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Abstract 
Extending the work carried out by [1], this paper proposes six combined-type estimators of popu-
lation ratio of two variables in post-stratified sampling scheme, using variable transformation. 
Properties of the proposed estimators were obtained up to first order approximations, ( )1o n− , 
both for achieved sample configurations (conditional argument) and over repeated samples of 
fixed size n (unconditional argument). Efficiency conditions were obtained. Under these condi-
tions the proposed combined-type estimators would perform better than the associated customa-
ry combined-type estimator. Furthermore, optimum estimators among the proposed combined- 
type estimators were obtained both under the conditional and unconditional arguments. An em-
pirical work confirmed the theoretical results. 

 
Keywords 
Variable Transformation, Combined-Type Estimator, Ratio, Product and Regression-Type  
Estimators, Mean Squared Error 

 
 

1. Introduction 
The use of information on auxiliary character to improve estimates of population parameters of the study varia-
ble is a common practice in sample survey, and sometimes, information on several variables is used to estimate 
or predict a characteristic of interest. The investigators often collect observations from more than one variable, 
including the variable of interest y  and some auxiliary variables x . The use of these variables (known as 
auxiliary information in sample survey design) often results in efficient estimate of population parameters (e.g. 
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mean, ratio, proportion, etc.) under some realistic conditions, especially when there is a strong correlation be-
tween the study variables and the auxiliary variables. Many authors have made contributions in this regard, in-
cluding [2] and [3]. In this context, ratio, product and regression methods of estimation are good examples. Ra-
tio and product-type estimators take advantage of the correlation between the auxiliary variable and the study 
variable, to improve the estimate of the characteristic of interest. For example, when information is available on 
the auxiliary variable that is highly positively correlated with the study variable, the ratio method of estimation 
proposed by [4] is a suitable estimator to estimate the population mean, and when the correlation is negative, the 
product method of estimation, as envisaged by [5] and [6], is appropriate. However, in some studies, the ratio of 
the population means (or totals) of the study and auxiliary variables might be of great significance, hence the 
need to estimate such ratios. 

The customary estimator of the population ratio ( )R Y X=  of the population means of two variables, y  
and x , under the simple random sampling scheme, is given as R̂ y x= , which is the ratio of the sample 
means of the two variables ([2] and [7]). The estimator, R̂ y x= , uses information on only two variables, 
namely the study variable ( )y  and one auxiliary variable ( )x . However, several authors, like [7] and [8], have 
contributed to the problem of estimating the population ratio of two means, often utilizing additional informa-
tion on one or more auxiliary variables, say ( )1,2,iz i =  . While it is possible to record increased efficiency by 
introducing such additional auxiliary variables, it is obvious that extra cost is involved in order to obtain infor-
mation on such additional auxiliary variables. References [1] and [9] have argued that such extra cost could be 
avoided by using variable transformation of the already observed auxiliary variable, instead of introducing addi-
tional (new) auxiliary variables. However, the works carried out by [1] [9] were restricted to estimation of pop-
ulation ratio in simple random sampling scheme. The present study is necessitated by the need to extend to post- 
stratified sampling scheme, the works on ratio estimation carried out by [1] [9] under the simple random sam-
pling scheme. This is in order to extend to other sampling schemes, the obvious advantage of reduced cost in the 
use of variable transformation instead of introducing additional (new) auxiliary variables when estimating pop-
ulation ratio of two population parameters. 

2. The Proposed Combined-Type Estimators 
Let n  units be drawn from a population of N  units using simple random sampling method and let the sam-
pled units be allocated to their respective strata, where hn  is the number of units that fall into stratum h  such  

that 
1

L

h
h

n n
=

=∑ . Let hiy  and hix  be the thi  observation on the study and auxiliary variables, respectively.  

Consider the following variable transformation of the auxiliary variable, x , under post-stratified sampling 
scheme. 

,     1, 2, ,   and  1, 2, ,hi
hi

NX nx
x h L i N

N n
∗ −
= = =

−
                        (2.1) 

An equivalent of the transformation (2.1), in simple random sampling scheme, has been used by authors like 
[1] [8]-[13]. The associated sample mean estimator of the transformed variable (2.1), in post-stratified sampling 
scheme, can be written as 

( )1 ,     where    ps ps
nx X x

N n
π π π∗ = − − =

−
                          (2.2) 

and 
1

L

ps h h
h

x xω
=

= ∑  and 
1

L

ps h h
h

y yω
=

= ∑  are sample mean estimators based on hix  and hiy  respectively. Using  

the sample means psy , psx  and psx ∗ , and assuming that the population mean, X  of the auxiliary variable 
hix , is known, we proposed six combined-type estimators of the population ratio R Y X=  in post stratified 

sampling scheme as 

( )1
ˆ ps

c
ps ps

y
R

x b x X∗
=

− −
                                   (2.3) 
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2
ˆ ps ps ps

c
ps ps

ps

y y x
R

x x X
X

x

∗

∗

= =
 
  
 

                                  (2.4) 

3
ˆ ps ps

c
ps psps ps

y y X
R

x xx x
X

∗∗
= =
 
 
 

                                 (2.5) 

4
ˆ ps

c
ps

y
R

x ∗=                                              (2.6) 

( )5
ˆ ps

c
ps ps

y
R

x b x X∗
=

− −
                                   (2.7) 

6
ˆ .ps ps ps

c
psps

ps

y y x
R

x Xx
X

x

∗∗
= =
 
  
 

                                 (2.8) 

2.1. Conditional Properties of the Proposed Estimators 
Reference [14] defined that under the conditional argument, that is, for the achieved sample configuration, 

( )1 2 3, , , , Ln n n n n=   the post stratified estimator, psy  is unbiased for the population mean, Y , with variance 

( ) ( )
2 2 2

2 2
2

1 1 1

11
L L L

yh h yh
ps h h h yh

h h hh h

S S
V y f S

n n N
ω

ω ω
= = =

= − = −∑ ∑ ∑                        (2.9) 

where 2V  refers to conditional variance and 2
yhS  is the population variance of y  in stratum h . Similarly, 

Onyeka (2012) obtained the conditional variance of psx  and the conditional covariance of psy  and psx  re-
spectively as:  

( ) ( )
2 2 2

2 2
2

1 1 1

11
L L L

xh h xh
ps h h h xh

h h hh h

S S
V x f S

n n N
ω

ω ω
= = =

= − = −∑ ∑ ∑                       (2.10) 

and 

( ) ( )
2

2
2

1 1 1

1, 1
L L L

yxh h yxh
ps ps h h h yxh

h h hh h

S S
C y x f S

n n N
ω

ω ω
= = =

= − = −∑ ∑ ∑                  (2.11) 

where 2
xhS  is the population variance of x  in stratum h , yxhS  is the covariance of y  and x  in stratum 

h , and 2C  refers to conditional covariance. 
Let 

0 1  and  .ps psy Y x X
e e

Y X
− −

= =                               (2.12) 

Then, under the conditional argument, 

( ) ( )2 0 2 1 0E e E e= =                                        (2.13) 

( ) ( )
( )

2
22 2

2 0 2 2
1

1 1
Lps yh

h h
h h

V y S
E e f

nY Y
ω

=

= = −∑                       (2.14) 

( ) ( )
( )

2
22 2

2 1 2 2
1

1 1
Lps xh

h h
h h

V x S
E e f

nX X
ω

=

= = −∑                       (2.15) 
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( )
( )

( )2 2
2 0 1

1

, 1 1 .
Lps ps yxh

h h
h h

C y x S
E e e f

YX YX n
ω

=

= = −∑                  (2.16) 

Using (2.12), the first proposed estimator, 1
ˆ

CR , given in (2.3), can be re-written up to first order approxima-
tion, ( )1o n− , in expected value, as  

( ) ( ) ( ) ( )2 2
1 0 1 0 1 1

ˆ 1 1 1cR R R e b e b e e b eπ π π − = − + − + + +                 (2.17) 

and 

( ) ( )
2 22 2 2

1 0 1 0 1
ˆ 1 2 1 .cR R R e b e b e eπ π  − = + + − +                         (2.18) 

We take conditional expectation of (2.17) and (2.18), and use (2.13) to (2.16) to make the necessary substitu-
tions. This gives the conditional bias and mean square error of 1

ˆ
CR  respectively as 

( ) ( ) ( )2
2 1 22 122

1ˆ 1 1CB R b RA b A
X

π π = + − +                           (2.19) 

and 

( ) ( ) ( )2 2
2 1 11 22 122

1ˆMSE 1 2 1CR A b R A b RA
X

π π = + + − +                (2.20) 

where 

( ) ( ) ( )2 2 22 2

11 22 12
1 1 1

1 11
,    ,    .

L L L
h h yh h h yxhh h xh

h h hh h h

f S f Sf S
A A A

n n n
ω ωω

= = =

− −−
= = =∑ ∑ ∑         (2.21) 

Following similar procedure, we obtain the conditional biases and mean square errors of the six proposed es-
timators, together with those of the customary combined-type estimator, ˆ

C ps psR y x= , of population ratio 
( )R , in post-stratified sampling, up to first order approximation, ( )1o n− , as: 

( ) [ ]2 22 122

1ˆ
CB R RA A

X
= −                                   (2.22) 

( ) ( ) ( )2 1 22 122

1ˆ 1 1  CB R b b RA A
X

π π= + + −                      (2.23) 

( ) ( ) ( )2 2 22 122

1ˆ 1 1  CB R RA A
X

π π= + + −                        (2.24) 

( ) ( ) ( )2
2 3 22 122

1ˆ 1  1CB R RA A
X

π π π = − + − −                   (2.25) 

( ) 2
2 4 22 122

1ˆ
CB R RA A

X
π π = +                               (2.26) 

( ) ( ) ( )2 5 22 122

1ˆ
CB R b b RA A

X
π π= + + +                        (2.27) 

( ) ( )[ ]2 6 22 122

1ˆ 1CB R RA A
X

π π= + +                           (2.28) 

and 

( ) 2
2 11 22 122

1ˆMSE 2CR A R A RA
X

 = + −                         (2.29) 

( ) ( ) ( )2 2
2 1 11 22 122

1ˆMSE 1 2 1CR A b R A b RA
X

π π = + + − +                  (2.30) 
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( ) ( ) ( )2 2
2 2 11 22 122

1ˆMSE 1 2 1CR A R A RA
X

π π = + + − +                  (2.31) 

( ) ( ) ( )2 2
2 3 11 22 122

1ˆMSE 1 2 1cR A R A RA
X

π π = + − − −                  (2.32) 

( ) 2 2
2 4 11 22 122

1ˆMSE 2CR A R A RA
X

π π = + +                          (2.33) 

( ) ( ) ( )2 2
2 5 11 22 122

1ˆMSE 2CR A b R A b RA
X

π π = + + + +                 (2.34) 

( ) ( ) ( )2 2
2 6 11 22 122

1ˆMSE 1 2 1 .CR A R A RA
X

π π = + + + +                 (2.35) 

Generally, we have for the proposed six combined-type estimators, 

( ) 2 2
2 11 22 122

1ˆMSE 2qc q qR A R A RA
X

θ θ = + −                           (2.36) 

where 1, ,6q =   and 

( ) ( ) ( ) ( ) ( )1 2 3 4 5 61 ,   1 ,   1 ,   ,   ,   1 .b bθ π θ π θ π θ π θ π θ π= + = + = − = − = − + = − +        (2.37) 

2.2. Unconditional Properties of the Proposed Estimators 
Following [14] we obtain the following (unconditional) variances and covariance, for repeated samples of fixed 
size n. 

( ) 2

1

1 L

ps h yh
h

fV y S
n

ω
=

− =  
 

∑                               (2.38) 

( ) 2

1

1 L

ps h xh
h

fV x S
n

ω
=

− =  
 

∑                               (2.39) 

and 

( )
1

1Cov ,
L

ps ps h yxh
h

fy x S
n

ω
=

− =  
 

∑                         (2.40) 

where f n N=  is the population sampling fraction. By taking unconditional expectations of (2.17) and (2.18), 
and using (2.38)-(2.40) to make the necessary substitutions, we obtain the unconditional bias and mean square 
errors of the first proposed estimator, 1

ˆ
cR , up to first order approximation, ( )1o n− , as: 

( ) ( ) ( )1 22 122

1 1ˆ 1 1C
fB R b b RA A

nX
π π−  ′ ′= + + −     

                    (2.41) 

and 

( ) ( ) ( )2 2
2 11 22 122

1 1ˆMSE 1 2 1C
fR A R A RA

nX
π π−   ′ ′ ′= + + − +    

          (2.42) 

where 

2 2
11 22 12

1 1 1
,    ,    .

L L L

h yh h xh h yxh
h h h

A S A S A Sω ω ω
= = =

′ ′ ′= = =∑ ∑ ∑                      (2.43) 

Following similar procedure, we obtain the unconditional biases and mean square errors of the six proposed 
estimators, together with those of the customary combined-type estimator, ˆ

C ps psR y x= , of population ratio 
( )R , in post-stratified sampling, up to first order approximation, ( )1o n− , as: 

( ) [ ]22 122

1 1ˆ
C

fB R RA A
nX
−  ′ ′= − 

 
                                  (2.44) 
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( ) ( ) ( )1 22 122

1 1ˆ 1 1C
fB R b b RA A

nX
π π−  ′ ′= + + −     

                    (2.45) 

( ) ( ) ( )2 22 122

1 1ˆ 1 1C
fB R RA A

nX
π π−  ′ ′= + + −     

                     (2.46) 

( ) ( ) ( )2
3 22 122

1 1ˆ 1  1C
fB R RA A

nX
π π π−   ′ ′= − + − −    

                 (2.47) 

( ) 2
4 12 122

1 1ˆ
C

fB R R A A
nX

π π−   ′ ′= +    
                             (2.48) 

( ) ( ) ( )5 22 122

1 1ˆ
C

fB R b b RA A
nX

π π−  ′ ′= + + +     
                     (2.49) 

( ) ( )[ ]6 22 122

1 1ˆ 1C
fB R RA A

nX
π π−  ′ ′= + + 

 
                          (2.50) 

and, 

( ) 2
11 22 122

1 1ˆMSE 2C
fR A R A RA

nX
−   ′ ′ ′= + −    

                           (2.51) 

( ) ( )2
1 11 22 122

1 1ˆMSE 1 2C
fR A R b A RA

nX
π−   ′ ′ ′= + + −    

                   (2.52) 

( ) ( ) ( )2 2
2 11 22 122

1 1ˆMSE 1 2 1C
fR A R A RA

nX
π π−   ′ ′ ′= + + − +    

              (2.53) 

( ) ( ) ( )2 2
3 11 22 122

1 1ˆMSE 1 2 1C
fR A R A RA

nX
π π−   ′ ′ ′= + − − −    

              (2.54) 

( ) 2 2
4 11 22 122

1 1ˆMSE 2C
fR A R A R A

nX
π π−   ′ ′ ′= + +    

                      (2.55) 

( ) ( ) ( )2 2
5 11 22 122

1 1ˆMSE 2C
fR A b R A b RA

nX
π π−   ′ ′ ′= + + + +    

             (2.56) 

( ) ( ) ( )2 2
6 11 22 122

1 1ˆMSE 1 2 1 .C
fR A R A RA

nX
π π−   ′ ′ ′= + + + +    

             (2.57) 

Generally, the unconditional mean square errors of the proposed combined-type estimators is obtained as 

( ) 2 2
11 22 122

1 1ˆMSE 2qC q q
fR A R A RA

nX
θ θ−   ′ ′ ′= + −    

                      (2.58) 

where qθ , 1, ,6q =   is as given in (2.37). 

3. Efficiency Comparison 
The efficiencies of the six proposed combined-type estimators are first compared with that of the customary 
combined ratio estimator ˆ

CR  in estimating the population ratio R  of two population means under the condi-
tional and unconditional arguments in post-stratified random sampling scheme. Secondly, the performances of 
the proposed estimators among themselves are investigated. Furthermore, the optimum estimators among the 
proposed estimators are also obtained. The efficiency comparison is carried out using the mean square errors of 
the estimators and the results are shown in Table 1. 

4. Numerical Illustration 
Here, we use the final year GPA ( )y  and the level of absenteeism ( )x  of 2012/2013 graduating students of 
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Statistics Department, Federal University of Technology Owerri to illustrate the properties of the estimators 
proposed in the present study. Absenteeism is measured as the average number of days absent from lectures in a 
month. The class consists of 50 students, with 32 and 18 students respectively falling into low-absenteeism (0 - 
3 days per month) and high-absenteeism (4 - 6 days per month) groups or strata. Our interest is to estimate the 
ratio of final year GPA to absenteeism from lectures, based on a post-stratified sample of 20 out of the 50 gra-
duating students in the class. The data statistics, consisting mainly of population parameters are shown in Table 2. 

Table 3 shows the percentage relative efficiencies (PRE-1) of the proposed combined-type estimators, ˆ
qcR ,  

 
Table 1. Efficiency conditions under conditional and unconditional arguments.                                             

Estimator Conditional argument Unconditional argument 

qcR  is better than cR  if: 
1) 1qθ <  and Rβ <  

or 
2) 1qθ >  and Rβ >  

1) 1qθ <  and Rβ ′ <  

or 
2) 1qθ >  and Rβ ′ >  

kcR  is better than jcR  if: 
1) j kθ θ<  and j Rθ β<  

or 
2) j kθ θ>  and j Rθ β>  

1) j kθ θ<  and j Rθ β ′<  

or 
2) j kθ θ>  and j Rθ β ′>  

qcR  is optimum if: 0
q Rθ β=  0

q Rθ β ′=  

Where 12 22A Aβ = , 12 22A Aβ ′ ′ ′=  and qθ , 1, , 6q =   is as given in (2.37). 

 
Table 2. Data statistics for final year GPA ( )y  and absenteeism from lectures ( )x .                                        

Population/sample parameters Stratum 1 (low-absenteeism) Stratum 2 (high-absenteeism) 

50N =  1 32N =  2 18N =  

20n =  1 12n =  2 8n =  

( )1 0.60f− =  ( )11 0.625f− =  ( )21 0.556f− =  

2.98Y =  1 3.16Y =  2 2.65Y =  

3.16X =  1 2.03X =  2 5.17X =  

0.94R =  1 1.56R =  2 0.51R =  

0.67π =  2
1 0.2422yS =  2

2 0.0389yS =  

1 0.64ω =  2
1 0.9990xS =  2

2 0.6176xS =  

 1 0.2124yxS = −  2 0.0161yxS = −  

 1 0.64ω =  2 0.36ω =  

 
Table 3. Percentage relative efficiencies under conditional and unconditional arguments.                                     

Estimator θ  
Conditional argument Unconditional argument 

MSE PRE-1 (%) PRE-2 (%) MSE PRE-1 (%) PRE-2 (%) 

1
ˆ

cR  0.464 0.00148 259 100 0.00091 262 100 

2
ˆ

cR  1.670 0.00872 44 588 0.00548 44 600 

3
ˆ

cR  0.330 0.00111 346 75 0.00068 352 74 

4
ˆ

cR  −0.670 0.00104 370 70 0.00067 360 73 

5
ˆ

cR  0.130 0.00071 539 48 0.00043 553 47 

6
ˆ

cR  −1.670 0.00576 67 388 0.00370 65 405 

ˆ
cR  1.000 0.00384 100 259 0.00240 100 262 
0ˆ
qcR   0.00046 836 31 0.00028 854 31 
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over the customary combined-type estimator, ˆ
cR , under the conditional and under the unconditional arguments. 

The table also shows the percentage relative efficiency (PRE-2) of the proposed combined-type estimators, 1
ˆ

cR , 
over the other combined-type estimators, under the conditional and under the unconditional arguments. 

Table 3 shows that apart from the estimators, 2
ˆ

cR  and 6
ˆ

cR , the remaining four proposed combined-type es-
timators, under the conditional and under the unconditional arguments, are more efficient than the customary 
combined-type estimator, ˆ

cR , for the data under consideration, and their gains in efficiency (PRE-1) are rela-
tively large. Also, using PRE-2, we observe that the proposed combined-type estimator, 1

ˆ
cR , is more efficient 

than the estimators, 2
ˆ

cR , 6
ˆ

cR , and ˆ
cR , under the conditional and unconditional arguments. The optimum es-

timator, as expected, has the highest gain in efficiency, both under the conditional and unconditional arguments. 
However, the customary combined-type estimator, on the other hand, is found to be more efficient than some of 
the proposed combined-type estimators for the given set of data. This confirms the theoretical results, which 
showed that the proposed estimators are not always more efficient than the customary combined-type estimator. 
Notice that 0.16β ′ = −  and 0.94R =  showing that Rβ ′ <  and from the theoretical results in Table 1, the 
proposed estimators would be more efficient than the customary combined-type estimator, under the uncondi-
tional argument, if 1qθ < . The empirical results in Table 3 show that 2 1θ >  and 6 1θ > , and the proposed 
estimators 2R̂  (PRE-1 = 44%) and 6R̂  (PRE-1 = 65%) under the unconditional argument, are less efficient 
than the customary combined-type estimator, ˆ

cR . Hence the empirical results confirm the theoretical results. 

5. Concluding Remarks 
The study extends use of variable transformation in estimating population ratio in simple random sampling 
scheme to post-stratified sampling scheme. Efficiency conditions for preferring the proposed estimators to the 
customary combined-type estimator are obtained. The study shows that in any given survey, these efficiency 
conditions should be employed in order to determine the appropriate proposed combined-type estimators to use 
for the purpose of estimating the population ratio of two variables in post-stratified sampling scheme, using va-
riable transformation. 
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Abstract 
A random walk Metropolis-Hastings algorithm has been widely used in sampling the parameter of 
spatial interaction in spatial autoregressive model from a Bayesian point of view. In addition, as 
an alternative approach, the griddy Gibbs sampler is proposed by [1] and utilized by [2]. This pa-
per proposes an acceptance-rejection Metropolis-Hastings algorithm as a third approach, and com-
pares these three algorithms through Monte Carlo experiments. The experimental results show 
that the griddy Gibbs sampler is the most efficient algorithm among the algorithms whether the 
number of observations is small or not in terms of the computation time and the inefficiency fac-
tors. Moreover, it seems to work well when the size of grid is 100. 

 
Keywords 
Acceptance-Rejection Metropolis-Hastings Algorithm, Griddy Gibbs Sampler, Markov Chain Monte 
Carlo (MCMC), Random Walk Metropolis-Hastings Algorithm, Spatial Autoregressive Model 

 
 

1. Introduction 
Spatial models have been widely used in various research fields such as physical, environmental, biological 
science and so on. Recently, a lot of researches are also emerging in econometrics (e.g., [3] [4] and so on), and 
[5] gave an excellent survey from the viewpoint of econometrics. When we focus on the estimation methods, 
properties of several estimation methods are studied. For example, the efficient maximum likelihood (ML) 
method was proposed by [6], and [7] first formally proved that the quasi maximum likelihood estimator had the 
usual asymptotic properties, including n -consistency, asymptotic normality, and asymptotic efficiency. A 
class of moment estimators was examined by [8] and [9]. The Bayesian approach was first considered by [10] 
and [11] proposed a Markov chain Monte Carlo (hereafter MCMC) method to estimate the parameters of the 

http://www.scirp.org/journal/ojs
http://dx.doi.org/10.4236/ojs.2015.51002
http://dx.doi.org/10.4236/ojs.2015.51002
http://www.scirp.org
mailto:ohtsuka@sun.ac.jp
mailto:kakamu@le.chiba-u.ac.jp
http://creativecommons.org/licenses/by/4.0/
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model. We have to mention that in economic analysis typically the sample size is small, for instance, areal data 
such as state-level data is widely used. The maximum likelihood methods depend on their asymptotic properties 
while the Bayesian method does not, because the latter evaluates the posterior distributions of the parameters 
conditioned on the data. Therefore, it is reasonable to examine the properties of Bayesian estimators (see [12]). 

Although there are a lot of works using spatial models in a Bayesian framework, previous literature has rarely 
examined sampling methods for the parameter of spatial correlation. [13] proposed a random walk Metropolis- 
Hastings (hereafter RMH) algorithm. This method is widely used (e.g., [11] [12] [14] and so on). On the other 
hand, [2] applied a griddy Gibbs sampler (hereafter GGS) proposed by [1] and showed the GGS got an advan-
tage over the RMH method from a simulated data and estimated the regional electricity demand in Japan. How-
ever, [2] has examined only one case. In this paper, we compare the properties of the GGS in the case that the 
number of observation is small (or large) through the Monte Carlo experiments. Desirable properties for sam-
pling methods in the Bayesian inference are efficiency and well mixing, which yield fast convergence. In addi-
tion to these properties, computational requirements and model flexibility are important for applied econome-
trics. Therefore, the purpose of this paper is to investigate the properties of some sampling algorithms given 
several parameters of a model. 

In this paper, we examine the efficiency of the existing Markov chain Monte Carlo methods for the spatial 
autoregressive (hereafter SAR) model which is the simplest and most commonly used model in the spatial mod-
els. Moreover, we propose an acceptance-rejection Metropolis-Hastings (hereafter ARMH) algorithm as an al-
ternative MH algorithm, which is proposed by [15] because it is well known that the RMH is inefficient. This 
algorithm is widely used for the acceleration of MCMC convergence, for example, in the time series models (see 
[16]-[18] and so on). The advantage of this method is that the computational requirement is very small since it is 
irrelevant to the shape of the full conditional density. Therefore, we apply the algorithm to the SAR model. 

We illustrate the properties of these algorithms using simulated data set given the three number of observa-
tions and the seven values of spatial correlation. From the results, we find that the GGS is the most efficient 
method whether the number of observations is small or not in terms of both the computation time and the ineffi-
ciency factors. Furthermore, we show that it is efficient when the number of grid in the GGS sampler is one 
hundred. These results give a benchmark of sampling the spatial correlation parameter of the models. 

The rest of this paper is organized as follows. Section 2 summarizes the SAR model. Section 3 discusses the 
computational strategies of the MCMC methods, and reviews three sampling methods for spatial correlation pa-
rameter. Section 4 gives the Monte Carlo experiments using simulated data set and discusses the results. Finally, 
we summarize the results and provide concluding remarks. 

2. Spatial Autoregressive (SAR) Model 
Spatial autoregressive model explains the spatial spillover using a weight matrix (see [19]). There are numerous 
approaches to construct the weight matrix, which plays an important role in the model. For example, those are a 
first order contiguity matrix, inverse distance one and so on. Among the approaches, [20] recommended the first 
order contiguity dummies, because they showed that the first order contiguity weight matrix identifies the true 
model more frequently than the other matrices through the Monte Carlo simulations. Thus, we also utilize the 
first order contiguity dummies as the weight matrix. 

Let C  be an n n×  matrix of contiguity dummies, with 1ijc =  if areas i  and j  are adjacent and 
0ijc =  otherwise (with 0iic = ). We standardized the weight matrix as follows  

1

ij
ij n

ijj

c
w

c
=

=
∑

 

and we define { }ijw=W , where ijw  denotes the spatial weight on the j -th unit with respect to the i -th unit. 

Note that we have 1 1n
ijj w

=
=∑  for all i . 

Next, let iy  and ix  be a dependent variable and a 1 k×  vector of covariates on the i th unit for 
1, ,i n=  , respectively. Then, the SAR model conditioned on the parameters ρ , β , 2σ  is written as 

follows:  
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( )2

1
,     0, ,   1

n

i ij j i i i
j

y w yρ σ ρ
=

= + + <∑ x   β                        (1) 

where ρ  and 2σ  indicates the spatial correlation, and the variance of the disturbance term, respectively. As 
is shown in [21], we know that 1

min 1λ− = −  amd 1
max 1λ− = , where minλ  and maxλ  denote the minimum and 

maximum eigenvalue of W , since we standardize the weight matrix like W . Thus, we restrict ρ  to 
( )1,1ρ ∈ − . 

Then the likelihood function of the model (1) is given as follows:  

( ) ( )2 2 2
2, , , , 2π exp

2

n

nL σ ρ σ ρ
σ

− ′ = − − 
 

e ey X W I Wβ                     (2) 

where ( ), ,i ny y ′= y , ( )1 , , n
′′ ′= X x x , ( ), ,i ne e ′= e , 1

n
i i ij j ije y w yρ

=
= − −∑ x β , and nI  is an n n×  

unit matrix. 

3. Posterior Analysis and Simulation 
3.1. Joint Posterior Distribution 
Since we adopt the Bayesian approach, we complete the model by specifying the prior distribution over the 
parameters. We use the following independent prior distribution:  

( ) ( ) ( ) ( )2 2, ,π σ ρ π π σ π ρ=β β  

Given a prior density ( )2, ,π σ ρβ  and the likelihood function given in (2), the joint posterior distribution 
can be expressed as  

( ) ( ) ( )2 2 2, , , , , , , , , ,Lπ σ ρ π σ ρ σ ρ∝y X W y X Wβ β β                     (3) 

Finally, we assume the following prior distributions:  

( ) ( ) ( )2
0 0 0 0, ,     2, 2 ,     1,1N IG Uµ σ ν λ ρ −  Σβ  

where ( ),IG a b  denotes an inverse gamma distribution with scale and shape parameters a  and b . 
Since the joint posterior distribution is given by (3), we can now adopt the MCMC method. The Markov 

chain sampling scheme can be constructed from the full conditional distributions of ρ , β  and 2σ . 

3.2. Sampling ρ  
From (3), the full conditional distribution of ρ  is written as  

( )2
2

', , , , , exp
2np ρ σ ρ ρ
σ

 ∝ − − 
 

e ey X W I Wβ                        (4) 

As it is difficult to sample from the standard distribution, we examine three approaches for sampling ρ . First, 
we introduce the GGS, which is applied by [2]. Second, we overview the RMH algorithm, which is extended by 
[13]. Finally, we propose an ARMH algorithm. These sampling methods are summarized in the following. 

3.2.1. Griddy Gibbs Sampler 
The GGS was proposed by [1]. This sampling algorithm approximates a cumulative distribution function of the 
full conditional distribution by each kernel function over a grid of points and uses a numerical integration 
method, and is sampling method from the full conditional distribution by using the inverse transform method. 
Let the grid be as follows  

1 2 11 1m ma a a a +− = < < < < =  

and { }( )1, ,i i mρ ∈  , which is centered in the interval [ ]1,i ia a + . Then, the full conditional distribution in the 

interval [ ]1,i ia a +  is approximated as follows  
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( )
( )

2

2
1

, , , ,

, , , ,

i

i m h
h

p

p

ρ β σ
ω

ρ β σ
=

=
∑

y X W

y X W
 

Thus, we select the grid ia∗  with probabilities,  

( ) ( )
( )

1

11

i i ii
m

j j jj

a a
h

a a

ω
ρ

ω
+

+=

−
=

−∑
 

Finally, we sample ρ  from the uniform ( )1,i ia a∗ ∗
+ . [22] stated that the choice of the grid of points has to be 

made carefully and constitute the main difficulty in applying GGS. In this paper, we select the equal interval 
among 1m ma a+ −  as in [1]. Then, our numerical experiments examines to choice the size of grid for estimating 
the spatial correlation. 

3.2.2. Random Walk Metropolis-Hastings Algorithm 
The RMH method is a simple algorithm because it needs the previous value and a random walk process such as 

( )new old 2,Nφ φ τ , where oldφ  is the parameter of the previous sampling, and τ  denotes the tuning para- 

meter, respectively. Therefore, the following Metropolis step is used: Sample newρ  from  

( )new old 2,N sρ ρ  

where s  is the tuning parameter. In the numerical example below, we select the tuning parameter such that the 
acceptance rate lies between 0.4 and 0.6 (see [13]). Next, we evaluate the acceptance probability  

( ) ( )
( )

new 2
old new

old 2

, , , , ,
, min ,1

, , , , ,

p

p

ρ σ ρ
α ρ ρ

ρ σ ρ

 
 =
 
 

y X W

y X W

β

β
 

And finally set newρ ρ=  with probability ( )old new,α ρ ρ , otherwise oldρ ρ= . The proposal value of ρ  is 
not truncated to the interval ( )1,1−  because the constraint is part of the target density. Thus, if the proposed 
value of ρ  is not within the interval, the conditional posterior is zero, and the proposal value is rejected with 
probability one (see [23]). It is well known that the method is not efficient because the convergence is slow for 
using the previous sampled parameter. 

3.2.3. Acceptance-Rejection Metropolis-Hastings Algorithm 
An acceptance-rejection Metropolis-Hastings (ARMH) algorithm method was proposed by [15]. This algorithm 
samples the parameter using the AR and MH steps. Suppose that there is a candidate function ( )g ρ  such that 
it is possible to sample directly from ( )g ρ  by some known method. Then, the AR step proceeds as follows. 
We sampling the parameter from the candidate function ( )g ρ , and accepts the candidate draw with probability 
( ) ( )p cgρ ρ . This step is iterated until the candidate draw is accepted. 
Next, suppose the candidate newρ  is produced from above AR step. The MH part proceeds as follows. We 

calculate the acceptance probability, q  as following: 

( ) ( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

old old

old
old old new new

old

new old
old old new new

old new

If  , then  1;

If    and  , then  ;

If    and  , then  min ,1 .

p cg q

cg
p cg p cg q

p

p g
p cg p cg q

p g

ρ ρ

ρ
ρ ρ ρ ρ

ρ

ρ ρ
ρ ρ ρ ρ

ρ ρ

< =

< =

 
 =
  



 

 

In this step, the candidate draw is accepted with probability q  and rejected with probability 1 q− . If the 
draw is rejected, the previously sampled value is sampled again. If q  is small, the probability of sampling the 
same value consecutively is high, causing high autocorrelation across sample values (see [24]). Hence, we 
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should also make q  as close to one as possible. 
The advantage of this method is that it is free to functional form which differs from the GGS and RMH. In 

this paper, in order to construct the candidate function, we utilize the result of [7], which showed the consistency 
and asymptotic normality of quasi-ML estimators of model parameters, to the candidate density. Then, we 
construct the candidate density ( )g ρ  as an approximation to the the conditional posterior density by omitting 
the determinant ρ−I W  as follows:  

( ) ( )2ˆ ˆ,g N ρ ρρ µ σ                                     (5) 

where ( ) ( ){ }1ˆρµ
− ′′ ′= −y W Wy y X Wyβ  and ( ) 12 2ˆρσ σ −′ ′= y W Wy . Thus we sample newρ  from the distribu-

tion, and apply the ARMH algorithm. 

3.3. Sampling Other Parameters 
The full conditional distributions of β  and 2σ  are  

( ) ( )2ˆ ˆˆ ˆ, ,    and   2, 2N IGσ ν λ Σβ β  

where ( ){ }2 1
0 0

ˆ ˆβ σ ρ− −′= − +Σ ΣX y Wy β , ( ) 12 1
0

ˆ σ
−− −′= +Σ ΣX X , 0ˆ nν ν= + , and 0λ̂ λ′= +e e . These para-

meters are easily sampled from the Gibbs sampler (see [25]). 

4. Comparison of MCMC Methods 
4.1. Measures of Efficiency for Comparison 
In this section, we examine the properties of three MCMC methods by simulated data sets. Desirable properties 
for sampling methods in MCMC are efficiency and well mixing, which yield fast convergence. [17] compared 
from the view point of acceptance rate in the AR and MH step. [26] [27] evaluated the efficiency of sampling 
methods, comparing the inefficiency factor and time of MCMC simulation. Following previous literatures, we 
also compare inefficiency factor and computational time. 

The inefficiency factor is defined as 
11 2 ss r∞

=
+ ∑  where sr  is the sample autocorrelation at lag s  calcu-  

lated from the sampled values. It is used to measure how well the chain mixes and is the ratio of the numerical 
variance of the sample posterior mean to the variance of the sample mean from the hypothetical uncorrelated 
draws (see [28]). 

4.2. Data Generating Process and Estimation Procedures 
We now explain the simulated data for an experiment. First, we give the weight matrix as an exogenous variable. 
We construct the spatial weight matrix W  as follows: 1) generate ijc  for i j>  from Bernoulli distribution 
with a probability of success 0.3, 2) set ij jic c=  for i j=/  and 0ijc =  for i j= , and 3) compute 

1
n

ij ij ijjw c c
=

= ∑  for all i , j . Next, for the independent variables ( )1 2 31, , ,i i i ix x x=x , we take the standard 

normal variates and set the X , which are 4n×  covariate matrices. 
Given W , X , 0.9, 0.6, 0.3, 0, 0.3, 0.6, 0.9ρ = − − − , and 50, 100, 200n = , the true data generating 

process is as follows:  

1

n

i ij j i i
j

y w yρ
=

= + +∑ x β                                  (6) 

where the i  is normally and independently distributed with ( ) 0iE u =  and ( )2 2
iE u σ= . The parameter is 

set to be ( ) ( )0 1 2 3, , , 1,1,1,1β β β β′ = =β  and 2 0.1σ = , respectively. The parameters of ρ  for simulated data 
reflect the values obtained in [12]. All the results in this paper were calculated using the Ox version 5.1 (see 
[29]). 

The prior distributions are as follows:  
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( ) ( ) ( )2
4,100 ,    1.0 2,0.01 2 ,    and   1,1N IG Uσ ρ× −I  0β  

We perform the MCMC procedure by generating 35,000 draws in a single sample path and discard the first 
20,000 draws as the initial burn-in. For the GGS, we consider the number of grid, 50, 100, 300m =  for 
estimating the parameters. 

4.3. Results of Comparison 
Table 1 reports inefficiency factors by using three methods. Although there are some differences, the perfor-
mances of the GGS are almost equivalent to those of the ARMH. In addition, these algorithms are more efficient 
than RMH. For example, from the table in 50n = , the inefficiency factors calculated by the ARMH are smaller 
than the other methods. However, if spatial correlation is positive strong such as 0.9ρ = , the value by the GGS 
( )100m =  has the smallest inefficiency factor. Next, we focus on the results in 100n = . In this case, the GGS 
( )50,100m =  perform the best for 0.6,0.9ρ = , respectively. In the case of 200n = , the values of the GGS 
( )100m =  and the ARMH are similar in each parameter. We can also find such similarity in sample paths and 
autocorrelation functions. Figure 1 shows the results of MCMC simulation in each method in the cases of 

0.3ρ = , 50n =  and 100m = . The figure shows that the marginal posterior densities (middle of the figure)  
 
Table 1. Inefficiency factor of models. 

Observation: 50n =      

Parameter RMH GGS ARMH 
ρ   50m =  100m =  300m =   

−0.9 7.2 3.2 3.4 3.4 2.8 

−0.6 27.6 4.4 4.4 4.7 3.7 

−0.3 15.4 23.7 6.6 6.9 4.3 
0 41.6 9.0 10.1 11.5 6.6 

0.3 79.8 24.6 19.6 20.9 13.1 

0.6 117.0 46.3 45.2 52.3 44.6 
0.9 806.1 312.9 223.1 327.2 324.9 

Observation: 100n =      

Parameter RMH GGS ARMH 
ρ   50m =  100m =  300m =   

−0.9 10.7 4.8 5.0 5.3 4.7 

−0.6 17.0 6.7 7.3 7.5 4.6 

−0.3 34.7 9.0 10.2 10.9 5.0 
0 72.4 15.4 16.2 17.8 9.5 

0.3 85.1 24.5 25.5 32.6 19.9 

0.6 202.3 36.1 56.6 65.8 51.3 
0.9 609.1 379.3 338.0 342.1 338.9 

Observation: 200n =      

Parameter RMH GGS ARMH 
ρ   50m =  100m =  300m =   

−0.9 22.2 7.1 8.3 5.7 7.8 

−0.6 31.0 11.5 12.4 13.5 9.0 
−0.3 64.8 17.6 17.6 19.1 13.8 

0 75.7 23.5 26.4 33.6 23.7 

0.3 163.6 57.4 67.3 65.6 50.5 
0.6 697.3 164.2 117.5 163.3 159.3 

0.9 860.4 695.1 628.7 694.0 780.6 
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Figure 1. Sample paths, sample autocorrelation and posterior density of 0.3ρ = , 50n = . 

 
have similar shapes but that the sample paths (top of the figure) and autocorrelation functions (bottom of the 
figure) are different. From the sample paths, we can find that the ARMH and GGS mix better than the RMH. As 
same as the sample paths, autocorrelation functions shows the same tendency. The figure of autocorrelation in-
dicates that both GGS and ARMH perform similarly in the autocorrelation disappear. On the contrary, the result 
for the RMH indicates that serious autocorrelation for parameter at large lag length. 

Table 2 shows CPU time on a Pentium Core2 Duo 2.4GHz including discarded and rejected draws. For the 
GGS, the computation time depends on the number of grid because the increase of grid number causes the cost 
of computation time. In all cases, the GGS ( )50m =  overwhelms the others. If we focus on the case of 50n = , 
the computational time of the GGS ( )100m =  are as same as those of the RMH and ARMH methods. Futher-
more, if 200n = , the GGS needs much shorter time than the RMH and ARMH methods. Summarizing the re-
sults of inefficiency factors and computational time, if the number of observation is not only small (like 50n = ) 
but also large, then it is suitable to use the GGS. In addition, the choice of grid number affects to the computa-
tional time. In this numerical experiments, the results of selecting 100m =  seem to work well in terms of inef-
ficiency factors and computational time. 

Table 3 shows the results with acceptance probabilities in both AR and MH parts in the ARMH. From the ta-
ble, the acceptance probabilities in those part are exceed 89%. This result shows that our candidate function 
seems to work well, and the probabilities of sampling the same value consecutively are low. However, our 
ARMH algorithm does not improve the values of inefficiency factor. Thus, we think that the SAR model has the 
problem of identification. 

Figure 2 and Table 4 depict the sample path and the correlation among the parameters in the case of 100n = , 
0.9ρ = , 100m =  using the GGS. From 2β  to 4β  and 2σ  in the figure, the MCMC draws seem to be well 

mixing. In addition, correlations among these parameters are very small. On the other hand, strong correlation 
between 0β  and ρ  can be found from the figure. Moreover, the correlation between 0β  and ρ  is 0.995−  
from the table. Therefore, we assume that the spatial correlation and constant term is weakly identified. 

5. Concluding Remarks 
This paper reviewed the MCMC estimation procedures for sampling the spatial correlation of SAR model, and 
proposed the ARMH algorithm as more efficient than the RMH in order to show the property of the GGS pro-
posed by [2]. To illustrate the differences between the estimates of three MCMC methods, we compared these 
algorithms by simulated data set. From the Monte Carlo experiments, we found that the GGS was the most effi-
cient algorithm with respect to the mixing, efficiency and computational requirement of the MCMC. Moreover,  
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Table 2. Time of convergence. 

Observation: 50n =      

Parameter RMH GGS ARMH 
ρ   50m =  100m =  300m =   

−0.9 22.17 11.12 22.68 1:05.96 24.24 

−0.6 23.22 11.57 23.06 1:05.99 23.95 

−0.3 23.31 11.71 23.21 1:07.18 23.99 

0 23.27 11.83 23.27 1:07.87 24.01 

0.3 23.20 12.26 23.10 1:09.49 23.99 

0.6 24.16 12.07 22.70 1:08.36 24 

0.9 23.17 12.06 23.64 1:08.66 24.02 

Observation: 100n =      

Parameter RMH GGS ARMH 
ρ   50m =  100m =  300m =   

−0.9 1:31.73 18.67 35.49 1:37.61 1:44.90 

−0.6 1:41.36 17.25 35.75 1:37.83 1:42.99 

−0.3 1:43.81 19.93 36.64 1:39.25 1:43.22 

0 1:40.10 18.30 40.15 1:38.47 1:43.53 

0.3 1:40.90 19.90 40.04 1:41.40 1:43.55 

0.6 1:41.73 18.91 37.35 1:43.97 1:43.13 

0.9 1:43.36 17.93 37.89 1:40.33 1:42.27 

Observation: 200n =      

Parameter RMH GGS ARMH 
ρ   50m =  100m =  300m =   

−0.9 8:40.79 26.88 56.62 2:43.63 9:05.58 

−0.6 8:43.81 26.66 56.76 2:45.73 9:07.63 

−0.3 8:59.71 26.74 58.84 2:44.22 9:08.03 

0 8:57.87 26.92 57.48 2:46.64 8:56.41 

0.3 9:03.95 27.02 58.49 2:45.99 8:51.45 

0.6 9:12.82 28.24 58.13 2:48.13 9:01.35 

0.9 9:22.86 27.10 57.84 2:48.15 8:59.61 

Note: Time denotes CPU time on a Pentium Core2 Duo, including discarded and rejected draws. 
 
Table 3. Acceptance probability of the ARMH methods. 

Parameter 50n =  100n =  200n =  

ρ  AR step MH step AR step MH step AR step MH step 

−0.9 0.9866 0.9116 0.9578 0.8975 0.9881 0.9505 

−0.6 0.9999 0.9500 0.9999 0.9438 1.0000 0.9724 

−0.3 1.0000 0.9848 1.0000 0.9805 1.0000 0.9906 

0 1.0000 0.9849 1.0000 0.9787 1.0000 0.9949 

0.3 1.0000 0.9670 1.0000 0.9544 1.0000 0.9861 

0.6 0.9991 0.9553 0.9958 0.9375 1.0000 0.9802 

0.9 0.9997 0.9716 0.9977 0.9649 0.9997 0.9821 
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Table 4. Correlation of parameters. 

 1β  2β  3β  4β  2σ  

2β  −0.050     

3β  0.087 0.106    

4β  −0.059 0.205 0.183   
2σ  0.161 −0.007 0.002 −0.025  
ρ  −0.995 0.054 −0.075 0.078 −0.160 

Note: True parameter is 0.9. The number of observation set to be 100. 
 

 
Figure 2. Sample paths of SAR model with GGS ( 0.9ρ = , 100n = , 100m = ). 

 
the results of selecting 100m =  seem to work well in terms of inefficiency factors and computational time. 
Therefore, the GGS is beneficial algorithm for estimating the spatial parameter as same as the result of [22]. 

Finally, we will state our remaining issues. In this paper, we found that the GGS was the most efficient algo-
rithm in sampling the intensity of spatial interaction. On the other hand, we showed the problem of the SAR 
model such that the spatial correlation and constant term was weakly identified. Thus, we have to construct the 
model which is identified, or appropriate algorithm to sample the intensity of spatial interaction. Furthermore, 
we found that the number of grids is appropriate when 100m = . In this paper, we could not derive the theoreti-
cal reason why 100m =  was appropriate number of grids, that was, we only showed the results of Monte Carlo 
experiments. However, it is important to know the properties of the existing sampling methods, though research 
on the convergence of the GGS algorithm has never been examined. We think that, in this respect, our experi-
ment gives the benchmark in applied econometrics. 
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Abstract 
This paper discusses the problem of classifying a multivariate Gaussian random field observation 
into one of the several categories specified by different parametric mean models. Investigation is 
conducted on the classifier based on plug-in Bayes classification rule (PBCR) formed by replacing 
unknown parameters in Bayes classification rule (BCR) with category parameters estimators. This 
is the extension of the previous one from the two category cases to the multi-category case. The 
novel closed-form expressions for the Bayes classification probability and actual correct classifi-
cation rate associated with PBCR are derived. These correct classification rates are suggested as 
performance measures for the classifications procedure. An empirical study has been carried out 
to analyze the dependence of derived classification rates on category parameters. 

 
Keywords 
Gaussian Random Field, Bayes Classification Rule, Pairwise Discriminant Function, Actual Correct 
Classification Rate 

 
 

1. Introduction 
Much work has been done concerning the error rates in two-category discrimination of uncorrelated observa-
tions (see e.g. [1]). Several methods for estimations of the error rates in discriminant analysis of spatial data 
have been recently proposed (see e.g. [2] [3]). 

The multi-category problem, however, has very rarely been addressed because most of the methods proposed 
for two categories do not generalize. Schervish [4] considered the problem of classification into one of three 
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known normal populations by single linear discriminant function. Techniques for multi-category probability es-
timation by combining all pairwise comparisons are investigated by several authors (see e.g. [5]). Empirical 
comparison of different methods of error rate estimation in multi-category linear discriminant analysis for mul-
tivariate homoscedastic Gaussian data was performed by Hirst [6]. Bayesian multiclass classification problem 
for correlated Gaussian observation was empirically studied by Williams [7]. The novel model-free estimation 
method for multiclass conditional probability based on conditional quintile regression functions is theoretically 
and numerically studied by Xu [8]. Correct classification rates in multi-category classification of independent 
multivariate Gaussian observations were provided by Schervish [9]. We generalize results of above to the prob-
lem of classification of multivariate spatially correlated Gaussian observations. 

We propose the method of multi-category discriminant analysis essentially exploiting the Bayes classification 
rule that is optimal in the sense of minimum misclassification probability in case of complete statistical certainty 
(see [10], chapter 6). In practice, however, the complete statistical description of populations is usually not 
possible. Then having training sample, parametric plug-in Bayes classification rule formed by replacing un-
known parameters with their estimators in BCR is being used. 

Šaltytė and Dučinskas [11] derived the asymptotic approximation of the expected error rate when classifying 
the observation of a scalar Gaussian random field into one of two classes with different regression mean models 
and common variance. This result was generalized to multivariate spatial-temporal regression model in [12]. 
However, the observations to be classified are assumed to be independent from training samples in all publica-
tion listed above. The assumption of independence for the classification of scalar GRF observations was re-
moved by Dučinskas [2]. Multivariate two-category case has been considered in Dučinskas [13] and Dučinskas 
and Dreižienė [14]. Formulas for the error rates for multiclass classification of scalar GRF observation are de-
rived in [15]. The authors of the above papers have been focused on the maximum likelihood (ML) estimators 
because of tractability of the covariance matrix of these estimators. In the present paper, we extend the investi-
gation of the performance of the PBCR in multi-category case. The novel closed form expressions for the actual 
correct classification rate (ACCR) are derived. 

By using the derived formulas, the performance of the PBR is numerically analyzed in the case of stationary 
Gaussian random field on the square lattice with the exponential covariance function. The dependence of the 
correct classification rate and ACCR values on the range parameter is investigated. 

The rest of the paper is organized as follows. Section 2 presents concepts and notions concerning BCR ap-
plied to multi-category classification of multivariate Gaussian random field (MGRF) observation. Bayes proba-
bility of correct classification is derived. In Section 3, the actual correct classification rate incurred by PBCR is 
considered and its closed-form expression is derived. Numerical examples, based on simulated data, are pre-
sented in Section 4, in order to illustrate theoretical results. The effect of the values of range parameter on the 
values of ACCR is examined. 

2. The Main Concepts and Definitions 

The main objective of this paper is to classify a single observation of MGRF ( ){ }2:Z s s D R∈ ⊂  into one of 

L  categories, say 1, , LΩ Ω . 
The model of observation ( )Z s  in category lΩ  ( )1, ,l L=   is 

( ) ( ) ( );l lZ s s B + sµ ε= . 

Here lµ  represents a mean component and lB  is a matrix of parameters. The error term is generated by 

p-dimensional zero-mean stationary GRF ( ){ }:s s Dε ∈  with covariance function defined by model for all 

 s, u D∈  

( ) ( ){ } ( )cov ,s u r s uε ε = − Σ , 

where ( )r s u−  is the spatial correlation function and Σ  is the variance-covariance matrix with elements 

{ }ijσ . So we have deal with so called intrinsic covariance model (see [16]). 

Consider the problem of classification of the vector of observation of Z  at location 0s  denoted by 

( )0 0Z Z s=  into one of L  populations specified above with given joint training sample T . Joint training 
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sample T  is stratified training sample, specified by n p×  matrix ( )1, , LT T T ′′ ′′=  , where lT  is the ln p×  

matrix of ln  observations of ( )Z   from lΩ , 1, ,l L=  , 
1

L

l
l

n n
=

= ∑ .  

Then the model of T  is 

( )T M B E= + , 

where ( )1, , LB B B′ ′ ′=   is the matrix of category means parameters and E  is the n p×  matrix of random 
errors that has matrix-variate normal distribution i.e. 

( )~ 0,n pE N R× ⊗Σ . 

Here R  denotes the spatial correlation matrix among components (rows) of T . In the rest of the paper the 
realization (observed value) of training sample T  will be denoted by t . 

Denote by 0r  the vector of spatial correlations between 0Z  and observations in T and set 1
0 0R rα −= , 

0 01 rρ α′= − , ( )0
0l l sµ µ= , 1, ,l L=  . 

Notice that in category lΩ , the conditional distribution of 0Z  given T t=  is Gaussian, i.e. 

( ) ( )0
0 , ~ ,l p lt otZ T t N µ= Ω Σ , 

where conditional means 0
ltμ  are  

( ) ( )( )0 0
0 0; ,     1, ,lt l lE Z T t t M B l Lµ µ α′= = Ω = + − =                      (1) 

and conditional covariance matrix 0tΣ  is 

( )0 0 ;t lV Z T t ρΣ = = Ω = Σ .                                (2) 

The marginal and conditional squared Mahalanobis distances between categories kΩ  and lΩ  ( ), 1, ,k l L=   
for observation taken at location 0s s=  are specified respectively by 

( ) ( )2 0 0 1 0 0
kl k l k lµ µ µ µ−′∆ = − Σ − , 

and 

( ) ( )2 0 0 1 0 0 2
0klt kt lt t kt lt kld µ µ µ µ ρ−′= − Σ − = ∆ . 

It is easy to notice that kld  does not depend on realizations of T  and depends only on their locations. 
Under the assumption of completely parametric certainty of populations and for known prior probabilities of 

populations lπ , 
1

1
L

l
l
π

=

=∑ , Bayes rule minimizing the probability of misclassification is based on the logarithm 

of the conditional densities ratio. 
There is no loss of generality in focusing attention on category L , since the numbering of the categories is 

arbitrary. Let the set of population parameters is denoted by { },BΨ = Σ . Set 1r L= − .  
Denote the log ratio of conditional densities in categories LΩ  and lΩ  by  

( ) ( )( ) ( )1
0 0, 2Ll Lt lt t Lt lt LlW Z Z µ µ µ µ γ−′Ψ = − + Σ − + ,                    (3) 

where ( )lnkl k lγ π π= , ,  1, ,k l L=  . 
These functions will be called pairwise discriminant functions (PDF).  
Then Bayes rule (BR) (see [10], chapter 6) is given by:  

classify 0Z  to population LΩ  if for 1, ,l r=  , ( )0 , 0LlW Z Ψ ≥ .              (4) 

3. Probabilities and Rates of Correct Classification  
Set ( )1/2

kl k la µ µ ρ−= Σ −  and set M  as r -dimensional vector with the l-th components ( )1, ,l r=   spe-
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cified as 2 2l Ll Llm a γ= + , and ( ), , 1, ,lmV v l m r= =   with lm Ll Lmv a a′= . 
Lemma 1. The conditional probability of correct classification for category L  due to BCR specified in (4) is 

( ) ( ); , d
r

L r
R

PC w M V wϕ
+

Ψ = ∫ . 

Here ( )rϕ ⋅  is the probability density function of r-variate normal distribution with mean vector M  and 
variance-covariance matrix V . 

Proof. Recall, that under the definition (see e.g. [4] [9]) a probability of correct classification due to afore-
mentioned BCR is  

( )( )0 0 ; 0, , 1, ,k t kl lPC P W Z k l L l k= Ψ ≥ = ≠ Ω .                      (5) 

It is the probability of correct classification of 0Z  when it comes from lΩ . Probability measure 0tP  is 
based on conditional distribution of 0Z  given T t= , kΩ  with means and variance-covariance matrix speci-
fied in (1), (2). 0Z  may be expressed in form  

1 2
0 t ktZ U µ= Σ + , 

where ( )~ 0,p pU N I , and pI  denotes the p  dimensional identity matrix. 

After making the substitution of variables pI  in (5) we obtain that  

( )( )0Ll lE W Z m=  and ( ) ( )( )0 0Cov ,Ll Lm lmW Z W Z v= , ,  1, ,l m r=  . 

Set ( ) ( ) ( )( )0 1 0 1 0, , , , ,L LLW Z W Z W Z−Ψ = Ψ Ψ , then probability of correct classification can be rewritten in 

the following way ( ) ( )( )0 , 0LPC P W ZΨ = Ψ > . 

After straightforward calculations we show that ( ) ( )0 1, ~ ,LW Z N M−Ψ Σ . That completes the proof of lem-
ma. 

In practical applications not all statistical parameters of populations are known. Then the estimators of un-
known parameters can be found from training sample. When estimators of unknown parameters are plugged into 
Bayes discriminant function (BDF), the plug-in BDF is obtained (PBDF). In this paper we assume that true val-
ues of parameters B  and Σ  are unknown.  

Let B̂  and Σ̂  be the estimators of B  and Σ  based on T . Set { }ˆ ˆ ˆ,BΨ = Σ . 

Then replacing Ψ  by Ψ̂  in (3) we get the plug-in BDF (PBDF) 

( ) ( )( ) ( ) ( )1
0 0 0

1ˆ ˆ ˆˆ ˆ ˆ ˆ; 2Ll L l L l LlW Z Z T M B α µ µ µ µ γ
ρ

−
′ ′Ψ = − − − + Σ − + 

 
. 

Then the classification rule based on PBCR is associated with plug-in PDF (PPDF) in the following way: 
classify 0Z  to population kΩ  if for 1, ,l L=   ( )0

ˆ, 0klW Z Ψ ≥ . 

Definition 1. The actual correct classification rate incurred by PBCR associated with PPDF is 

( )( )0 0
ˆ ˆ; 0, 1, , ,k t kl kPC P W Z l L l k= Ψ ≥ = ≠ Ω . 

Set ( )1 2 1ˆˆ ˆ ˆLl L la µ µ ρ−= Σ Σ −  and ( ) ( )( ) ( )( ) ( )1
0

ˆ ˆ ˆˆ ˆ ˆ ˆ2Ll L L l L l Llb M B M Bµ α µ µ µ µ ρ γ−′
′= + − − + Σ − + . 

Lemma 2. The actual correct classification rate due to PBDR is 

( ) ( )ˆ ˆ ˆ; , d
r

L r
R

PC w M V wϕ
+

Ψ = ∫ , 

where M̂  is r-dimensional vector with components ˆˆ l Llm b= , 1, ,l r=   and ( )ˆ ˆ ˆ ˆ , , 1, ,lm Ll LmV v a a l m r′= = = 
. 
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Proof. It is obvious that in population lΩ  the conditional distribution of BPDF ( )0
ˆ;LlW Z Ψ  given T t=  

is Gaussian, i.e., 

( ) ( )0
ˆ ˆ ˆ; ,   ~ ,Ll L l llW Z T t N m vΨ = Ω . 

Set ( ) ( ) ( )( )0 1 0 1 0
ˆ ˆ ˆ, , , , ,L LLW Z W Z W Z−Ψ = Ψ Ψ , then probability of correct classification can be rewritten in 

the following way:  

( ) ( )( )0
ˆ ˆ, 0LPC P W ZΨ = Ψ > . 

After straightforward calculations we show that ( ) ( )0 1
ˆ ˆ ˆ, ~ ,LW Z N M V−Ψ . That completes the proof of lem-

ma. 

4. Example and Discussions  
Simulation study in order to compare proposed Bayes probability of correct classification rate and the actual 
correct classification rate incurred by PBCR was carried out for three class case ( )3L = . Also the effect of the 
range parameter on these values is examined. 

In this example, observations are assumed to arise from bivariate stationary Gaussian random field ( )2p =  
with constant mean and isotropic exponential correlation function given by ( ) { }expr h h θ= − , where θ  is a 
parameter of spatial correlation (range). 

Set 1 2 21µ µ= − = , 3 20µ =  and 2IΣ = . 
Estimators of B  and Σ  have the following form: 

( ) ( ) 11 1
1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ, , MLB X R X X R Tµ µ µ µ µ
−− −′ ′ ′= = = = , 

where X  denotes design matrix of training sample T  and is specified by 4 4 41 1 1X = ⊕ ⊕  and  

( )( ) ( )( ) ( )1ˆ ˆˆ 3T M B R T M B n−′
Σ = − − − . 

Considered set of training locations with indicated class labels is shown in Figure 1. 
So we have small training sample sizes (i.e. 1 2 3 4n n n= = = ) and three different locations to be classified, 

furthermore we assume equal prior probabilities 1 3lπ = , 1, 2,3l = . 
Simulations were performed by geoR: a free and open-source package for geostatistical analysis included in 

statistical computing software R (http://www.r-project.org/). Each case was simulated 100 times (runs) and 
ACCR  values are calculated by averaging ACCR over the runs. ACCR  and CCR values are presented in 
Table 1. As might be expected ACCR  values are lower than CCR. All values are increasing while range parame-
ter is increasing. That means the stronger correlation gives better accuracy of proposed classification procedures. 
 

 
Figure 1. Locations of training sample: “1” are samples from population Ω1, “2” from Ω2, “3” from Ω3, A, B and C denotes 
the locations of observation to be classified. 
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Table 1. CCR and ACCR  values. 

θ 
CCR ACCR  

A (0,0) B (−1,2) C (−2,2) A (0,0) B (−1,2) C (−2,2) 

1 0.633777 0.634955 0.487689 0.544697 0.427956 0.404184 

2 0.882716 0.839326 0.599707 0.636842 0.501045 0.483608 

3 0.973217 0.948266 0.716064 0.725356 0.565855 0.480018 

4 0.999777 0.955340 0.810298 0.773966 0.639186 0.553055 

 
It’s seen in Figure 1, that the closest location to be classified is location A and the farthest is location C. CCR 

and ACCR  are largest for location A and smallest for location C. It can be concluded that better accuracy gives 
closer locations. 
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Abstract 
The study proposes, along the line of [1], six separate-type estimators for estimating the popula-
tion ratio of two variables in post-stratified sampling, using variable transformation. Properties of 
the proposed estimators were obtained up to first order approximations, both for achieved sam-
ple configurations (conditional argument) and over repeated samples of fixed size n (uncondi-
tional argument). Efficiency conditions, under which the proposed separate-type estimators would 
perform better than the associated customary separate-type estimators in terms of having smaller 
mean squared errors, were obtained. Furthermore, conditions under which some of the proposed 
separate-type estimators would perform better than other proposed separate-type estimators 
were also obtained. The optimum estimators among the proposed separate-type estimators were 
obtained and an empirical illustration confirmed the theoretical results. 

 
Keywords 
Variable Transformation, Separate-Type Estimator, Optimum Estimators, Ratio, Product and  
Regression-Type Estimators, Mean Squared Error 

 
 

1. Introduction 
Information on auxiliary character has been used by many authors [2]-[9] in sample survey to improve estimates 
of population parameters of the study variable, and sometimes, information on several variables is used to esti-
mate or predict a characteristic of interest, such as mean, total, ratio, and proportion. Reference [1] proposed the 
following six (6) estimators of the population ratio ( )R Y X=  of the population means of two variables, y  
and x , under the simple random sampling scheme. 
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( ) ( )1
ˆ   regression-type estimator of sample mean,  yR x

x b x X∗
=

− −
            (1.1) 

( )2
ˆ   ratio-type estimator of sample mean,  y yxR x

x xXX
x

∗

∗

= =
 
 
 

               (1.2) 

( )3
ˆ   product-type estimator of sample mean,  y yXR x

xxxx
X

∗∗
= =
 
 
 

              (1.3) 

( )4
ˆ   transformed mean estimator,  yR x

x
∗

∗=                                (1.4) 

( ) ( )5
ˆ   regression-type estimator of transformed mean,  yR x

x b x X
∗

∗
=

− −
       (1.5) 

( )6
ˆ   ratio-type estimator of transformed mean,  y yxR x

x Xx X
x

∗
∗∗

= =
 
 
 

          (1.6) 

where, y , x  and x ∗  are sample means of the variables iy , ix  and ix∗  respectively,  

,    1, 2, ,i
i

NX nx
x i N

N n
∗ −
= =

−
                                   (1.7) 

( )1 ,     nx X x
N n

π π π∗ = + − =
−

                                (1.8) 

and b is a suitable constant, often chosen to be very close to the population regression coefficient of y  on x .  
Reference [1] noted that authors like [8] [10]-[14] had used the variable transformation (1.7) or its equiva-

lence in their respective studies. The obvious advantage of variable transformation is the introduction of an ad-
ditional auxiliary (transformed) variable without additional cost, since the new auxiliary variable is a transfor-
mation of an already observed auxiliary variable. The work carried out by [1] was restricted to simple random 
sampling scheme. The present study extends the work carried out by [1] to post-stratified random sampling, by 
considering six (6) separate-type estimators of the population ratio of two variables in post-stratified random 
sampling, proposed along the line of the estimators proposed by [1] under the simple random sampling scheme. 

2. The Proposed Separate-Type Estimators 
Let n  units be drawn from a population of N  units using simple random sampling method and let the sam-
pled units be allocated to their respective strata, where hn  is the number of units that fall into stratum h such  

that 
1

L

h
h

n n
=

=∑ . Let hiy  and hix  be the thi  observation on the study and auxiliary variables. Consider the  

following variable transformation of the auxiliary variable, x , under post-stratified sampling scheme. 

,    1,2, ,    and  1, 2, ,hi
hi

NX nx
x h L i N

N n
∗ −
= = =

−
                     (2.1) 

with the associated sample mean 

( )1     where    ps ps
nx X x

N n
π π π∗ = − − =

−
                        (2.2) 

where 
1

L

ps h h
h

x xω
=

= ∑  and 
1

L

ps h h
h

y yω
=

 
 
 

∑  are sample mean estimators based on hix  and hiy  respectively.  

Using the sample means psy , psx  and psx ∗ , and assuming that the population mean, X  of the auxiliary va-
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riable x , is known, we proposed six separate-type estimators of the population ratio R Y X=  in post strati-
fied sampling scheme, following [1], as 

( )1
1

ˆ
L

h
S h

h h h h

y
R

x b x X
ω

∗
=

=
− −

∑                                  (2.3) 

2
1 1

ˆ
L L

h h h
S h h

h h h hh
h

h

y y x
R

x Xx X
x

ω ω
∗

= =

∗

 
= =  

   
 
 

∑ ∑                          (2.4) 

3
1 1

ˆ
L L

h h h
S h h

h h h hh h

h

y y X
R

x xx x
X

ω ω ∗∗
= =

 
= =  

   
 
 

∑ ∑                           (2.5) 

4
1

ˆ
L

h
S h

h h

y
R

x
ω ∗

=

= ∑                                            (2.6) 

( )5
1

ˆ
L

h
S h

h h h h

y
R

x b x X
ω

∗
=

=
− −

∑                                 (2.7) 

6
1 1

ˆ .
L L

h h h
S h h

h h h hh
h

h

y y x
R

x Xx X
x

ω ω ∗∗
= =

 
= =  

   
 
 

∑ ∑                         (2.8) 

2.1. The Conditional Properties of the Proposed Separate-Type Estimators 
Let 

0 1    and   .h h h h
h h

h h

y Y x X
e e

Y X
− −

= =                            (2.9) 

Then under the conditional argument, 

( ) ( )2 0 1 0h hE e E e= =                                       (2.10) 

( ) ( ) ( )
2

22
2 1 2 2

1 1h xh
h h

hh h

V x S
E e f

nX X
= = −                           (2.11) 

( ) ( ) ( )
2

22
2 1 2 2

1 1h xh
h h

hh h

V x S
E e f

nX X
= = −                           (2.12) 

( ) ( ) ( )2
2 0 1

, 1 1 yxhh h
h h h

h h h h h

SC y x
E e e f

Y X Y X n
= = −                    (2.13) 

where 2E  refers to conditional expectation. Notice that the first proposed estimator (2.3) can be rewritten as 

1 1
1

ˆ ˆ
L

S h h
h

R Rω
=

= ∑                                            (2.14) 

where 

( )1
ˆ h

h
h h h

y
R

x b x X∗
=

− −
                                     (2.15) 

such that expanding up to first order approximation, ( )1o n− , in expected value, we obtain  

( ) ( ) ( ) ( )( )2 2
1 0 1 0 1 1

ˆ 1 1 1h h h h h h h hR R R e b e b e e b eπ π π− = − + − + + +                  (2.16) 
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and 

( ) ( ) ( )( )2 22 2 2
1 0 1 0 1

ˆ 1 2 1 .h h h h h h hR R R e b e b e eπ π− = + + − +                     (2.17) 

We take conditional expectation of (2.16) and (2.17) and use (2.10) to (2.13) to make the necessary substitu-
tions to obtain the conditional bias and mean square error of 1

ˆ
hR  respectively as  

( ) ( ) ( ) ( )2 2
2 1 2

1 1ˆ 1 1h
h h xh yxh

h h

f
B R R b S b S

n X
π π

−  = + − +                     (2.18) 

and 

( ) ( ) ( ) ( )22 2 2
2 1 2

1 1ˆMSE 1 2 1h
h yh h xh h yxh

h h

f
R S b R S b R S

n X
π π

−  = + + − +               (2.19) 

so that, using (2.14) 

( ) ( ) ( ) ( ) ( )2 2
2 1 2 1 2

1 1

1 1ˆ ˆ 1 1
L L

h
S h h h h xh yxh

h h h h

f
B R B R R b S b S

n X
ω ω π π

= =

−  = = + − + ∑ ∑          (2.20) 

and 

( ) ( ) ( ) ( ) ( )22 2 2 2 2
2 1 2 1 2

1 1

1 1ˆ ˆMSE 1 2 1 .
L L

h
S h h h yh h xh h yxh

h h h h

f
R B R S b R S b R S

n X
ω ω π π

= =

−  = = + + − + ∑ ∑       (2.21) 

Following similar procedure, we obtain the conditional biases and mean square errors of the six proposed  

separate-type estimators, together with those of the customary separate-type estimator, 
1

ˆ
L

h
S h

h h

y
R

x
ω

=

= ∑ , of popu- 

lation ratio ( )R  in post-stratified sampling, up to first order approximation as:  

( ) ( ) 2
2 2

1

1 1ˆ
L

h
S h h xh yxh

h h h

f
B R R S S

n X
ω

=

−
 = − ∑                                 (2.22) 

( ) ( ) ( ) ( )2 2
2 1 2

1

1 1ˆ 1 1
L

h
S h h xh yxh

h h h

f
B R b R S b S

n X
ω π π

=

−  = + − + ∑                   (2.23) 

( ) ( ) ( ) ( )2
2 2 2

1

1 1ˆ 1 1
L

h
S h h xh yxh

h h h

f
B R R S S

n X
ω π π

=

−
 = + − + ∑                     (2.24) 

( ) ( ) ( ) ( )2 2
2 3 2

1

1 1ˆ 1 1
L

h
S h h xh yxh

h h h

f
B R R S S

n X
ω π π π

=

−  = − + − − ∑                 (2.25) 

( ) ( ) 2 2
2 4 2

1

1 1ˆ
L

h
S h h xh yxh

h h h

f
B R R S S

n X
ω π π

=

−
 = + ∑                             (2.26) 

( ) ( ) ( ) ( )2 2
2 5 2

1

1 1ˆ
L

h
S h h xh yxh

h h h

f
B R b R S b S

n X
ω π π

=

−  = + + + ∑                   (2.27) 

( ) ( ) ( ) ( )2
2 6 2

1

1 1ˆ 1 1
L

h
S h h xh yxh

h h h

f
B R R S S

n X
ω π π π

=
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and, 
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h h h
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Generally, the conditional mean square errors of the proposed separate-type estimators are obtained as: 

( ) ( )2 2 2 2 2
2 2

1

1 1ˆMSE 2
L

h
qS h yh q h xh q h yxh

h h h

f
R S R S R S

n X
ω θ θ

=

−
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where 1, ,6q =   and 

( ) ( ) ( ) ( ) ( )1 2 3 4 5 61 ,   1 ,   1 ,   ,   ,   1 .b bθ π θ π θ π θ π θ π θ π= + = + = − = − = − + = − +      (2.37) 

2.2. The Unconditional Properties of the Proposed Separate-Type Estimators 
We take unconditional expectation of the conditional biases and mean square errors of (2.22) to (2.37) to obtain 
the unconditional properties of the separate type estimators as: 

( ) 2
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11ˆ
L

h
S h h xh yxh
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f
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Generally, the unconditional mean square errors of the proposed separate-type estimators of the population 
ratio are obtained as: 

( ) 2 2 2 2
2

1

1 1ˆMSE 2 .
L

qs h yh q h xh q h yxh
h h

fR S R S R S
n X

ω θ θ
=

−   = + −    
∑                           (2.52) 

3. Efficiency Comparison 
The efficiencies of the six proposed separate-type estimators, ˆ

qsR , were first compared with that of the custo-
mary separate-type estimator ˆ

sR  in estimating the population ratio, R , of two population means under the 
conditional and unconditional arguments in post stratified random sampling scheme. Secondly, the perfor-
mances of the proposed estimators among themselves were also compared, and finally, the optimum estimators 
among the proposed estimators were obtained. The efficiency conditions were based on estimators with smaller 
mean squared errors, and the results are shown in Table 1. 

4. Numerical Illustration 
Here, we use the final year GPA ( )y  and the level of absenteeism ( )x  of 2012/2013 graduating students of 
Statistics department, Federal University of Technology Owerri to illustrate the properties of the estimators 
proposed in the present study. Absenteeism is the average number of days absent from lectures in a month. The 
 
Table 1. Efficiency conditions under the conditional and unconditional arguments.                                          

Estimator Conditional argument Unconditional argument 
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class consists of 50 students, with 32 and 18 students respectively falling into low-absenteeism (0 - 3 days per 
month) and high-absenteeism (4 - 6 days per month) groups or strata. Our interest is to estimate the ratio of final 
year GPA to absenteeism from lectures, based on a post-stratified sample of 20 out of the 50 students in the class. 
The data statistics, consisting mainly of population parameters, are shown in Table 2. 

Table 3 shows the percentage relative efficiencies (PRE-1) of the proposed separate-type estimators, ˆ
qsR , 

over the customary separate-type estimator, ˆ
sR , under the conditional argument and unconditional arguments. 

The table also shows the percentage relative efficiency (PRE-2) of one of the proposed separate-type estimators, 
1

ˆ
sR , over the other separate-type estimators, under the conditional and unconditional arguments. 
Table 3 shows that apart from the estimators, 2

ˆ
sR  and 6

ˆ
sR , the remaining four proposed separate-type es-

timators, under the conditional and unconditional arguments, are more efficient than the customary separate-type 
estimator, ˆ

sR , for the data under consideration, and their gains in efficiency (PRE-1) are relatively large. Also, 
using, PRE-2 we observe that the proposed separate-type estimator, 1

ˆ
sR , is more efficient than the estimators, 

2
ˆ

sR , 6
ˆ

sR , and ˆ
sR , under the conditional argument and unconditional arguments. The optimum estimator, as 

expected, has the highest gain in efficiency. However, the customary separate-type estimator is found to be more 
efficient than some of the proposed separate-type estimators for the given data set. This confirms the theoretical 
results which shows that the proposed estimators are not always more efficient than the customary separate es-
timators. Hence, the empirical results confirm the theoretical results. 

5. Concluding Remarks 
The present study extended the use of variable transformation in estimating population ratio in simple random 
 

Table 2. Data statistics for final year GPA (y) and absenteeism from lectures (x).                       

Population/sample 
parameters 

Stratum 1 
(low-absenteeism) 

Stratum 2 
(high-absenteeism) 

50N =  1 32N =  2 18N =  

20n =  1 12n =  2 8n =  

( )1 0.60f− =  ( )11 0.625f− =  ( )21 0.556f− =  

2.98Y =  1 3.16Y =  2 2.65Y =  

3.16X =  1 2.03X =  2 5.17X =  

0.94R =  1 1.56R =  2 0.51R =  

0.67π =  2
1 0.2422yS =  2

2 0.0389yS =  

0.80b = −  2
1 0.9990xS =  2

2 0.6176xS =  

 1 0.2124yxS = −  2 0.0161yxS = −  

 1 0.64ω =  2 0.36ω =  

 
Table 3. Efficiency comparison of proposed separate-type estimators.                                                    

Estimators θ  
Conditional argument Unconditional argument 

MSE PRE-1 (%) PRE-2 (%) MSE PRE-1 (%) PRE-2 (%) 

1
ˆ

cR  0.464 0.00563 311 100 0.00336 311 100 

2
ˆ

cR  1.670 0.04259 41 757 0.02539 41 757 

3
ˆ

cR  0.330 0.00381 459 68 0.00227 459 68 

4
ˆ

cR  −0.670 0.00468 374 83 0.00279 373 83 

5
ˆ

cR  0.130 0.00194 900 35 0.00116 899 35 

6
ˆ

cR  −1.670 0.03103 56 551 0.01850 56 551 

ˆ
cR  1.000 0.01748 100 311 0.01042 100 311 
0ˆ
qcR   0.00104 1678 19 0.00062 1673 19 
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sampling scheme to post-stratified sampling scheme where we proposed six separate-type estimators. Efficiency 
conditions under which the proposed estimators performed better than the customary separate-type estimators 
were obtained. Both the theoretical and empirical comparisons show that the proposed estimators are not always 
better or more efficient than the customary separate-type estimator of the population ratio in post-stratified sam-
pling. Consequently, in any given survey, these efficiency conditions should be employed to determine the ap-
propriate separate-type estimators to use for estimating the population ratio of two variables in post-stratified 
sampling scheme using variable transformation. The major advantage of the proposed estimators is the use of 
additional (transformed) auxiliary variable without additional cost, since the additional auxiliary variable is a 
transformation of an already observed auxiliary variable. 
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Abstract 
Family-based tests of association between a genetic marker and a disease constitute a common 
design to dissect the genetic architecture of complex traits. The FBAT software is one of the most 
popular tools to perform such studies. However, researchers are also often interested in the ge-
netic contribution to a more specific manifestation of the phenotype (e.g. severe vs. non-severe 
form) known as a secondary outcome. Here, what we demonstrate is the limited power of the clas-
sical formulation of the FBAT statistic to detect the effect of genetic variants that influence a sec-
ondary outcome, in particular when these variants also impact on the onset of the disease, the 
primary outcome. We prove that this loss of power is driven by an implicit hypothesis, and we 
propose a derivation of the original FBAT statistic, free from this implicit hypothesis. Finally, we 
demonstrate analytically that our new statistic is robust and more powerful than FBAT for the de-
tection of association between a genetic variant and a secondary outcome. 
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1. Introduction 
The aim of genetic epidemiological studies is to identify the genetic factors influencing the development of 
common diseases. Genetic epidemiology combines classical epidemiological data (assessment of risk factors 
known to affect the expression of the phenotype studied) and genetic information (familial relationships, typing 
of genetic marker) and proposes a large range of tools to address the initial question, the use of one depending 
on the nature of your sample and the size of your wallet. Over the past ten years, however, our understanding of 
the pattern of genetic variation at the genome scale, coupled to an unprecedented decrease in the cost of mea-
suring this variation, has put (genome-wide) association studies at the front. Although the vast majority of ge-
netic association study designs are derived from usual case-control retrospective epidemiological studies (i.e. 
that compare the distribution of allelic/genotypic frequencies between a group of cases and a group of controls), 
one is quite specific to the field of genetic epidemiology and relies on the collection and analysis of families. 
Such family-based tests of association between a genetic item (allele, genotype...) and the disease under study 
offer interesting features as compared to case-control designs (Laird and Lange [1]; Chen and Abecasis [2]). 
They are robust against population stratification, allow the inference of both haplotype phase and missing geno-
types (Chen and Abecasis [2]; Burdick et al. [3]), and can identify peculiar allelic segregation, for example, due 
to imprinting effect (Vincent et al. [4]). 

The Transmission Desequilibrium Test (TDT) has emerged as the first popular family-based test of associa- 
tion (Spielman et al. [5]). It tests whether the transmission of a given allele from a heterozygote parent to an af-
fected child is different from what is expected in the absence of any association between the genetic marker and 
the disease under study. The null hypothesis is written as p = 0.5 where p is the proportion of a given allele that 
has been transmitted to affected children by heterozygote parents. Whereas the TDT could only analyze binary 
traits in samples of pure trios (i.e. two parents and a single affected child), Laird et al. [6] proposed a more 
comprehensive approach designed to handle binary, quantitative or censored traits, multiple genetic models (e.g. 
additive, dominant or recessive) and more complex family structures (e.g. families with multiple children). This 
approach uses a natural measure of association between two variables, i.e. the covariance between phenotypes 
and genotypes, and relies on a score-test. It has been implemented in the popular Family Based Association Test 
software (FBAT, Laird et al. [6]; Rabinowitz and Laird [7]; Lange and Laird [8]). In this context of familial 
samples, FBAT has proved very efficient in identifying alleles associated with many phenotypes, whether binary 
or quantitative (e.g. Mira et al. [9]; Cobat et al. [10]). 

Although developed to handle a large variety of tests according to the nature of both the traits and their ge-
netic determinants, it is intrinsically designed to test primary outcomes (e.g. affected vs. unaffected) as the null 
hypothesis is based on the same underlying principles as the TDT (i.e. p = 0.5). However, in many cases re-
searchers are interested in the genetic contribution to a more specific phenotype (e.g. severe vs. non-severe 
form), here denoted as a secondary outcome. Here, what we demonstrate is the limited power of the classical 
formulation of the FBAT statistic to detect the effect of genetic variants that influence a secondary outcome, in 
particular when these variants also impact on the onset of the disease, the primary outcome. We prove that this 
loss of power is driven by an implicit hypothesis and we propose a derivation of the original FBAT statistic, free 
from this implicit hypothesis. Finally, we demonstrate analytically that our new statistic is robust and more po-
werful than FBAT for the detection of association between a genetic variant and a secondary outcome. 

2. Original FBAT Statistic 
For sake of simplicity and without major loss of generality, we consider the analysis of a diallelic marker in a 
sample of trios with no missing parental data under an additive genetic model. Using the same notations as in 
the original FBAT paper (Laird et al. [6]), 

let i i
i

S T X= ∑  

in which iX  represents the genotype at the locus being tested and iT  the phenotype of the child of family i . 
The expectation of iX  is calculated conditioned on the parental genotypes under the null hypothesis of no as-
sociation. 

( ) ( )Let i i i
i i

E E S E T E X= = =∑ ∑  
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( ) ( )2Let Var Vari i
i

V S T X= = ∑  

( )2

FBAT
S E

V
−

=  

0

2
1FBAT ~ dfH
χ  

Under an additive model, iX  is the number of copy of the allele under study (0, 1 or 2). As the most com-
mon way to code the phenotype is 1T =  for affected individuals and 0T =  for unaffected ones. In a sample 
with no missing parental data, unaffected individuals do not contribute to the statistic; however, in the presence 
of missing parental data, such unaffected individuals will indirectly impact on the statistic as they can be used to 
infer missing parental genotypes under some conditions (Knapp [11]). S is generally written as: 

affected unaffected affected
1 0 .i i i

i i i
S X X X

∈ ∈ ∈

= × + × =∑ ∑ ∑  

The null hypothesis of no association between the phenotype and a given allele is the random transmission of 
this allele from heterozygote parents to (affected) children. By noting p  the transmission probability of this 
allele, the null 0H  and alternate 1H  hypotheses can be written as: 

0
1:
2

H p =  

1
1: .
2

H p ≠  

The tested allele will be considered “at risk” or “protective” for the disease, if 1
2

p >  or 1
2

p < , respec-  

tively1. 

3. FBAT Statistic to Test Secondary Outcomes 
It is common practice to study a “primary” phenotype (e.g. disease yes/no) but as stated in the introduction, re-
searchers are often interested in the genetic contribution to a “secondary” phenotype (e.g. severe vs. non-severe 
form of the disease). At first glance, FBAT could be used to test this hypothesis by computing the original sta-
tistic independently in the two modalities of the secondary outcome (e.g. severe and non-severe). Denoting 1D  
and 2D  the two modalities of the secondary outcome, 1p  and 2p  the transmission probabilities of the tested 
allele to 1D  and 2D  children, respectively, we have: 

( )2
1 1

1 1 1
1 1 1

,    ,    FBATi i i
i i

S E
S T X S X

V∈ ∈

−
= = =∑ ∑  

0 1
1:
2

H p =  

1 1
1:
2

H p ≠
 

( )2
2 2

2 2 2
2 2 2

,    ,    FBATi i i
i i

S E
S T X S X

V∈ ∈

−
= = =∑ ∑  

0 2
1:
2

H p =  

1 2
1: .
2

H p ≠  

 

 

1More precisely, in the general case, the null hypothesis of FBAT is “no association OR no linkage” and therefore the alternate hypothesis is 
“association AND linkage”. H0 can be written as a composite hypothesis: “no association AND no linkage” ∪ “no association AND linkage  
∪ “association AND no linkage”. In the particular case of a sample limited to trios, there is no linkage information, and the hypotheses are: 
H0 = association, H1 = no association. 
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However, because of the bivariate nature of the phenotype under study (i.e. disease AND severe form or dis-
ease AND non-severe form), rejection of the null hypothesis cannot distinguish between alleles associated with 
the disease per se (i.e. independently of its severity) or alleles specifically associated with the severity of the 
disease. FBAT offers no immediate solution to study such secondary outcomes, i.e. to distinguish between al-
leles impacting the primary (e.g. disease per se) or the secondary (e.g. severe vs. non-severe) outcome. Below 
we propose two new tests denoted as FBAThet and FBAThet free that can be used to directly assess the association 
between a marker allele and a secondary outcome. 

3.1. The FBAThet Test 
A first straightforward idea is to perform a homogeneity test of the allelic transmission rate between the two 
subgroups 1D  and 2D . 

( ) ( )
( ) ( ) ( )

het 1 2 1 2

2 2 2
1 1 2 2 1 1 2 2

1 2 1 2

Let FBAT , homogeneity ,D D S S

S E S E S E S E
V V V V

=

− − − + −
= + −

+

 

2 2
1 1 2 2 1 1 2 2

1 2 1 2
het

1 22 2
1 2 1 2

FBAT
1 1 1 1

S E S E S E S E
V V V V

V V
V V V V

   − − − −
− −   

   = =
+ +

 

FBAThet = FBAT with the phenotypes coded as 
1

1T
V

=  for individuals D1 and 
2

1T
V

= −  for individuals D2. 

Indeed, 

1 2 1 2
1 21 2 1 2 1 2

1 1 1 1 1 1, i i
i i

S T T X X S S
V V V V V V∈ ∈

 
= = − = − = − 

 
∑ ∑

 

1 2 1 22 2
1 2 1 2

1 1 1 1   and   E E E V V V
V V V V

= − = +
 

2
1 1 2 2

1 2
1 2 het

1 2

1 2

1 1and   FBAT , FBAT
1

.
1

S E S E
V V

T T
V V

V V

 − −
−    = = − = = 

  +
 

The two hypotheses can then be written as: 

0 1 2
1:
2

H p p= =  

1 1 2
1 1: .
2 2

H p p≠ ∪ ≠  

Note that under an additive genetic model and in a sample of trios with no missing parental data, coding  

1
1

1T
V

=  and 
2

2
1T

V
= −  is equivalent to coding 

1
1

1T
n

=  and 
2

2
1T
n

= −  , where 1n  and 2n  are the number  

of heterozygote parents of children with phenotype 1D  and 2D  (see Appendix A)2. 

 

 

2FBAThet can be implemented in FBAT by using the offset option “-o” while coding 1 1T =  and 2 0T = : the software then calculates, for 

each allele, an offset µ  used to transform the phenotypic values in 1 1T µ= −  and 2T µ= −  that minimizes the variance of the statistics. 

We show in Appendix B that using the offset option is equivalent to coding 
1

1

1T
V

=  and 
2

2

1T
V

= − , thus testing for secondary outcome. 

Here, one should not code unaffected individuals as 0 but as missing to avoid that the controls interfere in the calculation of the statistics. 
FBAT software can be downloaded from: http://www.biostat.harvard.edu/fbat/fbat.htm.  

http://www.biostat.harvard.edu/fbat/fbat.htm
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3.2. The FBAThet free Test 
A somewhat hidden/under evaluated constraint of FBAThet is that the null hypothesis forces the transmission 
probabilities in both groups to be 0.5. Although valid and likely efficient in quite a number of practical situa-
tions, this can dramatically impact the power of the test in the study of a secondary outcome. A simple example 
being that carrying one copy of the allele is sufficient to develop the disease per se but that carrying two alleles 
will be associated with developing a severe form of the disease. 

We propose a new statistic denoted as FBAThet free that relaxes this 0.5 constraint. Consider a diallelic locus (A 
and a ) and denote 1An  ( )2An  the number of transmissions of allele A from Aa  heterozygote parents to  

their children with phenotype 1D  ( )2D . Then 1 2

1 2

A A An n n
n n N
+

=
+

 is the mean number of transmission of allele A  

from Aa  heterozygote parents to affected children (whether 1D  or 2D ). 
Whereas in the above-mentioned FBAT and FBAThet tests the expected transmission of the allele of interest  

under the null hypothesis of no association is 0.5, in FBAThet free it is An
N

. We can calculate S , E  and V   

for FBAT, FBAThet and FBAThet free. The contribution to S E−  of each transmission of an allele A  from any  

Aa  parent is 1/2 in FBAT and FBAThet, and An
N

 in FBAThet free. Similarly, its contribution to V  is 1/4 in 

FBAT and FBAThet, and 1 A An n
N N

 − 
 

 in FBAThet free (Figure 1). Note that for all three statistics, the expectancy  

and variance of a trio including two heterozygote parents are twice those of a trio with only one heterozygote  

parent. Symmetrically, Aa  heterozygote parents transmitting allele a  each contributes for 1/2 and 1 An
N

 − 
 

 

to S E− , and for 1/4 and 1 A An n
N N

 − 
 

 to V  in FBAT or FBAThet and FBAThet free, respectively. Then with 

1
1

1T
n

=  and 
2

2
1T
n

= − , we have: 

( )

2
1 21 2

1 1 2 2
het free

1 2
2 2 2 2
1 2

2
1 2 1 2

1 2

1 0 0
BAT

.

1
F

a aA A A A A A

A a A a

A a a A
A a

n nn n n n n n
n N n N n N n N

n n n nn n
n N n N

N n n n n
n n n n

        − + − − − − −        
        =

+

= −

 

It is shown in Appendix C that FBAThet free is a Pearson’s chi-squared test. In summary, the hypotheses of the 
FBAThet free test can be written as: 

0 1 2:H p p=  

1 1 2: .H p p≠  

As opposed to FBAT and FBAThet, the implicit/hidden 0.5 constraint has disappeared. 

3.3. Comparison of FBAThet and FBAThet free 
To illustrate the magnitude of the differential power of FBAThet and FBAThet free, we could have gone for large 
simulation studies. However, we show analytically in Appendix D that: 

( ) [ ]het hetfree 2    with   
4

FBAT FBAT ,  0,1 .A An N n
N

ρ ρ ρ
−

= = ∈  
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Figure 1. Contribution of a trio to FBAT, FBAThet and FBAThet free according to the number of heterozygote parents. In a trio 
with one (left panel) and two (right panel) heterozygote parents, the expected genotypes aa, Aa and AA of the child will vary 
according to the statistics used. In FBAT and FBAThet, the transmission probability of an allele A from an heterozygote par-

ent is 1
2

, whereas it is An
N

 for FBAThet free (with N denoting the total number of alleles transmitted from heterozygote par-

ents in the whole sample, An  the number of alleles A transmitted, and An
N

 the mean transmission of allele A).                  

 

The distribution of ρ according to An
N

 is shown in Figure 2. As an example, consider a sample of 300 trios 

with an affected child (150 1D  and 150 2D ), all with one herterozygote parent. Consider the mean transmis- 

sion of allele A is 0.7 in 1D  and 0.8 in 2D . Then 0.75An
N

= , 0.75ρ = , hetFBAT 3=  and het freeFBAT 4= ,  

( )hetFBAT 0.083p =  and ( )het freeFBAT 0.046p = . 
When there is an equivalent number of transmissions of alleles A  and a  from Aa  heterozygote parents  

to their children, 
2A an Nn= =  and 1ρ = . In practice, this is observed when the mean transmission of allele  
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Figure 2. Distribution of ρ  according to An
N

. ( )
2

4 A An N n
N

ρ
−

=  

is the link function between FBAThet and FBAThet free. When the mean 
transmission of allele A among affected cases is close to 0.5, ρ  is 

also close from 1. When [ ]0.34;0.66An
N
∈ , 0.9ρ > .                         

 
A  among all affected individuals ( )1 2D D+  is 0.5. In that particular case, het het freeFBAT FBAT= . In all other 

cases, 1ρ <  and het het freeFBAT FBAT<  as shown in Figure 3. 

4. Discussion 
Family-based association studies have gained popularity to dissect the genetic architecture of complex traits and 
FBAT is likely the most popular tool to perform such studies. We have shown that at first glance it can be con-
veniently used to test for secondary outcomes, e.g. genetic heterogeneity between severe and non-severe forms 
of a disease. As an example, in a sample of trios, one can weight each “sub-phenotype” (severe and non-severe) 
by the inverse of the variance of each statistic. We called this test FBAThet, for which the null and  

alternative hypotheses are 0 1 2
1:
2

H p p= =  and 1 1
1:
2

H p ≠  or 2
1
2

p ≠ , respectively. 

However, in the previous test, the transmission probabilities under the null hypothesis are fixed to 0.5 in both 
groups. This may not be optimal in the context of secondary outcomes when the transmission of the tested allele 
has already been found to significantly differ from 0.5 with respect to the primary outcome. We show that it is 
possible to relax this constraint by modifying the expectation in the FBAThet statistic so that the test is defined as 

0 1 2:H p p=  and 1 1 2:H p p≠ , which are the classical hypotheses in the vast majority of homogeneity tests. 
This new test, FBAThet free, is proven to be equivalent to a classical test for homogeneity. FBAThet free is the most 
powerful test when the mean transmission to affected children ( 1 2D D+ , primary outcome) is not 0.5. Stated 
differently, each time an allele is found associated with the disease per se, FBAThet free will be the most powerful 
to detect heterogeneity between the transmission rates of this allele across the modalities of the secondary out-
come. 

For sake of simplicity, we have derived our main statistic FBAThet free in the context of the analysis of a dial-
lelic marker under an additive genetic model in a sample of trios with no missing parental data. However, gene-
ralization to other genetic models and more complex family structures should be possible by using, for a given 
marker, the estimated mean transmission of the allele under study among affected individuals, in preference to 
the actual 0.5 that prevents testing 1 2p p= . By doing so, one will be able to take advantage of all the features of 
FBAT ranging from the analysis of all kinds of phenotypes to the simultaneous testing of several alleles either in 
a classic multivariate way or taking into account the phase through haplotypic analysis. 
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Figure 3. Power of FBAThet vs. FBAThet free according to the mean transmission rate of the tested allele among the af-
fected children.                                                                                            
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Appendix A. Proof That Coding 1
1

1T
V

=  and 2
2

1T
V

= −  Is Equivalent to 1
1

1T
n

=  

and 2
2

1T
n

= −  under an Additive Genetic Model 

Let 1N  and 2N  be the number of trios with phenotype 1D  and 2D , and idN  ( )isN  the number of trios 
with double ( )d  or single ( )s  heterozygote parent ( )s . Let in  be the number of heterozygote parents. Then 

2 .i id isn N N= +  

Let sV  and dV  be the unitary variance for trios with 1 or 2 heterozygote parents. 

For FBAT and FBAThet, 
1
4sV =  and 1 2

2d sV V= = . Then 

( ) ( )

( ) ( )

pheno 1 pheno 1
1 parent 2 parents

pheno 2 pheno 2
1 parent 2 parents

1 1 1
1 1 1

& &

2
2

& &

Var Var
4 2 4

and Var Var .
4

s d
j j s s d d

j j

N N nV S S N V N V

nV S S

= + = + = + =

= + =

∑ ∑

∑ ∑
 

Given that ( ) ( )1 2 1 2FBAT , FBAT ,T x T y T kx T ky= = = = = , coding 
1

1
1T
V

=  and 
2

2
1T

V
= −  is equivalent to 

1
1

1T
n

=  and 
2

2
1T
n

= −  for FBAT and FBAThet. 

For FBAThet free, 1 A A
s

n nV
N N

 = − 
 

 and 2 1 2A A
d s

n nV V
N N

 = − = 
 

. Then 

( ) ( ) ( )

( ) ( )

pheno 1 pheno 1
1 parent 2 parents

pheno 2 pheno 2
1 parent 2 parents

1 1 1 1
& &

2 2
& &

Var Var 2 1 1

and Var Var 1 .

A A A A
j j s d

A A
j j

n n n nV S S N N n
N N N N

n nV S S n
N N

   = + = + − = −   
   

 = + = − 
 

∑ ∑

∑ ∑
 

Then coding 
1

1
1T
V

=  and 
2

2
1T

V
= −  is also equivalent to 

1
1

1T
n

=  and 
2

2
1T
n

= −  for FBAThet free. 

Appendix B. Proof That 1

1 2

n
n n

=
+

µ  Is the Offset That Minimizes the Variance  

under an Additive Genetic Model 
Let µ  be the offset. 

1 21    and   T Tµ µ= − = −  

With the same notations as in Appendix A, 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

pheno 1 pheno 1 pheno 2 pheno 2
1 parent 2 parents 1 parent 2 parents& & & &

2 2 2 2
1 1 1 1 2 2 2 2

2 2
1 1 2 2

Var Var Var Var Var

      

      1 .

j j j j

s s d d s s d d

s s d d s s d d

S S S S

N T V N T V N T V N T V

N V N V N V N Vµ µ

= + + +

= + + +

= − + + − +

∑ ∑ ∑ ∑

 

For FBAT, 1
4sV = , 1 2

2d sV V= =  and 
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( )( )2 2
1 2

1Var 1
4

n nµ µ= − +  

and ( ) ( )( )2 2
1 2min Var min 1 n n

µ µ
µ µ= − +  is obtained for 1

1 2

.
n

n n
µ =

+
 

For FBAThet free, 1 A A
s

n nV
N N

 = − 
 

, 2 1 2A A
d s

n nV V
N N

 = − = 
 

 and 

( )( )2 2
1 2Var 1 1A An n n n

N N
µ µ = − − + 

 
 

and ( ) ( )( )2 2
1 2min Var min 1 n n

µ µ
µ µ= − +  is also obtained for 1

1 2

.
n

n n
µ =

+
 

Appendix C. Proof That FBAThet free Is a Pearson’s 2χ  
With the notations of the manuscript, let us write the table of contingency of the transmission of alleles A and a 
in two phenotypic groups. 
 

Transmission A a Total 

1D  1An  1an  1n  

2D  2An  2an  2n  

 An  an  N  

 
( )

( ) ( ) ( ) ( )

2
1 1 2 2

2 22 2
1 21 2

1 21 2

1 1 2 2

2 22 2
1 1 2 21 1 2 2

1 1 2 2

1 1 2

Pearson s , , ,

1 1 1

’ A a a A

a aA A
a aA A

A a A a

a a a aA A A A

A a A a

A a A

n n n n

n n n nn n n nn nn n
N NN N

n n n n n n n n
N NN N

n N n n n N n nn N n n n N n n
Nn n Nn n Nn n Nn n

Nn n Nn n Nn n

χ

      − −− −       
       = + + +

− −− −
= + + +

= + + ( )

( )

2
1 2 1 2

2

2
1 2 1 2

1 2

het free

1

FBA .T

A a a A
a

A a a A
A a

n n n n
Nn n

N n n n n
n n n n

 
+ − 

 

= −

=

 

Appendix D. Proof That FBATfree = ρFBAThet free 
With the notations used in the main text, for FBAThet , 

1 1 2 1
1 2

1 1 1 1 1 11 0 1 0
2 2 2 2A a A aS E n n n n

n n
          − = − + − − × − + −          

          
 

( ) ( )
2 2 2 2

1 2
1 1 2 2

1 2 1 2

1 1 1 1 1 1and .
4 4 4 4A a A a

n nV n n n n
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       
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       
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Abstract 
Assessing geographic variations in health events is one of the major tasks in spatial epidemiologic 
studies. Geographic variation in a health event can be estimated using the neighborhood-level va-
riance that is derived from a generalized mixed linear model or a Bayesian spatial hierarchical 
model. Two novel heterogeneity measures, including median odds ratio and interquartile odds ra-
tio, have been developed to quantify the magnitude of geographic variations and facilitate the data 
interpretation. However, the statistical significance of geographic heterogeneity measures was in- 
accurately estimated in previous epidemiologic studies that reported two-sided 95% confidence 
intervals based on standard error of the variance or 95% credible intervals with a range from 2.5th 
to 97.5th percentiles of the Bayesian posterior distribution. Given the mathematical algorithms of 
heterogeneity measures, the statistical significance of geographic variation should be evaluated 
using a one-tailed P value. Therefore, previous studies using two-tailed 95% confidence intervals 
based on a standard error of the variance may have underestimated the geographic variation in 
events of their interest and those using 95% Bayesian credible intervals may need to re-evaluate 
the geographic variation of their study outcomes. 

 
Keywords 
Spatial Epidemiology, Heterogeneity, Statistical Significance, 95% Confidence Interval,  
95% Credible Interval 

 
 

1. Introduction 
Spatial epidemiology is an important methodology to deal with spatial-correlated issues in epidemiologic studies. 
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One of its core tasks is to determine geographic variations and quantify the magnitude of geographic variations 
in diseases, health behaviors, or environmental exposures [1]. Some published epidemiologic studies inappro-
priately estimated the statistical significance of geographic heterogeneity measures of examined events. 

The generalized linear mixed model and the Bayesian spatial hierarchical model are the most commonly ap-
plied to fit the data with a multilevel spatial structure. A geographic variation can be directly quantified as 
neighborhood-level variance ( )2σ  from parameter estimations of the multilevel model fitting. However, this 
variance has no meaningful unit and is difficult to interpret. Spatial statisticians and epidemiologists have de-
veloped two state-of-the-art heterogeneity measures, the median odds ratio (MOR, Equation (1)) [2]-[4] and the 
interquartile odds ratio (IqOR, Equation (2)) [5], to facilitate the interpretation of geographic heterogeneity of an 
event. 

( )
( )

0.75MOR exp 2 VAR

         exp 0.9539 VAR ,

Z= × ×

= ×
                               (1) 

where VAR  is the neighborhood-level variance, while 0.75Z  is the Z  value of the Gaussian distribution at 
the 75th percentile (0.6745). 

( )( )
( )

0.875 0.125IqOR exp VAR

         exp 2.3007 VAR ,

Z Z= − ×

= ×
                            (2) 

where 0.875Z  and 0.125Z  are the Z  values of the Gaussian distribution at the 87.5th and 12.5th percentiles 
(1.1504, −1.1504), respectively. 

Both MOR and IqOR are derived from the variance and are always greater than or equal to one. Larger values 
of MOR and IqOR denote greater geographic variations in the event of interest. The MOR reflects the average 
difference of risk when comparing two subjects who have the same individual characteristics and are selected 
randomly from two different neighborhoods. The IqOR represents the average difference of risk when compar-
ing the first quartile of study subjects residing in neighborhoods with the highest risk to the fourth quartile of 
study subjects residing in neighborhoods with the lowest risk [3] [5]. Similarly, the median rate ratio (MRR) and 
the interquartile rate ratio (IqRR) can be estimated in a prospective study, and the median hazards ratio (MHR) 
and the interquartile hazard ratio (IqHR) [6] are for time-to-event studies. To facilitate the explanation, the MOR 
and IqOR are applied in the following discussions. 

2. Issues in Determining the Statistical Significance of Geographic Heterogeneity  
Measures 

Geographic variations can be qualitatively assessed by using neighborhood-level variance estimation derived 
from a generalized linear mixed model. The modeling conducted by a commonly used statistical analysis pack-
age, such as the SAS, also gives a Z value and a corresponding P value based on an approximately normal dis-
tribution of the estimated parameter. With the standard error of the variance from the multilevel model fitting, a 
95% CI is able to be computed mathematically. However, one cannot perform a generalized linear mixed analy-
sis to estimate the statistical significance and 95% CIs of the MOR and IqOR because both MOR and IqOR are 
derived from the variance and do not have their own standard errors. 

Alternatively, a Bayesian spatial hierarchical model with a Markov Chain Monte Carlo (MCMC) simulation 
has been used to estimate geographic heterogeneities. In this setting, the 95% Bayesian credible interval (CrI), 
defined by the 2.5th and 97.5th percentiles of Bayesian posterior distribution of the geographic heterogeneity 
measure, has been commonly reported. 

In the estimation of a fixed effect of an exposure, its statistical significance can be identified if the 95% con-
fidence/credible interval of its regression coefficient does not cross zero. However, this empirical method con-
flicts with the nature of geographic heterogeneity measures. Two unreasonable results are usually reported in the 
studies in which the 95% CI or CrI of geographic heterogeneity measures were used to determine their statistical 
significance. The 95% CI of the variance could cross zero based on an approximately normal distribution 
( )1.96 SEX ± × . This is unreasonable because the variance should always be greater than or equal to 0. In addi-
tion, the 2.5th percentile of the Bayesian posterior distribution of the variance is always greater than 0 and con-
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sequently the MOR and IqOR are always greater than one. This leads to the overestimation of geographic dis-
parities. 

3. Example and Solution 
3.1. Example 
A simulation analysis was performed to illustrate the issues relevant to the statistical significance of spatial he-
terogeneity measures. It is assumed that a population of colorectal cancer (CRC) survivors come randomly from 
100 neighborhoods, each with 5 - 20 patients, and that the probability of smoking for each patient is 0.2 - 0.5. A 
random simulation generated a dataset that included 1245 patients and 420 smokers. Multilevel logistic regres-
sion is applied to quantify small-area geographic variation in smoking behavior among these CRC patients (Eq-
uation (3)). 

( )
( ) 0 1 2

~ Binomial

logit

ij ij

ij i ij i

y p

p N X uβ β β= + + +
                            (3) 

where ijp  is the probability of smoking for patient j  who resides in neighborhood i ; 0β  is the intercept; 
1β  and 2β  are the fixed coefficients of neighborhood- and individual-level covariates, respectively; iN  is 

characteristics of neighborhood i; and ijX  is a vector of individual-level covariates; iu  is the random effect 
between neighborhoods with a normal assumption: ( )2~ 0,iu N σ . 

To simplify the explanation, an empty model without neighborhood- and individual-level covariates was fit to 
estimate the overall geographic heterogeneity of smoking among these CRC patients using the Bayesian hierar-
chical approach with a MCMC simulation in WinBUGS (Version 1.4.3, MRC, UK). After 50,000 iterations for 
the convergence, additional 50,000 iterations were run to obtain the posterior estimates of three spatial hetero-
geneity measures. Because the dataset was simulated randomly, the geographic variation in smoking was ex-
pected to be small. 

Table 1 shows the Bayesian parameter estimates of three heterogeneity measures. Based on an approximately 
normal assumption, the 95% CIs of three geographic measures were computed as 1.96µ σ± × . Alternatively, 
the 95% CrIs of three geographic measures were expressed as the range from their 2.5th to their 97.5th percentiles. 
However, the inconsistent results were observed when comparing the 95% CIs of the variance, MOR and IqOR 
to their 95% CrIs. The 95% CI of the variance crossed zero and the 95% CIs of both MOR and IqOR crossed 1, 
suggesting no significant geographic variation in smoking behavior among CRC survivors. In contrast, the 95% 
CrI of the variance was more than zero and the 95% CrIs of the MOR and IqOR were greater than one, suggest-
ing a significant geographic variation in smoking behavior. 

3.2. Solution 
Table 2 shows that, the variance is a non-negative measure, and MOR and IqOR are never less than one. The 
null hypothesis of the statistical test should be that the variance equals to zero and both MOR and IqOR equal to 
one, that is, there is no significant geographic variation in the event of interest. Meanwhile, the alternative hy-
pothesis of the statistical test should be that the variance is greater than zero, and both MOR and IqOR are 
greater than one. Therefore, the statistical test is theoretically one-tailed, rather than two-tailed. The critical val-
ue for the significance level at 0.05 is 1.645 instead of 1.960. The statistical significance should be denoted di-
rectly using one-tailed (right-tailed) P value. One may not report the 95% CI or the interval between the 2.5th  
 
Table 1. Three Bayesian estimates of three spatial heterogeneity measures in the simulated example.                           

Measure Mean (µ) SD (σ) 2.50% Median 97.50% 95% confidence interval 95% credible interval 

VAR* 0.007 0.009 0.001 0.004 0.033 0.007 (−0.011, 0.025) 0.004 (0.001, 0.033) 

MOR† 1.074 0.045 1.022 1.061 1.189 1.074 (0.986, 1.162) 1.061 (1.022, 1.189) 

IqOR‡ 1.190 0.125 1.054 1.155 1.517 1.190 (0.945, 1.435) 1.155 (1.054, 1.517) 

*VAR, variance; †MOR, median odds ratio; ‡IqOR, interquartile odds ratio. 
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Table 2. Three spatial heterogeneity measures and their statistical hypotheses.          

Measure Range Null hypothesis (H0) Alternative hypothesis (H1) 

VAR* ≥0 VAR = 0 VAR > 0 

MOR† ≥1 MOR = 1 MOR > 1 

IqOR‡ ≥1 IqOR = 1 IqOR > 1 

*VAR, variance; †MOR, median odds ratio; ‡IqOR, interquartile odds ratio. 
 
and the 97.5th percentiles of Bayesian posterior distribution (95% CrI) of geographic heterogeneity measures to 
avoid the misinterpretation of geographic variations. In fact, a one-tailed P value for the variation/heterogeneity 
estimation has been given from a generalized linear mixed model fitting using common statistical analysis 
packages, such as the SAS. For the heterogeneity estimation from a Bayesian hierarchical model, one should 
compute the corresponding statistics, based on the prior distribution of the variance, to obtain their one-tailed P 
value to determine its statistical significance. In the simulated example, since the Z value for the variance is: 
( )0.007 0 0.009 0.778− = , the geographic variation in smoking among CRC survivors is not statistically sig-
nificant using 1.645 as the cutoff for the significance level at 0.05. 

4. Discussions 
The purpose of this study was to point out an inappropriate method that was used to determine the statistical 
significance of geographic heterogeneity measures. The simulated data suggested that empirically reporting of 
the 95% CI/CrI of geographic heterogeneity measures may lead to misunderstanding of the statistical signific-
ance of geographic variations of an event. 

According to the nature of geographic heterogeneity measures, the statistical inference should be one-tailed 
(right-tailed). It is inappropriate to report a two-tailed 95% CI/CrI of a heterogeneity measure in spatial epide-
miologic studies. It could mislead one in understanding the statistical significances of heterogeneity measures. 
In the studies using standard errors to obtain two-tailed P values or 95% CIs, geographic variations in the events 
may be underestimated because a two-tailed test is more conservative than a one-tailed test. In contrast, the stu-
dies using the interval between the 2.5th and the 97.5th percentiles of a Bayesian posterior distribution to obtain a 
95% CrI may overestimate the statistical significance of geographic variation of the event because a Bayesian 95% 
CrI never crosses zero for the variance and one for both MOR and IqOR. The issue of statistical significance of 
geographic heterogeneity measures, which was discussed in this paper, is also extendible to a general multilevel 
study aiming to investigate the variation(s) in one or multiple event(s) of interest across a non-spatial higher lev-
el, such as healthcare providers or medical service facilities. 
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Abstract 
Fisher [1] proposed a simple method to combine p-values from independent investigations with-
out using detailed information of the original data. In recent years, likelihood-based asymptotic 
methods have been developed to produce highly accurate p-values. These likelihood-based me-
thods generally required the likelihood function and the standardized maximum likelihood esti-
mates departure calculated in the canonical parameter scale. In this paper, a method is proposed 
to obtain a p-value by combining the likelihood functions and the standardized maximum likelih-
ood estimates departure of independent investigations for testing a scalar parameter of interest. 
Examples are presented to illustrate the application of the proposed method and simulation stu-
dies are performed to compare the accuracy of the proposed method with Fisher’s method. 

 
Keywords 
Canonical Parameter, Fisher’s Expected Information, Modified Signed Log-Likelihood Ratio  
Statistic, Standardized Maximum Likelihood Estimate Departure 

 
 

1. Introduction 
Supposed that k  independent investigations are conducted to test the same null hypothesis and the p-values are 

1, , kp p  respectively. Fisher [1] proposed a simple method to combine these p-values to obtain a single 
p-value ( )p  without using the detailed information concerning the original data nor knowing how these 
p-values were obtained. His methodology is based on the following two results from distribution theories: 

1) If U  is distributed as Uniform(0, 1), then 2logU−  is distributed as Chi-square with 2 degrees of 
freedom ( )2

2 ;χ  
2) If 1, , kX X  are independently distributed as 

1

2 2, ,
kν νχ χ , then 1 kX X+ +  is distributed as 

1

2
kν νχ + + . 

Since 1, , kp p  are independently distributed as Uniform(0, 1), then the combined p-value p  is  
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http://dx.doi.org/10.4236/ojs.2015.51007
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2
2

1
2 log .

k

k i
i

p P pχ
=

 = ≥ − 
 

∑                                     (1) 

For illustration, Fisher [1] reported the p-values of three independent investigations: 0.145, 0.263 and 0.087. 
Thus the combined p-value is 

( ) ( ) ( ) ( )( ) ( )2 2
62 3 2 log 0.145 log 0.263 log 0.087 11.417 0.0763p P Pχ χ= ≥ − + + = ≥ =    

which gives moderate evidence against the null hypothesis. Fisher [1] described the procedure as a “simple test 
of the significance of the aggregate”. 

As an illustrative example is the study of rate of arrival. It is common to use a Poisson model to model the 
number of arrivals over a specific time interval. Let 1, , nX X  be the number of arrivals in n consecutive unit 
time intervals and denote 1

n
iix X

=
= ∑  be the total number of arrivals over the n consecutive unit time intervals. 

Moreover, let θ  be the rate of arrival in an unit time interval. We observed a total of 14 arrivals over 20 
consecutive unit time intervals. In other words, 020,  14n x= =  and we are interested in assessing 1θ = . Then 
the null distribution of X  is Poisson (20) and, based on the observed 0 14x = , the mid-p-value is  

( )
20 20 1413

1
1

e 20 1 e 201 0.0855.
! 2 14!

i

i
p

i

− −

=

= + =∑  

An alternate way of investigating the rate of arrival over a period of time is by modeling the time to first 
arrival, T with the exponential model with rate θ . We observed 0 2t = , and, again, we are interested in assess- 
ing 1θ = . Then the null distribution of T  is the exponential with rate 1, and, based on the observed 0 2t = , 
the p-value is  

( ) ( ) ( )( )2 1 1 exp 2 1 0.1353.p P T= > = − =  

By Fisher’s way of combining the p-values, we have 

( )( ) ( )( )( )2
2 1 22 log 1 log 1 0.0116P p pχ  > − + =   

which gives strong evidence that θ  is greater than 1. 
In recent years, many likelihood-based asymptotic methods have been developed to produce highly accurate 

p-values. In particular, both the Lugannani and Rice’s [2] method and the Barndorff-Nielsen’s [3] [4] method 
produced p-values which have third-order accuracy, i.e. the rate of convergence is ( )3 2O n− . Fraser and Reid [5] 
showed that both methods required the signed log-likelihood ratio statistic and the standardized maximum 
likelihood estimate departure calculated in the canonical parameter scale. In this paper, we proposed a method to 
combine likelihood functions and the standardized maximum likelihood estimates departure calculated in the 
canonical parameter scale obtained from independent investigations to obtain a combined p-value. 

In Section 2, a brief review of the third-order likelihood-based method for a scalar parameter of interest is 
presented. In Section 3, the relationship between the score variable and the locally defined canonical parameter 
is determined. Using the results in Section 3, a new way of combining likelihood information is proposed in 
Section 4. Examples and simulation results are presented in Section 5 and some concluding remarks are 
recorded in Section 6. 

2. Third-Order Likelihood-Based Method for a Scalar Parameter of Interest 
Fraser [6] showed that for a sample ( )0 0 0

1 , , nx x x=   from a canonical exponential family model with log-like- 
lihood function 

( ) ( ) ( ) ( )0 0 0 0
1

1
; ; , , log ;

n

n i
i

x x x f xϕ ϕ ϕ ϕ
=

= = = ∏     

where  
( ) ( ) ( ){ } ( ); expf x t x c h xϕ ϕ ϕ= −  

and ϕ  is the scalar canonical parameter of interest. The p-value function ( ) ( )0ˆ ˆ ;p Pϕ ϕ ϕ ϕ= ≤  can be appro- 
ximated with third-order accuracy using either the Lugannani and Rice [2] formula 
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( ) ( ) ( ) 1 1p r r
r q

ϕ φ
 

= Φ + − 
 

                                 (2) 

or the Barndorff-Nielsen [3] [4] formula  

( ) 1 log qp r
r r

ϕ  = Φ + 
 

                                     (3) 

where r  is the signed log-likelihood ratio statistic  

( ) ( ) ( ) ( ){ }1 2
0 0ˆ ˆsign 2r r ϕ ϕ ϕ ϕ ϕ = = − −                             (4) 

q  is the standardized maximum likelihood departure calculated in the canonical parameter scale:  

( ) ( ) ( )0 1 2 0ˆ ˆq q jϕϕϕ ϕ ϕ ϕ= = −                                (5) 

0ϕ̂  is the maximum likelihood estimate of ϕ  satisfying 
( )

0ˆ

d
0

d
ϕ

ϕ
ϕ

=


, and 

( ) ( )
0

2
0

2
ˆ

d
ˆ

d
jϕϕ

ϕ

ϕ
ϕ

ϕ
= −



 

is the observed information evaluated at 0ϕ̂ . Jensen [7] showed that (2) and (3) are asymptotically equivalent 
up to third-order accuracy. In literature, there exists many applications of these methods, for example, see Bra- 
zzale et al. [8]. 

Fraser and Reid [5] [9] generalized the methodology to any model with log likelihood function ( ) ( ); xθ θ=  . 
They defined the locally defined canonical parameter be  

( ) ( ) ( )
0 0

d d
d d

x x

V
V x
θ θ

ϕ ϕ θ= = = ⋅
 

                              (6) 

where 

( )
( ) ( )

( )0 0 0 0

1

ˆ, ˆ,

, ,d
d x x

z x z xxV
xθ θ

θ θ
θ θ

−
∂ ∂      = = −   

∂ ∂      
                    (7) 

is the rate of change of x  with respect to the change of θ  at ( )0 0ˆ,x θ , and ( ),z xθ  is a pivotal quantity. 
Define s  be the score variable satisfying 

( )
0ˆ

d
d

s
θ

θ
ϕ

=


                                      (8) 

with 0θ̂  being the maximum likelihood estimate of θ  obtained from ( )θ  at the observed data point 0x . 
The signed log-likelihood ratio statistic r is 

( ) ( ) ( ) ( ){ }1 2
0 0ˆ ˆsign 2r r θ θ θ θ θ = = − −                         (9) 

and the standardized maximum likelihood departure ( )q θ  re-calibrated in the ϕ  scale is  

( ) ( ) ( )0 1 2 0ˆ ˆ .q q jϕϕθ ϕ ϕ ϕ= = −  

Since ( )0 0ˆϕ̂ ϕ θ= , by applying the chain rule in differentiation, we have  

( ) ( ) ( ) 2
0 0 0ˆ ˆˆj jϕϕ θθ θϕ θ ϕ θ

−
 =    

where ( ) ( )
0

0

ˆ

dˆ
dθ

θ

ϕ θ
ϕ θ

θ
= . Therefore, ( )q θ  can be written as 
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( ) ( ) ( ) ( ){ }1 22
0 0 0ˆ ˆˆ .q q jθθ θθ ϕ ϕ θ ϕ θ

−
 = = −                            (10) 

Applications of the general method discussed above can be found is Reid and Fraser [10] and Davison et al. 
[11]. 

Note that V  in (7) can be viewed as the sensitivity direction and is examined in Fraser et al. [12] for the  

study of the sensitivity analysis of the third-order method. And 
( )0 0ˆ,

d
d s

s

θθ
 gives the rate of change of the score  

variable with respect to the change of θ  at the observed data point in the tangent exponential model. 

3. Relationship between the Score Variable and the Locally Defined Canonical  
Parameter 

In Bayesian analysis, Jeffreys [13] proposed to use the prior density which is proportional to the square root of 
the Fisher’s expected information. This prior is invariant under reparameterization. In other words, the scalar 
parameter  

( ) ( )
1 22

2

d
d

d
E

γ
β β θ γ

γ

  
= = −      

∫


 

yields an information function 
( )2

2

d
d

E
β

β
 
−  
 



 that is constant in value. Since Fisher’s expected information  

might be difficult to obtain, we can approximate it by the observed information evaluated at the maximum like- 
lihood estimate θ̂  which is  

( ) ( )2

2
ˆ

dˆ .
d

jθθ
θ

θ
θ

θ
= −



 

Hence, ( )ˆβ θ  is approximately invariant under reparameterization. 

Fraser et al. [12] showed that  

( ) ( )
ˆ 1 2 1 2d dz j j
ϕ ϕ

ϕϕ ϕϕγ γ γ γ= −∫ ∫                                (11) 

is a pivotal quantity to the second-order. A change of variable from the maximum likelihood estimate of locally 
defined canonical parameter ϕ̂  to the score variable s  for the first integral of (11) yields  

( )( ) ( )1 2 1 2ˆ d d
s

z j j
ϕ

ϕϕ ϕϕϕ γ γ γ γ−= −∫ ∫                             (12) 

which relates the score varaible to the locally defined canonical parameter. Taking the total derivative of (12), 
and evaluate at the observed data point, we have 

( )
( ) ( )( )

0 0 0

1 2 0 1 2 0

ˆ ˆ, ,

d ˆˆ .
d s

s j jϕϕ ϕϕ
θ ϕ

ϕ ϕ θ
θ

=  

Moreover, at 0θ̂ , 

( )0ˆd d .θϕ ϕ θ θ=  

Therefore, the rate of change of the score variable with respect to the change of the locally defined canonical 
parameter at the observed data point is 

( )
( ) ( )( ) ( )

0 0 0

1 2 0 1 2 0 0

ˆ ˆ, ,

d ˆ ˆˆ .
d s

sw j jϕϕ ϕϕ θ
θ ϕ

ϕ ϕ θ ϕ θ
ϕ

= =                    (13) 

This describes how the locally defined canonical parameter ϕ  moves the score variable s . 
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4. Combining Likelihood Information 
Assume we have k  independent investigations, each of them is used to obtain inference concerning a scalar 
parameter θ . Denote the log-likelihood function for the thi  investigation be ( )i θ  and the corresponding 
canonical parameter is ( )iϕ θ . Note that if ( )iϕ θ  is not explicitly available, we can use the locally defined 
canonical variable as obtain from (9). The combined log-likelihood function is  

( ) ( ) ( )1 kθ θ θ= + +     

and hence the maximum likelihood estimate of θ  can be obtained. Therefore, the signed log-likelihood func- 
tion r  can be calculated from (12). 

From (13), the rate of change of the score variable from the thi  investigation with respect to the corre- 
sponding canonical paramter at the observed data from the thi  investigation is  

( ) ( )( ) ( )1 2 0 1 2 0 0
,, ,

ˆ ˆˆ
i i i ii i i ii iw j j θϕ ϕ ϕ ϕϕ ϕ θ ϕ θ=                           (14) 

where 

( ) ( ) ( ) ( )
0 0

2
0 0

, , 2
ˆ ˆ

d dˆ ˆ    and    .
d di i

i

i i
i i i

i

jθ ϕ ϕ
θ ϕ

ϕ θ θ
ϕ θ ϕ

θ ϕ
= = −



 

Hence, the combined canonical parameter is  

( ) ( ) ( )1 1 .k kw wϕ ϕ θ ϕ θ ϕ θ= = + +                             (15) 

The standardized maximum likelihood departure based on the combined canonical parameter can be cal- 
culated from (5). Thus, a new p-value can be obtained from the combined log-likelihood function and the com- 
bined canonical parameter using the Lugannani and Rice formula or the Barndorff-Nielsen formula. 

5. Examples 
In this section, we first revisit the rate of arrival problem discussed in Section 1 and show that the proposed 
method gives results that is quite different from the results obtained by the Fisher’s way of combining p-values. 
Then simulation studies are performed to compare the accuracy of the proposed method with the Fisher’s 
method for the rate of arrival problem. Moreover, two well-known models: scalar canonical exponential family 
model and normal mean model, are examined. It is shown that, theoretically, the proposed method gives the 
same results as obtained by the third-order method that was discussed in Fraser and Reid [5] and DiCiccio et al. 
[14], respectively. 

5.1. Revisit the Rate of Arrival Problem 
From the first investigation discussed in Section 1, the log-likelihood function for the Poisson model is  

( ) ( )1 20 14logθ θ θ= − +  

where ( ) ( )1 1 logϕ ϕ θ θ= =  is the canonical parameter. We have  

( ) ( )1 1

0 0
1 1, 1ˆ ˆlog 14 20 0.3567,     14.j ϕ ϕϕ ϕ= = − =  

Moreover, from the second investigation discussed in Section 1, the log-likelihood function for the exponen- 
tial model is 

( ) ( )2 log 2θ θ θ= −  

where ( )2 2ϕ ϕ θ θ= =  is the canonical parameter. We have  

( )2 2

0 0
2 2, 2ˆ ˆ1 2 0.5,     4.j ϕ ϕϕ ϕ= = =  

The combined log-likelihood function is  

( ) ( ) ( ) ( )1 2 22 15logθ θ θ θ θ= + = − +    
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and we have 

( )0 0ˆ ˆ15 22 0.6818,     32.2667.jθθθ θ= = =  

Therefore, 

( ) ( ) ( )1 1
0

10 0
1 1, 1

ˆ

dˆ ˆ0.3830,    1.4667,    13.6364
d

j ϕ ϕ
θ

ϕ θ
ϕ θ ϕ

θ
= − = =  

( ) ( ) ( )2 2
0

20 0
2 2, 1

ˆ

dˆ ˆ0.6818,    1,    2.1511
d

j ϕ ϕ
θ

ϕ θ
ϕ θ ϕ

θ
= = =  

and from (17) we have 1 20.2650w =  and 2 2.9333w = . Thus, the combined locally defined canonical para- 
meter is  

( ) ( )20.2650log 2.9333 .ϕ θ θ θ= +  

Hence, 1.5844r = −  is obtained from (12) using the combined log-likelihood function. Since the signed log- 
likelihood ration statistic is asymptotically distributed as a standard normal distribution, the p-value obtained 
from the signed log-likelihood ratio method is 0.0565. It is well-known that the signed log-likelihood ratio 
method has only first order accuracy. From (8) using the combined locally defined canonical parameter, we have 

1.5124q = − . Finally, the p-value obtained by the Lugannani and Rice formula and by the Barndorff-Nielsen 
formula is 0.0600, which is less certain about the evidence that θ  is greater than 1 as suggested by the result 
from Fisher’s way of combining of p-values. Note that in literature, there are many detailed studies comparing 
the accuracy of the first order and third order methods (see Barndorff-Nielsen [4], Fraser [6], Jensen [7], 
Brazzale et al. [8], and DiCiccio et al. [14]). Thus, in this paper, we will not compare the signed log-likelihood 
ratio method and the proposed method. 

Figure 1 plot ( ) ( )ˆp Pθ θ θ= ≤  obtained from Fisher’s method, Lugannani and Rice method and Barndorff- 
Nielsen method. From the plot, it is clear that the two proposed methods give almost identical results, which are 
very different from the results obtained by the Fisher’s method. 

5.2. Simulation Study 
Simulation studies are performed to compare the three methods discussed in this paper. We examine the rate of 
arrival problem that was discussed in Section 1. For each combination of ( ),n θ , we 

1) generate 0x  from Poisson ( )n θ∗ , and 0y  from exponential ( );θ  
2) calculate p-values obtained by the three methods discussed in this paper; 

 

 
Figure 1. p-value function.                                         
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3) record if the p-value is less than a preset value ;α  
4) repeat this process 10,000N =  times.  
Finally, report the proportion of p-values that is less than α  and this value, sometimes, is referred to as the 

simulated Type I errors. For an accurate method, the result should be close to α . The simulated standard error  
of this process is ( )1 Nα α− . 

Table 1 recorded the simulated Type I errors obtained by the Fisher’s method (Fisher), Lugannani and Rice 
method (LR) and Barndorff-Nielsen method (BN). Results from Table 1 illustrated that the proposed methods 
are extremely accurate as they are all within 3 simulated standard errors. And the results by the Fisher’s method 
are not satisfactory as they are way larger than the prescriped α  values. 

5.3. Scalar Canonical Exponential Family Model 
Consider k  independent investigations from canonical exponential family model with density  

( ) ( ){ } ( ); exp ,    1, ,i i i if x t K h x i kθ θ θ= − =   

where θ  is the scalar canonical parameter of interest and ( )i it t x=  is the minimal sufficient statistic for the 
thi  model. 

From the above model, we have ( )i iϕ ϕ θ θ= = . The log-likelihood function and its corresponding deri- 
vatives are  

( ) ( )i i i i i it Kϕ ϕ ϕ= −  

( ) ( ) ( )1d
d
i i

i i i
i

t K
ϕ

ϕ
ϕ

= −


 

( ) ( ) ( )
2

2
2

d
d

i i
i i

i

K
ϕ

ϕ
ϕ

= −


 

where ( ) ( ) ( )d
d

r
r i i

i i r
i

K
K

ϕ
ϕ

ϕ
= . Hence ˆiϕ  has to satisfy ( ) ( )1 ˆi i iK tϕ = , and the observed information evaluated at  

ˆiϕ  is ( ) ( ) ( )2
, ˆ ˆ

i ii i i ij Kϕ ϕ ϕ ϕ= . The combined log-likelihood function is 

( ) ( ) ( ) ( )
1 1

k k

i k i i
i i

t Kθ θ θ θ θ
= =

= + + = −∑ ∑     

 
Table 1. Simulated Type I errors (based on 10,000 simulated sample).                                                    

  0.10α =    0.05α =    0.01α =    

n  θ  Fisher LR BN Fisher LR BN Fisher LR BN 

5 0.1 0.2459 0.1084 0.1073 0.1231 0.0525 0.0521 0.0225 0.0099 0.0097 

 1.0 0.3252 0.0992 0.0992 0.1908 0.0496 0.0496 0.0515 0.0123 0.0123 

 2.0 0.3256 0.1025 0.1025 0.1961 0.0513 0.0513 0.0547 0.0112 0.0112 

10 0.5 0.3318 0.1014 0.1014 0.1942 0.0490 0.0490 0.0513 0.0128 0.0128 

 1.0 0.3325 0.1005 0.1005 0.1965 0.0530 0.0530 0.0574 0.0105 0.0105 

 2.0 0.3269 0.1006 0.1006 0.1975 0.0513 0.0513 0.0562 0.0107 0.0107 

20 1.0 0.3365 0.1000 0.1000 0.2018 0.0526 0.0526 0.0546 0.0098 0.0096 

 2.0 0.3387 0.1064 0.1064 0.2027 0.0528 0.0528 0.0578 0.0109 0.0109 

 5.0 0.3356 0.1048 0.1048 0.2037 0.0528 0.0528 0.0582 0.0111 0.0111 
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and the log-likelihood ratio statistic obtained from the combined log-likelihood function can be obtained from 
(12). Moreover, from (17), we have 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 21 2 21 2 1 2
, , ,

ˆ ˆ ˆˆ ˆ
i i i i ii i i i i ii i iw j j K Kϕ ϕ ϕ ϕ ϕϕ ϕ θ ϕ θ ϕ θ = =    

and hence the combined canonical parameter is  

( ) ( ) ( ) ( ) ( ) 1 2
2 2

1

ˆˆ .
k

i i i
i

K Kϕ θ ϕ θ θ
=

  =    
∑  

The maximum likelihood departure in the combined canonical parameter space is  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2
2 2

1

ˆ ˆ ˆˆ
k

i i i
i

K Kϕ θ ϕ θ ϕ θ θ θ
=

  − = −   
∑  

with the observed information evaluated at θ̂  being  

( ) ( ) ( ) ( ) ( ) ( ) ( )
21 2

2 2 2

1 1

ˆ ˆ ˆˆ
k k

i i i i
i i

j K K Kϕϕ θ θ ϕ θ
−

= =

    =        
∑ ∑  

and thus, 

( ) ( ) ( )
1 2

2

1

ˆ ˆ
k

i
i

q Kθ θ θ
=

 = −   
∑  

which is the same as directly applying the third-order method to the canonical exponential family model with θ  
being the canoncial parameter as discussed in Fraser and Reid [5]. 

5.4. Normal Mean Model 
Consider k  independent investigations from normal mean model with density  

( ) ( )21 1; exp ,    1, ,
22πi i if x x i kθ θ = − − = 

 
  

where θ  is the mean parameter of interest. The pivotal quantity is ( ),i i iz x xθ θ= − . Hence,  
( )i i ixϕ ϕ θ θ= = − , and  

( ) 21
2i i iϕ ϕ= −  

( )d
d
i i

i
i

ϕ
ϕ

ϕ
= −



 

( )2

2

d
1

d
i i

i

ϕ
ϕ

= −


 

with ˆ 0iϕ =  and ( ), ˆ 1
i ii ij ϕ ϕ ϕ = . The combined log-likelihood function is  

( ) ( )2

1

1
2

k

i
i

xθ θ
=

= − −∑  

with ˆ xθ =  and ( )ˆj kθθ θ = . From (17), we have 1iw =  and, therefore the combined canonical parameter is  

( ) ( )
1

k

i
i

xϕ θ θ
=

= −∑  

and ( ) kθϕ θ = . Finally, from Equation (12), the signed log-likelihood ratio statistic is  
r x θ= −  

and the standardized maximum likelihood departure calculated in the locally defined canonical parameter scale 
can be obtained from Equation (8) and is 
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( ).q k x θ= −  

These are exactly the same as those obtained in DiCiccio et al. [14]. 

6. Conclusion 
In this paper, a method is proposed to obtain a p-value by combining the likelihood functions and the standar-
dized maximum likelihood estimates departure calculated in the canonical parameter space of independent in-
vestigations for testing a scalar parameter of interest. It is shown that for the canonical exponential model and 
the normal mean model, the proposed method gives exactly the same results as using the joint likelihood func-
tion. Moreover, for the rate of arrival problem, the proposed method gives very different results from the results 
obtained by the Fisher’s way of combining p-values. And simulation studies illustrate that the proposed method 
is extremely accurate. 
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Abstract 
In this paper, an attempt has been made to forecast tourists’ arrival using statistical time series 
modeling techniques—Double Exponential Smoothing and the Auto-Regressive Integrated Moving 
Average (ARIMA). It is common knowledge that forecasting is very important in making future de-
cisions such as ordering replenishment for an inventory system or increasing the capacity of the 
available staff in order to meet expected future service delivery. The methodology used is given in 
Section 2 and the results, discussion and conclusion are given in Section 3. When the forecasts 
from these models were validated, Double Exponential Smoothing model performed better than 
the ARIMA model. 

 
Keywords 
Exponential Smoothing, ARIMA Model, Tourists’ Arrival Data 

 
 

1. Introduction 
Tourism is one of Kenya’s major foreign exchange earners. This greatly depends on the arrival of various 
groups of tourists. The forecast of tourists’ arrivals is important since it would enable the tourism related indus-
tries like airlines, hotels and other stakeholders to adequately prepare for any number of tourists at any future 
date. In this paper, an attempt has been made to forecast tourists’ arrivals using statistical time series modeling 
techniques—Double Exponential Smoothing and Auto-Regressive Integrated Moving Average (ARIMA). [1] 
used the same models to forecast milk production in India. [2] used univariate SARIMA models to forecast 
tourists’ demands in India. 

Then data on tourists’ arrival in Kenya were obtained from the Ministry of East African Affairs, Commerce 
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and Tourism, Department of Tourism. Tourists’ arrival for the period 1995 to 2008 was used for model fitting, 
and data for the remaining periods from 2009 to 2012 were used for model validation. The analysis was carried 
out using R-language, Excel and Minitab version 16.1.1. 

2. Methodology 
2.1. Selection of Appropriate Smoothing Techniques 
Once the presence of trend is detected in the data, smoothing of the time series data follows. Various smoothing 
techniques as discussed by [3] include; Simple Exponential Smoothing (SES), Double Exponential Smoothing 
(DES), Triple Exponential Smoothing (TES) and Adaptive Response Rate Simple Exponential Smoothing 
(ARRSES) which are briefly described below: 

2.1.1. Simple Exponential Smoothing (SES) 
For the series 1 2, , , tY Y Y , the forecast for the preceding value 1tY + , say 1tF + , is based on the weights α  and 
1 α−  to the recent observation tY  and forecast tF  respectively, where α  is the smoothing constant. The 
form of the model is 

( )1 .t t t tF F Y Fα+ = + −                                     (1) 

The size of α  used has a great influence on the forecast. The best value of α  corresponding to the mini-
mum mean square error (MSE) is usually used. 

2.1.2. Double Exponential Smoothing (Holt’s) 
The form of the model is 

( )( )
( ) ( )

1 1

1 1

1
1

t t t t

t t t t

t m t t

L Y L b
b L L b

F L b m

α α
β β

− −

− −

+

= + − +
= − + − 
= + 

                             (2) 

where tL  in the model is the level of the series at time t  and tb  is the slope (Trend) of the series at time t , 
α  and β ( )0.1,0.2, ,0.9=   are the smoothing coefficient for level and smoothing coefficient for trend re-
spectively. In order to fit the model, it is necessary to calculate the initial values of the level 0L  and the trend 

0b . [4] suggests that the initial values can be obtained as 0 1L Y=  and 0 0b = , or 2 1Y Y−  or ( ) ( )1 1nY Y n− − . 
In this paper, the initial values have been obtained as 0 1L Y=  and ( ) ( )0 1 1nb Y Y n= − − . 

The pair of α  and β  that gives a minimum Mean Square Error is preferred. 

2.1.3. Triple Exponential Smoothing (Winter’s) 
When time series data exhibit seasonality, Triple Exponential Smoothing method is the most recommendable. It 
incorporates three smoothing equations; first for the level, second for trend and third for seasonality. 

2.2. Auto-Regressive Integrated Moving Average (ARIMA Model) 
2.2.1. Model Identification 
According to Box and Jenkins two graphical procedures are used to access the correlation between the observa-
tions within a single time series data. According to [5], these devices are called an estimated autocorrelation func- 
tions and the estimated partial autocorrelation function. These two procedures measure statistical relationships 
within the time series data. Summarization of statistical correlation within the time series data is the other step in 
the identification. Box and Jenkins suggest a whole family of ARIMA models from which we may choose. 

In choosing the model that seems appropriate we use the estimated ACF and PACF. This is due to the basic 
idea that every ARIMA model will have unique ACF and PACF associated with it. Thus we select the model 
whose theoretical ACF and PACF resembles the anticipated ACF and PACF of the time series data [6]. 

2.2.2. Estimation 
An estimate of the coefficients of the model is obtained by modified least squares method or the maximum like-
lihood estimation method suitable to the time series data. 
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2.2.3. Diagnostic Checking 
Diagnostic checks help to determine if the anticipated model is adequate. At this stage, an examination of the re-
siduals from the fitted model is done and if it fails the diagnostic tests, it is rejected and we repeat the cycle until 
an appropriate model is achieved. 

The ARIMA model is obtained by taking tW  as the first differenced time series, i.e. 1d =  

( ) ( ) ( )1 1 1 1 .t t p t p t t q t qW W Wµ α µ α µ ε β ε β ε− − − −− − − − − − + + + +             (3) 

Equation (3) is referred to as the ARIMA ( ),1,p q . 
Different combinations of AR and MA individually yield different ARIMA models [7]. The optimal model is 

obtained on the basis of minimum value of Akaike Information Criteria (AIC) given by 
AIC 2log 2L m= − +                                     (4) 

where m p q= +  and L is the likelihood function. The Root Mean Square Error (RMSE) and the Mean Abso-
lute Percentage Error (MAPE) are used to evaluate the performance of the various models and are given below. 

1

1MAPE 100
n

t t

t t

Y F
n Y=

−
= ×∑                               (5) 

( )2

1

1RMSE
n

t t
t

Y F
n =

= −∑                                (6) 

where tY  is the tourists’ arrival in different years and tF  is the forecasted tourists’ arrivals in the correspond-
ing years and n  is the number of years used as forecasting period. 

3. Results and Discussions 

3.1. Exponential Smoothing Model 
Table 1 shows the yearly tourists’ arrival in Kenya (in thousands) for the period 1995-2012. The time plot  
(Figure 1) revealed that there was increasing trend from the year 2002 to 2007. However, there was a sharp drop  
 

Table 1. Data on tourists’ arrival in Kenya for the period 1995 to 2012.                      

Sl. No. Year Observed tourists’ arrival (‘000) 

1 1995 973.6 

2 1996 1003.0 

3 1997 1000.6 

4 1998 894.3 

5 1999 969.3 

6 2000 1036.5 

7 2001 993.6 

8 2002 1001.5 

9 2003 1146.2 

10 2004 1360.7 

11 2005 1479.0 

12 2006 1600.7 

13 2007 1816.8 

14 2008 1203.2 

15 2009 1490.4 

16 2010 1609.1 

17 2011 1822.9 

18 2012 1873.8 

Source: Ministry of East African affairs, Commerce and Tourism: Department of Tourism (Kenya). 
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in the number of tourists in the year 2008 followed by an increasing trend from the year 2009 to 2012. For 
smoothing the data, Holt’s Double Exponential Smoothing was used. Various combinations of α  and β  
both ranging from 0.1 to 0.9 with increments of 0.1 were tried and Mean Squared Error for the forecasts (54.186) 
and Mean Absolute Percentage Error (3.028) was least for 0.1α =  and 0.7β = . The fitted model is therefore 
given by; 

( )
( )

1 1

1 1

0.1 0.9
0.7 0.3

t t t t

t t t t

t m t t

L Y L b
b L L b

F L b m

− −

− −

+

= + +
= − + 
= + 

                               (7) 

where 1, 2,3m =  and 4 the initial values for the level tL  and trend tb  are 973.6 and 17.66 respectively.  
Table 2 shows the forecast of tourists’ arrivals using the chosen double exponential smoothing model. 

3.2. ARIMA Model 
Figure 1 showed that the series was non-stationary since there was some trend component present. The data was 
made stationary by taking the first order difference ( )1d = . The time plot of the differenced data is shown in 
Figure 2. 

Using R-language for different values of p  and q , various ARIMA models were fitted and the best model 
was chosen on the basis of minimum value of the selection criteria, that is, Akaike Information Criteria (AIC) 
whose formula is given in Equation (4). In this way, ARIMA (1, 1, 1) was found to be the best model. The fitted 
model is given by 

143.6319 0.9999 0.4115 .t t tY Yε −= − +                          (8) 

The estimation of the model parameters was done by maximum likelihood estimation technique. The fitted 
model was then used to forecast tourists’ arrival from 2009 to 2012. The forecast values are shown in Table 3. 

 
Table 2. Forecast of tourists’ arrival in Kenya using double exponential smoothing.                                         

S. No. Year Observed tourists’ arrival  
(‘000) 

Forecast of tourists’ arrival 

Double exponential model 

1 2009 1490.4 1560.936 

2 2010 1609.1 1660.595 

3 2011 1822.9 1760.254 

4 2012 1873.8 1859.912 
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Figure 1. Time plot of tourists’ arrival in Kenya between 1995 and 2009.               
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Figure 2. Plot of differenced tourists’ arrival data.                                

 
Table 3. Forecast of tourists’ arrival in Kenya ARIMA (1, 1, 1) models.                                                     

Sl. No. Year Observed tourists’ arrival  
(‘000) 

Forecast of tourists’ arrival 

ARIMA (1, 1, 1) model 

1 2009 1600.7 1393.607 

2 2010 1816.8 1497.643 

3 2011 1203.2 1566.134 

4 2012 1490.4 1619.997 

 
Table 4. Forecast of tourists’ arrival in Kenya using double exponential smoothing and ARIMA (1, 1, 1) models.                     

Sl. No. Year Observed tourists’ arrival 
(‘000) 

Forecast of tourists’ arrival 

Double exponential model ARIMA (1, 1, 1) model 

1 2009 1490.4 1560.936 1393.607 

2 2010 1609.1 1660.595 1497.643 

3 2011 1822.9 1760.254 1566.134 

4 2012 1873.8 1859.912 1619.997 

MAPE   3.028 10.263 

RMSE   54.186 195.023 

3.3. Comparison and Conclusion of the Performance of the Two Models 
Performance evaluation measures MAPE and the RMSE were obtained for the forecasted tourists’ arrivals for 
the years 2009 to 2012.  

The comparison of the two models based on MAPE and RMSE is as given in Table 4. Based on the results 
from the table, Double Exponential Smoothing model was the best to forecast tourists’ arrival in Kenya as both 
its MAPE and RMSE values were least compared to those of ARIMA (1, 1, 1). 
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Abstract 
This paper evaluates the efficiency of the SARFIMA model at forecasting high-frequency long 
memory series with especially long periods. Three other models, the ARFIMA, ARMA and PAR 
models, are also included to compare their forecasting performances with that of the SARFIMA 
model. For the artificial SARFIMA series, if the correct parameters are used for estimating and fo-
recasting, the model performs as well as the other three models. However, if the parameters ob-
tained by the WHI estimation are used, the performance of the SARFIMA model falls far behind 
that of the other models. For the empirical intraday volume series, the SARFIMA model produces 
the worst performance of all of the models, and the ARFIMA model performs best. The ARMA and 
PAR models perform very well both for the artificial series and for the intraday volume series. 
This result indicates that short memory models are competent in forecasting periodic long mem-
ory series. 

 
Keywords 
High-Frequency Financial Series, Long Memory, Long Periods, SARFIMA, Monte Carlo Simulation, 
Intraday Volume 

 
 

1. Introduction 
Recent years have witnessed a vast increase in the amount of high-frequency financial market data that are 
available. Using these data, practitioners are now able to manage their assets in greater detail. For example, the 
intraday volume series is often used in the Volume Weighted Average Price (VWAP) strategy to avoid a large 
reverse impact when executing large orders. Consequently, the econometrics of the high-frequency financial se-
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ries receives wider attention in the academic field. As Engle (2005) summarizes, intraday financial series often 
contain periodic patterns and present a long horizon of strong dependence [1]. The autocorrelation function 
(ACF) of these series decays slowly and is particularly significant at the seasonal lags. These periods can be es-
pecially long when the sampling interval becomes short. 

A number of works have been concerned with forecasting the periodic long memory series. They mainly fo-
cused on forecasting series with relatively short periods, namely twelve monthly periods or four seasonal pe-
riods in a year. On one hand, various long memory models have been used for forecasting this series. An auto-
regressive fractionally integrated moving average (ARFIMA) model [2] [3] was directly applied by Franses & 
Ooms (1997) in [4] to forecast quarterly UK inflation. Porter-Hudak (1990) suggested a seasonal autoregressive 
fractionally integrated moving average (SARFIMA) model to forecast monetary aggregates [5]. This model tries 
to remove the hyperbolic decay at the seasonal lags by including a seasonal fractional differencing filter  

( )1
DsB−  in the ARFIMA model, where B is the backward shift operator, s is the given period and D is the  

seasonal differencing parameters. This model is later used in [6] for monthly river flows and in [7] for inflation 
rates. By introducing seasonal dummy variables to seasonally change the fractional differencing parameter in the 
ARFIMA model, Ref. [4] proposed a periodic ARFIMA (PARFIMA) model for forecasting periodic long mem-
ory series. On the other hand, short memory models, such as the autoregression (AR) model and the periodic 
autoregression (PAR) model, were also proven to be competent in handling this series. 

However, no consistent conclusion has been made on the superiority of specific models for forecasting peri-
odic long memory series. Franses & Ooms (1997) [4] tried the periodic PAR model, AR model, PARFIMA 
model and ARFIMA model to forecast the quarterly UK inflation, but found no significant difference between 
these models. Those authors did find that the PARFIMA model was generally outperformed by rival models. 
Porter-Hudak (1990) compared the SARFIMA model and the Airline model, and found that the former outper-
formed the latter [5]. Nasr & Trabelsi (2005) tried the PARFIMA, SARFIMA, PAR, and AR models in [7] to 
forecast inflation rates in four different countries, and showed that the long memory models, the PARFIMA 
model and the SARFIMA model, performed better than the short memory models in terms of information crite-
ria and clean residuals. 

This paper studies the performance of different models when forecasting high-frequency long memory series 
with long periods. In particular, we want to deduce whether the SARFIMA model is capable of forecasting this 
type of series, because the mechanism of the SARFIMA process fits the description of the periodic long memory 
series well. Artificial SARFIMA series are generated to test the performance of different forecasting models, in-
cluding the ARFIMA, the SARFIMA, the AR and the PAR models. We are also interested in finding a suitable 
model for forecasting intraday volume series, which is a very useful series for VWAP trading. These four mod-
els will also be tried on this series for comparison. 

This paper is organized as follows: Section 2 introduces the four forecasting models that will be tested. Sec-
tion 3 studies the performances of the four models through Monte Carlo simulations. Section 4 uses these mod-
els to forecast the intraday volume in both the American and Chinese stock markets and then compares their 
performance. Section 5 presents our conclusion. 

2. The Models 
2.1. Long Memory Models 
Two long memory models will be used in our study. The ARFIMA model ignores periodicity. The other, the 
SAFARMA model, includes periodicity. 

If we assume that a simple fractional differencing operator can remove the high autocorrelation at both the 
seasonal lags and non-seasonal lags, we can use an ARFIMA model directly to help forecast a periodic long 
memory series. The ARFIMA model is defined as: 

( )( ) ( ) ( )1 d
t tB B X Bφ µ θ ε− − =  

where µ  is the mean of the process, tε  is the white noise process, B is the backward shift operator, 0 < d < 
0.5 is the differencing parameters respectively, ( )Bφ , ( )Bθ  are the polynomial operators with orders p, q 
respectively. 
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( ) ( )2 2
1 2 1 21 , 1p q

p qB B B B B B B Bφ φ φ φ θ θ θ θ= − − − − = − − − −   

A full definition of the SARFIMA ( ) ( ), , , , sp d q P D Q×  model is defined as: 

( ) ( )( ) ( ) ( ) ( ) ( )1 1
Dd s

t tB B B B X B Bφ µ θ εΦ − − − = Θ  

where s∈Ν  is the seasonal period, 0 0.5d< <  and 0 0.5D< <  are the non-seasonal and seasonal diffe-
rencing parameters respectively, with additional constraints 0 0.5d D< + <  to assure the stationary of the 
process, ( )Bφ , ( )Bθ  are the non-seasonal polynomial operators with orders p, q respectively, ( )BΦ , 
( )BΘ  are the seasonal polynomial operators with orders P, Q respectively: 

( ) ( )2 2
1 2 1 21 , 1 .P Q

P QB B B B B B B BΦ = −Φ −Φ − −Φ Θ = −Θ −Θ − −Θ   

For convenience, this paper is restricted to the SARFIMA model with 0P Q= = , namely: 

( )( ) ( ) ( ) ( )1 1
Dd s

t tB B B X Bφ µ θ ε− − − =  

and the ARFIMA model with 1p q= = . 
For the ARFIMA model, there are several methods chosen for its parameter estimation, including the Exact 

Maximum Likelihood method [8], WHI method [9] and Non-Linear Least Squares estimator [10]. For the 
SARFIMA model, Reisen et al. (2006) suggest a maximum likelihood method for its estimation [11]. However, 
this method is time-consuming when calculating the covariance matrix, especially for the high-frequency series 
with a relatively large sample size and when the AR coefficients, MA coefficients, seasonal and non-seasonal 
fractionally differencing parameters are all nonzero. Moreover, no further improvement for simplifying the pro-
cedure of this method, such as what Sowell (1991) does to improve the maximum likelihood estimation for the 
ARFIMA model, has yet been proposed. Bisognin & Lopes (2007) use the WHI method for the SARFIMA 
model’s estimation in [12]. This method is simpler and faster in application. Because this paper discusses the 
forecasting of large sample high-frequency data using the SARFIMA model with nonzero AR and MA coeffi-
cients and non-seasonal fractionally differencing parameters, we use the WHI method for estimating the 
SARFIMA model. 

For consistency, this paper also uses the WHI method to estimate the parameters of the ARFIMA. WHI is an 
approximated likelihood method. The discrete form of its likelihood function is given by: 

( ) ( ) ( ) ( )
( )

11

1
2 ln ,

,

n j
X j

j X j

I
L n f d

f

λ
ς λ

λ ς

−
−

=

  = + 
  

∑  

where ς  is the vector of unknown parameters ( )2, , ,d D εµ σ ′ , jλ  is the frequency, n is the sample size,  

( ),jf λ θ  is the spectral density function of tX  and 

( ) ( )
2

1

1
2π e .j

n
it

j t
t

I n X λλ −

=

= ∑  

2.2. Short Memory Models 
The two short memory models used in this paper are the ARMA model and the PAR model. 

The ARMA model is formulated as: 

( )( ) ( ) .t tB X Bφ µ θ ε− =  

By incorporating seasonal polynomial operators to the AR model, the PAR(p) model is defined as: 

( ) ( )( )s
t tB B Xφ µ εΦ − =  

where s is the given period and ( )s BΦ  is the seasonal polynomial operators with orders P: 

( ) 2
1 21 .s s s Ps

PB B B BΦ = −Φ −Φ − −Φ  
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This paper is restricted with 1p q P= = = , namely an ARMA (1,1) and a PAR(1). The parameters of the AR 
and PAR models are estimated by non-linear least squares method. 

3. Simulation Study 
To test the performance of different models for forecasting a periodic long memory series, we generate the 
SARFIMA ( ) ( )1, , 1 0, , 0 sp d q P D Q= = × = =  artificial series tX  with zero mean and unit variance: 

( )( ) ( ) ( )1 1
Dd s

t tB B B X Bφ θ ε− − =  

{ }300,1100n∈  when 48s = , { }500,2000n∈  when 78s = , autoregressive and moving average parameters 
( ) ( )1 1, 0.3,0.4φ θ =  and fractional differencing parameters ( ) ( ), 0.2,0.2d D = . Periods { }48,78s∈  are used 
to correspond to the periods of the intraday volume series examined in the next section. Consequently, there are 
four types of this artificial series. The last two periods of each series are left for forecasting; the former data are 
used for estimation. Forecasts are undertaken one-step in advance. For example, for {s = 48, n = 300} series, the 
1st to 204th real data are used for estimation so that we can obtain the 205th predictive data. Then, the 2nd to 
205 real data are used for estimation, and we forecast the 206th predictive data. Under each sample size, 100 
duplicated series are generated to investigate the overall forecasting performance of different models. Figure 1 
plots the examples of the last two periods of the four types of the artificial series. Figure 2 shows the ACF of 
these four series. 

The periodicity does not seem to be apparent for all of these series, but the ACF shows significant autocorre-
lations both at the seasonal and non-seasonal lags for the two series. The Augmented Dickey-Fuller unit root test 
and two semiparametric tests, GPH test and the Gaussian Semi-parametric (GSP) test [13] [14] are also under-
taken to examine their stationary status and long memory. Table 1 lists the ADF unit root test and the long 
 

 
Figure 1. Data plots for the artificial series, the 205th to 300th data for n = 300 series (left), the 1005th to 1100th data for n = 
1100 series (right).                                                                                            
 

 
Figure 2. ACF for the artificial series, n = 300 series (left), n = 1100 series (right).                                        
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Table 1. ADF and long memory test results.                                                                   

Test s = 48, n = 300 s = 48, n = 1100 s = 78, n = 500 s = 78, n = 2000 

ADF (t-statistics) −12.7408* −14.3546* −15.3429* −19.6710* 

GPH (d value) 0.2264 0.2126 0.2435 0.2577 

GSP (d value) 0.1798 0.2191 0.2657 0.2471 
*Significant at 5% level. 
 
memory test results. The ADF and long memory tests show that the two series are both stationary and with sig-
nificant long memory. 

For other duplicated series, their plots, ACF, stationarity and long memory properties are similar with the two 
series examined above. Due to space constraints, we provide only two examples here and do not elaborate on 
them. 

The four models are then used to forecast the artificial series for testing their forecasting performances. Two 
sets of parameters are used for forecasting, especially for the SARFIMA model. One parameter is obtained by 
the WHI estimation. The other, as we already know the true parameters of the artificial SARFIMA series, is the 
set of parameters of the artificial series. Accordingly, we can take the performance of these two different para-
meter settings for the WHI estimation together to determine whether estimation bias would cause any negative 
effect. The statistical measure used in this paper for measuring forecasting accuracy is the mean squared error of 
the estimators (MSE), given by: 

( )2

1

ˆMSE
k

t t
t

X X
=

= −∑  

where k is the number of predicted data and tX  and ˆ
tX  are the real and predictive value of the series respec-

tively. For each type within the artificial series, we calculate the average MSE of the 100 duplicated series by: 
100

1
MSE MSE 100.

n

i

=

=

= ∑  

Table 2 lists the average MSE of the four models for forecasting the four types of the artificial series. The 
SARFIMA model with known parameters is denoted as SARFIMA-known. The SARFIMA model with para-
meters estimated by WHI is denoted as SARFIMA-WHI. The averages of the MSE of these models for the 100 
duplicated series are listed in the last row. 

First, we can see from Table 2 that the PAR model performs best at forecasting all types of the artificial series. 
Its MSE are the smallest for most duplicated series. This finding indicates that a periodic short memory model is 
competent at predicting an SARFIMA series. The SARFIMA model using known parameters also performs well, 
with its average MSE ranked second. The non-periodic models, namely the ARFIMA and ARMA models, per-
form slightly worse than the periodic models. This finding indicates that considering periodicity is beneficial for 
accurately forecasting the artificial SARFIMA series, but the differences between the performances of the PAR, 
ARMA, SARFIMA-known and ARFIMA models are not very large. The differences of their average MSE are 
within 0.06. 

However, the performance of SARFIMA-WHI falls significantly behind that of other models. Most of its 
MSE are much larger than that of others. Table 3 lists the average of the estimated parameters for the SAR- 
FIMA-WHI model. 

We can see that the WHI method tends to underestimate both the seasonal and non-seasonal fractional diffe-
rencing parameters d and D. This phenomenon is true especially for the n = 300 artificial series, for which the 
WHI method underestimate d and D by nearly 0.1. This finding indicates that the estimation bias is responsible 
for the loss of forecasting accuracy of the SARFIMA model using the WHI estimation.  

4. Empirical Study 
The intraday volume series is a very useful series for VWAP trading strategy, which splits and executes orders 
according to the predicted intraday volume distribution. Intraday volume series is a typical series that presents 
both periodicity and long memory. Here, we choose data gathered from the NASDAQ composite index and the  
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Table 2. The average MSEs for forecasting four types of the artificial series.                                              

Type of the artificial series ARFIMA SARFIMA-known SARFIMA-WHI ARMA PAR 

s = 48, n = 300 1.0171 1.0123 1.2862 1.0404 0.9906 

s = 48, n = 1100 1.0472 1.0223 1.3629 1.0630 1.0105 

s = 78, n = 500 1.0370 1.0219 1.3460 1.0635 1.0117 

S = 78, n = 2000 1.0585 1.0275 1.4514 1.0725 1.0144 

 
Table 3. The average of the estimated parameters for the SARFIMA-WHI model.                                          

Type of the artificial series d D AR MA 

s = 48, n = 300 0.1354 0.0959 0.1078 0.1061 

s = 48, n = 1100 0.1564 0.1626 −0.0304 0.1797 

s = 78, n = 500 0.1822 0.1380 0.0292 0.1520 

s = 78, n = 2000 0.1866 0.1823 0.1652 0.2838 

 
Shanghai Stock Exchange 50 Index (SSE 50 Index)1 to populate the sample for this description. We use two 
one-month samples. The SSE 50 Index ranges from January 4th to 31st 2011 in 5-minute intervals. The 
NASDAQ sample ranges from January 3rd to 31st 2011 in 5-minute intervals. Because the trading time for the 
Chinese stock market is 4 hours per day and for the American stock market is 6.5 hours per day, the total time of 
every trading day can be divided into 48 parts and 78 parts, respectively. Therefore, for 20 trading days, we ob-
tained 960 and 1560 observed values from the Chinese market and American market, respectively. For each 
5-minute interval, volume means the sum of all volumes traded within 5 minutes. Figure 3 shows the plots and 
the ACF of the sample series. 

The periodicity and slow decay of the intraday volume series seem to be much more apparent than the artifi-
cial SARFIMA series. The plots show that the sample of the intraday volume series of the SSE 50 Index and 
NASDAQ composite index fluctuate in a U-shape and presents an apparent 48 and 78 periods, respectively. The 
ACF of the series show a very slow decay in the autocorrelation function both at the seasonal and non-seasonal 
lags for the series. 

Next, we apply the four models to a one-year sample of the SSE 50 Index and NASDAQ composite index 
intraday volume to investigate their forecasting performance. This is an in-sample forecast comparison. The pa-
rameters of the models are estimated every month. The forecast is undertaken one-step ahead, using the monthly 
fixed parameters and historical rolling five-day data to forecast the next data. Table 4 and Table 5 list the statis-
tics of the mean, maximum value, minimum value, ADF t-statistics and fractional differencing parameters d es-
timated by GPH and GSP of the SSE 50 Index and NASDAQ composite index intraday volume for each month 
in 2011, respectively. 

On average, the maximum value of each month is more than 4 times the mean value and more than 28 times 
the minimum value. This finding indicates a large deviation, partly due to the seasonal pattern. Although the 
ADF tests prove these series all to be stationary, most of the two semi-parametric estimators of the fractional 
differencing parameter, GPH and GSP, are near or above 0.5. These rates indicate that these stationary series 
have very strong long memories. 

Applying the four models to the sample intraday volume series, we obtain the statistics of MSE of their fore-
casting, as listed in Table 6 and Table 7. 

The results of the two tables are fairly similar. For most monthly samples, the ARFIMA model performs best, 
indicating that a fractional differencing is beneficial for forecasting intraday volume series. Meanwhile, the non- 
periodic models, the ARFIMA and the ARMA, seem to be superior to the periodic models. This finding indi-
cates that, for forecasting intraday volume, adding periodicity may be unnecessary or redundant in terms of fo-
recasting accuracy. The worst performance belongs to the SARFIMA model, of which the MSE are highest for 
forecasting all monthly samples. We can conclude that although this model is considered to be theoretically 
suitable for modeling periodic long memory series, it does not actually work very well on our intraday volume  

 

 

1The SSE 50 Index used consists of the 50 largest stocks of good liquidity and representativeness from the Shanghai security market ac-
cording to an objective, scientific method. 
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Figure 3. The plots and the ACF of the SSE 50 Index, January 4th to 31st 2011, 5-minute intervals.                           
 
Table 4. The statistics of the SSE 50 Index intraday volume for each month in 2011.                                       

Month Number of 
observations Mean Max Min ADF 

(t-statistics) 
GPH 

(d value) 
GSP 

(d value) 
Jan. 960 517213 2617444 109180 −10.4575* 0.5885 0.5332 
Feb. 720 578184 2032704 132651 −4.9658* 0.5653 0.5490 
Mar. 1104 597276 2921257 134438 −8.7126* 0.5403 0.5735 
Apr. 912 604845 3010937 175328 −8.6219* 0.5591 0.5880 
May. 1008 315125 1052178 98968 −7.7034* 0.4277 0.4303 
Jun. 1008 349801 1515968 85317 −6.6711* 0.4829 0.4470 
Jul. 1008 412374 2153114 96716 −10.6532* 0.4949 0.5078 

Aug. 1104 361702 2835370 83057 −9.1132* 0.5173 0.5241 
Sep. 1008 269615 1563451 63966 −10.6051* 0.4033 0.4006 
Oct. 768 386268 2983349 70697 −9.0214* 0.5066 0.4673 
Nov. 1056 297883 1356324 66211 −6.5933* 0.5083 0.5431 
Dec. 1056 247512 4117696 60367 −10.3629* 0.4056 0.4242 

Average - - - - - 0.5000 0.4990 
*Significant at 5% level. 

 
Table 5. The statistics of the NASDAQ intraday volume for each month in 2011.                                          

Month Number of 
observations Mean Max Min 

ADF GPH GSP 

(t-statistics) (d value) (d value) 

Jan. 1560 55 195 0 −10.4543* 0.6201 0.6568 

Feb. 1482 57 160 1 −8.3468* 0.5625 0.6194 

Mar. 1794 67 206 3 −8.3348* 0.5373 0.6121 

Apr. 1560 57 186 13 −8.9120* 0.5541 0.6630 

May. 1638 62 179 5 −8.9724* 0.5117 0.6138 

Jun. 1716 65 190 4 −8.5986* 0.4677 0.5749 

Jul. 1560 66 183 1 −8.8776* 0.5265 0.5968 

Aug. 1794 105 257 9 −6.2128* 0.6028 0.5980 

Sep. 1638 97 225 29 −6.2058* 0.6183 0.6754 
Oct. 1638 94 232 2 −5.9833* 0.6016 0.6858 
Nov. 1638 78 186 1 −7.5528* 0.6128 0.6561 
Dec. 1638 59 172 7 −7.2939* 0.5171 0.6365 

Average - - - - - 0.5610 0.6324 
*Significant at 5% level. 
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Table 6. The MSE (×1010) of the four models’ forecasting results, SSE 50 Index.                                           

Month SARFIMA ARFIMA PAR ARMA Performance 

Jan. 4.4344 2.9568 3.4543 3.1701 ARFIMA > ARMA > PAR > SARFIMA 

Feb. 5.1260 3.5417 4.1332 3.8100 ARFIMA > ARMA > PAR > SARFIMA 

Mar. 4.9637 3.6353 4.1220 3.8267 ARFIMA > ARMA > PAR > SARFIMA 

Apr. 4.9465 3.6692 4.2262 3.8605 ARFIMA > ARMA > PAR > SARFIMA 

May. 2.2025 1.0294 1.3206 1.0867 ARFIMA > ARMA > PAR > SARFIMA 

Jun. 3.2072 1.5498 1.9334 1.6016 ARFIMA > ARMA > PAR > SARFIMA 

Jul. 2.4091 1.6758 1.9425 1.8102 ARFIMA > ARMA > PAR > SARFIMA 

Aug. 3.5710 1.7880 3.3168 3.6005 ARFIMA > PAR > ARMA > SARFIMA 

Sep. 2.9869 1.7880 2.1075 1.9091 ARFIMA > ARMA > PAR > SARFIMA 

Oct. 6.3777 3.4519 4.1498 3.6213 ARFIMA > ARMA > PAR > SARFIMA 

Nov. 2.5193 1.1536 1.5092 1.1923 ARFIMA > ARMA > PAR > SARFIMA 

Dec. 1.7676 0.8571 1.0541 1.0622 ARFIMA > PAR > ARMA > SARFIMA 

Average 3.7093 2.2581 2.7725 2.5459 ARFIMA > ARMA > PAR > SARFIMA 

In the column “Performance”, “>” means to be superior to, e.g. ARFIMA > ARMA means the ARFIMA model is superior to the ARMA model for 
forecasting the corresponding months’ intraday volume. 

 
Table 7. The MSE (×102) of forecasting results, NASDAQ composite index.                                              

Month SARFIMA ARFIMA PAR ARMA Performance 

Jan. 2.9006 2.2891 2.5360 2.3673 ARFIMA > ARMA > PAR > SARFIMA 

Feb. 2.8684 2.0828 2.3794 2.1539 ARFIMA > ARMA > PAR > SARFIMA 

Mar. 3.4062 2.6044 2.8700 2.6131 ARFIMA > ARMA > PAR > SARFIMA 

Apr. 2.3652 2.1415 2.2669 2.1756 ARFIMA > ARMA > PAR > SARFIMA 

May. 3.4284 2.4680 2.8457 2.4884 ARFIMA > ARMA > PAR > SARFIMA 

Jun. 4.0275 2.6247 3.0821 2.5896 ARMA > ARFIMA > PAR > SARFIMA 

Jul. 4.5266 3.4209 3.9391 3.4774 ARFIMA > ARMA > PAR > SARFIMA 

Aug. 6.7548 4.5915 5.2309 4.5433 ARMA > ARFIMA > PAR > SARFIMA 

Sep. 4.7220 3.5422 3.9096 3.4678 ARMA > ARFIMA > PAR > SARFIMA 

Oct. 3.4851 2.6291 2.8474 2.5316 ARMA > ARFIMA > PAR > SARFIMA 

Nov. 4.1874 3.0506 3.4239 3.0508 ARFIMA > ARMA > PAR > SARFIMA 

Dec. 2.7012 2.0851 2.2770 2.0745 ARMA > ARFIMA > PAR > SARFIMA 

Average 3.7811 2.7942 3.1340 2.7944 ARFIMA > ARMA > PAR > SARFIMA 

In the column “Performance”, “>” means to be superior to, e.g. ARFIMA > ARMA means the ARFIMA model is superior to the ARMA model for 
forecasting the corresponding months’ intraday volume. 
 
samples. Additionally, the two short memory models, the ARMA and PAR models, perform slightly worse than 
the ARFIMA model, but much better than the SARFIMA model does. This finding indicates that the short 
memory models are also competent in forecasting intraday volume. 

5. Conclusions 
This paper evaluates the performance of the SARFIMA model at forecasting periodic long memory series, in-
cluding the artificial SARFIMA series, the SSE 50 Index intraday volume series and NASDAQ composite index 
volume series. Three other models are also included in our study to compare their forecasting performances with 
that of the SARFIMA model. 

For the artificial SARFIMA series, if we use the correct parameters for estimating and forecasting, it performs 
well relative to the other three models. However, if we use the parameters obtained by the WHI estimation, the 
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forecasting performance of this model falls considerably behind other models. This phenomenon may be partly 
due to the estimation bias of the WHI estimation, which tends to underestimate both the seasonal and non-sea- 
sonal fractional differencing parameters. The PAR model performs best at forecasting all four artificial series. 
Meanwhile, the non-periodic models, namely the ARFIMA and ARMA models, do not perform as well as the 
periodic models. This outcome indicates that considering periodicity is beneficial for forecasting the artificial 
SARFIMA series. 

For the intraday volume series, the ARFIMA model performs the best among all the models, indicating that 
fractional differencing is beneficial for forecasting the intraday volume series. For most monthly samples, the 
non-periodic models, the ARFIMA model and the ARMA model, seem to be superior to the periodic models. 
This outcome indicates that, for forecasting intraday volume, adding periodicity may be unnecessary or redun-
dant in terms of forecasting accuracy. The SARFIMA model does not work very well on our intraday volume 
samples, exhibiting the worst performance among all the models used. In addition, the two short memory mod-
els, the ARMA and PAR models, also performed well compared to the SARFIMA model. 

In summary, the SARFIMA was outperformed by other rival models in our study. Combining the results of 
the simulation and empirical study together, we conclude that the poor performance of the SARFIMA model 
may be caused by the inaccurate estimation obtained by the WHI method. The estimation method for this model 
still needs further improvement. Before more effective and more accurate estimation methods are proposed, we 
suggest that the SARFIMA model should be carefully applied when forecasting a high-frequency long memory 
time series with long periods. 
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Abstract 
In this article, we consider a new life test scheme called a progressively first-failure censoring 
scheme introduced by Wu and Kus [1]. Based on this type of censoring, the maximum likelihood, 
approximate maximum likelihood and the least squares method estimators for the unknown pa-
rameters of the inverse Weibull distribution are derived. A comparison between these estimators 
is provided by using extensive simulation and two criteria, namely, absolute bias and mean 
squared error. It is concluded that the estimators based on the least squares method are superior 
compared to the maximum likelihood and the approximate maximum likelihood estimators. Real 
life data example is provided to illustrate our proposed estimators. 
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Inverse Weibull Distribution, Progressive First-Failure Censoring, Maximum Likelihood, Least 
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1. Introduction 
Let T  follow ( )  a two-parameter Weibull distribution ( ),α β  with the probability density function (pdf)  
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then 1X
T

=  has an ( )IW  distribution with pdf 

( ) ( ) ( )1; , e ,    0xf x x x
ββ αα β αβ α

−− − −= >                          (1) 

where 0α > and 0β > , are the scale and shape parameters, respectively. 
If ( )IW ,X α β , then the cumulative distribution function (cdf) of X  is given by: 

( ) ( ); , e ,    0.xF x x
βαα β

−−= >                                (2) 

The IW distribution, also known as type 2 extreme value or the Frechet distribution (Johnson et al. [2]), has a 
long right tail compared to other known distributions. The hazard function of the IW distribution is similar to 
that of the log-normal and inverse gaussian distributions (Murthy et al. [3]). Carriere [4] used the IW dis- 
tribution to model the mortality curve of a population. Keller and Kamath [5] suggested that this distribution 
was suitable to model the failure of the degradation phenomena of mechanical components of diesel engines 
such as pistons, crankshafts, and main bearings. Furthermore, Erto [6] showed that the IW distribution provided 
a good fit to several data such as the time to breakdown of an insulating fluid subjected to the action of a 
constant tension (Nelson [7]). 

Several researches have been carried out on the IW distribution using classical and Bayesian approaches. For 
example, Calabria and Pulcini [8] obtained the maximum likelihood estimates (MLE) and least squares esti- 
mates of the parameters of the IW distribution. Calabria and Pulcini [9] considered the Bayesian approach to 
predict the ordered lifetimes in a future sample when those lifetimes are assumed to follow the IW distribution. 
Panaitescu et al. [10] developed the Bayesian and non-Bayesian analysis in the context of recording statistic 
values from a modified IW distribution. All these studies have been done based on a complete sample. However, 
there are many scenarios in life testing and reliability experiment when researchers can not obtain complete 
information on failure times for all the units in the experiment as in the case of accidental breakage of an 
experimental unit or if an individual under study drops out. Moreover, there are many situations in which the 
researcher intentionally removes units prior to their failure and this is due to the lack of funds and/or time 
constrains. Data obtained from such experiments are called censored data. Therefore, we consider estimation 
procedures based on censored samples. 

The most common censoring schemes are type-I censoring in which the test ceases at a pre-fixed time, and 
type-II censoring that allows the experiment to be terminated at a predetermined number of failures. These 
methods do not allow the removal of active units during the experiment; therefore, the focus in the last few years 
has been on progressive censoring due to its flexibility that allows the experimenter to remove active units 
during the experiment. A progressively type-II censoring is a generalization of type-II censoring. Many authors 
have discussed inference under progressive censoring using various lifetime distributions, among others, Cohen 
[11], Mann [12], Wingo [13], Balakrishnan and Sandhu [14], Aggarwala and Balakrishnan [15], Balakrishnan 
and Asgharzadeh [16]. For a comprehensive recent review of progressive censoring, readers are referred to 
Balakrishnan [17]. 

Johnson [18] introduced the first-failure censoring plan where the experimenter could arrange k  items into 
n  sets, then all the k n×  items were tested simultaneously until the first failure in each n  set occurred. 
However, in situations where the lifetime of a product is high and test facilities are limited but test material is 
cheap. Balasooriya [19] modified Johnson [18] approach by testing each set one after the other until the first 
failure in each set occurred. This modified approach can save time and money. 

However, due to certain situations such as loss of contact with the individuals under study or loss of experi- 
ment units as mentioned above, it is desirable for researchers to be able to remove sets before the final termina- 
tion point. This situation leads to the area of progressive censoring. 

Wu and Kus [1] wanted to improve the efficiency of the test by developing a new life test scheme, pro- 
gressively first-failure censoring scheme, by combining the concept of first failure censoring with the pro- 
gressive censoring. In this scheme sets with no failures can be removed from the test before the end of the 
experiment. Based on this scheme, Wu and Kus [1] derived the MLEs and constructed exact and approximate 
confidence intervals for the parameters of the Weibull distribution. Wu and Huang [20] developed the reliability 
sampling plans for the Weibull distribution. Soliman et al. ([21] [22]) derived Bayes and frequentist estimators 
for the parameters of Gompertz and Burr type XII distributions respectively. Hong et al. [23] used the same  
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scheme to construct MLE for the lifetime performance index CL based on progressively first-failure censoring 
from Weibull distribution. Ahmadi et al. [24] developed a confidence interval and ML estimator for CL based on 
the progressive first-failure censored sample under the Weibull distribution when the shape parameter was 
known. 

In this study and based on m progressively first-failure censored sample from IW model, we consider the 
problem of estimating the parameters of the model using the maximum likelihood, the approximate maximum 
likelihood and the least square estimators (LSE). Balakrishnan et al. [25] conducted inference on progressive 
type-II censored data for extreme value distribution. They derived the MLE and approximate values for the 
maximum likelihood estimators (AMLE) using the Taylor expansion. They also concluded that the MLEs and 
AMLEs were almost identical in terms of bias and variance. Kim et al. [26] derived the maximum likelihood 
and the Bayes estimates for the three-parameter exponentiated Weibull distribution for type-II progressively 
censored sample. Gusmao et al. [27] studied the properties of a mixture of two generalized IW distribution and 
derived the maximum likelihood estimator of the parameters of this mixture based on censored data. 

This article unfolds as follows: In Section 2 we describe the formulation of a progressive first-failure cen- 
soring scheme as described by Wu and Kus [1]. The MLEs, approximate MLEs, and LSE methods for estimat- 
ing the unknown parameters based on the progressive first-failure censoring scheme are derived in Section 3, 4 
and 5 respectively. Simulation studies, results and conclusion are presented in Section 6. All methods that are 
discussed in this article are illustrated in Section 7 through a real life data set coming from highways pavement 
projects in Amman-Jordan during 2012. 

2. A Progressive First-Failure Censoring Scheme 
The progressive first-failure censoring can be described as follows: Given m n≤  and 1 2, , , mR R R=R   non-  

negative integers such that 
1

m

i
i

n m R
=

= +∑ . Let n independent groups with k  items within each group be placed  

on a life testing experiment and only m  failures are completely observed. The censoring occurs progressively 
in m  stages. At the time of the first failure 1: : :m n kX , 1R  random groups and the group with the observed 
failure are randomly removed. Similarly, at the time of the second failure 2: : :m n kX , 2R  random groups and the 
group with the observed failure are randomly removed and so on. Finally, at the time of the m -th failure all the 
remaining active groups ( )mR  and the group with the observed failure are removed. Then  

1: : : 2: : : : : :m n k m n k m m n kX X X< < <  is the progressive first-failure censored order statistics. 
The main advantage of this scheme is that it reduces the time in which more items are used but only m out of 

k n×  items are observed. Moreover, it includes as special cases, the progressively type-II scheme (when k = 1), 
first-failure scheme (when ( )0,0, ,0=R  ), conventional type II scheme (when k = 1 and ( )0,0, ,n m= −R    
and the complete sample (when 1,  k n m= =  and ( )0,0, ,0=R  ). Furthermore, the progressively first- 
failure censored sample 1: : : 2: : : : : :m n k m n k m m n kX X X< < <  can be considered as a progressively type-II censored  
sample from a population with distribution function ( )( )1 1

k
F x− −  (Wu and Kus [1]) which enables us to  

extend all the results on progressively type-II censored order statistics to progressively first-failure censored 
order statistics. 

3. Maximum Likelihood Estimation 
Suppose that n  independent units are placed on a test. The ordered m  failures are observed under the 
progressively first-failure. 

Let ( )1: : : 2: : : : : :, , ,m n k m n k m m n kX X X=X   with 1: : : : : :m n k m m n kX X< <  denote the progressively first-failure cen- 
sored ordered statistics with the progressive censoring scheme R  from a population with pdf and cdf given in 
Equations (1) and (2), respectively. For notation simplicity, we will write iX  for : : :i m n kX . The likelihood func- 
tion based on progressively first-failure censored sample (see Wu and Kus [1]) is given by: 

( ) ( ) ( ) ( )1 1

1
, ; ; , 1 ; , i

m k Rm
i i

i
L Ak f x F xα β α β α β

+ −

=

 = − ∏X                      (3) 

where, 
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( )( ) ( )1 1 2
1

1 2 1 .
m

i
i

A n n R n R R n R
=

 = − − − − − − + 
 

∑  

In accordance with (1), (2) and (3), the log-likelihood function of α  and β  based on progressively first- 
failure censored sample X  becomes 

( ) ( ) ( ) ( )

( ) ( )( ) ( )( )
1

1 1

ln , ; constant ln 1 ln

1 1 ln 1 e .i

m

i
i

m m
x

i i
i i

L m x

x k R
ββ α

α β αβ β α

α
−

=

− −

= =

= + − +

− + + − −

∑

∑ ∑

X
               (4) 

The MLEs of the parameters α  and β  can be obtained by deriving (4) with respect to α  and β  and 
equating the normal equations to 0 as follows: 

( ) ( )
( )( )( ) ( )

( )1 1

1 1 e
ln , ; 1 e 0

i

i

xm m
i i

i xi i

k R x
m x

L

β

β

β α
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α

α
α

α β
α α

−

−

− −
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−= =

+ −
− + −

∂ −= =
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−

−
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∂
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− =

−

∑

∑

X

                  (6) 

The MLEs are exist and unique (see Calabria and Pulcini [8] and Marusic et al. [28]). Notice that there are no 
explicit solutions to (5) and (6). Hence, numerical methods are applied to solve the required equations. The 
maximum likelihood estimation method based on progressively censored data has been studied extensively, but 
traditionally, the Newton Raphson (NR) method was utilized to obtain the MLEs (Ng et al. [29]). However, the 
MLEs via the NR method are very sensitive to their initial parameters estimation value. In this article we 
propose using the Expectation-Maximization (EM) algorithm for computing the MLEs. 

4. Approximate Maximum Likelihood Estimation 
Since the MLE does not provide explicit estimators for the shape and scale parameters of the IW distribution as 
mentioned before, we derive approximate MLE (AMLE) for the parameters α  and β . 

Balakrishnan ([30]-[34]) and Balakrishnan and Vardan [35] developed the AMLE procedure. This procedure 
depends on the Taylor expansion of the likelihood function when the pdf under consideration belongs to the 
location-scale families. However, the IW distribution does not have the location-scale structure required for the 
AMLE procedure, but if we consider the transformation lnY X= − , then Y   extreme value distribution and 
this distribution has this feature. 

The pdf  and cdf  of Y  are given respectively by 

( )
e1; , e ,    

y
y

h y y
µ

σµ
σµ σ

σ

−
−

−
= −∞ < < ∞                           (7) 

and, 

( ) e; , 1 e
y

H y
µ

σµ σ
−

−= −                                         (8) 

where, lnµ α=  and 1σ
β

=  are the location and scale parameters respectively. 

Hence, the AMLE procedure can be used to estimate the parameters α  and β  of the IW distribution. 
Let ( )1 2, , , mY Y Y Y=   with 1 2 mY Y Y< < <  denotes a progressively first-failure censored sample from (7) 

and (8). Then the joint pdf based on the censored sample is given by: 
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( )
( )( )1 1

1 2
1

, , , ; , 1
ik Rm

i i
m m

i

y ycL y y y g G
µ µ

µ σ
σ σσ

+ −

=

−  −    = −    
    

∏              (9) 

where, 

( ) ( )1 1 2 1= 1 1 .mc n n R n R R R m−− − − − − − − +   

If i
i

y
z

µ
σ
−

= , then (9) can be written as  

( ) ( ) ( )( ) ( )( )1 1
1 2

1
, , , ; , 1 i

m k R
m i im

i

cL z z z g z G zµ σ
σ

+ −

=

= −∏                  (10) 

with log-likelihood equation 

( ) ( ) ( )( ) ( )( )1
1 1

ln , , ; , ln ln 1 1 ln 1 .
m m

m i i i
i i

L z z c m g z k R G zµ σ σ
= =

= − + + + − −∑ ∑           (11) 

Taking derivatives with respect to µ  and σ  and equating them to zero, gives 

( ) ( )
( ) ( )( ) ( )

( )1 1

ln ; ,
1 1 0

1

m m
i i i

i i i
i ii i

L z g z g zm z k R z
g z G z

µ σ
σ σ = =

′∂
= − − + + − =

∂ −∑ ∑             (12) 

( ) ( )
( ) ( )( ) ( )

( )1 1

ln ; ,
1 1 0.

1

m m
i i i

i
i ii i

L z g z g z
k R

g z G z
µ σ

µ = =

′∂
= − + + − =

∂ −∑ ∑                  (13) 

Because of the presence of the terms ( )
( )1
i

i

g z
G z−

 and ( )
( )

i

i

g z
g z
′

, Equations (12) and (13) do not have explicit 

solution. Hence, we consider a first-order Taylor approximation to ( )
( )1

i

i

g z
g z
′

∆ =  and ( )
( )2 1
i

i

g z
G z

∆ =
−

 around  

[ ]: : : :i m n i m nE Zν =  (see Balakrishnan and Aggarwala [36]; for reasoning). 
From Balakrishnan and Aggarwala [36], if : :i m nu  1, 2, ,i m=   denote a progressively first-failure censored  

sample from Uniform ( )0,1  with censoring scheme ( )1, , mR R , then 1: :

: :

1
1

m i m n
i

m i m n

U
V

U
− +

−

−
=

−
, 1, 2, ,i m=   are 

statistically independent random variables from Beta ( )( )
1

1 1 ,1
m

l
l m j

i k R
= − +

 
+ + − 

 
∑  with 

: :
1

1 ,    1, 2, ,
m

i m n l
l m i

U V i m
= − +

= − =∏                               (14) 

and, 

[ ] ( )
( )( )

( )( )
1

: :
1 1

1

1 1
1 1 .

1 1 1

m

lm m
l m j

i m n j m
j m i j m i

l
l m j

j k R
E U E V

j k R

= − +

= − + = − +

= − +

+ + −
= − = −

+ + + −

∑
∏ ∏

∑
              (15) 

The approximation is around [ ]( )( ): : : :ln ln 1i m n i m nE Uν = − −  upon expanding 1∆  and 2∆  around the point 
: :i m nν  and keeping only the first two terms, we get 

( ) ( ) ( )( )1 1 1i i i i i i i iz z zν ν ν ε β′∆ ≅ ∆ + ∆ − = −                         (16) 

where, 
( ) ( ) ( )
( )

1 1

1

1 e e ,

e ,                                  1, 2, ,

i i

i

i i i i i

i i i m

ν ν

ν

ε ν ν ν ν

β ν

′= ∆ − ∆ = − +

′= −∆ = = 

 



A. Helu 
 

 
80 

and, 

( ) ( ) ( )( )2 2 2i i i i i i i iz z zν ν ν γ δ′∆ ≅ ∆ + ∆ − = +                          (17) 

where, 

( ) ( )
( )

2 2

2

e e ,

e ,                             1, 2, , .

i i

i

i i i i i

i i i m

ν ν

ν

γ ν ν ν ν

δ ν

′= ∆ − ∆ = −

′= ∆ = = 

 

Plugging (16) and (17) in (12) and (13) we get 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 1

2

1 1
2

2
1 1

ln ; ,
0

                      0

                      0

m m
i

i i i i i i i i i
i i
m m

i i i i i i i i
i i

m m
ii

i i i i i i
i i

L z
m z z R z z

m R z R z

yy
m R R

µ σ
ε β γ δ

σ

ε γ δ β

µµ
ε γ δ β

σ σ

∗

= =

∗ ∗

= =

∗ ∗

= =

∂
≅ − − − + + =

∂

= − − − + + =

−−
= − − − + + =

∑ ∑

∑ ∑

∑ ∑

            (18) 

and, 

( ) ( ) ( )

( ) ( )

( ) ( )

1 1

1 1

1 1

ln ; ,
0

                      0

                      0

m m
i

i i i i i i i
i i

m m

i i i i i i i
i i
m m

i
i i i i i i

i i

L z
z R z

R R z

y
R R

µ σ
ε β γ δ

µ

ε γ δ β

µ
ε γ δ β

σ

∗

= =

∗ ∗

= =

∗ ∗

= =

∂
≅ − − + + =

∂

= − − + + =

−
= − − + + =

∑ ∑

∑ ∑

∑ ∑

                       (19) 

where, ( )1 1i iR k R∗ = + − . Equations (18) and (19) can be rewritten as  
20 m A Bσ σ= + +                                        (20) 

D Cµ σ= +                                             (21) 

where, 

( )( ) ( )( )

( )

( )

( )

( )

2

1 1

1 1

1 1

;       0;

;                 .

m m

i i i i i i i i
i i

m m

i i i i i i i
i i

m m

i i i i i i
i i

A R y D B R y D

R R y
C D

R R

ε γ δ β

ε γ δ β

δ β δ β

∗ ∗

= =

∗ ∗

= =

∗ ∗

= =

= − − = − + − ≤

− − +
= =

+ +

∑ ∑

∑ ∑

∑ ∑

 

The solutions to (20) and (21) yield the AMLEs 

( )2

AMLE AMLE AMLE

4
ˆ ˆ ˆ,    .

2
A A mB

D C
m

σ µ σ
− + −

= = +                       (22) 

One of the drawbacks of the AMLEs is that they are biased. Moreover, the exact bias of AMLEµ̂  and AMLEσ̂  
can not be theoretically computed because of the intractability encountered of 2 4B AC− . On the other hand, 
the AMLEs provide an excellent starting value for the iterative solution of the likelihood equations. 

5. Least Squares Estimation Method 
The LS method which is originally suggested by Swain et al. [37] is computationally easier to handle, it 
provides simple closed form solutions for estimates (Hossain and Zimmer [38]). In addition it can also be used 
quite effectively to estimate the shape and scale parameters of the IW distribution. Finally Marusic et al. [28] 
showed that the least squares estimators (LSE) for estimating the parameters of the IW distribution did exist.  
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In this section we will discuss the least squares method for estimating α  and β  using the set up in Section 
1; that is, 1 2 mX X X< < <  are progressively first-failure censored sample from the IW distribution with 
censoring scheme ( )1, , mR R . The LS method is a combination of parametric ( )F  and non-parametric ( )F̂  
distribution functions. It depends on the choice of F̂  which should be as effective as possible. In our study we 
use F̂  which is proposed by Montanari and Cacciari [39] as a non-parametric cdf  for progressive type-II 
censored sample.  

( ) 0.5ˆ
0.25i

i
X

J
F x

n
−

=
+

                                  (23) 

where, 

1 0,    1, 2, ,   and  0i iJ J i m J−= + ∆ = =  

and, 

( )
11

.
1 1

i
m

w
w i

n J

k R

−

=

+ −
∆ =

+ +∑
 

For the parametric cdf ( )F x , Balakrishnan and Aggarwala [36] and Kim and Han [40], proposed 

( ) ( )( ),
1

1
1 1 ,    1, 2, ,i

j

j ri j
X j

i i

a
F x l F x j m

r
∗

−
=

= − − =∑                       (24) 

where, 

( ) ( )( ) ( )( )1
11

,
1

1 1 ,    ,    1 1 1 ,

1 ,                  1 .

j mk
j w i w

ww
j

i j
w w i
w i

F x F x l r r m i k R

a i j m
r r

∗
−

==

=
≠

= − − = = − + + + −

= ≤ ≤ ≤
−

∑∏

∏
 

The procedure attempts to minimize the following function with respect to α  and β  

( ) ( )( )2

1

ˆ .
j i

m

X X
j

F x F x
=

−∑                                    (25) 

The LSE estimates of α  and β  are denoted by LSEα̂  and LSEβ̂  respectively.  

6. Simulation Study 
The purpose of the simulation study is to compare the performance of the MLE, AMLE and LSE estimates 
based on progressively first-failure censored samples generated from the IW distribution with ( ),α β =  
( )0.1,3.0 , ( )0.5,3.0 , ( )0.9,3.0 , ( )1.5,2.5 , ( )2.5,2.5 , ( )4.0,4.0 , using different combinations of ,  ,  n m k  
and different censoring schemes ( )1, , mR R=R  . The data are simulated using Balakrishnan and Aggarwala 
[36] algorithm based on the fact that progressively first-failure censored sample with distribution ( )F x  can be  
viewed as a progressively type II censored sample from a population with distribution function ( )( )1 1

k
F x− − . 

We obtain the MLEs of α  and β  by solving the nonlinear Equations (5) and (6), in which the AMLEs are 
used as starting values of the MLE iterations. The AMLE and LSE are computed using (22) and (25) respec- 
tively. The criteria used for comparing all the above estimates are the absolute bias (ABias) and the mean squared 
error (MSE). Suppose îθ  ( ),i iα β=  is the estimate of θ  ( ),α β=  for the i-th simulated data set, then the 
ABias and MSE are computed as follows:  

1) 
7000

1

1 ˆABias
7000 i

i
θ θ

=

= −∑ . 

2) ( )
7000 2

1

1 ˆMSE
7000 i

i
θ θ

=

= −∑ . 
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6.1. Data Analysis and Comparison Study 
Due to the large number of tables, only part of them is reported. Results are summarized in Tables 1-4 provided 
at the end of this section as follows: 
• Table 1 and Table 2 provide the ABias and MSE values for the estimates of α . 
• Table 3 and Table 4 provide the ABias and MSE values for the estimates of β .  

Throughout this section we will refer to ( ),0, ,0n m= −R   by n mL − , ( ), , ,0, ,0a a=R    by , ,a aL


  
(where a n m= −∑ ), ( )0, ,0, n m= −R   by n m

∗
−R , ( )0, ,0, , ,a a=R    by , ,a a

∗R


,  
( )0, ,0, ,0, ,0n m= −R    by n mC − , and finally ( )0, ,0, , , ,0, ,0a a=R     by , ,a aC



. Moreover, we will 
refer to schemes n mL − , n m

∗
−R , and n mC −  by group-1, similarly we will refer to the schemes , ,a aL



, , ,a a
∗R


, 
and , ,a aC



 by group-2. A summary of the results is provided below. 
 

Table 1. Bias and MSE (parentheses) of ( )α̂ ⋅  when ( ) ( ), 0.1,3 .α β =                                                      

   k = 1 k = 3 k = 5 

n m Scheme MLE AMLE LSE MLE AMLE LSE MLE AMLE LSE 

20 5 (15,0,0,0,0) 0.0022 
(0.0009) 

0.0107 
(0.0012) 

0.0048 
(0.0010) 

0.0051 
(0.0006) 

0.0107 
(0.0013) 

0.0073 
(0.0007) 

0.0062 
(0.0006) 

0.0101 
(0.0019) 

0.0107 
(0.0007) 

  (0,0,15,0,0) 0.0025 
(0.0008) 

0.0114 
(0.0010) 

0.0081 
(0.0009) 

0.0067 
(0.0007) 

0.0157 
(0.0016) 

0.0084 
(0.0009) 

0.0082 
(0.0007) 

0.0172 
(0.0023) 

0.0219 
(0.0014) 

  (0,0,0,0,15) 0.0019 
(0.0006) 

0.0084 
(0.0010) 

0.0015 
(0.0007) 

0.0077 
(0.0006) 

0.0130 
(0.0031) 

0.0043 
(0.0007) 

0.0098 
(0.0008) 

0.0140 
(0.0049) 

0.0095 
(0.0007) 

  (3,3,3,3,3) 0.0039 
(0.0007) 

0.0116 
(0.0012) 

0.0067 
(0.0007) 

0.0081 
(0.0007) 

0.0145 
(0.0029) 

0.0063 
(0.0008) 

0.0097 
(0.0008) 

0.0151 
(0.0042) 

0.0320 
(0.0013) 

 15 (5,...,0,0) 0.0003 
(0.0007) 

0.0062 
(0.0007) 

0.0011 
(0.0007) 

0.0031 
(0.0004) 

0.0077 
(0.0008) 

0.0065 
(0.0005) 

0.0042 
(0.0004) 

0.0080 
(0.0012) 

0.0076 
(0.0005) 

  (1,1,1,1,1,0,...,0) 0.0001 
(0.0006) 

0.0060 
(0.0007) 

0.0015 
(0.0007) 

0.0033 
(0.0004) 

0.0087 
(0.0009) 

0.0067 
(0.0005) 

0.0045 
(0.0004) 

0.0094 
(0.0013) 

0.0072 
(0.0005) 

  (0,..,0,5,0,...,0) 0.0001 
(0.0006) 

0.0061 
(0.0007) 

0.0032 
(0.0006) 

0.0036 
(0.0004) 

0.0099 
(0.0010) 

0.0071 
(0.0005) 

0.0049 
(0.0004) 

0.0112 
(0.0014) 

0.0077 
(0.0005) 

  ( )5 5 50 ,1 ,0∗ ∗ ∗  0.0001 
(0.0006) 

0.0061 
(0.0007) 

0.0033 
(0.0006) 

0.0036 
(0.0004) 

0.0099 
(0.0010) 

0.0072 
(0.0005) 

0.0049 
(0.0004) 

0.0112 
(0.0014) 

0.0078 
(0.0005) 

  (0,...,0,5) 0.0000 
(0.0006) 

0.0043 
(0.0006) 

0.0010 
(0.0006) 

0.0037 
(0.0004) 

0.0081 
(0.0013) 

0.0037 
(0.0004) 

0.0052 
(0.0004) 

0.0091 
(0.0020) 

0.0043 
(0.0005) 

  (0,...,0,1,1,1,1,1) 0.0002 
(0.0006) 

0.0052 
(0.0007) 

0.0034 
(0.0006) 

0.0037 
(0.0004) 

0.0091 
(0.0012) 

0.0051 
(0.0004) 

0.0052 
(0.0004) 

0.0104 
(0.0018) 

0.0080 
(0.0005) 

50 20 (30,0,............,0) 0.0016 
(0.0005) 

0.0063 
(0.0005) 

0.0038 
(0.0005) 

0.0024 
(0.0003) 

0.0049 
(0.0007) 

0.0040 
(0.0004) 

0.0029 
(0.0003) 

0.0040 
(0.0010) 

0.0034 
(0.0004) 

  (3,3,....,3,0...,0) 0.0017 
(0.0004) 

0.0064 
(0.0005) 

0.0040 
(0.0004) 

0.0033 
(0.0003) 

0.0075 
(0.0008) 

0.0046 
(0.0004) 

0.0039 
(0.0004) 

0.0078 
(0.0011) 

0.0039 
(0.0006) 

  (0,...0,30,0,...,0) 0.0019 
(0.0004) 

0.0068 
(0.0005) 

0.0059 
(0.0005) 

0.0037 
(0.0004) 

0.0091 
(0.0009) 

0.0049 
(0.0005) 

0.0043 
(0.0004) 

0.0100 
(0.0012) 

0.0034 
(0.0005) 

  ( )5 10 50 ,3 ,0∗ ∗ ∗  0.0018 
(0.0004) 

0.0073 
(0.0005) 

0.0072 
(0.0005) 

0.0038 
(0.0004) 

0.0099 
(0.0010) 

0.0052 
(0.0005) 

0.0045 
(0.0004) 

0.0109 
(0.0014) 

0.0039 
(0.0005) 

  (0.............,0,30) 0.0016 
(0.0003) 

0.0049 
(0.0003) 

0.0024 
(0.0003) 

0.0044 
(0.0004) 

0.0070 
(0.0021) 

0.0005 
(0.0004) 

0.0055 
(0.0004) 

0.0074 
(0.0031) 

0.0020 
(0.0003) 

  (0,...,0,3,3,...,3) 0.0014 
(0.0003) 

0.0061 
(0.0005) 

0.0036 
(0.0003) 

0.0042 
(0.0003) 

0.0087 
(0.0017) 

0.0018 
(0.0004) 

0.0156 
(0.0037) 

0.0283 
(0.0221) 

0.0067 
(0.0042) 

50 30 (20,0,............,0) 0.0002 
(0.0003) 

0.0037 
(0.0004) 

0.0017 
(0.0004) 

0.0014 
(0.0002) 

0.0035 
(0.0004) 

0.0036 
(0.0002) 

0.0019 
(0.0002) 

0.0032 
(0.0006) 

0.0030 
(0.0002) 

  (2,2,....,2,0...,0) 0.0004 
(0.0003) 

0.0035 
(0.0003) 

0.0024 
(0.0003) 

0.0017 
(0.0002) 

0.0046 
(0.0005) 

0.0037 
(0.0003) 

0.0022 
(0.0002) 

0.0049 
(0.0007) 

0.0027 
(0.0002) 

  (0,...0,20,0,...,0) 0.0004 
(0.0003) 

0.0037 
(0.0004) 

0.0027 
(0.0003) 

0.0020 
(0.0002) 

0.0057 
(0.0005) 

0.0041 
(0.0003) 

0.0026 
(0.0002) 

0.0064 
(0.0008) 

0.0028 
(0.0003) 

  ( )10 10 100 , 2 ,0∗ ∗ ∗  0.0004 
(0.0003) 

0.0038 
(0.0003) 

0.0030 
(0.0003) 

0.0020 
(0.0002) 

0.0058 
(0.0006) 

0.0042 
(0.0003) 

0.0026 
(0.0002) 

0.0066 
(0.0008) 

0.0029 
(0.0003) 

  (0.............,0,20) 0.0002 
(0.0002) 

0.0024 
(0.0003) 

0.0008 
(0.0003) 

0.0022 
(0.0002) 

0.0042 
(0.0009) 

0.0004 
(0.0002) 

0.0029 
(0.0002) 

0.0047 
(0.0014) 

0.0005 
(0.0003) 

  (0,...,0,2,2,...,2) 0.0002 
(0.0003) 

0.0031 
(0.0004) 

0.0009 
(0.0003) 

0.0021 
(0.0002) 

0.0052 
(0.0008) 

0.0011 
(0.0002) 

0.0028 
(0.0002) 

0.0058 
(0.0012) 

0.0007 
(0.0003) 
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Table 2. Bias and MSE (parentheses) of ( )α̂ ⋅  when ( ) ( ), 1.5,2.5 .α β =                                                   

   1k =  3k =  5k =  

n m Scheme MLE AMLE LSE MLE AMLE LSE MLE AMLE LSE 

20 5 (15,0,0,0,0) 0.0148 
(0.0341) 

0.0619 
(0.0355) 

0.0253 
 (0.0333) 

0.0320 
(0.0231) 

0.0615 
(0.0459) 

0.0421 
(0.0292) 

0.0385 
(0.0235) 

0.0565 
(0.0683) 

0.1276 
(0.0488) 

  (0,0,15,0,0) 0.0164 
(0.0276) 

0.0662 
(0.0340) 

0.0465  
(0.0319) 

0.0414 
(0.0245) 

0.0906 
(0.0563) 

0.0359 
(0.0287) 

0.0505 
(0.0262) 

0.0982 
(0.0799) 

0.1871 
(0.0438) 

  (0,0,0,0,15) 0.0126 
(0.0234) 

0.0476 
(0.0320) 

0.0091  
(0.0249) 

0.0473 
(0.0244) 

0.0714 
(0.1139) 

0.0239 
(0.0262) 

0.0607 
(0.0276) 

0.0741 
(0.1794) 

0.0553 
(0.0263) 

  (3,3,3,3,3) 0.0248 
(0.0238) 

0.0668 
(0.0431) 

0.0385  
(0.0254) 

0.0502 
(0.0250) 

0.0809 
(0.1029) 

0.0484 
(0.0315) 

0.0601 
(0.0286) 

0.0814 
(0.1534) 

0.0625 
(0.0320) 

 15 (5,...,0,0) 0.0014 
(0.0251) 

0.0355 
(0.0249) 

0.0168 
(0.0245) 

0.0193 
(0.0147) 

0.0446 
(0.0303) 

0.0381 
(0.0173) 

0.0258 
(0.0155) 

0.0454 
(0.0445) 

0.0420 
(0.0190) 

  (1,1,1,1,1,0,...,0) 0.0019 
(0.0228) 

0.0347 
(0.0241) 

0.0079  
(0.0236) 

0.0209 
(0.0149) 

0.0500 
(0.0311) 

0.0391 
(0.0176) 

0.0277 
(0.0158) 

0.0539 
(0.0449) 

0.0442 
(0.0190) 

  (0,..,0,5,0,...,0) 0.0014 
(0.0212) 

0.0350 
(0.0234) 

0.0181  
(0.0216) 

0.0226 
(0.0156) 

0.0572 
(0.0422) 

0.0416 
(0.0187) 

0.0302 
(0.0161) 

0.0641 
(0.0497) 

0.0449 
(0.0191) 

  ( )5 5 50 ,1 ,0∗ ∗ ∗  0.0013 
(0.0211) 

0.0352 
(0.0234) 

0.0184  
(0.0214) 

0.0227 
(0.0155) 

0.0573 
(0.0455) 

0.0419 
(0.0186) 

0.0303 
(0.0161) 

0.0643 
(0.0503) 

0.0457 
(0.0194) 

  (0,...,0,5) 0.0003 
(0.0201) 

0.0247 
(0.0232) 

0.0010  
(0.0202) 

0.0221 
(0.0151) 

0.0456 
(0.0314) 

0.0212 
(0.0159) 

0.0322 
(0.0158) 

0.0505 
(0.0447) 

0.0247 
(0.0170) 

  (0,...,0,1,1,1,1,1) 0.0008 
(0.0203) 

0.0296 
(0.0233) 

0.0112  
(0.0202) 

0.0223 
(0.0152) 

0.0523 
(0.0318) 

0.0299 
(0.0160) 

0.0318 
(0.0159) 

0.0584 
(0.0449) 

0.0270 
(0.0176) 

50 20 (30,0,............,0) 0.0105 
(0.0190) 

0.0365 
(0.0184) 

0.0135  
(0.0177) 

0.0154 
(0.0122) 

0.0283 
(0.0233) 

0.0230 
(0.0151) 

0.0179 
(0.0117) 

0.0220 
(0.0344) 

0.0294 
(0.0138) 

  (3,3,....,3,0...,0) 0.0112 
(0.0143) 

0.0373 
(0.0174) 

0.0232  
(0.0155) 

0.0205 
(0.0125) 

0.0433 
(0.0279) 

0.0267 
(0.0159) 

0.0238 
(0.0130) 

0.0445 
(0.0392) 

0.0198 
(0.0146) 

  (0,...0,30,0,...,0) 0.0120 
(0.0134) 

0.0395 
(0.0179) 

0.0345  
(0.0170) 

0.0228 
(0.0129) 

0.0527 
(0.0312) 

0.0282 
(0.0170) 

0.0268 
(0.0138) 

0.0573 
(0.0435) 

0.0195 
(0.0223) 

  ( )5 10 50 ,3 ,0∗ ∗ ∗  0.0115 
(0.0127) 

0.0428 
(0.0186) 

0.0423  
(0.0170) 

0.0236 
(0.0128) 

0.0572 
(0.0358) 

0.0300 
(0.0180) 

0.0281 
(0.0140) 

0.0620 
(0.0508) 

0.0221 
(0.0211) 

  (0.............,0,30) 0.0093 
(0.0111) 

0.0276 
(0.0134) 

0.0057  
(0.0120) 

0.0274 
(0.0128) 

0.0380 
(0.0237) 

0.0092 
(0.0129) 

0.0339 
(0.0155) 

0.0383 
(0.0346) 

0.0105 
(0.0125) 

  (0,...,0,3,3,...,3) 0.0105 
(0.0115) 

0.0351 
(0.0137) 

0.0207  
(0.0123) 

0.0273 
(0.0128) 

0.0406 
(0.0257) 

0.0117 
(0.0148) 

0.0338 
(0.0154) 

0.0414 
(0.0349) 

0.0116 
(0.0130) 

50 30 (20,0,............,0) 0.0018 
(0.0124) 

0.0217 
(0.0129) 

0.0052  
(0.0135) 

0.0089 
(0.0076) 

0.0202 
(0.0157) 

0.0209 
(0.0087) 

0.0116 
(0.0078) 

0.0176 
(0.0230) 

0.0177 
(0.0089) 

  (2,2,....,2,0...,0) 0.0028 
(0.0110) 

0.0202 
(0.0121) 

0.0057 
(0.0115) 

0.0108 
(0.0077) 

0.0267 
(0.0166) 

0.0218 
(0.0091) 

0.0137 
(0.0082) 

0.0282 
(0.0235) 

0.0159 
(0.0093) 

  (0,...0,20,0,...,0) 0.0030 
(0.0099) 

0.0214 
(0.0127) 

0.0155 
(0.0106) 

0.0124 
(0.0081) 

0.0329 
(0.0191) 

0.0240 
(0.0101) 

0.0158 
(0.0086) 

0.0369 
(0.0274) 

0.0164 
(0.0102) 

  ( )10 10 100 , 2 ,0∗ ∗ ∗  0.0028 
(0.0098) 

0.0219 
(0.0130) 

0.0175  
(0.0103) 

0.0125 
(0.0081) 

0.0339 
(0.0199) 

0.0246 
(0.0103) 

0.0160 
(0.0086) 

0.0379 
(0.0287) 

0.0170 
(0.0103) 

  (0.............,0,20) 0.0015 
(0.0089) 

0.0136 
(0.0119) 

0.0038  
(0.0091) 

0.0134 
(0.0081) 

0.0236 
(0.0158) 

0.0026 
(0.0080) 

0.0179 
(0.0087) 

0.0255 
(0.0237) 

0.0026 
(0.0082) 

  (0,...,0,2,2,...,2) 0.0018 
(0.0090) 

0.0158 
(0.0119) 

0.0043  
(0.0092) 

0.0132 
(0.0082) 

0.0295 
(0.0160) 

0.0062 
(0.0086) 

0.0176 
(0.0086) 

0.0325 
(0.0239) 

0.0046 
(0.0104) 
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Table 3. Bias and MSE (parentheses) of ( )β̂ ⋅  when ( ) ( ), 0.1,3.0α β = .                                                 

   1k =  3k =  5k =  

n m Scheme MLE AMLE LSE MLE AMLE LSE MLE AMLE LSE 

20 5 (15,0,0,0,0) 0.3952 
(0.8406) 

0.2509 
(0.8384) 

0.2277 
(0.8371) 

0.3398 
(0.6624) 

0.2265 
(0.6705) 

0.0096 
(0.5997) 

0.3297 
(0.6258) 

0.2229 
(0.6688) 

0.0704 
(0.5040) 

  (0,0,15,0,0) 0.4901  
(1.0275) 

0.4286 
(0.6892) 

0.1824 
(0.9365) 

0.4350 
(0.8549) 

0.3974 
(0.6069) 

0.1780 
(0.8316) 

0.4234 
(0.8154) 

0.3930 
(0.6049) 

0.1698 
(0.7361) 

  (0,0,0,0,15) 0.4672  
(0.9443) 

0.4485 
(1.0773) 

0.0993 
(0.7441) 

0.5305 
(1.0838) 

0.5904 
(1.5607) 

0.3799 
(1.0991) 

0.5388 
(1.1071) 

0.5898 
(1.5602) 

0.0127 
(1.0111) 

  (3,3,3,3,3) 0.5226  
(1.0838) 

0.6008 
(1.5919) 

0.1362 
(0.8806) 

0.4521 
(0.8823) 

0.4351 
(1.0524) 

0.3536 
(0.8638) 

0.4523 
(0.8785) 

0.4337 
(1.0516) 

0.3031 
(0.6174) 

 15 (5,...,0,0) 0.2727  
(0.5034) 

0.2086 
(0.4627) 

0.1796 
(0.5299) 

0.2536 
(0.4192) 

0.1985 
(0.4616) 

0.0559 
(0.4236) 

0.2463 
(0.4010) 

0.1935 
(0.4581) 

0.1240 
(0.4043) 

  (1,1,1,1,1,0,...,0) 0.2870  
(0.5211) 

0.2396 
(0.4554) 

0.1744 
(0.5403) 

0.2659 
(0.4350) 

0.2286 
(0.4551) 

0.0976 
(0.4444) 

0.2551 
(0.4146) 

0.2240 
(0.4509) 

0.1324 
(0.4760) 

  (0,..,0,5,0,...,0) 0.3039  
(0.5416) 

0.2927 
(0.5030) 

0.1746 
(0.5919) 

0.2877 
(0.4690) 

0.2803 
(0.5028) 

0.1236 
(0.4981) 

0.2780 
(0.4515) 

0.2757 
(0.4983) 

0.1535 
(0.4500) 

  ( )5 5 50 ,1 ,0∗ ∗ ∗  0.3034  
(0.5400) 

0.2947 
(0.5099) 

0.1775 
(0.5911) 

0.2883 
(0.4696) 

0.2824 
(0.5097) 

0.1228 
(0.4989) 

0.2788 
(0.4529) 

0.2777 
(0.5051) 

0.1504 
(0.4504) 

  (0,...,0,5) 0.3018  
(0.5252) 

0.3218 
(0.6662) 

0.0040 
(0.4452) 

0.3025 
(0.4892) 

0.3198 
(0.6346) 

0.1992 
(0.4717) 

0.2986 
(0.4850) 

0.3161 
(0.6295) 

0.1554 
(0.4616) 

  (0,...,0,1,1,1,1,1) 0.3028  
(0.5292) 

0.3232 
(0.6320) 

0.0827 
(0.4675) 

0.3060 
(0.4937) 

0.3214 
(0.6698) 

0.2616 
(0.4977) 

0.3036 
(0.4930) 

0.3180 
(0.6647) 

0.1797 
(0.5039) 

50 20 (30,0,............,0) 0.2215  
(0.3003) 

0.0733 
(0.2724) 

0.1641 
(0.3699) 

0.1421 
(0.2401) 

0.0633 
(0.2676) 

0.0463 
(0.2582) 

0.1401 
(0.2317) 

0.0646 
(0.2701) 

0.0443 
(0.2257) 

  (3,3,....,3,0...,0) 0.3028  
(0.5292) 

0.3232 
(0.2604) 

0.0827 
(0.4675) 

0.1770 
(0.2761) 

0.1319 
(0.2403) 

0.0542 
(0.2996) 

0.1726 
(0.2650) 

0.1322 
(0.2428) 

0.1270 
(0.2779) 

  (0,...0,30,0,...,0) 0.2230  
(0.3678) 

0.1910 
(0.6320) 

0.2068 
(0.4477) 

0.1966 
(0.3043) 

0.1780 
(0.2555) 

0.0786 
(0.3403) 

0.1921 
(0.2934) 

0.1781 
(0.2579) 

0.1607 
(0.3168) 

  ( )5 10 50 ,3 ,0∗ ∗ ∗  0.2257  
(0.3664) 

0.2167 
(0.3062) 

0.2153 
(0.4950) 

0.2062 
(0.3176) 

0.2024 
(0.2995) 

0.0846 
(0.3798) 

0.2040 
(0.3125) 

0.2027 
(0.3029) 

0.1610 
(0.3526) 

  (0.............,0,30) 0.2351  
(0.3702) 

0.2655 
(0.4825) 

0.0336 
(0.3275) 

0.3012 
(0.3582) 

0.2795 
(0.4750) 

0.2470 
(0.3607) 

0.2389 
(0.4000) 

0.2633 
(0.4818) 

0.2199 
(0.3850) 

  (0,...,0,3,3,...,3) 0.2427  
(0.3793) 

0.2834 
(0.5672) 

0.0433 
(0.3725) 

0.2484 
(0.3829) 

0.2802 
(0.5587) 

0.3203 
(0.4757) 

0.2550 
(0.3693) 

0.2829 
(0.5671) 

0.2466 
(0.5135) 

50 30 (20,0,............,0) 0.1484  
(0.2006) 

0.0675 
(0.1995) 

0.1197 
(0.2753) 

0.1074 
(0.1665) 

0.0636 
(0.1927) 

0.0070 
(0.1934) 

0.1063 
(0.1603) 

0.0639 
(0.1928) 

0.0785 
(0.1773) 

  (2,2,....,2,0...,0) 0.1779  
(0.2055) 

0.0992 
(0.1738) 

0.1279 
(0.2730) 

0.1176 
(0.1731) 

0.0969 
(0.1707) 

0.0408 
(0.1987) 

0.1149 
(0.1648) 

0.0968 
(0.1711) 

0.1132 
(0.1805) 

  (0,...0,20,0,...,0) 0.1661  
(0.2208) 

0.1423 
(0.1901) 

0.1524 
(0.3087) 

0.1323 
(0.1913) 

0.1310 
(0.1849) 

0.0563 
(0.2292) 

0.1381 
(0.1842) 

0.1309 
(0.1853) 

0.1302 
(0.2095) 

  ( )10 10 100 , 2 ,0∗ ∗ ∗  0.1760  
(0.2164) 

0.1376 
(0.1894) 

0.1408 
(0.3137) 

0.1341 
(0.1933) 

0.1362 
(0.1930) 

0.0560 
(0.2363) 

0.1373 
(0.1871) 

0.1359 
(0.1934) 

0.1324 
(0.2153) 

  (0.............,0,20) 0.1523  
(0.2137) 

0.1705 
(0.3002) 

0.0090 
(0.2088) 

0.1629 
(0.2057) 

0.1656 
(0.2762) 

0.1459 
(0.2124) 

0.2128 
(0.2072) 

0.1665 
(0.2773) 

0.1480 
(0.2230) 

  (0,...,0,2,2,...,2) 0.1771  
(0.2107) 

0.1609 
(0.2795) 

0.0554 
(0.2017) 

0.1488 
(0.2090) 

0.1663 
(0.2988) 

0.2209 
(0.2393) 

0.2567 
(0.2122) 

0.1674 
(0.3001) 

0.1518 
(0.2590) 
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Table 4. Bias and MSE (parentheses) of ( )β̂ ⋅  when ( ) ( ), 1.5,2.5α β = .                                                 

   1k =  3k =  5k =  

n m Scheme MLE AMLE LSE MLE AMLE LSE MLE AMLE LSE 

20 5 (15,0,0,0,0) 0.3239 
(0.5727) 

0.2049 
(0.5684) 

0.1923 
(0.6001) 

0.2831 
(0.4600) 

0.1887 
(0.5603) 

0.0080 
(0.4164) 

0.2747 
(0.4346) 

0.1858 
(0.5590) 

0.0106 
(0.3500) 

  (0,0,15,0,0) 0.4024 
(0.7003) 

0.3524 
(0.4719) 

0.1562 
(0.6383) 

0.3625 
(0.5937) 

0.3312 
(0.4656) 

0.1483 
(0.5775) 

0.3528 
(0.5662) 

0.3275 
(0.4645) 

0.1415 
(0.5112) 

  (0,0,0,0,15) 0.4295 
(0.7370) 

0.4944 
(1.0855) 

0.0784 
(0.5102) 

0.4421 
(0.7526) 

0.4920 
(1.0838) 

0.3166 
(0.7633) 

0.4490 
(0.7688) 

0.4915 
(1.0835) 

0.0586 
(0.7021) 

  (3,3,3,3,3) 0.3839 
(0.6434) 

0.3686 
(0.7339) 

0.1096 
(0.5713) 

0.3768 
(0.6127) 

0.3626 
(0.7308) 

0.2946 
(0.5999) 

0.3769 
(0.6101) 

0.3614 
(0.7303) 

0.2526 
(0.4288) 

 15 (5,...,0,0) 0.2325 
(0.3490) 

0.1761 
(0.3233) 

0.1459 
(0.3698) 

0.2113 
(0.2911) 

0.1654 
(0.3206) 

0.0466 
(0.2941) 

0.2074 
(0.2786) 

0.1635 
(0.3201) 

0.1139 
(0.2821) 

  (1,1,1,1,1,0,...,0) 0.2446 
(0.3615) 

0.2016 
(0.3187) 

0.1416 
(0.3773) 

0.2216 
(0.3021) 

0.1905 
(0.3160) 

0.0813 
(0.3086) 

0.2168 
(0.2884) 

0.1885 
(0.3156) 

0.1257 
(0.3321) 

  (0,..,0,5,0,...,0) 0.2587 
(0.3758) 

0.2457 
(0.3520) 

0.1418 
(0.4135) 

0.2398 
(0.3257) 

0.2336 
(0.3492) 

0.1030 
(0.3459) 

0.2358 
(0.3142) 

0.2315 
(0.3488) 

0.1315 
(0.3141) 

  ( )5 5 50 ,1 ,0∗ ∗ ∗  0.2583 
(0.3747) 

0.2474 
(0.3568) 

0.1443 
(0.4133) 

0.2402 
(0.3261) 

0.2354 
(0.3540) 

0.1023 
(0.3464) 

0.2366 
(0.3151) 

0.2332 
(0.3535) 

0.1289 
(0.3147) 

  (0,...,0,5) 0.2566 
(0.3643) 

0.2705 
(0.4660) 

0.0014 
(0.3093) 

0.2550 
(0.3428) 

0.2679 
(0.4652) 

0.2180 
(0.3456) 

0.2571 
(0.3429) 

0.2673 
(0.4650) 

0.1540 
(0.3484) 

  (0,...,0,1,1,1,1,1) 0.2575 
(0.3671) 

0.2715 
(0.4421) 

0.0651 
(0.3259) 

0.2521 
(0.3397) 

0.2665 
(0.4407) 

0.1660 
(0.3276) 

0.2529 
(0.3374) 

0.2656 
(0.4404) 

0.1332 
(0.3203) 

50 20 (30,0,............,0) 0.1351 
(0.2050) 

0.0589 
(0.1871) 

0.1336 
(0.2514) 

0.1184 
(0.1668) 

0.0527 
(0.1858) 

0.0386 
(0.1793) 

0.1151 
(0.1580) 

0.0517 
(0.1856) 

0.0388 
(0.1533) 

  (3,3,....,3,0...,0) 0.1681 
(0.2329) 

0.1178 
(0.1682) 

0.1577 
(0.2745) 

0.1475 
(0.1918) 

0.1099 
(0.1669) 

0.0452 
(0.2081) 

0.1421 
(0.1802) 

0.1086 
(0.1666) 

0.1037 
(0.1886) 

  (0,...0,30,0,...,0) 0.1839 
(0.2503) 

0.1576 
(0.1789) 

0.1749 
(0.3040) 

0.1638 
(0.2113) 

0.1484 
(0.1774) 

0.0655 
(0.2363) 

0.1583 
(0.1996) 

0.1469 
(0.1772) 

0.1318 
(0.2152) 

  ( )5 10 50 ,3 ,0∗ ∗ ∗  0.1861 
(0.2491) 

0.1786 
(0.2099) 

0.1828 
(0.3361) 

0.1719 
(0.2206) 

0.1686 
(0.2080) 

0.0705 
(0.2638) 

0.1679 
(0.2122) 

0.1670 
(0.2077) 

0.1312 
(0.2392) 

  (0.............,0,30) 0.2001 
(0.2576) 

0.2339 
(0.3881) 

0.0304 
(0.2217) 

0.2070 
(0.2659) 

0.2335 
(0.3880) 

0.2069 
(0.3303) 

0.2103 
(0.2721) 

0.2335 
(0.3879) 

0.2090 
(0.3532) 

  (0,...,0,3,3,...,3) 0.1937 
(0.2513) 

0.2189 
(0.3302) 

0.0346 
(0.2549) 

0.2058 
(0.2641) 

0.2329 
(0.3821) 

0.2010 
(0.3070) 

0.2089 
(0.2698) 

0.2328 
(0.3821) 

0.2025 
(0.3303) 

50 30 (20,0,............,0) 0.1402 
(0.1362) 

0.0572 
(0.1344) 

0.0973 
(0.1925) 

0.0895 
(0.1157) 

0.0530 
(0.1338) 

0.0058 
(0.1343) 

0.0883 
(0.1111) 

0.0523 
(0.1337) 

0.0653 
(0.1230) 

  (2,2,....,2,0...,0) 0.1418 
(0.1434) 

0.0853 
(0.1190) 

0.1087 
(0.1929) 

0.0980 
(0.1202) 

0.0808 
(0.1185) 

0.0340 
(0.1380) 

0.0955 
(0.1142) 

0.0800 
(0.1184) 

0.0950 
(0.1253) 

  (0,...0,20,0,...,0) 0.1471 
(0.1515) 

0.1146 
(0.1289) 

0.1193 
(0.2173) 

0.1102 
(0.1328) 

0.1092 
(0.1284) 

0.0469 
(0.1591) 

0.1080 
(0.1276) 

0.1083 
(0.1283) 

0.1049 
(0.1451) 

  ( )10 10 100 , 2 ,0∗ ∗ ∗  0.1524 
(0.1509) 

0.1191 
(0.1346) 

0.1195 
(0.2243) 

0.1117 
(0.1342) 

0.1135 
(0.1340) 

0.0467 
(0.1641) 

0.1143 
(0.1297) 

0.1126 
(0.1340) 

0.1098 
(0.1494) 

  (0.............,0,20) 0.1210 
(0.1470) 

0.1389 
(0.2075) 

0.0051 
(0.1429) 

0.1840 
(0.1451) 

0.1386 
(0.2075) 

0.1241 
(0.1662) 

0.2132 
(0.1470) 

0.1385 
(0.2075) 

0.1259 
(0.1799) 

  (0,...,0,2,2,...,2) 0.1206 
(0.1475) 

0.1392 
(0.1920) 

0.0466 
(0.1442) 

0.1216 
(0.1429) 

0.1380 
(0.1918) 

0.1158 
(0.1475) 

0.1769 
(0.1435) 

0.1378 
(0.1918) 

0.1229 
(0.1548) 
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6.1.1. Scale Parameter α  
• For progressively first-failure censoring ( )3& 5k =  we can easily notice that n mL −  is the most efficient  

scheme in terms of ABias and MSE values for MLE and AMLE, while scheme n m
∗
−R  is the most efficient  

scheme for LSE. On the other hand when 1k = , that is the progressively type-II censoring, scheme n m
∗
−R  

is the most efficient for all estimates namely MLE, AMLE and LSE. 
• Notice that when α  is small ( )1< , the MSE values are almost identical for all the estimates regardless of 

the different schemes and the different values of k , this indicates that the estimates of α  are sensitive to 
the choice of α . 

• In general, LSE and MLE have comparable ABias and MSE values, which makes LSE estimates very good 
competitors to the MLE estimates. 

6.1.2. Shape Parameter β  
• When 3& 5k =  scheme n mL −  is the most efficient scheme in terms of ABias and MSE values for MLE 

and LSE. 
• For progressively type-II censoring ( )1k =  scheme n mL −  is the most efficient in terms of ABias and MSE 

values for MLE while scheme ∗
−mnR  is the most efficient for LSE. 

• As for the AMLE estimates, we notice that the scheme n mL −  is the most efficient in terms of ABias whereas  
scheme , ,a aL



 is the most efficient in terms of MSE values for all values of k . 

• In addition, LSEβ̂  generally has the smallest ABias while MLEβ̂  has the smallest MSE values.  

6.2. Conclusions and Recommendations 

In the past few years, progressive censoring has received a great attention by many researchers. This is due to its 
advantages in reducing the cost and time of the tests. Moreover, the availability of high speed computing re- 
sources enhances the focus on progressive censoring. In this article, we have considered the MLE, approximate 
MLE and LSE to estimate the unknown parameters of the IW distribution when data under consideration are 
progressively first-failure censoring. 

It is out of question that all estimates are affected by the choice of k , and our goal is to compare the three 
methods namely MLE, AMLE and LSE and decide which is the most efficient for estimating α  and β . It is 
important to point out the following: 
• The results for group-1 and group-2 are very similar with slight edge improvement in favor of group-1. 
• ABias and MSE values decrease as the effective sample proportion m n  increases for fixed &k n  and for 

all estimates of α  and β . 
• In general, progressively first-failure censoring (i.e. 3& 5k = ) is more efficient compared to progressive 

type-II censoring ( )1k =  in terms of ABias and MSE values. This is true for MLE and LSE estimates. 
• Table 1 and Table 2 clearly show that the MSE values for LSE and MLE are almost identical and their 

ABias is comparable. Moreover, Table 3 and Table 4 show the similarity in performance between LSE and 
MLE for estimating β . Keep in mind that LSE formula is simple and easy to implement compared to the 
formula of the MLE. 

Based on this, we highly recommend using LSE method and progressively first-failure censoring scheme for 
estimating the parameters of the IW distribution. 

7. Real Life Data 
In this example, we consider a real life data set to illustrate the proposed method and verify how our estimators 
work in practice. The validity of the IW model is checked using Kolmogrov-Smirnov ( )K S−  test, as well as 
Anderson-Darling ( )A D−  and chi-square tests. The data set for this application came from a real highway 
construction project in Amman/Jordan supervised by the Greater Amman Municipality and executed by a local 
contractor in 2012 (http://www.ammancity.gov.jo/en/gam/index.asp). The data consist of 64 readings that de- 
monstrate the percentage of asphalt content in hot mix asphalt specimens sampled from the mentioned project 
above. Percentage of asphalt content is one of the main elements of a hot mix asphalt sample characteristics that 
has a direct effect on the quality and durability of the pavement. That is why this data is used in this example. 

http://www.ammancity.gov.jo/en/gam/index.asp
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( )4.45,4.82  ( )4.69,4.79  ( )4.95,4.87  ( )4.29,4.70  ( )4.87,4.54  ( )4.87,4.73  

( )4.86,4.26  ( )4.29,4.54  ( )4.72,4.62  ( )4.54,4.73  ( )4.52,4.74  ( )4.58,4.93  

( )4.98,4.28  ( )4.61,4.35  ( )4.65,4.85  ( )4.70,4.70  ( )4.87,4.98  ( )4.46,4.66  

( )4.87,4.44  ( )4.86,4.60  ( )4.77,4.58  ( )4.82,5.08  ( )4.73,4.62  ( )5.11,4.89  

( )4.84,4.76  ( )5.04,4.88  ( )4.75,4.74  ( )4.80,4.77  ( )4.72,4.72  ( )4.77,4.53  

( )4.51,4.59  ( )4.70,4.82      

 
We fit the IW distribution based on 0.209α =  and 29.083β = . We observe that 0.0864K S− =  with 

value 0.8177p = , 0.3621A D− =  and chi-square distance = 0.6468 with a corresponding value 0.98576p = . This 
indicates that the IW model provides a good fit. The initial estimates for the MLEs are chosen by using pseudo 
complete estimates of the MLEs. We group the data into 32 sets with 2 items in each. We modify the data to 
consider four types of censoring as follows: 
 

Case Type of censoring Censoring scheme 

1 Complete data set ( )1,  0,0, ,0k R= =   

2 First failure censoring ( )2,  0,0, ,0k R= =   

3 Progressive type-II ( )391,  0 , 24k R ∗= =  

4 Progressive first-failure censoring ( )2,  12,0, ,0k R= =   

 
The modified data sets are provided in Table 5. The evaluated Hessian matrix to guarantee the uniqueness of 

the MLEs is presented in Table 6. Finally, the estimates of α  and β  based on different estimation methods 
are provided in Table 7. 
 
Table 5. Progressive first-failure censored samples for the percentage of asphalt content in hot mix samples.                        

Case n m Censored data 
1 64 64 4.26 4.28 4.29 4.29 4.35 4.44 4.45 4.46 4.51 4.52 4.53 4.54 
   4.54 4.54 4.58 4.58 4.59 4.60 4.61 4.62 4.62 4.65 4.66 4.69 
   4.70 4.70 4.70 4.70 4.72 4.72 4.72 4.73 4.73 4.73 4.74 4.74 
   4.75 4.76 4.77 4.77 4.77 4.79 4.80 4.82 4.82 4.82 4.84 4.85 

   4.86 4.86 4.87 4.87 4.87 4.87 4.87 4.88 4.89 4.93 4.95 4.98 
   4.98 5.04 5.08 5.11         

2 32 32 4.45 4.69 4.87 4.29 4.54 4.73 4.26 4.29 4.62 4.54 4.52 4.58 

   4.28 4.35 4.65 4.70 4.87 4.46 4.44 4.60 4.58 4.82 4.62 4.89 
   4.76 4.88 4.74 4.77 4.72 4.53 4.51 4.70     

3 64 40 4.26 4.28 4.29 4.29 4.35 4.44 4.45 4.46 4.52 4.54 4.54 4.54 

   4.58 4.60 4.61 4.62 4.65 4.66 4.69 4.70 4.70 4.70 4.72 4.73 
   4.73 4.74 4.79 4.82 4.85 4.86 4.86 4.87 4.87 4.87 4.87 4.87 
   4.93 4.95 4.98 4.98         

4 32 20 4.35 4.44 4.45 4.46 4.51 4.53 4.58 4.60 4.62 4.65 4.70 4.70 
   4.72 4.74 4.76 4.77 4.82 4.87 4.88 4.89     

 
Table 6. The eigne-values and the determinant of the Hessian matrix for each of the four data sets.                              

Case 1 Case 2 Case 3 Case 4 

Eigen values Hessian  Eigen values Hessian  Eigen values Hessian  Eigen values Hessian  

0.220
70083
− 

 − 
 1541.56 

0.186
41514
− 

 − 
 7719.1 

0.127
36313
− 

 − 
 4626.0 

0.083
44025
− 

 − 
 3650.6 
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Table 7. The corresponding estimates.                                                                             

Method MLEα̂  AMLEα̂  LSEα̂  MLEβ̂  AMLEβ̂  LSEβ̂  

Case 1 0.2172 0.2037 0.2169 22.5324 40.9753 27.7880 

Case 2 0.2159 0.2172 0.2121 18.2934 33.4149 06.6950 

Case 3 0.2174 0.2168 0.2196 22.5052 31.7096 26.1792 

Case 4 0.2137 0.2133 0.2193 22.5059 39.1295 24.2470 

 
It is quite clear that all the estimates for the scale parameter ( )α  are quite close to each other. It is of great 

importance to notice through this analysis that the estimates based on progressively first-failure are comparable 
with the values of the estimates based on progressively type-II censored samples and they are very close to those 
of the complete data set. Although AMLEβ̂  is higher than MLEβ̂  and LSEβ̂ , it is however comparable with its 
value when data is complete. Moreover, in this case AMLEβ̂  is the closest to the complete case. 
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Abstract 
Panel data combine cross-section data and time series data. If the cross-section is locations, there 
is a need to check the correlation among locations. ρ and λ are parameters in generalized spatial 
model to cover effect of correlation between locations. Value of ρ or λ will influence the goodness 
of fit model, so it is important to make parameter estimation. The effect of another location is 
covered by making contiguity matrix until it gets spatial weighted matrix (W). There are some 
types of W—uniform W, binary W, kernel Gaussian W and some W from real case of economics 
condition or transportation condition from locations. This study is aimed to compare uniform W 
and kernel Gaussian W in spatial panel data model using RMSE value. The result of analysis 
showed that uniform weight had RMSE value less than kernel Gaussian model. Uniform W had 
stabil value for all the combinations. 

 
Keywords 
Component, Uniform Weight, Kernel Gaussian Weight, Generalized Spatial Panel Data Model 

 
 

1. Introduction 
Panel data analysis combines cross-section data and time series data, in sampling when the data are taken from 
different locations. It’s commonly found that the observation value at one location depends on observation value 
in another location. In the other name, there is spatial correlation between the observations, which is spatial de-
pendence. Spatial dependence in this study is covered by generalized spatial model which is focussed on 
dependence between locations and errors [1]. If there is spatial influence but not involved in model so error as-
sumption that between observations must be independent will not fulfilled. So the model will be in bad condi-
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tion, for that need, a model that involves spatial influence in the analysis panel data will be mentioned as Spatial 
Panel Data Model.  

Some recent literature of spatial cross-section data is Spatial Ordinal Logistic Regression by Aidi and Purwa-
ningsih [2], and Geographically Weighted Regression [3]. Some of the recent literature of Spatial Panel Data is 
forecasting with spatial panel data [3] and spatial panel models [4]. For accomodating spatial dependence in the 
model, there is spatial weighted matrix ( )W  that is an important component to calculate the spatial correlation 
between locations. Spatial parameter in generalized spatial panel data model, is known as ρ  or λ . There are 
some types of W —uniform W , binary W , inverse distance W  and some W  from real cases of econom-
ics condition or transportation condition from the area. This research is aimed to compare uniform W  and 
kernel Gaussian W  in generalized spatial panel data model using RMSE value which is obtained from 
simulation. 

2. Literature Review 
2.1. Data Panel Analysis 
Data used in the panel data modelisa combination of cross section and time-series data. Crossection data is data 
collected at one time of many units of observation, then time-series data is data collected over time to an obser-
vation. If each unit has a number of observations a cross individuals in the same period of time series, it is cal-
leda balanced panel data. Conversely, if each individual unit has a number of observations a cross different pe-
riod of time series, it is called an unbalanced panel data (unbalanced panel data). 

In general, panel data regression model is expressed as follows: 

    1, 2, ,  ;  1, 2, ,it it it i N ty u Tα == =′+ +  βx                       (1) 

with i  is an index for crossection data and t is index of time series. α  is a constant value, β  is a vector of 
size 1K × , with K  specifies the number of explanatory variables. Then ity  is the response to the individual 
cross-i for all time period stand itx  are sized 1K ×  vector for observation i-th individual cross and all time 
periods t and itu  is the residual/error [5]. 

Residual components of the direction of the regression model in Equation (1) can be defined as follows: 

it i itu µ ε= +                                     (2) 

where iµ  is an individual-specific effect that is not observed, and itε  is a remnant of crossection-i and time 
series-t [5]. 

2.2. Spatial Weighted Matrix (W) 
Spatial weighted matrix is basically a matrix that describes the relationship between regions and obtained by 
distance or neighbourhood information. Diagonal of the matrix is generally filled with zero value. Since the 
weighting matrix shows the relationship between the overall observation, the dimension of this matrix is N × N 
[6]. There are several approaches that can be done to show the spatial relationship between the location, includ-
ing the concept of intersection (contiguity). There are three types of intersection, namely Rook Contiguity, Bi-
shinop Contiguity and Queen Contiguity [6]. 

After determining the spatial weighting matrix to be used, further normalization in the spatial weighting ma-
trix. In general, the matrix used for normalization normalization row (row-normalize). This means that the ma-
trix is transformed so that the sum of each row of the matrix becomes equal to one. There are other alternatives 
in the normalization of this matrix is to normalize the columns of the matrix so that the sum of each column in 
the weighting matrix be equal to one. Also, it can also perform normalization by dividing the elements of the 
weighting matrix with the largest characteristic root of the matrix ([6] [7]). 

There are several types of Spatial Weight ( )W : binary W, uniform W, inverse distance W (non uniform 
weight) and some W from real case of economics condition or transportation condition from the area. Binary 
weight matrix has values 0 and 1 in off-diagonal entries; uniform weight is determined by the number of sites 
surrounding a certain site in  -th spatial order; and non-uniform weight gives unequal weight for different sites. 
The element of the uniform weight matrix is formulated as, 
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( )
1 , is neighbor of  in -th order 

0, others

l
ij in

j i l
W


= 



                     (3) 

( )l
in  is the number of neighbor locations with site-i in  -th order. The non-uniform weight may become uni-

form weight when some conditions are met. One method in building non-uniform weight is based on inverse 
distance. The weight matrix of spatial lag k  is based on the inverse weights ( )1 1 ijd+  for sites i  and j  
whose Euclidean distance ijd  lies within a fixed distance range, and otherwise is weight zero. Kernel Gaussian 
Weight follow this formulla: 

( ) ( )2
exp 1 2j ijw i d b = −  

                                (4) 

with d  isdistance between location i  and j , then b  is bandwith which is a parameter for smoothing 
function. 

2.3. Generalized Spatial Panel Data Model 
Generalized spatial model expressed in the following equation: 

1 1    dengan    N N
it ij jt it i it it ij it itj jy w y wρ µ φ φ λ φ ε

= =
′= + + + = +∑ ∑x β               (5) 

where ρ  is spatial autoregressive coefficient, ijw  is elements of the spatial weighted matrix which has been 
normalized ( )W  and λ  is spatial autocorrelation between error [7]. 

3. Methodology 
Data used in this study was gotten from simulation using generalized spatial panel data model as Equation (5) 
with initiation of some parameter. Simulation was done use R program. The following step is used to generate 
the spatial data panel which is consist of index n and t. In dexnindicates the number of locations and indextindi-
cates the number of period in each locations. Here is the proccess: 

1) Determining the number of locations to be simulated is 3N = , 9N =  and 25N = . 
2) Makes 3 types of map location on step 1. 
3) Creating a binary spatial weighted matrix based on the concept of queen contiguity of each type of map lo-

cations. In this step, to map the 3 locations it will form a 3 × 3 matrix, 9 locations will form a 9 × 9 matrix and 
25 locations form a 25 × 25 matrix. 

4) Creating spatial uniform weighted matrix based on the concept of queen contiguity of each type of map lo-
cations. 

5) Making weighted matrix kernel Gaussian based on the concept of distance. To make this matrix, previously 
researchers randomize the centroid points of each location. After setting centroid points, then measure the dis-
tance between centroids and used it as a reference to build kernel Gaussian W. Gaussian kernel W as follows: 

( ) ( )21exp
2j ijw i d b = −  

 [3]. 

6) Specifies the number of time periods to be simulated is 3T = , 6T = , 12T =  and 24T = . 
7) Generating the data Y  and X  based on generalized spatial panel data models follows Equation (5). 
8) Cronecker multiplication between matrix identtity of time periods and W, then get new matrix named IW. 
9) Multiply matrix IW and Y  to obtain vector WY . 
10) Build a spatial panel data models and get the value of RMSE. 
11) Repeat steps 7)-9) until 1000 replications for each combination on types of W , N , T , ρ  and λ . 

Description: 
Types of W: W binary, W uniform and Gaussian kernel W; 
Types of N : 3, 9 and 25 locations; 
Types of T : 3, 6, 12 and 36 series; 
Types of 0.3ρ = , 0.5, 0.8 and 0.3λ = , 0.5, 0.8. 
12) Get the RMSE value for all of 1000 replicationsoh each combination between W, N , ρ  and λ . 
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13) Determine the best W based on the smallest RMSE for all combinations. 

4. Results and Discussions 
Simulation generate data for vector Y as dependent variable and X matrix as independent variable. Y and X is 
generate with parameter initiation. After doing simulation, we can get RMSE for each combinations and 
proccessing it, then we can calculate RMSE for each W, N, T, ρ  and λ . Here is the result. With the result in 
Table 1 then continued to figure it into graphs in order to look the comparison easily. 
 
Table 1. Value of RMSE resulted from simulation for all the combinations (W, N, T, ρ and λ).                                

W types Location types Periods types 
Generalized spatial panel data model 

Average 
RMSE 

Average 
RMSE ρ = 0.3,  

λ = 0.3 
ρ = 0.5,  
λ = 0.5 

ρ = 0.8,  
λ = 0.8 

Uniform W 

N = 3 

T = 3 1.076 1.23 2.06 

1.771 

1.634 

T = 6 1.223 1.387 2.684 

T = 12 1.251 1.464 2.957 

T = 36 1.296 1.524 3.099 

Average 1.211 1.401 2.7  

N = 9 

T = 3 1.293 1.365 1.775 

1.578 
T = 6 1.341 1.401 1.976 

T = 12 1.357 1.429 2.054 

T = 36 1.362 1.448 2.139 

Average 1.338 1.411 1.986  

N = 25 

T = 3 1.383 1.433 1.755 

1.553 
T = 6 1.397 1.446 1.812 

T = 12 1.403 1.467 1.843 

T = 36 1.407 1.409 1.877 

Average 1.398 1.439 1.822  

Kernel 
Gaussian W 

N = 3 

T = 3 1.137 1.137 1.137 

1.748 

1.809 

T = 6 1.352 1.352 1.806 

T = 12 1.405 2.971 2.014 

T = 36 1.461 3.098 2.11 

Average 1.339 2.14 1.767  

N = 9 

T = 3 2.101 1.115 1.056 

1.243 
T = 6 1.353 1.138 1.097 

T = 12 1.255 1.15 1.106 

T = 36 1.261 1.161 1.119 

Average 1.493 1.141 1.095  

N = 25 

T = 3 1.49 1.282 1.168 

2.436 
T = 6 5.705 1.286 1.169 

T = 12 6.004 1.293 1.177 

T = 36 6.19 1.294 1.179 

Average 4.847 1.289 1.173  
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Figure 1. Comparison of RMSE between uniform W and kernel Gaussian W 
for all combinations.                                                            

 

 
Figure 2. Comparison RMSE each W for each parameter.                              

 
Based on Figure 1 can be said that uniform W has smaller RMSE than kernel Gaussian W for T = 12, T = 36 

on location N = 3, then for T = 6, 12, 36 on location N = 25 and the remaining combinations, kernel Gaussian is 
higher. If we look the level of stabilization, uniform W is better than kernel Gaussian W. We can look ats the 
graph in blue line as uniform W, it has value only in range 1, 4 until 2 then kernel Gaussian W has range from 1 - 
3. So can be concluded that uniform W is better than kernel Gaussian W. 

Based on Figure 2, we can look that average RMSE of uniform W is smaller in 0.3ρ = , 0.3λ =  and 
0.5ρ = , 0.5λ =  while kernel Gaussian W is smaller only in 0.8ρ = , 0.8λ = . 

5. Conclusion 
After looking at the result, it can be concluded that uniform W is better than kernel Gaussian W almost for all 
combinations of N and T. Then uniform W is better in ρ  and λ  in small value until medium (less than 0.5). 
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