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Abstract 
We propose a new description of a nucleon as a pair of pions. The baryon 
number of our description of nucleon is not 1 but 0. However, this is proba-
ble because the proton spin crisis shows that the baryon spin cannot tell the 
number of composing quarks anymore. Because we use the derived pion wave 
function to describe a nucleon, our description has automatically the pionic 
degree of freedom and can be compared to the constituent quark model. Us-
ing this description, we investigate the electric charge and magnetization 
density functions of protons and neutrons. The electric charge density func-
tion of neutron is quite similar to those of Galster model and Maints data ex-
cept the magnitude of singularity. The density functions of proton also show 
the similar behavior as those of Kelly’s except near origin. Taking the Fourier 
transform of the density functions, we obtain the Sachs electromagnetic form 
factors that can be compared to those in the parametrization derived by Ye et 
al. 
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1. Introduction 

The proton and neutron electromagnetic form factors (e.m. FFs) are key com-
ponents for understanding the charge and magnetization distributions within 
nucleons. In the past 20 years, a new generation of experiments, frequently uti-
lizing polarization of freedom, has provided new knowledge regarding our un-
derstanding of the form factors [1] [2]. The parametrization work proposed by 
Ye et al. [3] to analyze the form factors including uncertainties used the com-
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plete world data set for electron scattering and applied their best knowledge of 
two photon exchange (TPE) corrections. From the viewpoint of the charge and 
magnetization distributions within nucleons, which are principal reasons to in-
vestigate e.m. FFs, we need to investigate the wave functions (WFs) of nucleon 
directly. Under the constituent quark model (CQM), Chung and Coester [4] de-
veloped the light-front calculation of the nucleon FF using a Gaussian WF in the 
quark internal (transverse) momentum variables. This model yields good 
agreement with the observed [ ] [ ]P P

E MG G  ratio, but its nucleon FF decreases too 
quickly at larger 

2
Q


. Schlumpf [5] used the power law dependence of the 
quadratic internal momentum variables in the nucleon light-front WF and 
showed reasonable results for the power behavior of the FF at larger 

2
Q


. The 
WF of Schlumpf was used by Frank [6] and Millar [7]. Cardarell [8] used the 
rest-frame WF obtained by the Capstich-Isgur model [9] and found it to yield 
a significant content of high-momentum components, which are generated by 
the short range portion of quark-quark interactions. A comparable amount of 
high-momentum components in the nucleon WF was obtained in the Gold-
stone-boson-exchange quark model (GBE CQM), and this led to the nucleon 
e.m. FFs in point-like form [10] [11] [12] [13] [14]. The covariant CQM calcu-
lation yielding fairly good agreement with the nucleon FF was performed by 
Gross and Agbite [15]. For the pion cloud model, Miller [16] performed a 
light-front cloudy bag model calculation. This chiral quark model includes the 
perturbative pions, and is improved by Faessler [17]. A non-perturbative ap-
proach that combines both quark and pion degrees of freedom and interpolates 
between CQM and the SKyrum model (where the nucleon appears as a soliton 
solution of an effective nonlinear pion field) is the chiral soliton model (χQSM), 
in which the baryon density is not exactly Gaussian but is quite close to it. 
Another approach to the estimation of Sachs e.m. FFs results from the genera-
lized parton distribution scheme (GPD) [18] [19] [20]. In this scheme, the 
three-parameter modified Regge mode provides a good description in the range 
of low 

2
Q


 to large 
2

Q


, but the ratio of [ ] [ ]P P
E MG G  becomes negative 

beyond 8 (GeV2), which does not fit the data [21]. Because this analysis was 
conducted in momentum space, it was necessary to take the Fourier Transform 
to obtain the charge and magnetization density functions (distribution func-
tions). In this paper, we propose a new description of a nucleon, i.e., a pion pair, 
in configuration space (r-space) and show that the charge and magnetization 
density functions follow directly from this description. Taking the Fourier 
transform, we derive the Sachs e.m. FFs, which are comparable to those in Ye et 
al. [3]. This means that we can investigate the Sachs e.m. FFs and the charge and 
magnetization density functions with opposite ordering, in contrast to Kelly’s 
way [22]. 

To clarify, we list here the symbols and parameters. 
[ ] [ ],P P
ch mρ ρ : electric charge and magnetization density functions of proton.  
[ ] [ ],N N
ch mρ ρ : electric charge and magnetization density functions of neutron. 
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[ ] [ ],P P
ch mρ ρ  : proton intrinsic FFs that are Fourier transform of electric charge 

and magnetization density functions. 
[ ] [ ],N N
ch mρ ρ  : neutron intrinsic FFs that are Fourier transform of electric charge 

and magnetization density functions. 
,P Nn n : parameters of the power of exponentials of proton and neutron these 

are used for both density functions and Sachs e.m. FFs. 

,P Nm m : parameters of the coefficient of r or 
2

Q


. 

β : range parameter for density functions. 
p: parameter of the coefficient of logarithmic term of Sachs e.m. FFs. 

2. Derivation 
2.1. Basic Concept 

To date, there have been several proposed descriptions for a nucleon. One of 
these is the pion cloud model, which introduces an elementary, perturbative 
pion couple to the constituent quark model (CQM) such that chiral symmetry is 
restored. Noting the fact that the contribution of quark spins to the spin of a 
proton is small, i.e., the proton spin crisis [23], it is a fair consideration that 
nucleons are described only by the pion pair as far as the e.m. FFs are concerned. 
Baryon number of our case is not 1 but 0, however, proton crisis tells that the 
composing quark intrinsic spin does not contribute to that of baryon. This indi-
cates that the baryon spin cannot tell the number of the composing quarks. The 
reason is following. It is quite reasonable consideration that the spin of all ba-
ryons are not determined by their composing quark intrinsic spin because all 
baryons decay to proton as a final state. The baryon number 1 comes from the 
assumption that the number of quarks is three for all baryons, and this assump-
tion is based on the consideration that the composing quark intrinsic spin de-
termines that of baryon. Proton spin crisis shows that this assumption lost the 
experimental support. Then, it is probable to consider that baryon number is not 
1. Thus, we propose the description of nucleon as a pion pair even though ba-
ryon number is 0. Normally, the simplest description of a proton is uud (up, up, 
down) and that of a neutron is udd (up, down, down), while our description of 
proton is a 0π π+ −  pair composed of ( ) 2ud uu dd− + , and that of a neu-
tron is a π π+ −−  pair composed of ud ud− . The most important feature of 
the WFs is to describe the e.m. FFs because the electric charge and the magneti-
zation density functions (distribution functions) are directly connected to them, 
as shown by Kelly [22]. We derived the pion ( )( )π π+ −  WF based on the ha-
dronic operator proposed by Suura [24] [25] in a previous paper [26]. The de-
rived charged pion WF that we use in this paper is Gaussian/r in configuration  

space (r space) thus the density function is 23Gaussian 1, ;
2

F Q ×  
 

 in momen-

tum space as shown later section. 231, ;
2

F Q 
 
 

 is the one of Kummer’s conflu-
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ent hyper geometric series. Therefore this is quite similar to the constituent  
quark model (CQM) using with Schlumpf’s 2Q  polynomials momenta. There-
fore we can expect our e.m. FFs become similar to these of CQM except their 
behavior in larger 2Q  region because two pion moves independently in this re-
gion as we explain later section. Thus, as far as e.m. FFs are concerned, we con-
sider a proton and a neutron to be described as 0π π+ −  and π π+ −− , respec-
tively. 

2.2. Basic Concept of Evaluation 

The Bethe-Salpeter-like amplitude of the hadronic operator applied in this paper 
is defined as  

( ) ( )1,2 0 1,2q Pχ =                     (1) 

where 0  and P  denote a vacuum and the physical state, respectively.  
The gauge-invariant bi-local operator ( )1,2q  is defined in the non-Abelian 

gauge field as 

( ) ( ) ( ) ( )2

1
1, 2 2 exp d 1

2
c a a

rq T q P ig x A x qβ α
λ+  =  

 
∫




          (2) 

here α  and β  denote the Dirac indices, P denotes the path ordering, and the 

2
aλ  components are generators of the adjoint representation of the SU (N).  

color gauge group. The trace is calculated for color spin a. Suura first proposed 
this definition [24] [25], and later applied it to the case of the light meson mass 
spectra, the t’Hooft model, and the pion e.m. FF [26] [27] [28]. In the case of 
pions, quarks (and antiquarks) are specified as u ( u ) and d ( d ), however, as we 
previously described [26], we obtained the pion wave function with eigenvalues 
and eigen functions of the equation of motion for a ( )1,2χ  system. Thus, we 
can describe the 0π π+ −  pair as ( )1,2χ  and ( )3, 4χ . Here, we describe 0π  
as just one Bethe-Salpeter-like amplitude even though 0π  is desdribed as 
( ) 2uu dd+ . As mentioned in section 2, the derived pion WF in Ref. [26] is 
for a charged pion. We cannot expect the WF of 0π  to be the same as that of 
charged pion, but the mass of 0π  is very close to that of charged pion. Thus, we 
assume that 0π  is also described as the same form of the Bethe-Salpeter-like 
amplitude of the hadronic operator as that of the charged pion.  

2.3. Evaluation 

The basic concept of our evaluation is as follows. 
Because baryons are represented as initially binding meson pairs as described 

in subsection 5, at 
2

0Q =


 and for the small 
2

Q


 case, the 0π π+ −  pair has 

the same origin. For simplicity, both of quarks are in the same position. Howev-

er, when 
2

Q


 is large, both π +  and 0π  gradually move freely with respect to 

each other and both π +  and 0π  move totally independent of each other, 
which is as the same concept as asymptotic freedom. 
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2.3.1. Density Functions 

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

0

0

2†
1

3†
1

2†
1

3†
1

11;2,3 2 exp d 1
2 2

3 exp d 1
2

1 2 exp d 1
2 2

3 exp d 1
2

c a a
r

c a a
r

c a a
r

c a a
r

q T q P ig x A x q

T q P ig x A x q

T q P ig x A x q

T q P ig x A x q

π

π

π

π

λ

λ

λ

λ

+

+






  =      

  +   
  

  +      
   +       

∫

∫

∫

∫

















      (3) 

At first (
2

0Q =


), the 0π π+ −  pair is described as 
where ( ) ( )0,π π+  means that each described hadronic operator corresponds to 
π +  and 0π , respectively. 

Note that Equation (3) promises the evenly charged wave function and that 

the total factor 1
2

 keeps proton charge at +e, and that the positions of both π +  

and 0π  quarks are at the same point (
2

0Q =


). 

The latter 1
2

 part is essentially same as the former 1
2

 part when we do not 

consider the charge distribution. Because our concern is the wave function of the 
0π π+ −  system, the Bethe-Salpeter-like amplitude can be defined as 

( ) ( )1;2.3 0 1;2.3q Pχ =                     (4) 

where  

( ) ( ) ( )1;2,3 1,2 1,3q q q= +  

here, we dropped the factor 1
2

 for simplicity. When considering charge distri-

bution function, we consider this factor again. 
Then equation of motion of ( )1;2,3q  becomes 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

2

1
2

1
3 3

1 1

1;2,3 1, 2 1,3

2 1, 2 1, 2 1 d 1, 2;

d 1, 2; 3 1,3 1,3 1

d 1,3; d 1,3;

E

B

E B

i q i q i q
t t t

i q q i g xq x

g x q x i q q i

g xq x g x q x

α α

α α α

α

∂ ∂ ∂
= +

∂ ∂ ∂

= − ⋅∇ − ⋅∇ +

+ ⋅ × − ⋅∇ − ⋅∇

+ + ⋅ ×

∫

∫

∫ ∫





 

 

 

 

 









 (5) 

( ) ( ) ( ) ( )1, ; , ,1
2

a a
oq s x q s U s x O U x

λ+=



 

where  

( ) ( )
1

,1 exp d
2

s a aU s P ig x A x
λ ≡  

 
∫



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0k kα γ γ=  

O is any operator, 2,3s =  and µγ  is γ  is matrices. 

We previously obtained the equation of ( )1,i q s
t
∂
∂

 [28].  

Because we consider every quark mass to be zero, the center of mass coordi-
nate and two relative coordinates can be written 

( ) ( )

1 2 3

1 2
2 1 3 1

3
,

r r r
G

r r r r r r

+ +
=

= − = −

  



     

                     (6) 

Then 

( ) ( )

( ) ( )

( ) ( )

1 2
1

1 2
2

1 2
3

1 1
3 3
2 1
3 3
1 2
3 3

r G r r

r G r r

r G r r

= − −

= + −

= − +



  



  



  

                      (7) 

Thus, the derivatives are  

( ) ( ) ( )

( ) ( )

( ) ( )

1 2
1

1

2

11
3

12
3
13
3

r G r r

G r

G r

∂ ∂ ∂ ∂
∇ = = − −

∂ ∂ ∂ ∂
∂ ∂

∇ = +
∂ ∂
∂ ∂

∇ = +
∂ ∂







 













                (8) 

Remembering that ( ) l
l

s

s
r

α α ∂
⋅∇ =

∂



  ( 1, 2,3s = ), the kinetic term becomes 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )1 2

2 1,2 1,2 1

, 1,2 , 1,2 1,2
3

l l l
l l l

i q q i

i q i q q i
G r r

α α

α α α
+

− ⋅∇ − ⋅∇

∂ ∂ ∂  = − − +   ∂  ∂ ∂ 

 

 

     (9) 

Similarly 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )2 1

3 1,3 1,3 1

, 1,3 , 1,3 1,3
3

l l l
l l l

i q q i

i q i q q i
G r r

α α

α α α
+

− ⋅∇ − ⋅∇

∂ ∂ ∂  = − − +   ∂  ∂ ∂ 

 

 

    (10) 

We consider the gauge field string only for the straight line case. Thus, the 
hadronic operator ( )1,2q  is decomposed in the relative coordinate system as 

( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )1 1 1 1 1 1
0 1 2 3ˆ ˆ1, 2q q r i r q r q r i r q rα β β α= + ⋅ + + ⋅

      (11) 

where ( ) ( )1 1r r=
  

Because ( )( ) ( )( )1 1
0 10, 0q r q r= =  (as we previously showed [26]), only term 

we have to deal with is ( )
( )( ) ( )( )( )1 1

32
ˆ

l
i i r q r

r
β α∂

⋅
∂



. 
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( )

( )

( ) ( )

( )

( )

11

2 1 2 1
0

m
l m l m m

l
l

xxi i
r r x r

β α α βα α
 ∂ ∂

− = =  ∂ ∂  
           (12) 

( )
( )( ) ( )1

2
0 2,3sl

q r s
x
∂

= =
∂

               (13) 

here, we denote that ( ) ( )p l p
lr x=  ( 1,2p = ), so that ( ) ( ) ( ) ( )1 1 2 1 2 1 2

1 2 3r x x x= + +  

Thus,  

( ) ( )2
1, 2 0l

l
q i

r
α ∂

=
∂

                    (14) 

Similarly 

( ) ( )1
1,3 0l

l
q i

r
α ∂

=
∂

                    (15) 

Therefore, the kinetic terms in the relative coordinate system become  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )1 2

2 1, 2 1, 2 1 3 1,3 1,3 1

, 1,2l l
l l

i q q i i q q i

i q i
r r

α α α α

α α

− ⋅∇ − ⋅∇ − ⋅∇ − ⋅∇

∂ ∂   = − −   ∂ ∂   

   

   

  (16) 

The integral terms in relative coordinate system become 

( ) ( )( ) ( )( ) ( )
( )122 1 1

1 0
d 1,2; d

2
r

E
gg xq x zq r z r z q z= − − −∫ ∫

         (17) 

( ) ( )( ) ( ) ( )( ) ( )
( )122 1 1

1 0
ˆd 1,2; d d , ,

2
t r

B
gg x q x t r t t zq t r z q t zα α δ

−∞
′ ′ ′ ′⋅ × = ⋅ − −∫ ∫ ∫

   (18) 

( ) ( )( ) ( )( ) ( )
( )223 2 2

1 0
d 1,3; d

2
r

E
gg xq x zq r z r z q z= − − −∫ ∫

         (19) 

( ) ( )( ) ( ) ( )( ) ( )
( )223 2 2

1 0
ˆd 1,3; d d , ,

2
t r

B
gg x q x t r t t zq t r z q t zα α δ

−∞
′ ′ ′ ′⋅ × = ⋅ − −∫ ∫ ∫

   (20) 

We obtained these equations were obtained previously [26]. 
Thus, the equation of motion for ( )1;2,3q  is expressed by the following in-

dependent equations in the relative coordinate system. 

( )( ) ( )
( )( ) ( )( ) ( )( ) ( )

( )

( )( ) ( ) ( )( ) ( )
( )

1

1

1

2
1 1 1 1

0

2
1 1

0

, d
2

ˆd d , ,
2

r

r

t r

gi q r i q r zq r z r z q z
t

g t r t t zq t r z q t z

α

α δ
−∞

∂  = − ⋅∇ − − − ∂

′ ′ ′ ′+ ⋅ − −

∫

∫ ∫







    (21) 

( )( ) ( )
( )( ) ( )( ) ( )( ) ( )

( )

( )
( ) ( )( ) ( )

( )

2

2

2

2
2 2 2 2

0

22
2

0

, d
2

d d , ,
2

r

r

t r

gi q r i q r zq r z r z q z
t

g t r t t zq t r z q t z

α

α δ
−∞

∂  = − ⋅∇ − − − ∂
 
′ ′ ′ ′+ − −  
 

∫

∫ ∫








・
   (22) 

Thus, the WF of the ( )0  π π π+ −−  pair, pairχ , is described as 
( )( ) ( )( )1 2

1 2pair c r c rπ πχ χ χ= +                  (23) 

where  
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( )

2
21

8
 

g L
r

er const
rπχ

−

=                      (24) 

We obtained the pion WF (Equation (24)) in our prior analysis [26]. 
Therefore, the magnetization density function and the basis of the electric 

charge density function of a proton are described as 

[ ] ( )
( )( )

( )

( )( )
( )

2 22 21 21 1
2

8 82
1 1 2

e e
g L g L

r r
P

mag d m
r r

ρ
− − 

 
= + 

 
 

            (25) 

[ ] ( )
( )( )

( )

( )( )
( )

2 22 21 21 1
2

8 82
2 1 2

e eBasis

g L g L
r r

P
ch d e

r r
ρ

− − 
 

= + 
 
 

          (26) 

here, we combine the latter part of Equation (3) so that the correct magnetiza-
tion and charge of proton are obtained in Equation (25) and Equation (26). This 

is because we dropped the factor 1
2

 in the derivation. 

By definition, ( )1r  and ( )2r  have the same origin. Thus, considering the di-
rection of momentum Q



 to be the z-axis, ( )1r  and ( )2r  can be expressed by 
polar coordinates as 

( ) ( )( ) ( ) ( )( )1 1 2 2
1 1 2 2, , , , ,r r r rθ φ θ φ= =

                (27) 

Denoting the angle between ( )1r  and ( )2r  as θ  and ( )1r  to r , that is, 
considering ( )1r  as r , the magnetization density function of a proton is writ-
ten 

[ ] ( )
( )

2 2
221 1

0

2
cos

8 82
1 01 1 1

e esin d d
cos

g L g L
r r

P
m d m

r r

θ

ρ θ θ φ
θ

− −
π 2π

 
 

= + 
 
 

∫ ∫     (28) 

where ( )2 1 2 1 2 1cos cos cos sin sin cosθ θ θ θ θ φ φ= + −  
Taking integration to eliminate the 2θ  and 2φ  dependence, the actual form 

of magρ  can be written as 
[ ]

( )
( )( ) ( )

22 2
2 222 11 11 cos cos

84 42
1 2 2 1 12 2 20 0 0 0

e e e4 d d sin d 2

P
m

g Lg L g Lrr r

d m
r r r

θ θ

ρ

θ φ θ φ
− +− −

π 2π π 2π

=

  
  
π + +  

  
  

∫ ∫ ∫ ∫
 (29) 

To obtain the electric charge density function of a proton [ ]P
chρ , we need more 

careful consideration because of the asymptotic freedom as mentioned in sec 2-3. 

As 
2

Q


 becomes larger, r is smaller, [ ]P
chρ  becomes the summation of two in-

dependent ( ) 2
rπχ  terms. 

To be precise, [ ]P
chρ  behaves as 

1) as 0r → , 
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[ ] ( ) ( )

2
21

42
2 2

e2 4

g L
r

P
ch d e

r
ρ

−

π→                  (30) 

2) as r →∞ , 

[ ] ( )
( )( ) ( )

22 2
2 222 11 11 cos cos

84 42
1 2 2 1 12 2 20 0 0 0

e e e4 d d sin d 2

g Lg L g Lrr r
P

ch d m
r r r

θ θ

ρ θ φ θ φ
− +− −

π 2π π 2π

  
  

→ π + +  
  

  

∫ ∫ ∫ ∫  (31) 

The angular integrations become 

( )( )
2 2

22 21 11 cos
8 8

3
2 2 1 1 2 20 0 0 0

e ed d sin d 4
cos

g L g L
r r

r r

θ

θ φ θ φ
θ

− + −
π 2π π 2π

= π∫ ∫ ∫ ∫       (32) 

( )

( )

2 2
2 21 1cos

4 4
3

2 2 1 1 2 20 0 0 0

e ed d sin d 4
cos

g L g L
r r

rr

θ

θ φ θ φ
θ

− −
π 2π π 2π

= π∫ ∫ ∫ ∫         (33) 

where ( )2 1 2 1 2 1cos cos cos sin sin cosθ θ θ θ θ φ φ= + −  
Thus, the magnetization density function and the electric charge density func-

tion of a proton are represented by 

[ ] ( ) ( )
2

21
42 2

1 2

e4 1 3

g L
r

P
m d m

r
ρ

− 
 

= π + π 
 
 

               (34) 

[ ] ( )

( )
( )

( )

2
21

2
21

242
2 2

24
2

2

e4 2 exp

e1 3 1 exp

P

P

g L
r n

P
ch

P

g L
r n

P

rd e
mr

r
mr

β

ρ

β

−

− +


    = π −      


          + + π − −      +         

       (35) 

In Equation (35), the 
2

exp
Pn

P

r
m

   −    
 term shows at what radius asymptotic 

freedom begins and we treat the ,P Pm n  and β  values as parameters. 

For a neutron, we consider that it is constructed of a π π+ −−  pair as men-
tioned in sec. 2-1. Because π −  is an antiparticle of π + , the WF of π −  can be 
considered to be the same as that of π + . Therefore, the basis of the electric 
charge density function of a neutron is represented as 

[ ] ( )
( )( )

( ) ( )
( )( )

( )

( )
( )( )

( )

( )( )
( )

2 22 21 21 1

2 22 21 21 1

2

8 82
2 1 2

2

8 82
2 1 2

e eBasis

e e

g L g L
r r

N
ch

g L g L
r r

h e e
r r

h e
r r

ρ
− −

− −

 
 

= + − 
 
 

 
 

= − 
 
 

        (36) 
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Using the same consideration for the vectors ( )1r  and ( )2r  as that of a pro-
ton, the basis of the electric charge density function becomes 

[ ] ( )
( )( ) ( )

( )

( ) ( )

22 2
2 222 11 1

2
21

1 cos cos
84 42

2 2 2 1 12 2 20 0 0 0

42 2
2 2

e e eBasis 4 d d sin d 2
cos cos

e4 1

g Lg L g Lrr r
N

ch

g L
r

h e
r r r

h e
r

θ θ

ρ θ φ θ φ
θ θ

− +− −
π 2π π 2π

−

  
  

= π − −  
  

  
 
 

= π − π 
 
 

∫ ∫ ∫ ∫

 (37) 

For the magnetization density function of a neutron [ ]N
mρ , the form is the 

same as the basis of the electric charge density function, but positive. Then [ ]N
mρ  

is represented as 

[ ] ( ) ( )
2

21
42 2

1 2

e4 1

g L
r

N
m h m

r
ρ

− 
 

= π π − 
 
 

               (38) 

For the electric charge density function of neutron, we again consider asymp-

totic freedom. At large r (small 
2

Q


), they move with the same origin, but, at 

small r (large 
2

Q


), π +  and π −  move independently. 

To be precise,  
3) as 0r → ,  

[ ] ( ) ( )

2
21

42
2 2

e4 2

g L
r

N
ch h e

r
ρ

−

→ π                   (39) 

4) as r →∞ ,  

[ ] ( ) ( )
2

21
42 2

2 2

e4 1

g L
r

N
ch h e

r
ρ

− 
 

→ π − π 
 
 

               (40) 

Using the same expression resulting from asymptotic freedom for the proton 
case, [ ]N

chρ  is represented by 

[ ] ( )

( )
( )

( )

2
21

2
21

242
2 2

24
2

2

e4 2 exp

e1 1 exp

N

N

g L
r n

N
ch

N

g L
r n

N

rh e
mr

r
mr

β

ρ

β

−

− +


    = π −      

          + − π − −      +         

        (41) 

where ,N Nm n  and β  are parameters. 

2.3.2. Form Factors 
To evaluate the Sachs e.m. FFs of protons and neutrons, i.e., [ ] [ ] [ ], ,P P N

E M EG G G  

and [ ]N
MG , we adopt the following relations proposed by Mitra and Kumari [29]. 
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Accordingly, intrinsic FFs ( )m kρ  and ( )ch kρ  are related to the Sachs e.m. 

FFs ( )2

MG Q


 and ( )2

EG Q


 as 

( ) ( ) ( )221ch Ek G Qρ τ= +


                    (42) 

( ) ( ) ( ) ( )221m Mi k G Qµ ρ τ= +


                  (43) 

where 
( )

2

22

Q

M
τ =



, i = P or N ( Pµ  and Nµ  are the magnetic moment of a 

proton and a neutron, respectively). 

and ( )kρ s are the Fourier transform of the electric charge and magnetization 
density functions of a nucleon.  

Under relativistic consideration, the relationship between 2k  and 
2

Q


 is 
2

22

1

Q
k q

τ
= →

+



  

and for the nonrelativistic case, the relationship between k q=
  and Q



 is 
k q Q= →



 . 
We derived the electric charge and magnetization density functions in sec 2-3 

(a) so that in principle, we only need to take the Fourier Transforms to obtain 
the Sachs e.m. FFs.  

For the magnetization density functions, we can use the Fourier transform di-
rectly. However, for the electric charge density functions, we cannot use the ex-
act transformations because that the rigorous Fourier transform cannot reflect 
the asymptotic freedom characteristics in momentum space. Thus, in the electric 
charge density function case, we take the Fourier transform of the basis of the 
electric charge density functions and express the asymptotic freedom in mo-
mentum space by adopting a description similar to that used in the configura-
tion space. We then use the relation of Equation (42) to obtain the Sachs FFs of 

EG . The electric charge density functions of protons and neutrons were given in 
sec. 2-3 (a) as 

[ ] ( )
( )( )

( )

( )( )
( )

2 22 21 21 1
2

8 82
2 1 2

e eBasis

g L g L
r r

P
ch d e

r r
ρ

− − 
 

= + 
 
 

           (44) 

[ ] ( )
( )( )

( )

( )( )
( )

2 22 21 21 1
2

8 82
2 1 2

e eBasis

g L g L
r r

N
ch h e

r r
ρ

− − 
 

= − 
 
 

           (45) 

Note that, other than the proportional constants, the only difference between 
Basis [ ]P

chρ  and Basis [ ]N
chρ  is the sign. 

Considering again the direction of longitudinal momentum Q


 to be the z 
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axis and considering the polar coordinates ( ) ( )( )1 1
1 1, ,r r θ φ=

  and  

( ) ( )( )2 2
2 2, ,r r θ φ=

 , and again considering ( )1r  as r , the Fourier transform of 

Basis [ ]P
chρ  and Basis [ ]N

chρ  can be expressed as 
[ ] ( )

( )( ) ( )

( )

1

22 2
2 222 11 1

,

cos2
1 10 0

1 cos cos
84 4

22 2 20 0

Basis

2 d sin d e

e e ed d 2
cos cos

P N
ch

i q r

g Lg L g Lrr r

q k

const r r

r r r

θ

θ θ

ρ

θ θ

θ φ
θ θ

∞ π −

− +− −
π 2π

=

= π

  
  

× +  
  

  

∫ ∫

∫ ∫







 

     (46) 

where ( )2 1 2 1 2 1cos cos cos sin sin cosθ θ θ θ θ φ φ= + − . 
For the second line, we take 2 1φ φ φ− = . 
The first term of Equation (46) becomes 

2
21

1
4

cos2
1 1 20 0

2 2

2 22
1 11

2
1

eFirst term 2 d sin d e

34 exp 1; ;
22

2

g L
r

i q rconst r r
r

q q
const F

g L g Lg L

const F
g L

θ

π

θ θ
−

∞ π −= π

   π    = π −
   
   

π
= π

∫ ∫




       (47) 

where ( ); ;F zα β  is the Kummer’s confluent hypergeometric series.  
We showed this integral result previously [26]. 
The second and third terms of Equation (46) become 

( )
( )( )

2
221 1 cos

8
2

2 1 1 1 20 0 0 0

22

22
11

Fourier cosine of the second term

e2 d d 2 d sin d cos cos
cos

22 exp

g L
r

const r r q r
r

q
const

g Lg L

θ

θ φ θ θ θ
θ

− +
π 2π ∞ π

= π

 π π  = π −
 
 

∫ ∫ ∫ ∫




 (48) 

( )
( )( )

2
221 1 cos

8
2

2 1 1 1 20 0 0 0

2 22
2

2 2 2
1 1 1

Fourier sine of second term

e2 d d 2 d sin d sin cos
cos

4 1 32 exp ; ;
2 2

g L
r

const r r q r
r

q q
cons q F

g L g L g L

θ

θ φ θ θ θ
θ

− +
π 2π ∞ π

= π

   π    = π −
   
   

∫ ∫ ∫ ∫


 



 (49) 

( )
( )

( )

2
221 cos

4
2

2 1 1 1 20 0 0 0

22

22
11

Fourier cosine of the third term

ed d 2 d sin d cos cos
cos

22 exp

g L
r

const r r q r
r

q
const

g Lg L

θ

θ φ θ θ θ
θ

−
π 2π ∞ π

= π

 π π  = π −
 
 

∫ ∫ ∫ ∫




  (50) 
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Fourier sine og third term 0=                   (51) 

Therefore, the Fourier transform of the basis of the electric charge density 
function of protons and neutrons becomes 

[ ] ( )
3

2 2
2 2

2 22 2
1 11 1

2 2 2

2 2 2
1 11 1 1

2
2

2
1

Basis

1 32 4 exp ; ;
2 2

2 2 21 1 1log exp
!

4 exp

P
ch

n
n

n r

q

q q
const F q F

g L g Lg L g L

q q q
p

n rg L g L g LQ

q
g L

π

ρ

∞

= =

    π π    = π + −    
   

         + − −            
 
 + π −

  

∑ ∑



 



  







   (52) 

[ ] ( )
3

2 2
2 2

2 22 2
1 11 1

2 2 2

2 2 2
1 11 1 1

2
2

2
1

Basis

1 32 4 exp ; ;
2 2

2 2 21 1 1log exp
!

4 exp

N
ch

n
n

n r

q

q q
const F q F

g L g Lg L g L

q q q
p

q n rg L g L g L

q
g L

π

ρ

∞

= =

   π π    = π − + −
   
   

         + − −            

 
 + π −
 
 

∑ ∑



 



  







   (53) 

Thus, 
[ ] ( ),

3
2 2

2 2
2 22 2

1 11 1

2 2 2

2 2 2
1 11 1 1

2
2

2
1

Basis

1 32 4 exp ; ;
2 2

2 2 21 1 1log exp
!

4 exp

P N
ch

n
n

n r

q

q q
const F q F

g L g Lg L g L

q q q
p

q n rg L g L g L

q
g L

π

ρ

∞

= =

    π π    = π + −    
   

         + − −            
 
 + π −

  

∑ ∑



 









 





  

 (54) 

where p is parameter. 
Ye et al. used relativistic considerations for their parametrization work [3]. 

However, in our case, we use nonrelativistic consideration, in which k q=
  

simply relates to Q


. According to Kelly [22], if one knew how to obtain an 
intrinsic form factor ( )kρ  from data for appropriate Sachs form factor, the 
intrinsic density could be obtained simply by inverting Fourier transform 
and the naïve nonrelativistic inversion method assumes that k Q→  and 
( ) ( )2k G Qρ →  where ( )2G Q  is the appropriate Sachs form factor. However, 
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the reason why the nonrelativistic inversion was abandoned is that it produces 
unsatisfactory results. The corresponding radial densities have an unphysical 
cusp at the origin and rather hard cores. However, even using relativistic inver-
sin method, this has unphysical failor. Again according to Kelly [22], it is that 
unique relativistic relationship between the Sachs form factors measured by 
electron scattering at finite 2Q  and the static charge magnetization densities in 
nucleon rest frame do not exsit. The basic problem is that electron scattering 
measures transition matrix elements between state of a composite system that 
have different momenta and the transition densities between such states are dif-
ferent from the static densities in the rest frame. Firthermore, the boost operator 
for a composite system depends upon the interaction among its constituents. On 
the other hand, for our case, we consider that a nuleon is described as a pair of 
pions which means that the WF has a singularity at the origin. The appearance 
of a cusp at the origin is rather satisfacotry and is our reason for choosing the 
nonrelativistic inversion. Thus, from now on, we simply replace q  with Q



. 
To construct the electric charge density functions of protons and neutrons in 
momentum space, we again consider the asymptotic freedom description, just as 
we did for configuration space. That is, for the small 

2
Q


 case, the pair of pions 
moves with respect to the same origin. However, as 

2
Q


 becomes larger, the 
two pions begin to move separately and finally move totally independent of each 
other.  

To be precise, this situation is described as 
[ ] ( )

( )( )
2

1 2 32
1

2

1 2 3

2 1 exp

1 exp

P

P

P
ch

n

P

n

P

Q

Q
const F z z z F

mg L

Q z z z
m F

π π

π

ρ

       π  = π + + + −           
       + + + − −              









    (55) 

[ ] ( )

( )

( )

3 2
2

1 2 3
32

1

2

1 2 3

2 1 1 exp

1 exp 1

N

N

N
ch

n

N

n

N

Q

Qz z z
const F z F

F mg L

Q z z z
m F

π π
π

π

ρ

      + +  π  = π − + − −               
      + +  + − − −                  









 (56) 

where 
3 2 2
2 2

1 2 22
1 11

1 34 exp ; ;
2 2

Q Q
z Q F

g L g Lg L

   
π    = −      

   

 



          (57) 
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2 2 2

2 2 2 22 1 11 1 1

2 2 21 1 1log exp
!

n

n

n r

Q Q Q
z p

n rg L g L g LQ

∞

= =

    
     

= − −     
     

     

∑ ∑
  



  (58) 

2

2
3 2

1

4 exp
Q

z
g L

 
 = π −  
 



                    (59) 

where p of 2z  is parameter. 
These expressions are not exactly Fourier transforms of the electric charge 

density functions. However, because the basis of ( )ch kρ  is exactly the Fourier 
transform of the basis of ( )ch rρ , we use the relationship between Sachs e.m. 
FFs and intrinsic FFs shown in Equation (42) and Equation (43) to obtain in the 
Sachs e.m. FFs as 

[ ]

( )
( )( )

2

1 2 32

2

1 2 3

1 1 exp
1

1 exp

P

P

n

P
E

P

n

P

Q
G F z z z F

m

Q z z z
m F

π π

π

τ

        = + + + −    +        
       + + + − −              





     (60) 

[ ]

( )
( )

( )

2

1 2 3
32

2

1 2 3

1 1 1 exp
1

1 exp 1

N

N

n

N
E

N

n

N

Qz z z
G F z F

F m

Q z z z
m F

π π
π

π

τ

      + +   = − + − −      +          
      + +  + − − −                  





 (61) 

where 1 2 3, ,z z z  are given in Equation (57) to Equation (59), and τ  is given as 

( )

2

22

Q

M
τ =



                          (62) 

here, M is the characteristic mass and it is taken as a parameter. 
The relationships between the magnetization density functions and the Sachs 

e.m. FFs, i.e., [ ] [ ],P N
M MG G , are exactly formulated by their Fourier transform using 

Equation (43). 
Then, we obtain 

[ ]

( )
( )( )1 2 32

1  1
1

P
MG F z z z Fπ π

τ
 = + + + +

               (63) 

[ ]

( )
( )1 2 32

1 1
1

N
MG F z z z Fπ π

τ
 = − + + + +

               (64) 

where τ  is the same as Equation (59) and 1 2,z z  and 3z  are given in Equa-
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tion (57), Equation (58), and Equation (59). 
Note that our Sachs e.m. FFs have normalization uncertainty. To compare our 

values with the parametrization results of Ye et al. [3], we have to normalize our 
[ ],P N
MG  and [ ],P N

EG  by dividing them by some constant values. These normali-
zation constants are chosen to be comparable to the above parametrization re-
sults. Then the normalized [ ]P

MG  and [ ]N
MG  correspond to the normal [ ]P

M PG µ  

and [ ]N
M NG µ , respectively. In section 3 and Figures 1-8 we use [ ]P

MG  and 
[ ]N
MG  to denote [ ]P

M PG µ  and [ ]N
M NG µ , respectively. 

 

 
Figure 1. Proton magnetization and electric charge density functions. 1) Blue 
line is proton magnetization density function (multiplied by 2r ) [ ]2 P

magr ρ  

(magnitude is 1
2

); 2) Orange line is proton electric charge density function 

(multiplied by 2r ) [ ]2 P
chr ρ . pn  = 4; pm  = 0.7; β  = 0.1. 

 

 
Figure 2. Neutron magnetization and electric charge density function. 1) 
Blue line is neutron magnetization density function (multiplied by 2r ) 

[ ]2 N
magr ρ ; 2) Orange line is neutron electric charge density function (multiplied 

by 2r ) [ ]2 N
chr ρ . Nn  = 4; Nm  = 0.8; β  = 0.05. 
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Figure 3. Electric charge density function of neutron [ ]N
chρ . Note that this 

becomes negative values (refer Figure 2) beyond 0.6 fm region as same as 
those of Galster model and Maints data beyond 0.7 fm region and that the 
factor of 1/5 is multiplied. 

 

 
Figure 4. Sachs proton magnetization form factor (divided by DG ) 

[ ]P
M DG G . Parameter p: p = 3.6284. 

 

 
Figure 5. Sachs proton electric charge form factor (divided by DG ) 

[ ]P
E DG G . [ ]P

En  = 4; [ ]P
Em  = 12; p = 3.6284. 
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Figure 6. Ratio of [ ] [ ]P P
E MG G . 

 

 
Figure 7. Sachs neutron magnetization form factor (divided by DG ) 

[ ]N
M DG G . Parameter p: p = 3.6284. 

 

 
Figure 8. Sachs neutron electric charge form factor (divided by DG ) 

[ ]N
E DG G . [ ]N

En  = 4; [ ]N
Em  = 12; p = 3.6284. 

3. Results 

Using Equation (34), Equation (35), Equation (38) and Equation (41), we show 
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the magnetization and electric charge density functions of protons and neutrons 
in Figure 1 and Figure 2, respectively. Note that the shown density functions are 

[ ] [ ] [ ]2 2 2, ,P P N
m ch mr r rρ ρ ρ  and [ ]2 N

chr ρ  instead of just density functions because of the 
existence of the singularity at the origin (at 0r = ) that results from our defini-
tion of the density functions. In addition, we show the electric charge density 
function of neutron [ ]N

chρ  in Figure 3.  
To confine the sizes of protons and neutrons less than 1.2 fm, we chose the 

Gaussian parameter to be 3.5 (GeV2). Using this value, we obtain the characte-

ristic mass 
2

1

2
g L  of 1025 (MeV), which is similar to the φ  meson mass. 

This is different from the pion mass of 140 MeV that we use to evaluate Sachs’ 
proton and neutron e.m. FFs later in this paper. 

Figure 1 and Figure 2 show that our density functions (multiplied by r2) do 
not behave exactly like the density functions of Kelly [22], especially, behavior at 
near origin.  

However, Kelly’s density functions were obtained by using the relativistic in-
version method, which is adopted for preventing them from showing the cusp at 
origin. To be clear this point, our electric charge density function of neutron in 
Figure 3 can be compared to those of Galster model [30] and Mainz data ana-
lysed by Schmieden [31]. Their results are shown in Figure 12 of Kelly [22]. Note 
that their results were obtained using by the nonrelativistic inversion of Fourier 
transform which is same as our case. Both density functions have singularity at 
origin although the magnitude of singularity is smaller than ours because their 

[ ]2 N
chr ρ  goes to 0 as r approach 0. Except the magnitude of singularity, their 

whole behaviors were quite similar to ours. The density functions of proton also 
have a similarity such that the proton electric density function overwhelms the 
proton magnetization density function beyond 0.8 fm. To notify this similarity, 
we compare our [ ] [ ]2 2,P P

ch mr rρ ρ  with [ ] [ ],P P
ch mρ ρ  in Figure 5 and Figure 6 of 

Kelly’s [22] because we are focused in the behavior except in near origin region. 
This phenomena also appears in the proton electric charge and magnetization 
density functions of Kelly [22]. 

Using Equation (60) and Equation (63) with appropriate normalization, we 
show the results of [ ] [ ],P P

M D E DG G G G  and [ ] [ ]P P
E MG G  in Figures 4-6. Our 

evaluation forms for Sachs e.m. FFs are not appropriate to show the behavior of 
the form FFs in the region where 

2
Q


 is smaller than 10−1 (GeV2). However, 
they are sufficiently applicable in the region where 

2
Q


 is larger than 10−1 
(GeV2). Thus we can compare our results to the parametrization results in Ye et 
al. [3] in the region where 

2
Q


 is larger than 10−1 (GeV2). In particular, we ob-
tain a fairly good result for [ ] [ ]P P

E MG G  and also it is quite similar to that of 
CQM by Miller shown in Arrington [34] up to 4 (GeV2) as we expected.  

Using Equation (61) and Equation (64) with appropriate normalization, we 
show the results of [ ] [ ],N N

M D E DG G G G  and [ ] [ ]N N
E MG G  in Figures 7-9. The 

magnetization FFs for both protons and neutrons have very similar features to  
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Figure 9. Ratio of [ ] [ ]N N
E MG G . 

 
those resulting from parametrization. However, the values of [ ]N

E DG G  in the 
region of 10−1 to 100 (GeV2) are larger than those from the parametrization. Thus, 
our [ ] [ ]N N

E MG G  shows a faster rising form than it does in other studies [32] [33] 
[34]. However, the point where our [ ] [ ]N N

E MG G  is the most different is when it 
converges to zero. This behavior was proposed by Arrington [34], although a 
reason was not given. 

4. Conclusion 

We investigate the proton and neutron electromagnetic form factors where the 
consideration of that nucleon is described as a pion pair. We obtain a good 
agreement of the electric density function of neutron with Galster model and 
Maints data except the magnitude of singularity. The density functions of proton 
also show a similarity to those of Kelly’s except near origin. In the case of Sachs 
e.m. FFs, we obtain a fary good agreement with the parametrization results in Ye 
et al. Therefore, we consider that our description of a nucleon as a pion pair is 
one of the meaningful aspects. 

5. Discussion  

As mentioned in conclusion section, we obtain fairy good results in both density 
functions and Sachs e.m. FFs, however, there is an ambiguous point in our 
treatment. We do not exactly know the reason why the density functions and the 
form factors for the magnetization case do not change the form when two pions 
move independently each other with asymptotic freedom. This may occur be-
cause the magnetization arises not as a result of charge distribution, but because 
of current or spin. Thomas [35] suggests that nucleon spin comes from the or-
bital angular momentum of u ( u ) and d ( d ) quarks (antiquarks). For our case, 
we describe the nucleon as a pion pair, so we can consider the orbital angular 
momentum of the u (d) quark and the d  ( u ) antiquark; in the case where the 
pair of pions has the same origin, angular momentum can arise from movement 
around the origin. For the independently moving case, the pair of pions move 
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relatively around the center of mass so that the angular momentum can be con-
sidered from movement around the center of mass. The important point is that 
the nucleon spin has a decisive quantity of 1⁄2 even though the specific orbits of 
quarks (antiquarks) cannot be determined. Thus, for the case where the magne-
tization arises because of spin, the magnetization is not affected by the situation 
of the pair of pions. Conversely, for the case where the magnetization results 
from current, current arises from the movement of charges, that is, movement of 
the u (d) quark and the d  ( u ) antiquark, i.e., movement of the pair of pions. 
Hence we can consider the same argument as the spin case because the magne-
tization is characterized by the derivative of magnetic energy with respect to the 
absolute value of the magnetic field at the origin or the center of mass. Either 
way, we can say that the situation regarding the pair of pions does not affect the 
magnetization density, but this is not confirmative. To elucidate this point, we 
need further investigation.  
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Appendix 

Here we show that Gell-mann Nishijima relation still holds under baryon num-
ber 0 case.  

For mesons, Isospin I, component of Isospin I3, strangeness S are given as Ta-
ble 1. 

Because Gell-mann Nishijima relation is ( )3
1
2

Q I B S= + +  (B is baryon 

number and S is strangeness), this relation holds for meson case because of B = 
0. 

Reminding the fact that field theory shows the duality, we have to add up neg-
ative charge of proton p− , +Ξ , ∗+Ξ , +Ω  to the baryon list. Then using values 
of Table 1, we can define Table 2 and Table 3 for baryons. 

Then it is easy to notice that Gell-mann Nishijima relation also holds for ba-
ryon case under the baryon number B = 0. This means that baryon number 1 is 
not necessary. 

The verification of the meson pair of each baryons shown in Table 2 and Ta-
ble 3 are given elsewhere by baryon mass spectra and decay modes. 

 
Table 1. Mesons.  

particle π +  0π  π −  0f  0η  k +  k −  

I 1 1 1 0 0 1
2

 1
2

 

I3 1 0 −1 0 0 1
2

 
1
2

−  

strangeness 0 0 0 0 0 1 −1 

 
Table 2. Spin 1/2 baryons. 

particle antiparticle Meson pair I I3 Strangeness 

p+  p−  0π π+ +  1 1 0 

( )0 0n p  ( )0 0n p  π π+ −+  1 0 0 

p−  p+  0π π− +  1 −1 0 

0Λ  0Λ  
kπ + −+  

or kπ − ++  
0 0 0 

+Σ  −Σ  0π η+ +  1 1 0 

0Σ  0Σ  0 0π η+  1 0 0 

−Σ  +Σ  0π η− +  1 −1 0 

Ξ+  −Ξ  0 kπ ++  
1
2

 1
2

 1 

−Ξ  Ξ+  0 kπ −+  
1
2

 1
2

−  −1 

0Ξ  0Ξ  
kπ + −+  

or kπ − ++  
0 0 0 

Note that we use total sum for 0Λ  and 0Ξ  cases. 
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Table 3. Spin 3/2 baryons. 

particle antiparticle Meson pair I I3 strangeness 

+∆  −∆  0fπ + +  1 1 0 

0∆  0∆  0 0fπ +  1 0 0 

−∆  +∆  0fπ − +  1 −1 0 

∗+Σ  ∗−Σ  0π η+ +  1 1 0 

0∗Σ  0∗Σ  0 0π η+  1 0 0 

∗−Σ  ∗+Σ  0π η− +  1 −1 0 

∗+Ξ  ∗−Ξ  0 kη ++  1
2

 1
2

 1 

∗−Ξ  ∗+Ξ  0 kη −+  1
2

 1
2

−  −1 

0∗Ξ  0∗Ξ  k k+ −+  0 0 0 

+Ω  −Ω  0 kη ++  1
2

 
1
2

 1 

−Ω  +Ω  0 kη −+  1
2

 1
2

−  −1 
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