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Abstract 
Projective change between two Finsler metrics arises from Information Geo-
metry. Such metrics have special geometric properties and will play an im-
portant role in Finsler geometry. The purpose of the present paper is to find a 
relation to characterize the projective change between generalized ( ),α β - 

metric 
2

1 2 3F βµ α µ β µ
α

= + +  ( 1µ , 2µ  and 3 0µ ≠  are constants) and 

Randers metric F α β= + , where α  and α  are two Riemannian metrics, 
β  and β  are 1-forms. Further, we study such projective change when ge-
neralized ( ),α β -metric F has some curvature property. 
 

Keywords 
Finsler Space with ( ),α β -Metric, Projective Change, Locally Projectively 
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1. Introduction 

The concept of projective change between two Finsler spaces has been studied by 
many geometers [1]-[6]. An interesting result concerned with the theory of pro-
jective change was given by Rapscak [7]. He proved necessary and sufficient 
conditions for projective change. S. Bacso and M. Matsumoto [8] discussed the 
projective change between Finsler spaces with ( ),α β -metric. H. S. Park and Y. 
Lee have studied on projective changes between a Finsler space with ( ),α β - 
metric and the associated Riemannian metric.  

In Riemannian geometry, two Riemannian metrics α  and α  on a mani-
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fold M are projectively related if and only if their spray coefficients have the re-
lation 0

i i iG G P yα α= + , where ( )P P x=  is a scalar function on M and  

0 k
k

x
P P y= . In Finsler geometry, two Finsler metrics F and F  on a manifold M 
are called projectively related if i i iG G Py= + , where iG  and iG  are the geo-
desic coefficients of F and F , respectively and ( ),P P x y=  is a scalar function 
on the slit tangent bundle 0TM . 

In [9], we introduced the generalized ( ),α β -metric  

 ( )
2

1 2 3 1 2 3, and 0 are constantsF βµ α µ β µ µ µ µ
α

= + + ≠          (1.1) 

where α  is a Riemannian metric, β  is a 1-form.  
We know from [4], that two Finsler metrics F and F α β= +  are projective-

ly related if and only if their spray coefficients have the following relation:  

 i i iG G Py= +                             (1.2) 

where ( )P y  is a scalar function on { }0TM −  and homogeneous of degree 
one in y.  

Also, from [1] we know that a Finsler metric is called a projectively flat metric 
if it is projectively related to a Minkowskian metric. From [4], we know that the 
Randers metric F α β= +  is projectively flat if and only if α  is projectively 
flat and β  is closed. 

The purpose of the present paper is to continue the study on the generalized 

( ),α β -metric 
2

1 2 3F βµ α µ β µ
α

= + +  and to investigate the locally projective 

flatness. Also, the projective change between between generalized ( ),α β -metric 
2

1 2 3F βµ α µ β µ
α

= + +  and Randers metric F α β= + , where α  and α  are  

two Riemannian metrics, β  and β  are 1-forms. Further, we characterized 
such projective change. Precisely, we have the following  

Theorem 1.1. Let 
2

1 2 3F βµ α µ β µ
α

= + +  and F α β= + , be two ( ),α β - 

metrics, where α  and α  are two Riemannian metrics; β  and β  are 1- 
forms. Then F is projectively related to F , if and only if the following equations, 
holds  

2
3

1

i i i iG G y bα
µ α

θ τ
µ

= + −  

( )2
| 1 3

1

1 2 3i j ij i jb b a b bτ µ µ
µ

 = + −   

0dβ =  

where ;i ij
jb a b b

α
β= =  and |i jb  are the coefficients of the covariant deriva-

tive of β  with respect to α ; ( )xτ τ=  is a scalar function and i
i yθ θ=  is a 

1-form on M. 

Corollary 1.1. Let 
2

1 2 3F βµ α µ β µ
α

= + +  and F α β= + , be two ( ),α β - 
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metrics, where α  and α  are two Riemannian metrics; β  and β  are 1- 
forms. Then F is projectively flat if the following relation holds:  

 
2

3

1

i i i iG G y bα
µ α

θ τ
µ

= + −                      (1.3) 

where ;i ij
jb a b b

α
β= =  and |i jb  are the coefficients of the covariant deriva-

tive of β  with respect to α ; ( )xτ τ=  is a scalar function and i
i yθ θ=  is a 

1-form on M.  

Theorem 1.2. Let 
2

1 2 3F βµ α µ β µ
α

= + +  the ( ),α β -metric an  

n-dimensional manifold M, with α  is a Riemannian metric; β  is a 1-form. 
Then F is locally projectively flat if and only if  

 
3 2 3

2

1 3 2

2 2

0.

k ki k
i k k k i

k
i k i

b by y
y x x x x

y
y x x

β β β α βµ µ µ
α α α

β α αµ µ
α

∂ ∂∂ ∂ ∂       − + + −     ∂ ∂ ∂ ∂ ∂      
   ∂ ∂ ∂ + − − =    ∂ ∂ ∂   

    (1.4) 

Finally, we have shown that the generalized ( ),α β -metric satisfy the sign 
property. 

2. Preliminaries 

Definition 2.1. [1] Let  

 
3 1

1

m
i i i
jkl j k l m

GD G y
ny y y y

 ∂ ∂
= − +∂ ∂ ∂ ∂ 

                (2.1) 

where iG  are the spray coefficients of F. The tensor  
i j k l
jkl iD D dx dx dx= ∂ ⊗ ⊗ ⊗  is called the Douglas tensor. If Douglas tensor va-

nishes then Finsler metric is called Douglas metric.  
Some interesting results concerning Douglas metrics are recently obtained in 

[10] & [11].  
The function ( )sφ φ=  is a C∞  positive function on an open interval  

( )0 0,b b−  and it satisfies the following condition:  

 ( ) ( ) ( ) ( )2 2
00, .s s s b s s s b bφ φ φ′ ′′− + − > ≤ <              (2.2) 

Also, F is a Finsler metric if and only if 0x b
α

β <  for any x M∈ .  
In general, the ( ),α β -metrics are defined as follows:  

Definition 2.2. [1] For a given Riemannian metric i j
ija y yα =  and one form 

i
ib yβ = , satisfying 0x b

α
β <  for x M∀ ∈ , then: ( )F sαφ= , s β

α
= , is 

called ( ),α β -metric.  

The covariant derivative of β  with respect to α  is |
i j

i jb dx dxβ∇ = ⊗ . Al-
so, in [1], the following notations are given:  

 ( ) ( )| | | |
1 1; .
2 2ij i j j i ij i j j ir b b s b b= + = −                   (2.3) 
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It is clear that 0ijs =  if and only if β  is closed. Also, we can take:  

0 00; ; ; .i i il i i i i j
j ij j lj j ijs b s s a s s s y r r y y= = = =  

If we consider the fundamental tensor of Randers space 
2 21

2ij i j
Fg

y y
∂

=
∂ ∂

, then we 

have the following formulae  

1 ; ;i i j
ij i ijj ip y a p a p

y y
α α

α
∂ ∂

= = = =
∂ ∂

 

1 ; ;i i ij
ij i i ij j

L Ll y g l g p b
L y y

∂ ∂
= = = = +

∂ ∂
 

1 ; 1; ;i i i i
i j i il p l l p p l p

L L
α

= = = =  

; ; .i i i
i i i

Lp l b p b l
L

β β
α α

= = =  

The geodesic coefficients iG  of F and the geodesic coefficients iGα  of α , are 
related as follows (see [1]):  

 { }{ }1
0 0 002i i i i iG G Qs Q s r b yα α α α−= + + − + Ψ +Θ           (2.4) 

where  

 
( )
( )( )

( )( )

2 2

2 2

2

.
2

Q
s

s

s b s

s b s

φ
φ φ

φφ φφ φ φ

φ φ φ φ

φ
φ φ φ

′
=

′−
′ ′ ′ ′− +

Θ =
′ ′′− + −

′′
Ψ =

′ ′′− + −

                 (2.5) 

In [2] and [4], the condition for an ( ),α β -metric to be locally projectively flat 
is presented as follows:  

Lemma 2.1. A Finsler space ( ),nF M F=  is locally projectively flat if and 
only if  

 
2

0.k
j k i

F F y
x x y
∂ ∂

− =
∂ ∂ ∂

                     (2.6) 

In [12], we have the following condition for an ( ),α β -metric to be a Douglas 
metric  

 
( ) ( )( )
( )

0 0 0 002

1
2

i j j i i j j i

i j j i k l
kl kl

Q s y s y Qs r b y b y

G y G y y y

α α− +Ψ − + −

= −
         (2.7) 

where i i i
kl kl klG γ= Γ −  and 

2 i
i
kl k l

G
y y

αγ
∂

=
∂ ∂

.  

Theorem 2.3. [12] Let ( ) ,F s s βαφ
α

= =  be an ( ),α β -metric on an open  

subset ( )3nU R n⊂ ≥ , where ( ) i j
ija x y yα =  and one form 0i

ib yβ = ≠ . Let 
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xb
α

β= . Suppose that the following conditions holds 
a) β  is not parallel with respect to α ; 
b) F is not of Randers type; 
c) 0db ≠  everywhere or b constant=  on U. Then F is a Douglas metric on 

U if and only if the function ( )sφ φ=  satisfies the following ODE  

 ( ){ } ( ) ( ) ( ) ( ){ }2 2 2 2
1 2 3 1 21 k k s s k s s k k s s s sφ φ φ′′ ′+ + + = + −      (2.8) 

and the covariant derivative |
i j

i jb y dxβ∇ =  of β  with respect to α  satisfies 
the following equation  

 ( ) ( ){ }2 2
| 1 2 32 1i j ij i jb k b a k b k b bτ= + + +               (2.9) 

where ( )xτ τ=  is a scalar function on U and 1 2 3, ,k k k  are constants with  
( ) ( )2 3, 0,0k k ≠ .  

Remark: The above equation holds good in dimension 3n ≥ . 

3. Main Results 

By the Theorem 2.1, we compute the coefficients |i jb  for 
2

1 2 3F βµ α µ β µ
α

= + + ,  

taking into account that ( )F sαφ= , where ( ) 2
1 2 3s s sφ µ µ µ= + + , using Equa-

tion (2.9), we get  

 23 3
|

1 1

2 31 .i j ij i jb b a b bµ µ
τ

µ µ
  

= + −  
  

                 (3.1) 

Next, we obtain  

 2 2 23 3
00

1 1

2 31r bµ µ
τ α β

µ µ
  

= + −  
  

                   (3.2) 

Make use of (2.5) for ( ) 2
1 2 3s s sφ µ µ µ= + + , we get  

 
( )

( )( )

3 2
2

1 3

2 2
1 2 3 2 3

2 2 2
1 2 3 1 3 3

3
2 2

1 3 3

2 ,

4 3
,

2 3 2

.
3 2

sQ
s

s s

s s s b

s b

µ µ
µ µ

µ µ µ µ µ

µ µ µ µ µ µ

µ
µ µ µ

+
=

−

− +
Θ =

+ + − +

Ψ =
− +

              (3.3) 

Plugging (3.3) in (2.4), we get  

 

( ) ( )

( )( )

2
3 2 3 2

0 0 002 2 2 2
1 3 1 3

2
3

2 2 2 2
1 3 3

3 2 3 2
1 2 3 2 3

2 2 2 2 2 2
1 2 3 1 3 3

2 2 2

3 2

4 3 ,
2 2 2 3 2

i i i

i

i

G G s s r

b
b

y
b

α

α µ β µ α α µ β µ α
µ α µ β µ α µ β

µ α
µ α µ β µ α

µ µ α µ β µ µ αβ
µ α µ αβ µ β µ α µ β µ α

 + − + = + + + 
− −  


× 

− +
− − + 

+ + − + 

    (3.4) 

where 00r  is given in (3.2).  
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Now, we can formulate the first result: 

Remark. The ( ),α β -metric 
2

1 2 3F βµ α µ β µ
α

= + +  is a Douglas metric with 

respect to Theorem 2.1, if and only if (3.1) is of the form  

23 3
|

1 1

2 31 .i j ij i jb b a b bµ µ
τ

µ µ
  

= + −  
  

 

for some scalar function ( )xτ τ= , where |i jb  represents the coefficients of the 
covariant derivative i

ib yβ =  with respect to α . In this case β  is closed.  
If β  is closed, then | |0ij i j j is b b= ⇒ =  and 0 00 : 0is s= = . 
Replace (3.2) in (3.4), we get:  

 
( )

3 2 3 2 2
1 2 3 2 3 3

2 2
11 1 2 3

4 3 .
2 2 2

i i i iG G y bα
µ µ α µ β µ µ αβ µ α

τ τ
µµ µ α µ αβ µ β

 − + − = − +
 + + 

     (3.5) 

We consider a scalar function ( )P P y=  on { }0TM − , i.e.,  

 .i i iG G Pyα= +                          (3.6) 

From (3.5) and (3.6), we get  

 
( )

3 2 3 2 2
1 2 3 2 3 3

2 2
11 1 2 3

4 3 .
2 2 2

i i i iP y G G bα α
µ µ α µ β µ µ αβ µ α

τ τ
µµ µ α µ αβ µ β

 − + − + = − +
 + + 

    (3.7) 

Since RHS of above equation is in quadratic form, thus there must be a 1-form 
i

i yθ θ= , such that  

( )
3 2 3 2

1 2 3 2 3
2 2

1 1 2 3

4 3
2 2 2

P µ µ α µ β µ µ αβ
τ θ

µ µ α µ αβ µ β

 − + − + =
 + + 

 

Then, we get  

 
2

3

1

.i i i iG G y bα
µ α

θ τ
µ

= + −                      (3.8) 

Using (3.1) and (3.8) and also the above remark, we can conclude the following 
result  

Theorem 3.4. Let 
2

1 2 3F βµ α µ β µ
α

= + +  and F α β= + , be two ( ),α β - 

metrics, where α  and α  are two Riemannian metrics; β  and β  are 1- 
forms. Then F is projectively related to F , if and only if the following equations, 
holds  

2
3

1

i i i iG G y bα
µ α

θ τ
µ

= + −  

( )2
| 1 3

1

1 2 3i j ij i jb b a b bτ µ µ
µ

 = + −   

0dβ =  

where ;i ij
jb a b b

α
β= =  and |i jb  are the coefficients of the covariant deriva-

tive of β  with respect to α ; ( )xτ τ=  is a scalar function and i
i yθ θ=  is a 
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1-form on M. 
The proof is obtained using (3.1) and (3.8). Also, we can now formulate the 

following corollary: 

Corollary 3.2. Let 
2

1 2 3F βµ α µ β µ
α

= + +  and F α β= + , be two ( ),α β - 

metrics, where α  and α  are two Riemannian metrics; β  and β  are 1- 
forms. Then F is projectively flat if the following relation holds:  

 
2

3

1

i i i iG G y bα
µ α

θ τ
µ

= + −                    (3.9) 

where ;i ij
jb a b b

α
β= =  and |i jb  are the coefficients of the covariant deriva-

tive of β  with respect to α ; ( )xτ τ=  is a scalar function and i
i yθ θ=  is a 

1-form on M.  

Theorem 3.5. Let 
2

1 2 3F βµ α µ β µ
α

= + +  the ( ),α β -metric an  

n-dimensional manifold M, with α  is a Riemannian metric; β  is a 1-form. 
Then F is locally projectively flat if and only if  

 
3 2 3

2

1 3 2

2 2

0.

k ki k
i k k k i

k
i k i

b by y
y x x x x

y
y x x

β β β α βµ µ µ
α α α

β α αµ µ
α

∂ ∂∂ ∂ ∂       − + + −     ∂ ∂ ∂ ∂ ∂      
   ∂ ∂ ∂ + − − =    ∂ ∂ ∂   

  (3.10) 

Proof: We apply lemma 1.1, using  
2

0.k
j k i

F F y
x x y
∂ ∂

− =
∂ ∂ ∂

 

First, we compute  

 
2

2 3 1 3 22 .k k k
F
x x x

β β β αµ µ µ µ
α α

 ∂ ∂ ∂ = + + −  ∂ ∂ ∂   
           (3.11) 

Then, we obtain  

 
3 2 3

2

3 1 3 2

2 2

2 .

i
k k k

i k i k k

k k
i k i k

F by y y
y x y x x

y y
y x y x

β β βµ µ µ
α α

β β α β αµ µ µ
α α α

∂ ∂ ∂ ∂ ∂     = + +     ∂ ∂ ∂ ∂ ∂     

 ∂ ∂ ∂ ∂     − + −      ∂ ∂ ∂ ∂      

 (3.12) 

From (3.11), replacing k and i and substituting ( ) k
kb x yβ = , we get  

 
2

2 3 1 3 22 .kk
i i i

bF y
x x x

β β αµ µ µ µ
α α

 ∂∂ ∂ = + + −  ∂ ∂ ∂   
           (3.13) 

Finally, substituting (3.12) and (3.13) in (2.6), we obtain  

 
3 2 3 3

2 2

1 3 2 3 1 32 2

2 2 2

2 0.

k k ki
i k k i k

k kk
i k i i

by y y
y x x y x

by y
y x x x

β β β β β αµ µ µ µ
α α α α

β α β β αµ µ µ µ µ µ
αα α

∂∂ ∂ ∂ ∂       + + −       ∂ ∂ ∂ ∂ ∂       

   ∂∂ ∂ ∂   + − − + − − =      ∂ ∂ ∂ ∂      

(3.14) 
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Thus  

3 2 3

2

1 3 2

2 2

0

k ki k
i k k k i

k
i k i

b by y
y x x x x

y
y x x

β β β α βµ µ µ
α α α

β α αµ µ
α

∂ ∂∂ ∂ ∂       − + + −     ∂ ∂ ∂ ∂ ∂      
   ∂ ∂ ∂ + − − =    ∂ ∂ ∂   

 

This completes the proof of necessity. The converse part follow easily.  

Theorem 3.6. Let 
2

1 2 3F βµ α µ β µ
α

= + +  the ( ),α β -metric given by (1.1), 

be locally projectively flat. Assume that α  is locally projectively flat. Then  

 ( ) 32
3

1 .
2 2

ki k
i k i

b bP Q y
y x x

µµβµ
α β α

∂ ∂ ∂    − = + −    ∂ ∂ ∂    
         (3.15) 

where 1 1;
2 2

k k
k kP y Q y

x x
α β

α β
∂ ∂

= =
∂ ∂

  

Since α  is locally projectively flat and from (2.6), we get  

 0.k
i k iy

y x x
α α∂ ∂ ∂  − = ∂ ∂ ∂ 

                    (3.16) 

From (3.10) and (3.16), we get 

3 2 32 2k ki k
i k k k i

b by y
y x x x x

β β β α βµ µ µ
α α α

∂ ∂∂ ∂ ∂       − = − + −     ∂ ∂ ∂ ∂ ∂      
    (3.17) 

Use definitions of P and Q and dividing with 2β  in (3.17), we get  

( ) 32
3

1 .
2 2

ki k
i k i

b bP Q y
y x x

µµβµ
α β α

∂ ∂ ∂    − = + −    ∂ ∂ ∂    
 

Hence the proof. 
From [13], we have the following:  

Definition 3.3. We say that an ( ),α β -metric F βαφ
α
 =  
 

 on a manifold M, 

satisfy the sign property, if the function  

( ) ( ) ( ) ( ) ( )A s s s s sφ φ φ φ φ′ ′= − + −  

has a fix sign on a symmetric interval ( )0 0,b b− . Here, with s is denoted s β
α

= .  

Let us consider the metric (1.1), 
2

1 2 3F βµ α µ β µ
α

= + + , with  

( ) 2
1 2 3s s sφ µ µ µ= + + .  

In this case, we have:  

( ) ( ) ( ) ( ) ( ) 2
1 2 2 32 2 .A s s s s s sφ φ φ φ φ µ µ µ µ′ ′= − + − = −  

We conclude that, for ( ),s a a∈ − , ( )A sφ  has a fix sign. 
Thus metric (1.1) satisfy the sign property. 

4. Conclusion 

In this paper, we have obtained some important results concerning the pro-
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jective change and locally projective flatness of the generalized ( ),α β -metric  
2

1 2 3F βµ α µ β µ
α

= + +  ( 1µ , 2µ  and 3 0µ ≠  are constants). Further, we have  

shown that the generalized ( ),α β -metric satisfy the sign property. 
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