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Abstract 
Meta-learning algorithms learn about the learning process itself so it can 
speed up subsequent similar learning tasks with fewer data and iterations. If 
achieved, these benefits expand the flexibility of traditional machine learning 
to areas where there are small windows of time or data available. One such 
area is stock trading, where the relevance of data decreases as time passes, 
requiring fast results on fewer data points to respond to fast-changing mar-
ket trends. We, to the best of our knowledge, are the first to apply me-
ta-learning algorithms to an evolutionary strategy for stock trading to de-
crease learning time by using fewer iterations and to achieve higher trading 
profits with fewer data points. We found that our meta-learning approach 
to stock trading earns profits similar to a purely evolutionary algorithm. 
However, it only requires 50 iterations during test, versus thousands that 
are typically required without meta-learning, or 50% of the training data 
during test. 
 

Keywords 
Meta-Learning, MAML, Reptile, Machine Learning, Natural Evolutionary 
Strategy, Stock Trading 

 

1. Introduction 

Accessibility to large data stores for developing effective machine learning mod-
els is a valuable source of profit and insights for numerous industries and areas 
of research. However, the current requirements to have a lot of data for training 
deep learning models are a prevalent crux of applying machine learning to 
problems where little data is available or there are restrictive windows of relevant 
data on which to be trained. An example of this is the stock industry where the 
most relevant data for stock forecasting are the past few days or weeks. Me-
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ta-learning was introduced to solve this problem [1]. In meta-learning, the initial 
step is for the algorithm to train on samples of a distribution of similar tasks 
such that it generalizes to those tasks. After building the meta-model, the algo-
rithm can learn to solve a specific task with only a few data points and a few ite-
rations [2]. 

We have applied two different meta-learning algorithms, Modal-Agnostic 
Meta-Learning (MAML) [3] and Reptile [4], in the area of stock trading. While 
both MAML and Reptile use a gradient in the evolutionary strategy (ES) algo-
rithm to train on each task, they differ in how they do meta-learning. MAML 
takes the second-order gradient whereas Reptile uses the first-order gradient. 
Rather than using a typical gradient descent approach in reinforcement learning, 
we employed the evolution strategy [5], which works with a population of possi-
ble best-fit solutions to find the maximum reward. Using ES with a meta-learning 
approach towards stock trading, we show how once a meta-model is trained us-
ing MAML or Reptile, afterwards training on a specific task requires significant-
ly fewer iterations and less data for accurate and profitable trading. 

While machine learning has been applied to the stock trading in the past [6] 
[7] [8], there is much exploration required to discover how meta-learning per-
forms in this area. In our research, we use industry sector stock data to train a 
meta-model for stock trading. The goal of our algorithms is to meta-model a 
collection of stocks (trading data) well enough to make profitable purchases and 
sales of new stocks (test data) with an initial amount of money that is allotted for 
investing. 

1.1. Reinforcement Learning Overview 

Reinforcement learning (RL) teaches an agent to learn how to act from its inte-
ractions with an environment. The goal of the agent is to learn an optimal policy 
that maximizes its long-term rewards. A policy refers to the way that the agent 
takes an action in a given state [9]. 

1.2. Evolution Strategies as a Scalable Alternative to  
Reinforcement Learning 

Evolutionary strategies are an alternative to stochastic gradient descent that is 
used in reinforcement learning to optimize the policy. These strategies were 
created from the family of evolutionary algorithms [10]. We apply evolutionary 
strategy to optimize the objective function ( )f x  in reinforcement learning for 
stock trading. Natural gradient (therefore NES) works with a probability distri-
bution space parameterized by θ, ( )p xθ . It searches for the steepest direction 
within a small step in the distribution space. To find an optimal solution to the 
function, the following iterations are employed [5]:  

1) Generate a population of samples ( )( ),i iD x f x=  where ( )ix p xθ∼ . 
2) Evaluate the “fitness” of samples in D. 
3) Select the best subset of individuals and use them to update θ, generally 
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based on fitness or rank. 
In order to evaluate the “fitness” of our samples in step 2, we apply a “jitter” to 

each of the samples from step 1. The “jitter” is created through random variance 
based on a hyper parameter, sigma, which controls how much random variance 
we have in “jittering”. Then, based on the samples chosen with this random var-
iation we can do step 3 and select the samples that are best optimized to the 
function ( )f x . 

It has been shown that ES scales very well, which allows us to train deep net-
works to solve complicated reinforcement learning problems. ES has also been 
found to be a great black box optimization technique when the objective func-
tion does not have an analytic form. These factors make ES an effective alterna-
tive to deep reinforcement learning and also simpler to implement as there is no 
need for backpropagation [10]. 

1.3. Meta Reinforcement Learning as a Response to Overfitting in 
Traditional Reinforcement Learning 

Common in RL algorithms is their tendency to overfit [11]. RL struggles when it 
is faced with similar environments and needs to completely relearn in order to 
adjust. Meta-reinforcement learning (meta-RL) aims to fix this problem by pro-
gramming a computer on how to learn in more general environments so it does 
not have to completely relearn [12]. For example, say we have a two-armed ban-
dit, where one arm gives a reward and the other doesn’t. RL is easily able to learn 
which hand gives the reward but will fail if we introduce it to another two-armed 
bandit where the rewarding arm has switched. It had grown accustomed to pull 
a specific arm rather than considering the possibility that the situation had 
changed. Meta-RL would learn how to approach a general two-armed bandit 
problem rather than a specific one, giving it the ability to adjust when the 
bandit arm is different. In meta-RL, the algorithm first trains on a collection 
(distribution) of similar tasks, and then it can learn a new task fast [12]. 

2. Methods for Stock Trading  
with Meta-Learning 

The real-world stock data we used was taken from Yahoo Finance beginning on 
January 2nd, 2001. All the stock data was from the consumer cyclical sector (CC 
sector), where the stocks were priced above $50 in 2019. We chose the CC sector 
because those stocks are highly dependent on business cycles and economic 
conditions. We chose stocks of prices above $50 because we wanted to be con-
sistent in the data that we were using and because stocks with higher prices tend 
to be less erratic. One thing to note is that the stocks used were priced above $50 
in 2019, but a lot of the data used included stocks that were priced below $50 
before 2019. 

One possible drawback of sticking to a particular sector (the CC sector) is that 
the learning algorithms may struggle with stocks that are not consumer cyclical. 
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The stocks in the CC sector are typically industries such as automotive, housing, 
entertainment, and retail. Non-cyclical stocks tend to do relatively better when 
the economy is doing poorly since they do not depend on how well the economy 
is doing (an example of a non-cyclical stock is utilities)1. 

Most of the stock data (50 stocks) is used for meta-learning. This is called the 
training dataset. We test the meta-training with a test dataset, which is the data 
of a single stock. This is done by using the meta-model developed from the 
training dataset and the first 70% of the test dataset to predict the last 30%. We 
used both MAML and Reptile methods for stock trading. Our state is a window 
size of n days of stock closing prices. Based on these prices, our action is to trade 
on the following day. The NES algorithm2 trains our neural network to learn the 
optimal policy with a function that rewards a profitable trade and that punishes 
loss. Our reward function is the amount of profit or loss over our initial starting 
money and is defined as follows: 

( )current initial
reward *100

initial
− 

=  
 

                (1) 

We use the latest window with the meta-learned model to buy, sell, or hold 
stocks. 

2.1. MAML Method for Stock Trading 

Our method was constructed using an adapted version of the NES trading algo-
rithm to make it a meta-learned model based on the MAML algorithm seen in 
Algorithm 1 [3]. The NES algorithm acts as the learner for trading one stock. 
The meta-model’s goal is to learn to trade on a collection of stocks, 

 
Algorithm 1. Model-agnostic meta-learning. 

Require: p(T): distribution over tasks 
Require: α, β: step size hyperparameters 
1: randomly initialize θ  
2: while not done do 
3:    Sample batch of tasks ( )~iT p T  
4:    for all do 
5:       Evaluate ( )

iTL fθ θ∇  with respect to K  

        examples  
6:       Compute adapted parameters with 
         gradient descent: ( )'

ii Ta L fθ θθ θ= − ∇  

7:   end for 
8:   Update ( ) ( )'~Σ

i ii TT p T L fθ θθ θ β← − ∇  

9: end while 

 

 

1Further information on the CC sector can be found here at  
https://www.investopedia.com/terms/c/consumer_cyclicals.asp and  
https://www.thebalance.com/understanding-cyclical-and-non-cyclical-stocks-3141363. 
2Our NES implementation uses Husein Zolkepli’s work at  
https://github.com/huseinzol05/Stock-Prediction-Models/blob/master/agent/updated-NES-google.i
pynb. 
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updating the weights (θ) according to the action and reward received in the en-
vironment. We then model updating θ using the MAML algorithm. To do this, 
we first randomly initialized our θ. We then batched the tasks Ti, where each 
task is an individual stock in our chosen stock industry of Consumer Cyclical. 
We then loop through each of the batched individual stocks or tasks and use the 
NES algorithm to perform natural evolutions, which updates θ’ based on train-
ing from the environment on individual stocks from Ti. After all θ’ is updated, 
we loop through each θ’ to update the global θ using the NES algorithm. Now, θ 
will be updated according to the trained θ’ for each of the individual stocks, the-
reby learning the general trends of all the tasks or stocks in the Consumer Cyc-
lical industry. 

The MAML algorithm was meta-trained to build a meta-model using a dataset 
of 50 stocks within the Consumer Cyclical industry with 180 days (actual dates: 
1/2/2001 to 9/24/2001) of company closing prices starting January 2nd, 2001. Our 
test stock was called ABC and was not present in the training. During meta-test, 
the NES algorithm was trained on 70% of the dataset with the help of meta- 
model and then did its actual trading on the next 30% of the data. 

The parameters in the NES algorithm that we used were a population size of 
15, a learning rate of 0.03, and a sigma of 0.1. We limit the algorithm to buying 
or selling 5 shares at a time to stabilize training, with an initial investment value 
of $10,000. 

When implementing the NES algorithm with MAML, we set up a single expe-
riment. Our goal was to see the difference in rewards between the NES classical 
version versus the NES with MAML over the same number of epochs during the 
training process. We ran both algorithms over 10,000 epochs during their train-
ing phase. However, the NES classical trained only on 70% the ABC stock while 
the NES with MAML meta-trained on 50 stocks within the Consumer Cyclical 
industry. Additionally, we trained the NES with MAML with only 50 epochs on 
the ABC stock. We then graphed the results of simulated trading for both algo-
rithms on the last 30% of the ABC stock, which was never used in training, and 
was therefore unseen data to both algorithms. The final comparison we visua-
lized was the performance in trading, or the algorithm’s ability to decide be-
tween the actions to buy or sell the stock at precise time steps. 

2.2. Reptile Method for Stock Trading 

Reptile is a first-order derivative approximation of MAML, which requires a 
second-order derivative [13], that performs similarly but with fewer calculations, 
allowing it to be more efficient in its applications. Reptile works by initializing 
φ , the vector of initial parameters, and then iterating through these three steps 
[4]: 

1) For each task, T, evaluate the loss, LT on the weight vectors, W. 
2) Compute ( ), ,TW SGD L kφ= .  
3) Update ( )Wφ φ φ← + − .  
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Essentially, Reptile uses gradient descent to find a set of weights that has been 
generalized over a set of tasks. When the network is initialized with these 
weights and is applied to a test set, it can quickly learn that task with much less 
data than a typical machine learning algorithm and with less computational in-
tensity than MAML. 

Our Reptile implementation for stock trading used the same stock data for 
meta-training as in section 2.1. We define one task as trading on one kind of 
stock (i.e. how to trade WDC stock) based on the closing prices of some number 
of days in the past. Following the meta-learning philosophy, we trained the NES 
with Reptile on 45 of CC sector stocks such that the algorithm generalizes its 
approach to trading within the whole sector and is able to trade on new stocks in 
the same sector after only a few more iterations of training on a specific stock. 

The whole workflow of our meta-learning trading algorithm can be seen in 
Figure 1. The primary structure of our Reptile code was taken from [14]. Our 
contribution consisted of applying Reptile to the NES algorithm to find the 
maximum profit from trading. After initializing the model, we defined a set of 
global weights by which to track the meta-learning process as the machine 
trained briefly on each stock. After this meta-training, we did meta-testing by 
picking 70% of one new stock to train the NES model and tested it using the  

 

 
Figure 1. Meta-learning trading flowchart. 
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remaining 30% to see how it performed. For each time we meta-trained the 
algorithm, and ran this testing portion 10 times. We ran the meta and testing 
portion as a whole 10 times for each set of parameters we used to generalize our 
findings. Our neural network model consisted of four layers, each with a size of 
500. For the agent, we started with $10,000 with which to trade, a maximum of 5 
shares in a single day (to prevent extreme behaviors of buying and selling), and 
an incrementation rate of 1 day for the sliding window of closing prices. We also 
used a population size of 15, a learning rate of 0.03, and a sigma of 0.3. We 
found that the key to effective meta-training is to use many epochs and few ite-
rations of the NES algorithm to ensure that the model does not overfit to a single 
stock. Therefore, although we used one iteration of the NES algorithm for each 
individual stock of the 45, we trained the model on these 45 stocks with 1000 
epochs. This was done to maximize the model’s understanding of the entire sec-
tor and to give it more flexibility and accuracy during testing. 

Since we wanted to see if using the NES strategy alongside Reptile would per-
form better than the NES algorithm alone at very few iterations, we set up two 
experiments. First, in order to determine if including Reptile increases perfor-
mance, we ran the testing portion with and without prior meta-training. This 
would help us see if the meta-training helped the algorithm make better trading 
decisions at few iterations with it rather than without it. Along with the parame-
ters described above, we trained and tested on 60 days’ worth of closing prices 
(actual dates: 1/2/2001 to 3/28/2001), used a window size of 10 days, and set the 
number of pre-trading training iterations to 50. Thus, our meta-training portion 
trained on all 60 days, and, during test, the model trained on 42 (70%) days 
while 18 (30%) days were held for trading. For the trial that included the me-
ta-training, we used these same parameters for the meta portion. 

Our second experiment was to test whether the NES strategy with Reptile can 
perform the same as only the NES algorithm given less data. For this, like men-
tioned above, we compared how the algorithm performed with and without me-
ta-training. When we meta-trained the algorithm, we implemented the testing 
portion with half as much data as we gave the testing portion of the trial without 
the meta-training, but we used the same number of iterations for the testing por-
tions of both. Specifically, for both trials, we used 100 iterations of training for 
the test portion with a window size of 15 days. For the run with the me-
ta-training, we trained on 80 days (actual dates: 1/2/2001 to 4/26/2001). For test, 
our model with Reptile trained on 24 days before trading, while the run without 
the meta-training trained on 58 days before trading. We then traded on 24 days 
to see how it performed. 

3. Results of MAML and Reptile Meta-Learning Strategies 

We found that the NES with MAML resulted in smoother training and that NES 
with Reptile led to profitable trading with a fewer number of test iterations and 
data. Both of these results suggest the applicability of meta-learning strategies to 
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improve stock trading with the NES algorithm. 

3.1. MAML Results for Stock Trading 

Our NES algorithm with MAML has an advantage over the base NES algorithm 
in that it can learn how to trade over multiple stocks in the same sector. There-
fore, its training was smoother than the NES algorithm without MAML as de-
picted in Figure 2. However, it did not perform as well as NES did even with the 
same parameters for training. This is most likely because the NES algorithm is 
overfitting to the ABC stock, whereas the meta-model is training on 50 different 
stocks at a time. 

Additionally, shown in Figure 3, when running our back-test trading on new 
stock data, the base NES algorithm performed better than that with MAML. The 
equation we used to calculate the market value of the stock is the difference in  

 

 
Figure 2. Compare the training of the NES alone (left plot) and NES with MAML algorithms (right plot). The graphs show the 
mean and standard deviation of the rewards over 10 iterations of training. NES trains on just the ABC stock while NES with 
MAML trains on 50 stocks in the CC sector, the same sector as the ABC stock. As we can see NES with MAML has less va-
riance (0.2 std vs 2 std). 

 

 
Figure 3. Comparing the market testing of the NES (left plot) and the NES with MAML (right plot) algorithms. The graphs 
show the upper bound of the market value of the ABC stock without any trading (green) and the mean balance (blue) and std 
(light blue) of our algorithm over 10 tests. The test was done over 53 (30% of 180) days. 
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the value of the stock from the first day of trading multiplied by the maximum 
number of shares that can be bought in a single day (in our case 5 shares) plus 
our initial investment amount of $10,000. The equation to calculate the upper 
bound of the market value of a stock on a given day is defined as follows: 

( )market value current initial *5 10 000= − + ，              (2) 

After 53 (30% of 180) days of trading on the ABC stock, the ABC market val-
ue, starting at $10,000, ended up at a market value of $10,019 after simulating 
buying 5 shares at the beginning and holding. This emulates the same limit of 
buying stocks to which our algorithm is held. This ensures that the trading is on 
the same scale when plotting. The NES algorithm without MAML achieved an 
average value over 10 tests of $9989 and the NES algorithm with MAML achieved 
an average value of $9889.59. The blue lines in these graphs track the total bal-
ance of money throughout the trading process, so they fluctuate with stocks 
bought and sold. Since the algorithm’s goal is to maximize profit by ending with 
as high of a balance as it can, these graphs reveal to us the trading process and 
the final balance in comparison with the market value of 5 shares. 

3.2. Reptile Results for Stock Trading 

We found that using the NES with Reptile for stock trading increased perfor-
mance with very few test stage iterations when compared to using the NES 
alone. Regarding our first experiment, we wanted to emphasize that using NES 
with Reptile before training on a specific stock increased the performance on 
trading that stock. When we trained the algorithm with one stock at 50 iterations 
before testing, the model that had prior meta-training with Reptile performed 
$1.24 better than the model that only trained with the NES approach. To meas-
ure performance in our first test using only 50 iterations of training before test-
ing, we compared the profits made during trading over 18 days of Western Dig-
ital Corp (WDC) stock with the NES algorithm with and without Reptile. With 
Reptile, averaging ten tests, our model made $1.47 while without Reptile, it made 
$0.23 (Figure 4). 

When we tested the performance between NES with Reptile with half of the 
testing training data and NES alone at 100 iterations, the NES with Reptile still 
performed $1.09 better. To measure the performance of NES with Reptile using 
50% of the training data during the test stage, we compared the training of the 
NES algorithm using 100 iterations on 48 days to the Reptile-enhanced NES with 
the same number of iterations but only trained on the previous 24 days. Trading 
over 24 days, the average results of 10 experiments with reptile on half the data 
averaged $2.99 profit, while NES alone training and testing as normal averaged a 
profit of $1.90 over ten trials. Therefore, using NES with Reptile with half as 
much training data available during testing, our model performed $1.09 better 
and made a profit (Figure 4). 

We can see in Figure 4 that during trading in both tests our algorithm de-
cided to buy stocks at the point it predicted the market value of the stocks to  
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Figure 4. The mean balance and market price of WDC stock over the 18 and 24 days for both of our tests (base NES market 
test on the left, Reptile market test on the right). Notice how many stocks were bought the 4th day of trading for 60 days of 
stock and the 7th day for 80. We can see the decreasing balances which represent stock purchases after the market prices reach 
local maximum so that the algorithms can make a profit. In both tests, the NES algorithms with Reptile performed better end-
ing with high balances and earning a profit. 

 
be lower and sold once the market value began to rise. The blue line in these 
graphs depicts the mean balance held over 10 trading tests for each of our expe-
riments. The green line represents the market value of the stocks over the 18 and 
24 days of trading. In both experiments, our mean money held ended as more 
than the initial $10,000 with which we started, meaning we made profit. In our 
first test, our meta-learning algorithm trained on 60 days with a window size of 
10 and ended with $10,001.47, meaning that it made a $1.47 profit. In our 
second test, our meta-learning algorithm trained on 80 days with a window size 
of 15 and ended with $10,002.99. 

To observe the performance of our meta-training, NES with Reptile was run 
on 45 different stocks over 1000 iterations. The model performance consistently 
increased to $0.18 and $0.23 of profit for our two experiments of different win-
dow sizes. Averaging 10 trials, we plotted the mean reward and standard devia-
tion of our training curves as seen in Figure 5. 

4. Conclusion 

It has been a great challenge for deep learning methods to learn from small  
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Figure 5. The meta-training curve of our experiments of different window sizes, where 
the models were trained successfully after 1000 epochs reaching average rewards of $0.18 
and $0.23 over 45 same-sector stocks. 

 
amounts of data. Meta-learning offers a promising technique to learn from pre-
vious tasks to enable efficient learning of new tasks. As far as we know, this pa-
per is the first to study applying meta-learning to stock trading. To implement 
this, we used two common meta-learning algorithms, MAML and Reptile, to 
improve the NES algorithm to simulate an agent buying and selling on one stock 
in a particular sector of the stock market. When we employed NES with MAML, 
the model was trained more consistently than the evolutionary strategy alone, 
though it did not profit on the market as much as it did when it was trained only 
with NES. To increase our profit using MAML, we may need to, in the future, 
increase the number of epochs used in training the model on specific stocks. We 
can also explore the MAML method’s potential by testing on multiple stocks. 

Applying NES with Reptile yielded profit, even with a relatively small number 
of epochs for the meta-learning portion. We saw that the NES algorithm with 
Reptile made more money than without. Additionally, NES enhanced by Reptile 
outperformed NES alone when given fewer data points on which to train for a 
single stock. Although the NES with Reptile was an overall success, there is still 
much to be explored with this strategy. Increasing the number of epochs for the 
meta-portion of this algorithm as well as the number of days on which the mod-
el trains and tests may increase performance and profit. 
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Overall, we have seen that meta-learning can contribute to machine learning 
of stock trading. Certainly, our research can be extended into other areas within 
the stock market besides trading. However, our implementation of the NES 
strategy with MAML and Reptile is a good starting point for continued research 
in this area. 
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