cancer in situ lesions, supposing the time
when the tumor starts to form in a microscopical region and its clusters are still
undetectable with our present diagnostic methods.

The treatment of the chosen patient cohort is expected to change the KA of
the active arm compared to the control arm, which is untreated with the same
protocol, and formed from the same cohort. The changes of KM in active arm
will modify the WF fit, too. The measured change of metabolic rate by SUV in-
dicates the effect of the actual treatment. When the malignant tissue shows a
lower metabolic rate (lower SUV ratio) the treatment regarded effective. The
lower SUV has a longer scale parameter (t, ) according to (17). In case of a suc-
cessful treatment, the shape-parameter (1) decreases, “smooths” the probability
of event with a longer, heavier tail.

The question is: how the situation changes by treatments in the study? The
WF changes of course and the evaluation use this change to compare it to the
reference (control arm) WEF. There are different parametric estimations for the
result. The first attempt is always the median survival, which looks undecided
about the efficacy of the treatment in the measuring process. However, this sin-
gle parameter is not nearly enough to see the complete picture. It is possible that
the treatment is effective without the change of the median of the KA, while the
distribution has a long tail; patients over the median lifetime live longer. for
example Figure 13. It can happen when the mortality of the disease is very rapid,
and the development of the resistance made by the treatment needs a longer
time compared to the median survival.

For the decision of the efficacy we must use an information parameter from
the WF, an important parameter of a probability distribution: the Shannon-entropy
(Sg, ) [54], as it is discussed in the first part of this series [27]. The SE parameter
measures the diversity of probability density function (pdf), which is in the case
of Weibull distribution:

1 t
S (nt,) - y(l—HjJrIn(FO]Jrl: S (1) + e (1) (17)
0.85
. 08 9
= o
& o
5 075
Q o
3 % =0.0005x + 0.5937
T 07 R2=0.9936
[0} ®
o .
0.65
[ ]
0.6
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T

Figure 12. The metabolic ratio (approximate SUV ratio) vs.
Tis late start time.
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Figure 13. The two-survival function has the same median
(=3.54). However, the survival curves are very different
(n=11, t,=5; n,=3, t,=4), which treatment is

more effective? Shannon entropy decides.

where yis the Euler-Mascheroni constant: y =0.5772, and

Ssnl(n):7[1_lj_ln(n)+l; Sn2 (to):m(to) (18)

n

The information source of S, is produced by a stochastic data-source, like
the probability distribution of the survival time. In the simple formulation, it
refers to the amount of uncertainty about an event associated with a given
probability distribution. At the probability of the survival, this directly means,
that the decreasing entropy shows the increasing probability of death. The ea-
siest way to decide the advantage of a treatment which changes the parameters
of the WF, is with this parameter, because the survival is better when S, is
higher. It is due to the meaning of the entropy: a larger entropy means less in-
formation and a higher uncertainty of death. Visualizing it on the image of the
pdf, it has more located peak when 1 grows, and its width is shrinking by t,,
therefore both make death more definite. The growing n and decreasing t,
both decrease the entropy, making the certainty of death higher. In the case of
Figure 13, the entropies are Sy, =1.67 and Sy, =2.58, consequently the
survival with n, =3,t;, =4 parameters is worse than the survival characterized
by n =11t,=5.

The entropy evaluation in the case shown in Figure 7 is presented in Figure
14. The lower chance of survival is shown well by the decrease of the entropy
with the late start times (T, ). This is complete correspondence with the expecta-
tions: the later cancer diagnosis decreases the prognosed survival.

Interestingly, despite the more moderate decrease of the scale factor when the
shape factor decreases in optimal fit, the Shannon entropy shows an advantage
for these optimal WF sets, compared to the constantly fixed shape. The reason is
that the patients with longer survival time are fit for the later start of the treat-
ment and were selected by their other, less hazardous conditions than the others.

The Shannon entropy can be evaluated for late-start treatments (treatments in

various stages of the tumor) like that it is shown in Figure 9. The Shannon entropy
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Figure 14. The scale factor and the Shannon entropy in the stages
of late treatment time shown in Figure 7. (a) The scale factors, (b)
Shannon entropy values.

for non-responding patients (group A), and for responding ones (group B) is
shown in Figure 15. The decrease of the entropy well shows the increasing cer-
tainty for events.

The Shannon-entropy decreases the number of patients at risk linearly, due to
the increasing certainty of death (Figure 16).

We assume, that no extra comorbidity developed (or at least it is controlled)
over the elapsed time, consequently, we kept the original two parameters (shape
and scale) unchanged, regarding the same cohort of patients participated; only
their study started in different F times. When we calculate with the developing
comorbidities, then both parameters of WF will be changed in a direction that

Sq, decreases, indicating a higher certainty of the event.

5. Conclusion

We discussed a method of data mining from the single-arm clinical study with-
out a reference group. We studied the possibility to open the hidden information
in the measured Kaplan-Meier non-parametric estimate by the composition of

proper parametrization of cumulative Weibull functions. We had shown the
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changes of the two independent parameters of the Weibull cumulative distribu-
tion by the study design, namely their dependence on the inclusion criteria
(staging) and the intended end-point (finishing). We had shown that the various
studies with different inclusion and exclusion criteria and different endpoints
could be well described by the decomposition method. The fit of these results to
real studies in clinical applications will be shown in the next part of this series of

articles.
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