
Journal of Data Analysis and Information Processing, 2020, 8, 86-98
https://www.scirp.org/journal/jdaip

ISSN Online: 2327-7203
ISSN Print: 2327-7211

DOI: 10.4236/jdaip.2020.82005 May 25, 2020 86 Journal of Data Analysis and Information Processing

Meta-Learning of Evolutionary Strategy for
Stock Trading

Erik Sorensen, Ryan Ozzello, Rachael Rogan, Ethan Baker, Nate Parks, Wei Hu

Department of Computer Science, Houghton College, Houghton, NY, USA

Abstract
Meta-learning algorithms learn about the learning process itself so it can
speed up subsequent similar learning tasks with fewer data and iterations. If
achieved, these benefits expand the flexibility of traditional machine learning
to areas where there are small windows of time or data available. One such
area is stock trading, where the relevance of data decreases as time passes,
requiring fast results on fewer data points to respond to fast-changing mar-
ket trends. We, to the best of our knowledge, are the first to apply me-
ta-learning algorithms to an evolutionary strategy for stock trading to de-
crease learning time by using fewer iterations and to achieve higher trading
profits with fewer data points. We found that our meta-learning approach
to stock trading earns profits similar to a purely evolutionary algorithm.
However, it only requires 50 iterations during test, versus thousands that
are typically required without meta-learning, or 50% of the training data
during test.

Keywords
Meta-Learning, MAML, Reptile, Machine Learning, Natural Evolutionary
Strategy, Stock Trading

1. Introduction

Accessibility to large data stores for developing effective machine learning mod-
els is a valuable source of profit and insights for numerous industries and areas
of research. However, the current requirements to have a lot of data for training
deep learning models are a prevalent crux of applying machine learning to
problems where little data is available or there are restrictive windows of relevant
data on which to be trained. An example of this is the stock industry where the
most relevant data for stock forecasting are the past few days or weeks. Me-

How to cite this paper: Sorensen, E., Oz-
zello, R., Rogan, R., Baker, E., Parks, N. and
Hu, W. (2020) Meta-Learning of Evolutio-
nary Strategy for Stock Trading. Journal of
Data Analysis and Information Processing,
8, 86-98.
https://doi.org/10.4236/jdaip.2020.82005

Received: January 12, 2020
Accepted: May 22, 2020
Published: May 25, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jdaip
https://doi.org/10.4236/jdaip.2020.82005
https://www.scirp.org/
https://doi.org/10.4236/jdaip.2020.82005
http://creativecommons.org/licenses/by/4.0/

E. Sorensen et al.

DOI: 10.4236/jdaip.2020.82005 87 Journal of Data Analysis and Information Processing

ta-learning was introduced to solve this problem [1]. In meta-learning, the initial
step is for the algorithm to train on samples of a distribution of similar tasks
such that it generalizes to those tasks. After building the meta-model, the algo-
rithm can learn to solve a specific task with only a few data points and a few ite-
rations [2].

We have applied two different meta-learning algorithms, Modal-Agnostic
Meta-Learning (MAML) [3] and Reptile [4], in the area of stock trading. While
both MAML and Reptile use a gradient in the evolutionary strategy (ES) algo-
rithm to train on each task, they differ in how they do meta-learning. MAML
takes the second-order gradient whereas Reptile uses the first-order gradient.
Rather than using a typical gradient descent approach in reinforcement learning,
we employed the evolution strategy [5], which works with a population of possi-
ble best-fit solutions to find the maximum reward. Using ES with a meta-learning
approach towards stock trading, we show how once a meta-model is trained us-
ing MAML or Reptile, afterwards training on a specific task requires significant-
ly fewer iterations and less data for accurate and profitable trading.

While machine learning has been applied to the stock trading in the past [6]
[7] [8], there is much exploration required to discover how meta-learning per-
forms in this area. In our research, we use industry sector stock data to train a
meta-model for stock trading. The goal of our algorithms is to meta-model a
collection of stocks (trading data) well enough to make profitable purchases and
sales of new stocks (test data) with an initial amount of money that is allotted for
investing.

1.1. Reinforcement Learning Overview

Reinforcement learning (RL) teaches an agent to learn how to act from its inte-
ractions with an environment. The goal of the agent is to learn an optimal policy
that maximizes its long-term rewards. A policy refers to the way that the agent
takes an action in a given state [9].

1.2. Evolution Strategies as a Scalable Alternative to
Reinforcement Learning

Evolutionary strategies are an alternative to stochastic gradient descent that is
used in reinforcement learning to optimize the policy. These strategies were
created from the family of evolutionary algorithms [10]. We apply evolutionary
strategy to optimize the objective function ()f x in reinforcement learning for
stock trading. Natural gradient (therefore NES) works with a probability distri-
bution space parameterized by θ, ()p xθ . It searches for the steepest direction
within a small step in the distribution space. To find an optimal solution to the
function, the following iterations are employed [5]:

1) Generate a population of samples ()(),i iD x f x= where ()ix p xθ∼ .
2) Evaluate the “fitness” of samples in D.
3) Select the best subset of individuals and use them to update θ, generally

https://doi.org/10.4236/jdaip.2020.82005

E. Sorensen et al.

DOI: 10.4236/jdaip.2020.82005 88 Journal of Data Analysis and Information Processing

based on fitness or rank.
In order to evaluate the “fitness” of our samples in step 2, we apply a “jitter” to

each of the samples from step 1. The “jitter” is created through random variance
based on a hyper parameter, sigma, which controls how much random variance
we have in “jittering”. Then, based on the samples chosen with this random var-
iation we can do step 3 and select the samples that are best optimized to the
function ()f x .

It has been shown that ES scales very well, which allows us to train deep net-
works to solve complicated reinforcement learning problems. ES has also been
found to be a great black box optimization technique when the objective func-
tion does not have an analytic form. These factors make ES an effective alterna-
tive to deep reinforcement learning and also simpler to implement as there is no
need for backpropagation [10].

1.3. Meta Reinforcement Learning as a Response to Overfitting in
Traditional Reinforcement Learning

Common in RL algorithms is their tendency to overfit [11]. RL struggles when it
is faced with similar environments and needs to completely relearn in order to
adjust. Meta-reinforcement learning (meta-RL) aims to fix this problem by pro-
gramming a computer on how to learn in more general environments so it does
not have to completely relearn [12]. For example, say we have a two-armed ban-
dit, where one arm gives a reward and the other doesn’t. RL is easily able to learn
which hand gives the reward but will fail if we introduce it to another two-armed
bandit where the rewarding arm has switched. It had grown accustomed to pull
a specific arm rather than considering the possibility that the situation had
changed. Meta-RL would learn how to approach a general two-armed bandit
problem rather than a specific one, giving it the ability to adjust when the
bandit arm is different. In meta-RL, the algorithm first trains on a collection
(distribution) of similar tasks, and then it can learn a new task fast [12].

2. Methods for Stock Trading
with Meta-Learning

The real-world stock data we used was taken from Yahoo Finance beginning on
January 2nd, 2001. All the stock data was from the consumer cyclical sector (CC
sector), where the stocks were priced above $50 in 2019. We chose the CC sector
because those stocks are highly dependent on business cycles and economic
conditions. We chose stocks of prices above $50 because we wanted to be con-
sistent in the data that we were using and because stocks with higher prices tend
to be less erratic. One thing to note is that the stocks used were priced above $50
in 2019, but a lot of the data used included stocks that were priced below $50
before 2019.

One possible drawback of sticking to a particular sector (the CC sector) is that
the learning algorithms may struggle with stocks that are not consumer cyclical.

https://doi.org/10.4236/jdaip.2020.82005

E. Sorensen et al.

DOI: 10.4236/jdaip.2020.82005 89 Journal of Data Analysis and Information Processing

The stocks in the CC sector are typically industries such as automotive, housing,
entertainment, and retail. Non-cyclical stocks tend to do relatively better when
the economy is doing poorly since they do not depend on how well the economy
is doing (an example of a non-cyclical stock is utilities)1.

Most of the stock data (50 stocks) is used for meta-learning. This is called the
training dataset. We test the meta-training with a test dataset, which is the data
of a single stock. This is done by using the meta-model developed from the
training dataset and the first 70% of the test dataset to predict the last 30%. We
used both MAML and Reptile methods for stock trading. Our state is a window
size of n days of stock closing prices. Based on these prices, our action is to trade
on the following day. The NES algorithm2 trains our neural network to learn the
optimal policy with a function that rewards a profitable trade and that punishes
loss. Our reward function is the amount of profit or loss over our initial starting
money and is defined as follows:

()current initial
reward *100

initial
− 

=  
 

 (1)

We use the latest window with the meta-learned model to buy, sell, or hold
stocks.

2.1. MAML Method for Stock Trading

Our method was constructed using an adapted version of the NES trading algo-
rithm to make it a meta-learned model based on the MAML algorithm seen in
Algorithm 1 [3]. The NES algorithm acts as the learner for trading one stock.
The meta-model’s goal is to learn to trade on a collection of stocks,

Algorithm 1. Model-agnostic meta-learning.

Require: p(T): distribution over tasks
Require: α, β: step size hyperparameters
1: randomly initialize θ
2: while not done do
3: Sample batch of tasks ()~iT p T
4: for all do
5: Evaluate ()

iTL fθ θ∇ with respect to K

 examples
6: Compute adapted parameters with
 gradient descent: ()'

ii Ta L fθ θθ θ= − ∇

7: end for
8: Update () ()'~Σ

i ii TT p T L fθ θθ θ β← − ∇

9: end while

1Further information on the CC sector can be found here at
https://www.investopedia.com/terms/c/consumer_cyclicals.asp and
https://www.thebalance.com/understanding-cyclical-and-non-cyclical-stocks-3141363.
2Our NES implementation uses Husein Zolkepli’s work at
https://github.com/huseinzol05/Stock-Prediction-Models/blob/master/agent/updated-NES-google.i
pynb.

https://doi.org/10.4236/jdaip.2020.82005
https://www.investopedia.com/terms/c/consumer_cyclicals.asp
https://www.thebalance.com/understanding-cyclical-and-non-cyclical-stocks-3141363
https://github.com/huseinzol05/Stock-Prediction-Models/blob/master/agent/updated-NES-google.ipynb
https://github.com/huseinzol05/Stock-Prediction-Models/blob/master/agent/updated-NES-google.ipynb

E. Sorensen et al.

DOI: 10.4236/jdaip.2020.82005 90 Journal of Data Analysis and Information Processing

updating the weights (θ) according to the action and reward received in the en-
vironment. We then model updating θ using the MAML algorithm. To do this,
we first randomly initialized our θ. We then batched the tasks Ti, where each
task is an individual stock in our chosen stock industry of Consumer Cyclical.
We then loop through each of the batched individual stocks or tasks and use the
NES algorithm to perform natural evolutions, which updates θ’ based on train-
ing from the environment on individual stocks from Ti. After all θ’ is updated,
we loop through each θ’ to update the global θ using the NES algorithm. Now, θ
will be updated according to the trained θ’ for each of the individual stocks, the-
reby learning the general trends of all the tasks or stocks in the Consumer Cyc-
lical industry.

The MAML algorithm was meta-trained to build a meta-model using a dataset
of 50 stocks within the Consumer Cyclical industry with 180 days (actual dates:
1/2/2001 to 9/24/2001) of company closing prices starting January 2nd, 2001. Our
test stock was called ABC and was not present in the training. During meta-test,
the NES algorithm was trained on 70% of the dataset with the help of meta-
model and then did its actual trading on the next 30% of the data.

The parameters in the NES algorithm that we used were a population size of
15, a learning rate of 0.03, and a sigma of 0.1. We limit the algorithm to buying
or selling 5 shares at a time to stabilize training, with an initial investment value
of $10,000.

When implementing the NES algorithm with MAML, we set up a single expe-
riment. Our goal was to see the difference in rewards between the NES classical
version versus the NES with MAML over the same number of epochs during the
training process. We ran both algorithms over 10,000 epochs during their train-
ing phase. However, the NES classical trained only on 70% the ABC stock while
the NES with MAML meta-trained on 50 stocks within the Consumer Cyclical
industry. Additionally, we trained the NES with MAML with only 50 epochs on
the ABC stock. We then graphed the results of simulated trading for both algo-
rithms on the last 30% of the ABC stock, which was never used in training, and
was therefore unseen data to both algorithms. The final comparison we visua-
lized was the performance in trading, or the algorithm’s ability to decide be-
tween the actions to buy or sell the stock at precise time steps.

2.2. Reptile Method for Stock Trading

Reptile is a first-order derivative approximation of MAML, which requires a
second-order derivative [13], that performs similarly but with fewer calculations,
allowing it to be more efficient in its applications. Reptile works by initializing
φ , the vector of initial parameters, and then iterating through these three steps
[4]:

1) For each task, T, evaluate the loss, LT on the weight vectors, W.
2) Compute (), ,TW SGD L kφ= .
3) Update ()Wφ φ φ← + − .

https://doi.org/10.4236/jdaip.2020.82005

E. Sorensen et al.

DOI: 10.4236/jdaip.2020.82005 91 Journal of Data Analysis and Information Processing

Essentially, Reptile uses gradient descent to find a set of weights that has been
generalized over a set of tasks. When the network is initialized with these
weights and is applied to a test set, it can quickly learn that task with much less
data than a typical machine learning algorithm and with less computational in-
tensity than MAML.

Our Reptile implementation for stock trading used the same stock data for
meta-training as in section 2.1. We define one task as trading on one kind of
stock (i.e. how to trade WDC stock) based on the closing prices of some number
of days in the past. Following the meta-learning philosophy, we trained the NES
with Reptile on 45 of CC sector stocks such that the algorithm generalizes its
approach to trading within the whole sector and is able to trade on new stocks in
the same sector after only a few more iterations of training on a specific stock.

The whole workflow of our meta-learning trading algorithm can be seen in
Figure 1. The primary structure of our Reptile code was taken from [14]. Our
contribution consisted of applying Reptile to the NES algorithm to find the
maximum profit from trading. After initializing the model, we defined a set of
global weights by which to track the meta-learning process as the machine
trained briefly on each stock. After this meta-training, we did meta-testing by
picking 70% of one new stock to train the NES model and tested it using the

Figure 1. Meta-learning trading flowchart.

https://doi.org/10.4236/jdaip.2020.82005

E. Sorensen et al.

DOI: 10.4236/jdaip.2020.82005 92 Journal of Data Analysis and Information Processing

remaining 30% to see how it performed. For each time we meta-trained the
algorithm, and ran this testing portion 10 times. We ran the meta and testing
portion as a whole 10 times for each set of parameters we used to generalize our
findings. Our neural network model consisted of four layers, each with a size of
500. For the agent, we started with $10,000 with which to trade, a maximum of 5
shares in a single day (to prevent extreme behaviors of buying and selling), and
an incrementation rate of 1 day for the sliding window of closing prices. We also
used a population size of 15, a learning rate of 0.03, and a sigma of 0.3. We
found that the key to effective meta-training is to use many epochs and few ite-
rations of the NES algorithm to ensure that the model does not overfit to a single
stock. Therefore, although we used one iteration of the NES algorithm for each
individual stock of the 45, we trained the model on these 45 stocks with 1000
epochs. This was done to maximize the model’s understanding of the entire sec-
tor and to give it more flexibility and accuracy during testing.

Since we wanted to see if using the NES strategy alongside Reptile would per-
form better than the NES algorithm alone at very few iterations, we set up two
experiments. First, in order to determine if including Reptile increases perfor-
mance, we ran the testing portion with and without prior meta-training. This
would help us see if the meta-training helped the algorithm make better trading
decisions at few iterations with it rather than without it. Along with the parame-
ters described above, we trained and tested on 60 days’ worth of closing prices
(actual dates: 1/2/2001 to 3/28/2001), used a window size of 10 days, and set the
number of pre-trading training iterations to 50. Thus, our meta-training portion
trained on all 60 days, and, during test, the model trained on 42 (70%) days
while 18 (30%) days were held for trading. For the trial that included the me-
ta-training, we used these same parameters for the meta portion.

Our second experiment was to test whether the NES strategy with Reptile can
perform the same as only the NES algorithm given less data. For this, like men-
tioned above, we compared how the algorithm performed with and without me-
ta-training. When we meta-trained the algorithm, we implemented the testing
portion with half as much data as we gave the testing portion of the trial without
the meta-training, but we used the same number of iterations for the testing por-
tions of both. Specifically, for both trials, we used 100 iterations of training for
the test portion with a window size of 15 days. For the run with the me-
ta-training, we trained on 80 days (actual dates: 1/2/2001 to 4/26/2001). For test,
our model with Reptile trained on 24 days before trading, while the run without
the meta-training trained on 58 days before trading. We then traded on 24 days
to see how it performed.

3. Results of MAML and Reptile Meta-Learning Strategies

We found that the NES with MAML resulted in smoother training and that NES
with Reptile led to profitable trading with a fewer number of test iterations and
data. Both of these results suggest the applicability of meta-learning strategies to

https://doi.org/10.4236/jdaip.2020.82005

E. Sorensen et al.

DOI: 10.4236/jdaip.2020.82005 93 Journal of Data Analysis and Information Processing

improve stock trading with the NES algorithm.

3.1. MAML Results for Stock Trading

Our NES algorithm with MAML has an advantage over the base NES algorithm
in that it can learn how to trade over multiple stocks in the same sector. There-
fore, its training was smoother than the NES algorithm without MAML as de-
picted in Figure 2. However, it did not perform as well as NES did even with the
same parameters for training. This is most likely because the NES algorithm is
overfitting to the ABC stock, whereas the meta-model is training on 50 different
stocks at a time.

Additionally, shown in Figure 3, when running our back-test trading on new
stock data, the base NES algorithm performed better than that with MAML. The
equation we used to calculate the market value of the stock is the difference in

Figure 2. Compare the training of the NES alone (left plot) and NES with MAML algorithms (right plot). The graphs show the
mean and standard deviation of the rewards over 10 iterations of training. NES trains on just the ABC stock while NES with
MAML trains on 50 stocks in the CC sector, the same sector as the ABC stock. As we can see NES with MAML has less va-
riance (0.2 std vs 2 std).

Figure 3. Comparing the market testing of the NES (left plot) and the NES with MAML (right plot) algorithms. The graphs
show the upper bound of the market value of the ABC stock without any trading (green) and the mean balance (blue) and std
(light blue) of our algorithm over 10 tests. The test was done over 53 (30% of 180) days.

https://doi.org/10.4236/jdaip.2020.82005

E. Sorensen et al.

DOI: 10.4236/jdaip.2020.82005 94 Journal of Data Analysis and Information Processing

the value of the stock from the first day of trading multiplied by the maximum
number of shares that can be bought in a single day (in our case 5 shares) plus
our initial investment amount of $10,000. The equation to calculate the upper
bound of the market value of a stock on a given day is defined as follows:

()market value current initial *5 10 000= − + ， (2)

After 53 (30% of 180) days of trading on the ABC stock, the ABC market val-
ue, starting at $10,000, ended up at a market value of $10,019 after simulating
buying 5 shares at the beginning and holding. This emulates the same limit of
buying stocks to which our algorithm is held. This ensures that the trading is on
the same scale when plotting. The NES algorithm without MAML achieved an
average value over 10 tests of $9989 and the NES algorithm with MAML achieved
an average value of $9889.59. The blue lines in these graphs track the total bal-
ance of money throughout the trading process, so they fluctuate with stocks
bought and sold. Since the algorithm’s goal is to maximize profit by ending with
as high of a balance as it can, these graphs reveal to us the trading process and
the final balance in comparison with the market value of 5 shares.

3.2. Reptile Results for Stock Trading

We found that using the NES with Reptile for stock trading increased perfor-
mance with very few test stage iterations when compared to using the NES
alone. Regarding our first experiment, we wanted to emphasize that using NES
with Reptile before training on a specific stock increased the performance on
trading that stock. When we trained the algorithm with one stock at 50 iterations
before testing, the model that had prior meta-training with Reptile performed
$1.24 better than the model that only trained with the NES approach. To meas-
ure performance in our first test using only 50 iterations of training before test-
ing, we compared the profits made during trading over 18 days of Western Dig-
ital Corp (WDC) stock with the NES algorithm with and without Reptile. With
Reptile, averaging ten tests, our model made $1.47 while without Reptile, it made
$0.23 (Figure 4).

When we tested the performance between NES with Reptile with half of the
testing training data and NES alone at 100 iterations, the NES with Reptile still
performed $1.09 better. To measure the performance of NES with Reptile using
50% of the training data during the test stage, we compared the training of the
NES algorithm using 100 iterations on 48 days to the Reptile-enhanced NES with
the same number of iterations but only trained on the previous 24 days. Trading
over 24 days, the average results of 10 experiments with reptile on half the data
averaged $2.99 profit, while NES alone training and testing as normal averaged a
profit of $1.90 over ten trials. Therefore, using NES with Reptile with half as
much training data available during testing, our model performed $1.09 better
and made a profit (Figure 4).

We can see in Figure 4 that during trading in both tests our algorithm de-
cided to buy stocks at the point it predicted the market value of the stocks to

https://doi.org/10.4236/jdaip.2020.82005

E. Sorensen et al.

DOI: 10.4236/jdaip.2020.82005 95 Journal of Data Analysis and Information Processing

Figure 4. The mean balance and market price of WDC stock over the 18 and 24 days for both of our tests (base NES market
test on the left, Reptile market test on the right). Notice how many stocks were bought the 4th day of trading for 60 days of
stock and the 7th day for 80. We can see the decreasing balances which represent stock purchases after the market prices reach
local maximum so that the algorithms can make a profit. In both tests, the NES algorithms with Reptile performed better end-
ing with high balances and earning a profit.

be lower and sold once the market value began to rise. The blue line in these
graphs depicts the mean balance held over 10 trading tests for each of our expe-
riments. The green line represents the market value of the stocks over the 18 and
24 days of trading. In both experiments, our mean money held ended as more
than the initial $10,000 with which we started, meaning we made profit. In our
first test, our meta-learning algorithm trained on 60 days with a window size of
10 and ended with $10,001.47, meaning that it made a $1.47 profit. In our
second test, our meta-learning algorithm trained on 80 days with a window size
of 15 and ended with $10,002.99.

To observe the performance of our meta-training, NES with Reptile was run
on 45 different stocks over 1000 iterations. The model performance consistently
increased to $0.18 and $0.23 of profit for our two experiments of different win-
dow sizes. Averaging 10 trials, we plotted the mean reward and standard devia-
tion of our training curves as seen in Figure 5.

4. Conclusion

It has been a great challenge for deep learning methods to learn from small

https://doi.org/10.4236/jdaip.2020.82005

E. Sorensen et al.

DOI: 10.4236/jdaip.2020.82005 96 Journal of Data Analysis and Information Processing

Figure 5. The meta-training curve of our experiments of different window sizes, where
the models were trained successfully after 1000 epochs reaching average rewards of $0.18
and $0.23 over 45 same-sector stocks.

amounts of data. Meta-learning offers a promising technique to learn from pre-
vious tasks to enable efficient learning of new tasks. As far as we know, this pa-
per is the first to study applying meta-learning to stock trading. To implement
this, we used two common meta-learning algorithms, MAML and Reptile, to
improve the NES algorithm to simulate an agent buying and selling on one stock
in a particular sector of the stock market. When we employed NES with MAML,
the model was trained more consistently than the evolutionary strategy alone,
though it did not profit on the market as much as it did when it was trained only
with NES. To increase our profit using MAML, we may need to, in the future,
increase the number of epochs used in training the model on specific stocks. We
can also explore the MAML method’s potential by testing on multiple stocks.

Applying NES with Reptile yielded profit, even with a relatively small number
of epochs for the meta-learning portion. We saw that the NES algorithm with
Reptile made more money than without. Additionally, NES enhanced by Reptile
outperformed NES alone when given fewer data points on which to train for a
single stock. Although the NES with Reptile was an overall success, there is still
much to be explored with this strategy. Increasing the number of epochs for the
meta-portion of this algorithm as well as the number of days on which the mod-
el trains and tests may increase performance and profit.

https://doi.org/10.4236/jdaip.2020.82005

E. Sorensen et al.

DOI: 10.4236/jdaip.2020.82005 97 Journal of Data Analysis and Information Processing

Overall, we have seen that meta-learning can contribute to machine learning
of stock trading. Certainly, our research can be extended into other areas within
the stock market besides trading. However, our implementation of the NES
strategy with MAML and Reptile is a good starting point for continued research
in this area.

Acknowledgements

We thank the anonymous reviewers for their critical reading of our manuscript
and their valuable comments and suggestions.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Hochreiter, S., Younger, A.S. and Conwell, P.R. (2001) Learning to Learn Using

Gradient Descent. In: Lecture Notes on Computer Science 2130, International Con-
ference on Artificial Neural Networks (ICANN-2001), Springer, Berlin, 87-94.
https://doi.org/10.1007/3-540-44668-0_13

[2] Li, D., Yang, Y., Song, Y. and Hospedales, T. (2017) Learning to Generalize: Me-
ta-Learning for domain Generalization.

[3] Finn, C., Abbeel, P. and Levine, S. (2017) Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks. International Conference on Machine Learning,
Sydney, 6-11 August 2017, 1126-1135.

[4] Nichol, A., Achiam, J. and Schulman, J. (2018) On First-Order Meta-Learning Al-
gorithms.

[5] Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J. and Schmidhuber, J.
(2014) Natural Evolution Strategies. Journal of Machine Learning Research, 15,
949-980.

[6] Guang, L., Xiaojie, W. and Ruifan, L. (2019) Multi-Scale RCNN Model for Financial
Time-Series Classification.

[7] Hegazy, O., Soliman, O. and Salam, M. (2013) A Machine Learning Model for Stock
Market Prediction. International Journal of Computer Science and Telecommunica-
tions, 4, 17-23.

[8] Patel, J., Shah, S., Thakkar, P. and Kotecha, K. (2015) Predicting Stock Market Index
Using Fusion of Machine Learning Techniques. Expert Systems with Applications,
42, 2162-2172. https://doi.org/10.1016/j.eswa.2014.10.031

[9] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. and
Riedmiller, M. (2013) Playing Atari with Deep Reinforcement Learning. NIPS Deep
Learning Workshop, Lake Tahoe, 9 December 2013.

[10] Salimans, T., Ho, J., Chen, X., Sidor, S. and Sutskever, I. (2017) Evolution Strategies
as a Scalable alternative to Reinforcement Learning.

[11] Song, X., Jiang, Y., Du, Y. and Neyshabur, B. (2019) Observational Overfitting in
Reinforcement Learning.

[12] Lake, B.M., Salakhutdinov, R. and Tenenbaum, J.B. (2015) Human-Level Concept
Learning through Probabilistic Program Induction. Science, 350, 1332-1338.

https://doi.org/10.4236/jdaip.2020.82005
https://doi.org/10.1007/3-540-44668-0_13
https://doi.org/10.1016/j.eswa.2014.10.031

E. Sorensen et al.

DOI: 10.4236/jdaip.2020.82005 98 Journal of Data Analysis and Information Processing

https://doi.org/10.1126/science.aab3050

[13] Antoniou, A., Edwards, H. and Storkey, A. (2018) How to Train Your MAML.

[14] Ravichandiran, S. (2018) Hands-On Meta Learning with Python. Packt Publishing,
Birmingham.

https://doi.org/10.4236/jdaip.2020.82005
https://doi.org/10.1126/science.aab3050

	Meta-Learning of Evolutionary Strategy for Stock Trading
	Abstract
	Keywords
	1. Introduction
	1.1. Reinforcement Learning Overview
	1.2. Evolution Strategies as a Scalable Alternative to Reinforcement Learning
	1.3. Meta Reinforcement Learning as a Response to Overfitting in Traditional Reinforcement Learning

	2. Methods for Stock Trading with Meta-Learning
	2.1. MAML Method for Stock Trading
	2.2. Reptile Method for Stock Trading

	3. Results of MAML and Reptile Meta-Learning Strategies
	3.1. MAML Results for Stock Trading
	3.2. Reptile Results for Stock Trading

	4. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

