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Abstract

It is demonstrated that the use of Kolmogorov’s probability theory to describe
results of quantum probability for EPRB (Einstein-Podolsky-Rosen-Bohm)
experiments requires extreme care when different subsets of measurement
outcomes are considered. J. S. Bell and his followers have committed critical
inaccuracies related to spin-gauge and probability measures of such subsets,
because they use exclusively a single probability space for all data sets and
sub-sets of data. It is also shown that Bell and followers use far too stringent
epistemological requirements for the consequences of space-like separation.
Their requirements reach way beyond Einstein’s separation principle and
cannot be met by the major existing physical theories including relativity and
even classical mechanics. For example, the independent free will does not
empower the experimenters to choose multiple independent spin-gauges in
the two EPRB wings. It is demonstrated that the suggestion of instantaneous
influences at a distance (supposedly “derived” from experiments with entan-
gled quantum entities) is a consequence of said inaccuracies and takes back
rank as soon as the Kolmogorov probability measures are related to a consis-
tent global spin-gauge and permitted to be different for different data subsets:
Using statistical interpretations and different probability spaces for certain
subsets of outcomes instead of probability amplitudes related to single quan-
tum entities, permits physical explanations without a violation of Einstein’s
separation principle.

Keywords

Bell’s Theorem, Einstein’s Separation Principle, EPRB Experiments

1. Introduction

The differences between classical probability and the modified probabilistic
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concepts used in quantum mechanics, have been the topic of many discussions
related to the foundations of quantum mechanics and are in a way the root of
Feynman’s well-known remark that no one understands quantum mechanics. To
avoid ambiguities, I define Kolmogorov’s (set-theoretic) probability framework
as “classical” probability and the absolute square of Feynman’s probability am-
plitudes as the quantum probability version.

The classical-quantum distinction of probabilistic concepts has appeared in
clearest relief due to the work of J. S. Bell [1] and his inequalities that involve
Einstein-Podolsky-Rosen (EPR) experiments [2] and corresponding measure-
ments of entangled pairs. Wigner [3] presented a set-theoretic version of Bell’s
inequalities. The actually performed experiments (see e.g. [4]) are a variation of
EPR as proposed by Bohm (EPRB). The experimental results contradict the
Bell-Wigner inequalities, a contradiction that has led to the common belief that
instantaneous influences at a distance are at work in experiments of entangled
quantum “entities” (photons, electrons etc.) and that Einstein’s separation prin-
ciple derived from the speed c of light in vacuum is actually violated in EPRB
experiments.

Any criticism of the Bell-Wigner inequalities is currently seen by a majority of
physicists as nonsensical and comparable to the attempts to build a perpetuum
mobile that contradicts energy conservation. It is the purpose of this paper to
show that the criticism of the Bell-Wigner approach should rather be compared
to the early days of the calculus and to Berkeley’s criticism of Newton’s fluxions
and Leibniz’s infinitesimals that were put to zero after a logical procedure that
regarded them as definitely not-zero. Bishop Berkeley stated that such a method
of reasoning would not be allowed in Divinity. It took about a century and the
work of Cauchy, Weierstrass and other notables to repair the problems convin-
cingly.

Instantaneous influences over space-like distances do have similar logical
problems as the fluxions of Newton and are indeed considered instantaneous
only when the outcomes of the influences are random and when it is absolutely
impossible to transmit any information instantaneously. Any instantaneous
transfer of information would contradict Einstein’s relativity and no sane phy-
sicist believes in such a possibility. Therefore, in a variety of descriptions, “in-
fluences” are introduced that are “instantaneous” only if the instantaneity can-
not directly be proven but only statistically inferred. That statistical inference is
invariably based on the violation of the Bell-Wigner type of inequalities.

It will be shown in great detail below that the commonly used logic of apply-
ing Bell-Wigner-type inequalities to actual EPRB experiments and/or the results
of quantum mechanics would also not be allowed in Divinity because of a variety
of reasons that uncover serious inaccuracies of epistemological, physical and
mathematical nature. In contrast to the case of calculus, a repair of these prob-
lems appears unlikely.

Avoiding the mentioned inaccuracies permits us to construct a model for

EPRB experiments, which is based on a statistical relation of certain subsets of
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measurement outcomes as opposed to interpretations regarding individual en-

tangled pairs.

2. EPRB Experiments and Notation

I assume that the reader is reasonably familiar with EPRB experiments that deal
with entangled (correlated) photon pairs. These pairs are sent into two direc-
tions or into two optical fibers. To be definite we assume that one of the entan-
gled photons propagates perpendicular to the X,y plane that labels one face
(perpendicular to the z-direction) of a cube-like Wollaston prism. The
x-direction of this chosen coordinate system may also be called “horizontal”
and the y-direction “vertical”. The second photon of the entangled pair prop-
agates perpendicular to the face of a second Wollaston prism and that face is
labeled by the X',y’ coordinate system, which is perpendicular to the z' di-
rection and we may use for simplicity z=1z2'. The photons exit the Wollaston
cubes along two different directions and are registered by detectors D] and
D; in wing 1 of the experimental system and by detectors D} and D in
wing 2, respectively. The measurement system must also guarantee that the
signals detected in the two different and spatially distant wings belong to en-
tangled pairs. This is usually achieved by registering the measurement time
and by correlating the signals by the usual space-time correlations of photons
propagating with the speed of light. Furthermore, we can find an orientation
of maximal correlation by fixing Wollaston prism 1 and rotating Wollaston
prism 2 perpendicular to the propagation direction of the photons until we
have a virtually perfect anti-correlation of the outcomes, ie. when the hori-
zontal detector clicks in wing 1, the vertical detector clicks in wing 2 or vice
versa. In actual experiments this happens for about 99% of all photon pairs or
even better, while in the theories that we discuss this must happen with proba-
bility 1. It is convenient to define the directions of maximal anti-correlation in
wing 2 also as the X,y -directions.

As we will see later, the theoretical work of Bell deals with at least two differ-
ent rotations of the Wollaston prisms for each wing and relates the correspond-
ing detector registrations to a “horizontal” and “vertical” spin component for all
the different orientations of the Wollaston prisms. Thus, we do not have a care-
fully defined and unique gauge for the spin measurements in Bell’s work (in its
most basic definition of “gauge” like that of the meter-measure in Paris) and we
will see that this fact alone calls for extreme caution when formulating Bell’s in-
equalities and using Einstein’s hypothesis that elements of physical reality de-
termine the spin outcomes and their correlations in both wings. It is certainly, in
general logically inadmissible to denote different directions in a given wing by
“horizontal” or “vertical”. The gauge in the other wing is codetermined by the
requirement of complete anti-correlation for given instrument settings, which is
usually guaranteed and agreed upon through the complete experimental design

of both wings. One must chose one instrument setting in one wing as gauge (like
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the meter measure in Paris) and relate the gauge of the other wing and the so
called Bell angles &, by the convention that for maximum anti-correlation we
have 6 =0. Bell and his followers emphasize the free will of the experimenters
to choose the instrument settings independently, randomly and swiftly in both
wings. However, the spin-gauge cannot be chosen freely and independently as
will be further discussed in detail. Oaknin [5] has given careful considerations to
these facts and has offered a relativistic resolution for the EPR-paradox. (See also

his detailed further explanations in his recent paper [6].)

Bell’s original paper does not discuss photons but instead spin % quantum

entities (such as entangled electrons) that propagate toward Stern-Gerlach mag-
nets instead of Wollaston prisms (cubes). The X,y -and X',y’-coordinates are

again perpendicular to the propagation direction. Unit vectors that characterize
the gradient of the magnetic field are introduced and typically denoted by a,
which points in the positive x-direction in wing 1 and b, which points in the
xdirection in wing 2.

3. Bell’s Functions and Their Relation to Einstein’s
Separation Principle

Bell attempted to describe EPRB experiments by introducing in each wing func-
tions with a domain of variables that respect Einstein’s separation principle. The
co-domain or range of Bell’s functions describes the outcomes for the measure-
ments of entangled pairs. The mathematical physics of these functions is re-
quired to agree with the results of quantum mechanics and/or those of actual
experiments.

In order to understand Bell’s task, we need to explain the precise meaning of
Einstein’s separation for EPRB experiments and for Bell’s functions that describe
them.

Consider the two wing experiments described above and the case of maximal
anti-correlation of the outcomes for entangled singlet pairs and assume that the
measurement equipment of the two wings is spatially separated so that light
would take considerable time (say a millisecond) to propagate from the place of
measurement in wing 1 to the place of measurement in wing 2. Then, according
to Einstein’s relativity, whatever instrument setting is used in one wing and
whatever is measured within about a millisecond cannot affect the outcomes of
the measurement in the other wing by any transmission of information between
the two wings. The measurement stations are information-separated in this way
and this fact is called Einstein’s separation principle.

Why did Einstein’s separation principle enter the discussions of EPRB expe-
riments? Because of the following strange fact. At the instrument settings of
maximum anti-correlation, the outcome in wing 1 (e.g. “horizontal” or “vertical”)
is always anti-correlated to the outcome in wing 2 (which then is “vertical” or
“horizontal”, respectively i.e. the opposite) How can that be? If we toss a coin in

wing one and obtain heads, the coin-toss in wing 2 must give tails. Einstein
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claimed that this would only be possible if instantaneous influences are exerted
from the measurement in one wing to the measurement of the other or, alterna-
tively, there need to exist elements of physical reality (possibly “hidden” to us)
that determine the measurement outcomes. Actually, one can easily agree with
Einstein, when magnets are involved in the measurements. If coins with little
magnets of opposite polarization are sent out from the source as entangled pairs
to the measurement stations then it is fairly easy to imagine that one falls on
head and the other on tail and that can also happen randomly. The hidden
magnets in the coins are then Einstein’s elements of physical reality.

The problem is, of course, that photons do not have little magnets inside and
the elements of physical reality may be very complex and describe the dynamics
of the photon equipment interaction etc. Furthermore, the experimental results
need to be explained for all instrument settings and not only for maximal an-
ti-correlation. Therefore, Bell attempted to develop a theoretical model for EPRB
experiments in a more general fashion.

Bell introduced functions A(...) for wing 1 and B(...) for wing 2 with the
following properties of the variables in the domain of the functions: one of the
variables in each function is the magnet “setting”, usually denoted by a, b or d in
wing 1 and by b or ¢ in wing 2. All other magnet settings (or equivalent settings
of the Wollaston prisms) are possible but not considered in the following. The
functions A and B contain each another special “variable” A that represents
the entangled pair. Bell states:

“... A stands for any number of variables and dependences thereon of A and
Bare unrestricted.”

In other words, A may represent actually a whole set of variables that de-
scribe Einstein’s elements of physical reality involved in the measurement of the
entangled pair. Considering Einstein’s theoretical thinking, such a set of va-
riables might contain elements of the space-time continuum such as the mea-
surement time t,, because of possible correlations of the measurement dynam-
ics that occurs in the two wings. Of course, such dynamic correlations may be
described, in special cases, by a phase relationship between the two wings; the
phase being again an element of a continuum.

The set of variables represented by A is thus very general. In essence the set
A may contain any number of variables, but it must never contain a variable
representing the instrument settings of the other wing, because these cannot in-
fluence the measurement outcomes in a given wing. In fact, to exclude instanta-
neous influences at a distance from the theory it is necessary and sufficient that
the set A in the domain of the function A in wing 1 must not contain any in-
strument-setting-variable from wing 2 and vice versa. With the given definitions,
one can, mathematically speaking, use variables A that are independent of the
instrument settings of both wings. The elements of reality that A represents
may actually include local equipment interactions and, therefore, acquire some

dependency on the local instrument settings. Mathematically, however, these
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local settings are included already in the domain of Bell’s functions anyway.

(Note also that there is a slight inconsistency in Bell’s notation inasmuch he
uses fixed settings a, b etc. in the domain of his functions while A is standing
for a variable and only in some instances for the value of this variable (a given
element of physical reality). We leave Bell’s notation as it is and just make sure
that this inaccuracy does not introduce a bigger mistake.)

To illustrate by an example, allowed functions in wing 1 are A(a, ,u,tm,---)
and B(b,st),---) in wing 2, respectively, where p represents some element
of physical reality related to information about the photons from the source. The
measurement times t, and t; may appear in the function domain because of
possible time-like correlations of the dynamic photon-Wollaston or elec-
tron-Stern-Gerlach interactions in the respective wings. A and B are then, in
Kolmogorov’s framework, the functions (random variables) of bi-variate sto-
chastic processes.

The values of the functions Ze. their co-domain are the detector registrations
for the given measurement times, e.g. D;(t,) or (exclusive) Dj(t,) inwing 1

and D](t,) or (exclusive) D{(t) in wing2.

4. Logical Problems with the Applicability of Bell-Type
Inequalities to EPRB Experiments

4.1. Problems with Bell’s Function-Domain

One of the inaccuracies related to Bell’s work (that Bishop Berkeley would have
criticized) is the simplistic assumption that A represents just a finite number
of elements of physical reality like coins that are sent out by the source and reg-
istered by a detector-click after passing some “evaluation” equipment. If that
were the case, we could surmise that for very many measurements with given
setting pairs (a,b), (a,c) or (b,c) etc. each setting pair must encounter
about the same elements of physical reality that are essentially randomly sent out
from a source. In other words, the expectation value of outcomes for given in-
strument setting pairs would just be an average of the function outcomes for
these same elements A . This simplistic assumption together with Bell’s choice
of co-domain or range of the functions (see next) leads immediately to Bell’s in-
equalities. But do these inequalities then have anything to do with actual EPRB

measurements?

4.2. Problems with Bell’s Function-Range

A second suspicious assumption of Bell is an oversimplification of the
co-domain or range of his functions. He innocuously introduces the value of +1
for a “horizontal” result and —1 for “vertical”, respectively. (Or equivalently for

spin % entities Bell uses +1 for an “up” deflection by the Stern-Gerlach mag-

nets and —1 for “down”.) This use of the same two integer numbers for all possi-
ble instrument settings has far reaching consequences (see beginning of next
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section), because it implies (without any justification) that the function-values
follow the mathematical rules for the integers +1 and —1. Christian has empha-
sized repeatedly (most recently in [7]) that Bell oversimplified the range of his
functions.

5. Bell Type Inequalities and Algebra

With the above assumptions we may deduce from the algebra of the integer
numbers +1 and -1 that:

A(a,2)(B(b,4)-B(c,4))=A(a,4)B(b,2)(1-B(b,1)B(c, 1)) (1)

Note that the As of the pair with a product of two B functions correspond
necessarily to different entangled pairs (if we wish to compare Equation (1) with
actual experiments). Furthermore, if we define the instrument settings for
maximal anti-correlation as equal, use accordingly B =-A and take the abso-

lute value, we obtain:
|A(a,2)B(b,4)- A(a,2)B(c, A)|=1+ A(b, 1) B(c, ), )

an equation that now features the A.B pair instead of the B-B, suggesting
that the outcome-pair now does correspond to the measurement of an entangled
pair. The triviality of Equation (2) has persuaded many to believe that Bell’s in-
equality (which almost immediately follows from it) is a simple consequence of
algebra. A moment of reflection, however, shows that the algebraic operations of
Equations (1) and (2) that Bell used after his Equation (14) are physically speak-
ing not trivial at all and require extensive justification.

Bell further assumes the existence of a single common probability density,
which might be appropriate if A just represented a finite number of elements
of physical reality; such as 20 fair or not so fair coins. However, Bell did claim
the generality of A and that A may represent a whole set of variables, in-
cluding measurement times. How, then, can all of these physical variables and
the instrument setting variables have the same probability density?

Only with precisely one given probability density for all function products
(A-A=-A-B), do we obtain Bell’s inequality: Averaging over this single prob-
ability density p(1) and noting that the absolute value of a sum is always
smaller than or equal to the sum of the absolute values, one obtains the expecta-
tion value E for the function products with Bell’s instrument-setting pairs a,b,

a,c and b,c:

[E(a,b)-E(ac)<1+E(b,c), 3)
where £ may, in general, be expressed by a Lebesgue integral over the product
A-B of Bell’s functions.

6. Bell Inequalities and Probability Spaces

It was soon realized [8] [9] [10] that Bell’s inequality could be derived with only
one necessary and sufficient powerful condition: All functions appearing in
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Bell’s inequality are random variables on one given probability space in the sense
of Kolmogorov. This fact makes it also easy to extend the validity of the inequa-
lity to a countable infinite number of the As. However, two major problems still
exist with the application of Bell’s inequality to actual experiments and the re-
sults of quantum mechanics.

First, it turns out (shown by a theorem in [9]) that the measurement time and
the instrument settings cannot be random variables on one common probability
space. The reason is simply that we cannot have two different instrument set-
tings in a given wing at the same measurement time. The proof of this fact is
simple and may have been known to Einstein when he enunciated: “Gott wuer-
felt nicht”.

I would also like to point to the recent work of Khrennikov connecting quan-
tum probabilities and classical conditional probabilities [11]. Novel arguments
about the necessity of using different probability spaces for different setting pairs
have been put forward (within the framework of quantum mechanics) by Cetto,
Valdes-Hernandez and Pena [12].

Second, there exists a problem with the spin-gauges. How can one logically
deal with two different “horizontal” and “vertical” directions in each given wing,
((a,b) in wing 1 and (b,c) in wing 2), and, in addition, regard all the mea-
surement outcomes in the above equations equal to +1 or to —1 independent of
how “horizontal” or “vertical” are globally defined for a given pair measure-

ment?

7. Wigner Inequalities and Set Theory; Selecting Global
Subsets

Eugene Wigner [3] improved Bell’s treatment [1] significantly by using set
theory and considering certain subsets of the measurement outcomes. Instead of
using outcomes +1 and —1 as Bell does, Wigner relies only on the judgement of
equal e and not-equal ne for the pair measurement outcomes of a given instru-
ment setting pair.

The actual value and physical nature of the co-domain (integer numbers or
“up/down”) is thus of no concern, for we need to have only a judgement of
“equal” or “not-equal”. Wigner also noticed that, for the purpose to derive a
Bell-type inequality, it is sufficient to determine the number of (possible) out-
comes that are either e or ne for a given pair of instrument settings. He, there-
fore, just counted the number of equal and not-equal outcomes separately for
each of the 3 pairs of Bell’s instrument settings (a,b); (a,c) and (b,c) and
derived his Bell-type inequality using these numbers. The spin-gauge may also
be (and must be, in principle), chosen as separate and different for each such
given pair of instrument settings. Note, as a preview of the more detailed discus-
sions below, that the judgement of e or ne is a global one that determines the
relative outcomes and the frequency of them in both wings. Their frequency may,

in general, depend on the instrument settings of both wings, which may lead to a
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violation of the Bell-Wigner inequalities.

Bell [1], Wigner [3] and later d’Espagnat [13] do use, however, a single
common probability space for all Bell instrument setting-pairs and the e-,
ne-subsets, which enforces their inequalities. They do offer a weighty argu-
ment for this choice: If we consider a triplet-set of measurements (instead of
the 3 pair measurements), we may write all possible measurement-outcomes in

terms of triples:
A(a,...)A(b,...)A(c,...), (4)

and using A=-B automatically obtain one common joint-triple probability
space that lets us construct the Bell-Wigner inequalities (think of the frequency
interpretation of probability).

This last step, however, presents again major problems. First, a triplet is not
measured in EPRB experiments, but we deal with entangled pairs. We, therefore,
run again into the problem of the assumption of all equal As, which cannot be
justified if 4 encompasses variables related to a continuum. We deal then with
more complex bi-variate stochastic processes. One for each of the instrument
setting pairs.

This problem is easily understood from the following example. Consider the
three instrument setting-pairs of Bell and let A be the measurement time. I
assume, for simplicity, the measurement times in the two wings to be equal for a
given instrument setting pair and given entangled pair and thus have the fol-

lowing possible measurement outcomes (Bell function-pairs):

A(at,)A(bt,);A(at,)A(ct, ); A(bt ) A(c,t,) (5)

here we let m=1,2,---,N further n=N+1,N+2,---,2N and
k=2N+1,2N +2,---,3N, with N indicating a large number of measurements.
Then, because all the outcomes for each of the function pairs may be either equal

(3N)

e or not-equal ne, we have 2 possible different combinations of e and ne

outcomes. Bell’s inequality, however, is based on the assumption of equal s in-

stead of different measurement times and considers, therefore, only 2

possible combinations of e and ne outcomes. This leaves us with 20N _p2N)

of these possible e and ne outcome-combinations that may contribute to viola-
tions of the Bell-Wigner inequalities. (Actually, things are not quite as drastic as
suggested by these considerations, because Wigner needs for his inequality only
the fraction of the number of e and ne outcomes. Considering only combina-
tions that change that fraction, one obtains (N 4—1)3 different combinations if
we include measurement times taken out of a continuum, as compared to N 2

for a finite (countable) number of the As [14].)

Thus, the number of combinations of equal and not-equal outcomes that may
violate the Bell inequality (given general time dependent functions as they are
usual in physics) is vastly larger than the number of combinations that necessar-
ily obey Bell’s inequality; which is negligibly small for large N. If one would bet

on the odds that any experimental sequence of EPRB-type experiments (de-
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scribed by time dependent functions) violates the Bell inequality, one could bet
with great certainty that it will. It is thus not surprising that so many different
quantum experiments violate Bell-type inequalities.

As indicated above, there is also the other, even more disturbing, restriction
and inconsistency in the treatment of Wigner that was later taken over by
d’Espagnat [13]: they use only one common probability space, an assumption
that is incorrect if one does not deal with Bell’s s, but instead with the subset of
those As that lead either to e or ne outcomes ze. with 4, and A, respectively.
Exactly how many of these “global” entities will lead to e or ne outcomes in the
respective wings does in general depend, as I will demonstrate below, on the in-
strument settings of both sides without any involvement of instantaneous influ-

ences at a distance.

8. Alice and Bob to the Rescue: The Bell Game

The many objections related to infirmities of the derivation of Bell’s inequality
(and a large number of similar types of inequalities and equalities) made it de-
sirable to find some way of stating Bell’s findings crisply and without any possi-
bility of objection. This was accomplished by putting the Bell inequalities them-
selves into the far background and just using their power of contradicting the
quantum mechanical result. In this way Bell conceived a theorem for “local”
theories, which is mathematically and physically always true, but only for a cer-
tain definition of “local”. It was formulated by Bell in his following statement
[15]:

“But if (a theory with ... variables A ) is local it will not agree with quantum
mechanics, and if it agrees with quantum mechanics it will not be local. This is
what the theorem says.”

Bell’s definition of “local”, however, does not only mean that the Einstein
separation principle is strictly valid but adds additional, physically not neces-
sary (actually physically impossible), conditions as explained below for the
“Alice-Bob-game” or “Bell game”, which was divined by Bell’s followers and
science writers.

Indeed, the above statement of Bell, with the addition of the “Alice-Bob-local”
definition, is unassailable. As we will see, the theorem so stated is true and needs
no mathematics to prove it. The problem with the theorem so stated is of epis-
temological nature: there exists no Alice-Bob-local physical theory of spatially
distant and correlated measurements; not Einstein’s relativity, not classical me-
chanics, not quantum mechanics, not any non-trivial theory as we will see mo-
mentarily.

What is the Alice-Bob-locality about? Alice and Bob are the experimenters in
the two EPR wings and know only their own instrument setting and not that in
the other wing during the measurements, because of the random switching of
the instrument settings before a given measurement. It is postulated by the fol-

lowers of Bell that Alice and Bob must be able to find a “local theory” that gives
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them the outcome for Bell’s functions as soon as they obtain an element of
physical reality A that is sent to them from a source. This “local-theory-game”
is, as we will see, impossible to play and thus the Bell theorem is proven. Ex-
treme non-localities, on the other hand, make it easy to find violations of Bell’s
theorem: just include a setting variable from the other side in Bell’s functions
(and use e.g. A(a,b,/I)) and Bell’s inequalities are easily violated (spooky in-
fluences yield any desired results).

To understand why the “Alice-Bob-game” (also called by many “the Bell
game”) cannot be played and why the corresponding definition of “local” is too
narrow and physically inappropriate, we have to realize that the experimenters
must use non-local or global knowledge throughout their experimental design,
during the measurements and after the measurements are finished and eva-
luated.

Much of the knowledge that Alice and Bob need about the other wing, can be
gained by the design of the global experimental set-up before any of the actual
measurements are done. Alice and Bob need to know that they measure the ap-
propriate counterpart of an entangled pair. This is commonly accomplished by
careful determination of the measurement times in both wings and requires the
additional assumption that the measurement time does not depend on the
equipment setting (which we may accept here without consequences for the fol-
lowing reasoning). The global gauge for all given instrument setting pairs and
the settings for maximal anti-correlations as well as the connection of the coor-
dinate systems of Alice and Bob, may also all be fixed before the actual mea-
surements begin.

During the measurements, Alice and Bob do not have information about the
global gauge that is relevant for a particular pair-measurement, because that
gauge depends on the instrument setting of both wings and these instrument
settings are randomly switched. It is, therefore, impossible for them to find a lo-
cal theory that describes measurement outcomes violating Bell-type inequalities
at this stage of the experiment. I have pointed out in a previous publication [16]
that such requirements for a local theory would not permit any theory of relativ-
ity, which necessarily works with systems as seen relative to other systems, a fact
that has been discussed by Oaknin [5] in great detail. Alice and Bob certainly
cannot choose, at this stage, the Wigner subsets that are the key for finding vi-
olations of Bell-type inequalities and require the knowledge of the global gauge
and instrument settings. The illustration in section 9 gives further reasons why
Alice and Bob cannot play the Bell game.

The information about Wigner subsets is found by Alice and Bob only after all
measurements are done: they assemble the Wigner subsets from the global data
to prove the experimental violations of Bell-type inequalities by counting the
equal e vs not-equal ne outcomes for the Bell-pairs of instrument settings. In
this way they assess outcomes as seen relative to the other wing. The fact that

this relativity is introduced after the measurement run does not make a differ-
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ence to the fact that the statistics of the outcomes is determined by non-local
means.

I have sometimes been asked by Bell’s followers: “Nature can play the Bell
game and finds measurement outcomes during the experimental runs, why can
you not do it?” We see from the above that nature cannot play that local game,
because it involves a global experimental design, a global gauge and a global as-
sembly of Wigner subsets with the assessment of the frequency of relative out-
comes in the two wings.

The theoretician who develops a theory about the Wigner subsets for e and ne
outcome pairs, needs to have, as a minimum, that same global knowledge that
the experimenters have and use to produce and finally collect their data as al-
ready outlined in [16]. These latter global facts and knowledge may not only
reasonably be used by the theoretician, but must be used when probabilistic
theories are invoked, because the probability spaces of subsets may depend on
these global facts: when we ask the question of how many e and ne pairs we have
for a given instrument setting pair, we do address a global fact for which only a
globally valid theory and gauge can account. In fact we ask what is the outcome
relative to the outcome in the other wing and we lose the possibility to treat the
two wings independent of their respective measurement outcomes. Wigner im-
proved Bell with respect of the generality of the function range (co-domain) but
had to deal, in return, with the numbers of A1 that correspond to e and ne
outcomes and these numbers (or their frequencies of occurrence) may depend
on the instrument settings (gauge) of both wings because they depend on the
relative measurement outcome of the other wing. This latter fact will be shown
in more detail in section 9.

In this connection it is also important to remember that non-locality by in-
stantaneous influences at a distance requires a specific inclusion of the instru-
ment-settings of the other wing in the domain of Bell’s functions. Such inclusion

is neither present nor required at all in the following illustration.

9. Wigner-Subsets, Spin-Gauge and Probability-Spaces:
The Role of Free Will and Randomly Switched Instrument
Settings

The gauge for the spin (“horizontal/vertical” in a certain coordinate system) can
be chosen freely in only one wing of the EPRB experiment. The gauge in the
other wing is determined by the requirement of complete anti-correlation, which
also determines the X,y coordinates on both sides. The outputs of the Wollas-
ton prisms (Stern-Gerlach magnets) are then anti-correlated by definition for
the same X,y coordinates, as they should be for the singlet entangled pairs that
we consider.

This latter important point and its full consequences were not realized by Bell
and his followers. They claim that the settings on both sides are chosen by the
free will of Alice and Bob. Naturally, even the free will cannot turn instruments

faster than the speed of light ¢, which is the reason why measurement times and
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instrument settings cannot be defined on one common probability space [9].
Furthermore, the gauge of the spin must be globally well-defined also in the
second wing, once chosen in the first. Detailed considerations about using con-
sistent spin-gauges were presented by David Oaknin [5]. They were also dis-
cussed independently and from a different vantage point by this author [17] and
in an early stage with collaborators [18]. It is important to realize that there are
certain restrictions for the choice of gauge, which have been discussed in all ge-
nerality by Oaknin [5]. For our purposes here it is sufficient to adopt a definition
of gauge corresponding to one given instrument setting (say in wing 1) and to
connect this gauge to wing 2 as described above and below.

We may rotate the Wollaston prism in wing 2 freely, for example by an angle
@ around the zaxis and replace thus the measurement directions X,y by the
rotated X',y" coordinates in wing 2. Note, however, that we must now label the
measurement data in wing 2 by the angle 6 between x and X', if we wish to
say anything about the Bell-correlations of the two wings including complete an-

«

ti-correlation for the X,X' settings. Oaknin [5] states: “... only their relative
orientation (referring to X,X') is a physical degree of freedom.” If we do not re-
late the wing 2 instrument settings and wing 2 gauge to that of wing 1, we natu-
rally cannot speak about correlations. Remember also that in actual EPRB expe-
riments the determination of the Bell angles is usually done by the experimenters
before the actual measurement-runs, while the choice of measurement sequences
and setting pairs is made after the experimental runs are finished; when the
Wigner subsets are collected mostly based on measurement times.

The rotation of the Wollaston in wing 2 by & results, of course, in measure-
ment outcomes that are different from complete anti-correlation. The corres-
ponding correlations of the outcomes in this new situation are still determined
by the physical law that governs the interactions of the photons and the Wollas-
ton prisms and the possible measurement outcomes may, therefore, be different
in wing 2 in a variety of ways.

The following illustration by an example from classical mechanics is designed
to explicitly demonstrate the associated possible changes of probability spaces by
rotations of the Wollaston prism and by subsequently choosing Wigner-type
subsets of e and ne outcomes. We will see that such rotation changes the Kol-
mogorov probability spaces for the e and ne outcomes and involves & or func-
tions of @. It will also become obvious that these changes of the probability
spaces with @ have nothing to do with instantaneous influences at a distance in
spite of the fact that @ depends on the instrument settings of both sides.

9.1. Illustration of Global Correlations between Classical
EPRB-Type Measurement Pairs without Violation of
Einstein’s Separation Principle

This oversimplified illustration (per se) is not invalidating Bell’s inequality, be-
cause it is linear in all its variables. It is demonstrating in the most elementary

way, however, that a dependence of certain probabilities on @ has nothing to
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do with influences at a distance but arises naturally from local factors and the
global experimental design and gauge.

Consider two macroscopic rods parallel and next to each other, one with a red
top and blue bottom section, the other with a blue top and red bottom section.
The top of one rod is always next to the bottom of the other. The center of these
rods is on the z-axis of a coordinate system and the rods are always oriented
perpendicular to the z-axis. Assume further that these rods are emitted from a
source. The direction of the emission is random: either the first rod propagates
into wing 1 and the second into wing 2 along the z-axis or vice versa, both rods
exhibit the same angle ¢, which is measured from the x-axis of the X,y -plane
and ranges in value randomly between 0 and .

In both wings we have instead of the Wollaston prisms simple color detectors
that indicate the result “horizontal” if and only if for any ¢ between 0 and nt
the color is red, while they indicate “vertical” if for any such ¢ the color is blue.
We can see that this simple experiment will always result in complete an-
ti-correlation without any suspicion of instantaneous influences at a distance.
There is, of course, global knowledge and fact involved in the gauge, the physical
conservation law that guides the rods toward the detectors and how the rods in-
teract with the detectors locally but in a correlated way, because of the overall
design of the experiment.

Assume now that many such rod-pairs are emitted from a source. We use the
same local rules for evaluating the red and blue rod-sections, but we rotate the
coordinate system and color detectors in wing 2 by an angle @ that turns xinto
X'. We denote the angles of the rods with the X'-axis by ¢’ and determine the
new “horizontal” and “vertical” outcomes in wing 2 according to the colors red
or blue, respectively. Now, however, we do this for ¢’ in the X', y'-plane with
values between 0 and .

After performing many measurements, we select in wing 1 the subset of rods
with the exclusive outcome “horizontal”. We then ask the question, which frac-
tion of the corresponding rods in wing 2 is “vertical” and which fraction “hori-
zontal”. The “entangled” pair of rods is determined by the angle ¢ and the fact
that ¢'=¢—0, another needed global knowledge. Because ¢ is random be-

1 0 ({3 . » . 0
tween 0 and 7, one obtains 1—— for the “vertical” fraction of rods and — for
oL T

the “horizontal” fraction, respectively. Thus, the probability (using the frequency
interpretation) of the “horizontal” and “vertical” outcomes depends on the angle
6 between the two coordinate systems.

Alice and Bob, however, could not possibly guess that simple result; they
cannot know about the instrument setting in the other wing during the mea-
surements and thus also do not know the angle 6. The probability measure

P(A=B) for the outcomes to be e, equals the probability that OS¢£%,

which equals 9 . As is evident from the simplicity of the model, the dependence
n

of the probability measure on the angle between the instrument settings in the
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two wings does not indicate any implausible non-locality and certainly not any
influences at a distance but arises from the global factors of the experimental ar-
rangement, gauge and choice of Wigner subsets.

This means that Wigner-subset probability-measures for Bell’s function
products and the numbers of e and ne outcomes may depend on the instrument
settings of both sides, without involvement of spooky non-localities.

As a major corollary one can state that a global statistical result, obtained from
many measurements at separate locations for correlated information packages
and correlated measurement times, may depend on non-local variables such as
6. The global statistical result may reflect measurement arrangements of all of
the separate locations, even if those arrangements do not influence each other
and are unknown to anyone controlling the local measurement events. It is this
corollary, which permits us to use the space-time system to exorcise spooky in-
fluences in complex situations if we choose to do so.

Note that these statistical properties of subset probability-measures do not
imply that Bell’s function-domain contains a variable corresponding to the
equipment settings of the other wing. Nor does the random angle ¢, which
corresponds to Bell’'s 4 (except that it is chosen out of a continuum of an-
gles) depend on any instrument settings. It is only the probability for e and
ne outcomes that depends on the instruments of both wings. Nor is the free
will of Alice and Bob to choose any angle @ restricted in any way (su-
per-determinism). They must choose, however, the spin-gauge of both wings
consistent with the settings of complete anti-correlation and cannot decide that

fact by their separate free will.

9.2. The Importance of Subset Selection and the Problem with
Random Switching

Fast random switching of the instrument settings (and thus of @) are declared
by Bell’s followers to be the vade mecum for proving Bell’s theorem, because it
makes it impossible to play the Alice-Bob-local game (the Bell game). Neither
Alice nor Bob know & and the gauge that is chosen in the other wing, because
that gauge depends on the (rapidly switched) instrument setting. Their choice of
the outcome-value for Bell’s functions (of A(a, A1) by Alice and B(b,1) by
Bob, after they receive a value of A1) is, therefore, meaningless at the time the
measurements are performed. They both do not know the global gauge at this
point. This knowledge is only acquired by them when they select the Wigner
subsets after the measurements are completed.

Random switching of the measurement settings on both sides does involve
random changes of the spin-gauges and of the probability measures for the e and
ne outcomes of selected subsets. It is, therefore, nonsensical to require that Bell’s
functions and the ordering of their outcome-values into subsets a la Wigner are
related to only one common probability space. The probabilities P(A=B) and

P(A;t B) depend in our (classical mechanics) illustration on &, which is ran-
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domly changed by randomly switching the instrument settings. The angle ¢
(chosen out of a continuum), which corresponds to Bell's A emanating from
the source, does not depend on the instrument settings as dictated by Einstein’s
separation principle. However, the frequencies of e and ne outcomes may de-
pend on the instrument settings (and do depend on them in our illustration),
because of the underlying physical law, global experimental arrangement and
global gauge.

These facts make us appreciate Einstein’s view (in his discussion with Heisen-
berg) that the theory codetermines what can be measured. The experimenters
need to know about Wigner subsets in order to find out whether or not Wigner’s
inequality is obeyed by their data. The theoretician needs to help with the con-
struction of the global design and needs to provide a consistent global gauge.
The requirement that Alice and Bob should be able to find a theory at a certain
point of the experimental procedure at which they have no idea of the global
gauge and other factors, appears in this light as a crucial mistake.

Quantum mechanics also gives results for precisely one given instrument set-
ting in each wing. That setting pair determines the operators that act on the des-
ignated states of a product Hilbert-space. The instrument setting thus deter-
mines the spin operators and defines the gauge through the eigenvalues and ei-
genvectors of these operators. The preparations of particles and their quantum
states (on which the spin-operators act), determine the precise division into dif-
ferent subsets of the possible outcomes corresponding to e and ne values. These
different subsets are, however, not necessarily defined on one common probabil-
ity space but involve, in general, different probability spaces for different in-

strument setting pairs.

10. Explicit Statistical Interpretation and Model for EPRB

How can one model the general probability measures for the actual sing-
let-entangled-pair measurement outcomes, without invoking any inappropriate
nonlocal influences? How can one exclusively use the data and invoke a physical
law that explains the probability measures without instantaneous influences at a
distance?

I specify our considerations to the case of entangled photon pairs and mea-
surements with Wollaston prisms and also consider only Wigner’s set theoretical
approach, which means we need to determine only the number of e and ne out-
comes for a given instrument setting pair say a in wing 1 and a as well as b in
wing 2. This use of Wigner-type subsets, which are selected by the theoretician
after all measurements are completed, is crucial.

We follow the above illustration and collect from all data, as a first step, the M
“horizontal” outcomes of wing 1, as well as the corresponding measurement
outcomes for the entangled photons in wing 2. For =0 (setting pair a,a) all
the outcomes in wing 2 must be “vertical” because of maximal anti-correlation.

For 6#0 and Wollaston prism in wing 2 set to b (the x axis rotated by an an-
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gle 0 to form the xaxis), one naturally expects a Malus type law at work (see
e.g. The FeynmanLectures on Physics III), which results in about M (sin 9)2
“horizontal” outcomes, because that is what is natural for a system of entangled
pairs that had shown all “vertical” outcomes before the Wollaston prism was ro-
tated by 0. The “vertical” outcomes in the rotated system are then

M —M (sin 6’)2 =M (cos 0)2. These results are also expected by quantum con-
siderations as shown in the Feynman lectures.

As in our illustration above, the use of the angle & involves no “illegal”
nonlocality. We have used a Malus-type law for the probabilities of “horizontal”
and “vertical” outcomes.

Symmetrically, for the set of all “vertical” outcomes in wing 1, we obtain in
wing 2 about M (cos 0)2 “horizontal” outcomes and M (sin 9)2 “vertical”
outcomes. One easily obtains then the number of equal outcomes to be
e=2M(sin 0)2 , while the number of non-equal outcomes is ne =2M (COSH)2 )

Thus, we have for the difference in the outcome probabilities (frequencies):
E(a,b):—((cose)2 —(sine)z)z—cos(ze) (6)

Nothing in the procedure depends on the distance of the Wollaston prisms.
Nor do we need to involve any instantaneous influences at a distance.

We got around the instantaneous changing of a “state” by avoiding, a la Eins-
tein, relations of state concepts to single objects and instead using all horizontal
outcomes in wing 1 as a subset and obtaining the correlated subsets in wing 2 by
the probabilities as obtained from a Malus type law.

In contrast, the quantum-interpretation of Bell’s followers maintains that
(because the outcomes that we consider in wing 1 are all “horizontal”) we are
dealing in wing 1 with measurement of a single “horizontal” quantum state and
only after these measurements do we know that the state in wing 2 must be a
vertical quantum state and instantaneously so.

We have, with the outcome-subset treatment, not achieved any progress or
improvement of the results, but have avoided instantaneous changes of sin-
gle-object quantum states. In other words, we can clearly avoid any hint of in-
stantaneous influences in this model for EPRB experiments. The major novelty
is that certain subsets of data-pairs may necessarily be defined on different
probability spaces. Quantum mechanics avoids dealing with this complication by
only working with probability amplitudes that lead to the final subset probabili-
ties by Born’s interpretation. Andrei Khrennikov has analyzed the matter of sta-
tistical vs individual interpretations from a mathematical point of view and has
contributed over many years to a large number of questions discussed above [19]

Would Einstein be satisfied with the model here presented? Not quite, because
he preferred ab initio physical theories that do not invoke probability laws.
However, if we do not wish to introduce a Malus type law of nature, then we
must dive into the nitty gritty of the dynamic interactions of entangled pairs and
measurement equipment and describe them in space-time. This presents a very

complicated theoretical problem that may lead to the well-known infinite regress
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that arises if the equipment is treated as a many body system. This difficulty is
the great barrier for ab initio Bell-type models and this barrier has contributed to
many frustrations in this area. It is identical to the similar barrier of quantum
theory that usually does not and cannot supply an ab initio theory of the mea-
surement instruments.

Of course, there are numerous other quantum experiments exhibiting the
same features that I have just described for EPRB: they are much easier to ex-
plain with instantaneous influences at a distance than without those influences.
In the final analysis, Einstein found the use of such influences spooky and spook
must be exorcised. However, spook is sometimes “entrenched” in highly valued
physical concepts and strategies of explanation, simply because it solves all
problems easily.

Typical examples are experiments that can be explained with interference at
distant regions of space, particularly interference of probability amplitudes.
However, we encounter here again a suspect logic that Bishop Berkeley would
have objected to: how can the interference of “something” destruct any results at
distant spatial locations, where that “something” is, ontologically speaking, not
present in the first place? In other words, the concept of interference at a dis-
tance involves instantaneous influences at a distance to start with. Instead of
embracing such concepts and using them to unseat other logical explanations,
work must be done, as above for the model of EPRB experiments, that permits to
remove instantaneous influences at a distance and exorcise spooky effects. Such
work is not going to be easy, as one can see from the years of controversy with
the Bell theorem. However, only such dedicated work can lead us away from

spooky influences and toward more Einstein-like theories.

11. Conclusions

It has been examined whether EPRB experiments can be reasonably modeled
without the use of instantaneous influences at a distance and a way was found
that is numerically identical to the quantum mechanical results but interpreta-
tional different. The concept of quantum-state as a description of a single entity
has been avoided by using the description of subsets of entities interacting with
instruments and resulting in subsets of data. A main difference between quan-
tum and Kolmogorov probability concepts has been pinpointed in the treatment
of such subsets of the data for measurement outcomes. These subsets correspond
in quantum mechanics to different quantum states as well as operators, while in
Kolmogorov’s framework they correspond generally to different probability
spaces.

I have also shown that Bell’s theorem does not apply to such subsets of da-
ta-pairs of distant EPRB measurement outcomes, because the definition of “local”
by Bell and followers in the Alice-Bob-game is too narrow. With that definition,
the Bell theorem is indeed valid, but does not apply to any nontrivial actual ex-

periments.
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I have further shown that the Bell inequalities themselves suffer from a num-
ber of logical inconsistencies and lack of generality in their dealing with proba-
bilistic concepts, inconsistencies that also cannot even be repaired by the more
general set theoretic approach of Wigner and d’Espagnat.

I believe that my findings suggest that instead of embracing instantaneous in-
fluences at a distance in physical theories and in quantum mechanics, ways must
be searched for that avoid the use of such concepts by the appropriate use of dif-
ferent subset-probability-spaces. Quantum mechanics, of course, has accom-
plished that division into sub-sets through quantum states and operators. How-
ever, the interpretations that link quantum states to single ontological entities
lead to temptations of suggesting instantaneous influences, which may be
avoided by careful additional explanations as presented above for the special
case of EPRB.
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