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Abstract 
Depth decay rates for pressure and velocity variations of a propagating capillary wave are found 
to be significantly different from each other, and neither one is expected to have the classical ex-
ponential character. To obtain these results Bernoulli’s equation along streamlines in the steady 
reference frame is combined with the force balance on fluid particles in the cross-stream direction: 
a pressure gradient offsets the centrifugal force on particles moving along a curved path. The two 
starting equations for pressure and velocity are nonlinear, but two linear first order ordinary dif-
ferential equations are produced from them, one for each variable, and they can be integrated im- 
mediately. A full solution awaits further information on the non-constant coefficient, the radius of 
curvature function for the streamlines, either from observations or another theory. 
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1. Introduction 
Textbooks of fluid dynamics that mention the capillary wave (or ripples) generally have much less to say about 
them than they do about the surface gravity wave [1]-[4]. Is this because of their smaller wavelengths and am-
plitudes? Fundamental properties are not even touched upon, such as the linear and angular momentum of the 
waves. Presumably, but not stated in the cited references, the fluid particles have an orbital motion, when viewed 
in the fixed frame, which decays with increasing depth down from the equilibrium free surface. If so, both linear 
and angular momentum will be propagated with the wave in addition to the better known transport of energy 
common to all types of waves. Some familiarity with the linear momentum of surface gravity waves comes from 
its relation to the Stokes drift. From the orbital motion of the fluid particles in propagating waves it is obvious 
that they possess (orbital) angular momentum. 

How the capillary wave motion decays with depth is pretty much taken to be exponential in the classical 
studies. This is a consequence of assuming irrotational motion with a velocity potential, because when the hori-
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zontal motion is selected to be harmonic, i.e. wave like, then the vertical motion must be exponential in order to 
satisfy Laplace’s equation for the velocity potential. Physical understanding of the depth decay feature is thereby 
avoided by this mathematical procedure. 

An alternative decay law is proposed below, which in all likelihood will not turn out to be exponential in 
character. There are advantages and disadvantages to the new approach to describing the capillary wave. A defi-
nite advantage is that the governing differential equations for the pressure and velocity, that result from combin-
ing two elementary pieces of physics, are linear. Another advantage is that there is no necessity to adopt irrota-
tionality ab initio. One disadvantage of the operating equations is that they contain a non-constant coefficient 
which prevents complete solutions from being obtained at the present time without further theoretical or obser-
vational information being supplied to these equations. The non-constant coefficient is the radius of curvature of 
the streamlines. Measurements will eventually show that the radius of curvature increases with increasing depth 
from a minimum at the surface to infinity at a depth comparable to a wavelength, and perhaps the exact rate of 
decay will be uncovered also. 

First principle of physics adopted here is the usual law of Bernoulli, where the speed is the greatest, the pres-
sure is the least, applied along streamlines in the steady frame, but with the addition of a novelty: a term involv-
ing surface tension of the air/water interface. The second piece is the force balance on fluid particles traveling 
along curved paths. In the cross-stream direction the centrifugal force is balanced by a pressure gradient. Use of 
the centrifugal force is not novel but it is still controversial within classical physics. 

2. Method 
In the steady reference frame the wave shape is motionless to the observer and the fluid flows steadily past him 
under the wave. Applying Bernoulli’s law to the streamline at the air/water interface of the capillary wave yields 

2

0

1
2

Tp const U
R

ρ= − +                                  (1) 

where p is the pressure and U is the fluid speed parallel to the streamline. Constants of the motion on the RHS 
(right hand side) are const  (taken the same for all streamlines), the density ρ  and the surface tension T. The 
radius of curvature at the surface 0R  is computed in the plane of the mean flow. 

On the RHS of (1) the third term is not normal. It replaces the usual gravity term, but for capillary waves 
gravity’s influence is assumed to be small compared to that of surface tension. In fact, I have not seen Ber-
noulli’s law displayed anywhere in a text describing capillary waves. 

Recently a form of Bernoulli’s equation similar to (1) was used to give a qualitative explanation of the vena 
contracta, only there the radius of curvature in the surface tension term is evaluated in the plane perpendicular to 
the mean flow direction [5]. 

Consider the vertical distance z to be marked positive upward from the top of a crest where it is zero. Then the 
balance of forces on a horizontally moving fluid particle at any depth below the crest is 

2d
d
p U
z R

ρ
=                                     (2) 

where U, R and p are functions of z. On the LHS (left hand side) of (2) is the pressure force acting down; the 
centrifugal force acting up is on the RHS. There are now two equations in the two unknowns, ρ , U , and as 
they stand each of the two equations is nonlinear. 

Details of the method will be kept brief because they are similar to those recently produced for the surface 
gravity wave [6]. Eliminate the velocity between Equations (1) and (2), remembering that below the surface the 
surface tension term in (1) vanishes since there is no surface tension underneath the air/water interface. The re-
sult is a pressure equation 

d
2 d
R p p const

z
× + =                                 (3) 

This differential equation is linear, ordinary and of the first order. The non-constant coefficient is R. Solution 
of (3) begins with the homogeneous part of the equation: the RHS set to zero, followed by separation of vari-
ables. 



K. E. Kenyon 
 

 
1243 

( )
2dp dz

p R z
= −                                     (4) 

Both sides of (4) can immediately be integrated to give 

0

ln 2p dz
p R

 
= − 

 
∫                                   (5) 

where 0p  is a constant. Then both sides of (5) can be raised to the power of e to get 
2

0

dz
Rp e

p
− ∫

=                                     (6) 

Plus an additive constant on the RHS (not displayed). As (6) shows, the depth decay rate for pressure varia-
tions is given by the exponent of the exponential on the RHS. 

Now, the factor of 2 in the exponent of the RHS of (6) is very significant, as can be made clear. If instead of 
eliminating the velocity between (1) and (2) to get a pressure equation, the pressure can be eliminated between 
the same two equations to get the velocity equation by first differentiating (1) with respect to z. What will be 
found is an equation similar to (3) with U replacing p and with the factor of 2 missing. Then the solution is 
similar to (6) with U replacing p and the factor of 2 again missing. Since the depth decay rate for velocity varia-
tions equals the exponent in the exponential, which is a factor of 2 smaller than that in (6), this proves that, no 
matter what ( )R z  is, pressure variations die away with increasing depth at a faster rate than do the velocity 
variations. Exactly the same conclusion was found for the surface gravity wave.  

Recall the classical result for the surface gravity wave: both pressure and velocity perturbations decrease ex-
ponentially with increasing depth down from the equilibrium surface and at the same (e-folding) rate. Even 
though the radius of curvature function ( )R z  is not exactly known at this point, it is very doubtful that the 
depth decay rates of the capillary and surface gravity waves will turn out to be the normal exponential one, just 
from looking at form of Equation (6). 

3. Discussion 
Finding that the depth rates of decay for pressure and velocity perturbations are significantly different from each 
other for the capillary wave may come as a surprise to some readers. However, an example of such disparity in 
steady fluid flow has been available for a few hundred years. Consider a metal cylinder containing water and 
oriented vertically with gravity acting down. The cylinder has been at constant rotation about its long axis for 
enough time to establish solid body rotation of the fluid inside it. The horizontal velocity of the flow in the fixed 
frame of reference is the same as that of the container where they touch and it decreases linearly to zero at the 
cylinder’s center. On the other hand, the air/water interface has a parabolic shape which implies that the water 
pressure decreases quadratically radially from the rim to the center. 

Although not knowing the details of the radius of curvature function for the streamlines may seem bother-
some, once it is found, the governing linear equations can be solved immediately, if not analytically then nu-
merically. Also the solutions for pressure and velocity are not sensitive to the exact path, the radius of curvature 
takes between its minimum values at the surface to infinity at depth because of the integrations involving the 
curvature on the RHS. 
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Abstract 
An alternative presentation of a relativistic theory of gravitation, equivalent to general relativity, 
is given. It is based upon the restriction of the Lorentz invariance of special relativity from a global 
invariance to a local one. The resulting expressions appear rather simple as we consider the 
transformations of a local set of pseudo-orthonormal coordinates and not the geometry of a 4- 
dimension hyper-surface described by a set of curvilinear coordinates. This is the major difference 
with the usual presentations of general relativity but that difference is purely formal. The usual 
approach is most adequate for describing the universe on a large scale in astrophysics and cos-
mology. The approach of this paper, derived from particle physics and focused on local reference 
frames, underlines the formal similarity between gravitation and the other interactions inasmuch 
as they are associated to the restriction of gauge symmetries from a global invariance to a local 
one. 
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1. Introduction 
In the usual presentations of general relativity [1], space-time geometry is described via any set of 4 curvilinear 
coordinates { }qα ; an elementary space-time path ds  is expressed as 2d d ds g q q βα

αβ= −  where the 
quadratic form gαβ  characterizes the local metrics. The stake is to express the laws of physics in that frame;  

for example in the absence of other external forces than gravitation, a particle follows the minimum path d
B

A

s∫   
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between two space-time points A and B. In the presence of a gravitation field there is no global transformation 
of the coordinates allowing the gαβ  to take in the whole space-time the simple form of a Minkowski metrics; 
nevertheless it can take this special form in a particular point by a suitable change of coordinates which simply 
consists in diagonalizing gαβ  in this point [2]. 

We give here an alternative presentation of a relativistic theory of gravitation, equivalent to general relativity, 
in which gravitation is introduced as a gauge field associated to restricting the global Lorentz invariance of 
special relativity to a local one. 

The presentation of gravitation as a gauge field has been first introduced by Lanczos in the context of a 
variational approach to general relativity [3] [4]. Then it has been highlighted in an extension of the Yang-Mills 
approach of particle physics [5]-[7]. In the later, the fundamental interactions are accounted for by the restriction 
of gauge symmetries from a global invariance to a local one [8]. Those interactions (electro-magnetic, weak, 
strong) are associated to symmetry groups isomorphic to ( ) ( ) ( )U 1 , SU 2 , SU 3 , whose elements are unitary 
transformations [9] [N.B.: by isomorphism between two groups, we mean that their Lie algebras possess the 
same commutation relations]. When that approach is applied to gravitation, the equivalence principle, central in 
general relativity [10], is not explicitly assumed but rather derived from the fact that the gauge field is supposed 
to be minimally coupled. 

That restriction from a global invariance to a local one, associated to the emergence of a force field, is indeed 
a deep similarity between gravitation and the other interactions. However the Lorentz group is isomorphic to the 
special complex linear group ( )SL 2,C  whose elements are not unitary and this is an essential difference 
between gravitation and the other interactions. 

In the present work, we assume that the Lorentz group invariance is not a global symmetry of space-time but 
a local symmetry of a 4-dimension hyper-surface, which can be thought of as embedded in a space with a larger 
number of dimensions and we consider the transformations of a local set of pseudo-orthonormal coordinates and 
not the geometry of the 4-dimension hyper-surface described by a set of curvilinear coordinates. This is a major 
difference with other presentations of relativistic gravitation; its interest is to lead to facially simpler expressions 
although that difference is essentially formal. 

2. Gauge Properties 
Let us consider the 4-dimension space-time of special relativity and a pseudo-orthonormal base { }0 1 2 3, , ,e e e e  
with the Minkowski metrics 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

µν

− 
 
 =
 
 
 

η                                   (1) 

Any infinitesimal transformation R of the Lorentz group can be written as 

0
0

0
0

x y z

x z y

y z x

z y x

β β β
β α α
β α α
β α α

− − − 
 − − = +  − −
  − − 

R I                              (2) 

R  conserves the pseudo norm 2 2 2 2 2 2 2 2 2
0 1 2 3x x x x c t x y z− + + + = − + + + . It can alternatively be written as 

i i= + ⋅ + ⋅
 



R I J Kα β                                   (3) 

where 


α  et 


β  are 2 vectors of the ordinary 3-dimension-space. , , , , ,x y z x y zJ J J K K K  are the 6 infini- 
tesimal generators of the Lorentz group ( )4Λ , the pJ s are hermitic ( )†

p p=J J , whereas the pK s are 
antihermitic ( )†

p p= −K K , the pseudo vector 


J  and the true vector 


K  respectively account for rotations and 
for Lorentz transformations; zα  stands for a rotation angle around the Z axis, and zβ  for the velocity of a 
Lorentz transformation along the Z axis. 

We introduce the 2 anti-symmetric tensors 
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x y z

x z y

y z x

z y x

ρσ

 
 − − =  − −
  − − 

0 K K K
K 0 J J

L
K J 0 J
K J J 0

                              (4) 

and 

0
0

0
0

x y z

x z y

y z x

z y x

ρσ

β β β
β α α
β α α
β α α

 
 − − =  − −
  − − 

Ω                               (5) 

Each component pJ  or pK  is a 4 × 4 matrix so that R  can be written as 

:
2 2
i i ρσ

ρσ= + = +Ω ΩR I L I L                               (6) 

More generally, any transformation of the Lorentz group can be figured by 

( ) exp :
2
i

=Ω ΩR L                                    (7) 

We now assume that the Lorentz group invariance is not a global symmetry of space-time but a local symme-
try of a 4-dimension hyper-surface, which can be thought of as embedded in a space with a larger number of 
dimensions, for example 10 as it is envisaged in many unification theories. If we consider the tangent plane to 
this hyper-surface in any point M, it is possible to define in this plane a pseudo-orthonormal reference frame, 
and in fact an infinite set of similar frames deduced from each other by a Lorentz transformation or a rotation; in 
the close vicinity of M the laws of physics are invariant under the Lorentz group. We can in another point M ′  
of the hyper-surface M ′  define a similar set of pseudo-orthonormal frames. The question is: what is the corre-
spondence between the 2 sets of reference frames attached to M and M ′ ? 

Let us first perform on the surface an infinitesimal displacement ( )εT  from M to dM M M′ = + ; in this 
close vicinity of M the surface is assimilated to its tangent plane and ( )εT  is an infinitesimal translation. Then 
we perform a transformation ( )ΩR  around M ′ . If Ω  is a constant, the coordinates of M ′  are 

( )exp : exp : exp :
2 2 2
i i ix x x

µ µ µ
µ ν ν ν ν

ν ν ν

ε ε     ′ = + = +          
Ω Ω ΩL L L                (8) 

But if Ω  is a function of the point M, that expression becomes: 

( ) ( )

( )

exp d :
2

exp : exp : exp : :
2 2 2 2

ix' M M x

i i i iM x x

µ
µ ν ν

ν
µ µ

µν ν ρ ν
ρ ν

ν ν

ε

ε ε

 = + +  

       = + + ∂            

Ω

Ω Ω Ω Ω

L

L L L L

          (9) 

Comparing the two expressions Equation (8) and Equation (9) above, we see that µε  is transformed into 
µ ν µ

νε ε+ G                                        (10) 

with 

:
2
i x

µµ ρ
ν ν ρ

 = ∂ ΩG L                                   (11) 

Now considering some function ( )MΦ , we deduce that 

( ) ( )d µM M xµ µε+ = + ∂Φ Φ Φ                               (12) 

is in a similar way transformed into 
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( )xµ µ ν µ
µ ν µε ε+ ∂ + ∂Φ Φ ΦG                                (13) 

i.e. µ∂  is replaced by 

D ν
µ µ µ ν= ∂ + ∂G                                     (14) 

The impulsion 

1 1 1,i i i i
t

µ µ µν
ν

− − −∂ = ∂ = ∂ = ∇ ∂ 



ηp                             (15) 

is the infinitesimal generator of space-time translations. Equation (14) above means that µp  is replaced by 
1i D Gµ µ µ µ λ

λ
−= = +P p p                                 (16) 

The orbital angular momentum anti-symmetric tensor 

( )1i x xρσ ρ σ σ ρ ρ σ σ ρ−= − = ∂ − ∂l x p x p                            (17) 

can be written as 
1iρσ

ρσϕ−= ∂ ∂l                                    (18) 

where ρσϕ  denotes a rotation angle in the ( )ρσ  plan (N.B.: the 3-dimension vector components qr
p pqrε=j l  

and 0 p
p =k l  also satisfy the commutation relations above). Since ρσ σρ= −Ω Ω , then 

:
2
iD x

νρ
µ µ µ νρ

 = ∂ + ∂ ∂ Ω L                              (19a) 

can be written as 

:
4
iD

ν

µ µ µσ ν
ρσ ρ

ϕ
 ∂

= ∂ + ∂ 
∂  

L
Ω

η                              (19b) 

That expression allows to evidence a gauge invariance property: it is possible to add to ρσΩ  any function 
( )x xµ ν

µνω η  without changing µ
νG : if ω  only depends on the invariant quantity x xµ ν

µνη , its derivation 
with respect to ρσϕ  is just 0. As a consequence, there is some flexibility in the determination of the µ

νG s and 
we can impose the 4 gauge conditions 

0µ
µ ν∂ =G                                       (20) 

We have here above considered the transformations of a local set of pseudo-orthonormal coordinates and not 
the geometry of the 4-dimension hyper-surface described by a set of curvilinear coordinates. This is the major 
difference with other presentations of relativistic gravitation and notably with general relativity but that differ-
ence is purely formal. As a consequence, many mathematical expressions look simpler; for example, the inva- 
riant 4-dimension volume element dV  that appears in the expression of the action integral dS V= ∫L  in the 

Lagrange formalism is merely 4d x , i.e. the determinant of the metric tensor is 1. 

3. Gravitation Field Equations 
We now consider a scalar particle of mass m (but the procedure can be straightforwardly generalized to a particle 
of any spin, be it massive or not) and the Lagrangian density 

( )2† †mcµν
µ ν= + η Ψ Ψ Ψ ΨL                              (21a) 

with 

µ µ= ∂Ψ Ψ                                     (21b) 

We perform the transformation D ν
µ µ µ µ ν∂ → = ∂ + ∂G  so that the Lagrangian density becomes 
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( )2† †mcµν
µ ν= + Ψ Ψ Ψ ΨL g                              (22) 

where we have introduced the effective metrics 

µν µν µν= +ηg h                                   (23a) 

with 
ρ σ ρ σ

µν ρσ µ ν µρ ν νσ µ= + +η η ηG G G Gh                           (23b) 

We have written µνg  and µνh  with gothic letters instead of the usual µνg  and µνh  in order to remind 
ourselves that we have considered a local set of pseudo Cartesian coordinates and not a set of curvilinear coor-
dinates running over the whole surface. 

Applying the Lagrange equations to the Ψ  field, i.e. 

µ
µ

∂ ∂
∂ =

∂∂  ΨΨ
L L                                    (24) 

gives 

( ) ( )( )2 0mcµν µν
µ ν µ ν

 ∂ ∂ − Ψ + ∂ ∂ Ψ = g g                        (25) 

From the expression of µνg  as a function of the µνG s it is clear that µν νµ=g g ; g  has thus 10 compo-
nents but from the gauge conditions 0µ

µ ν∂ =G  we derive 

0µν
µ∂ =g                                       (26) 

Equation (26) shows that actually g  has only 6 independent components. The cross-term in Equation (25) 
vanishes, leading to 

( ) ( )2 0mcµν
µ ν∂ ∂ − =Ψ Ψg                               (27) 

The wave equation so appears as the wave equation of a free particle in which the original Minkowski metrics 
µνη  has been replaced by the effective metrics µνg . 
The gravitation field is thus described by a modification of the geometry of space-time by replacing the Min-

kowski metrics µνη  by the effective metrics µνg . A consequence of the modified wave equation above is that 
the dynamics of any particle, with or without mass, is affected by a gravitation field. 

We now assume for the gravitation field itself a Lagrangian density term quadratic in g  and in µ∂ g . The 
scalar product of two vectors A  and B  is A B A B A Bµ ν µ µ

µν µ µ= =g , this can be extended to the scalar 
product of two tensors of any rank and to the metric tensor itself. So for the term quadratic in g  we assume the 
expression 

2 2 2ρσ αβ α σ αβ
αρ βσ σ α αβλ λ λ= =g g g g g g g g                            (28) 

λ  is the mass of the gravitation field; now αβ
αβ = Ig g  so that this term is a constant we can hereunder dis-

card (in fact we will see later on that formally maintaining that term in the calculation would imply 0λ = ). In a 
similar way we assume for the term quadratic in µ∂ g  the following expression 

( )( )µν ρβ σα
αρ µ βσ ν∂ ∂g g g g g                                (29a) 

or 

( )( )ν ρσ
ρσ ν∂ ∂g g                                    (29b) 

[N.B.: as µν µν
µν = Ig g , considering the infinitesimal variations µν µν µν→ + δg g  and µν µν µν→ + δg g , and 

neglecting the second order terms gives µν
µν= −δ δ ; it then may be checked that the additional terms that could 

appear in developing the derivatives of Equation (29b) actually cancel each other]. 
The full Lagrangian density of the (field + particle) system is 

( ) ( )( )2† † 1mcµν µν ρβ σα
µ ν αρ µ βσ νχ − = ∂ ∂ + − ∂ ∂ Ψ Ψ Ψ ΨL g g g g g g                (30) 
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where χ  is a dimensionless constant; the negative sign and the negative exponent are for commodity reasons. 
Applying the Lagrange equations to µνg , i.e. 

ξ µν µν

∂ ∂
∂ =

∂ ∂

L L
g g

                                     (31) 

with µν µν
ξ= ∂g g  leads to the field equations (with the same remarks as in the N.B. here above): 

( ) ( ) ( )†ρσ αβ
µα νβ ρ σ µ νχ∂ ∂ = − ∂ ∂Ψ Ψg g g g                            (32) 

These are the equations of the gravitation field and their nonlinear character is obvious. The term on the right- 
hand side 

( ) ( )†
µ νχ ∂ ∂Ψ Ψ                                      (33) 

is proportional to the energy-impulsion density tensor of the particle; it is the source term of the gravitation field. 
In the classical, i.e. non quantum, limit, the correspondence 1i ν

µ µ ν
−↔ ∂ηp   together with the expression of the 

density †mρ = Ψ Ψ , changes this term into 

2 2m mµ ν µν
ρ ρχ χ=p p T
 

                                (34) 

So Equation (32) becomes 

( ) 2m
µν ρσ αβ µν

µα νβ ρ σ µν
ρχ∂ ∂ = − T


g g g g g g                           (35) 

For the sake of commodity, we will re-write it in a different, more workable way. Let us introduce the two 
quantities 

µν
µνΤ = Tg                                       (36a) 

1
2µν µν µν= − Ττ T g                                   (36b) 

Combining Equations (35) and (36) we finally get after some manipulations 

( )( ) 22 2
m

ρσ αβ
µα νβ µν αβ ρ σ µν

ρχ− ∂ ∂ = − τ


g g g g g g                        (37) 

4. Non Relativistic Limit 
In the case of a weak gravitation field, the quadratic terms in the field equations can be neglected. In the absence 
of matter, the linearized equations take the form of propagation like equations: 

0µν
µ ν µν∂ ∂ ≈η h                                      (38) 

If matter is present, there is a source term: 

( )( ) 2

12 2 T
2m

ρσ αβ
µα νβ µν αβ ρ σ µν µν

ρχ  − ∂ ∂ ≈ − − 
 

η η η η η ηT


h                  (39a) 

with 

T ρσ
ρσ≈ η T                                     (39b) 

i.e. 

00 002

T2
2m

ρχ  ≈ − + 
 

T


h                                (40a) 

2

T2
2ii iim

ρχ  ≈ − − 
 

T


h                                 (40b) 
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0 02i im
ρχ≈ + T


h                                   (40c) 

2i j ijm
ρχ≠ ≈ − T


h                                   (40d) 

In the non-relativistic limit 2 2 2 2mc c c mc≈E p p   and hence we get 
2 4

00

0

0
0
0

ii

i

i j

m c

≠

≈

≈

≈

≈

T
T
T
T

                                     (41a) 

hence 
2 4T m c≈ −                                       (41b) 

Moreover if the field is slowly varying with time, the time derivatives on the left hand side of Equation (40) 
vanish and those equations become: 

2 2
00 2 mcρχ∇ ≈ −



h                                   (42a) 

2 2
2ii mcρχ∇ ≈ −


h                                   (42b) 

2
0 0i∇ ≈h                                       (42c) 

2 0i j≠∇ ≈h                                       (42d) 

The above expression for 00h  has to be compared with the expression of the classical gravitation potential 
U : 

2 4π Gρ∇ =U                                      (43) 

where G  is the gravitation constant. It means that in the non-relativistic limit 00h  is proportional to the New-
tonian potential. The constant χ  will be hereunder determined by the requirement of compatibility with New-
ton’s equation of motion. 

On the other hand, the dynamical equation of a massive particle is given by Equation (27)  
( ) ( )2 0mcµν

µ ν∂ ∂ − =Ψ Ψg  which in the classical limit becomes 
2 2m cµν

µ ν = −p pg                                   (44a) 

or 
00 2 0 2 2 2 2 4

1,2,3 1,2,3

i ii ij
i i i j

i i i j
c c c m c

= = ≠

+ + + = −∑ ∑ ∑E Ep p p pg g g g                   (44b) 

Let us put 
µν µν µν= ηg f+                                     (45) 

so that Equation (44b) becomes 

( ) ( )00 2 0 2 2 2 2 4

1,2,3 1,2,3
1 1i ii ij

i i i j
i i i j

c c c m c
= = ≠

− + + + + + = −∑ ∑ ∑E Ep p p pf f f f                (46a) 

or 

( )2 2 4 2 2 00 2 2 2 0 2

1,2,3 1,2,3

ii i ij
i i i j

i i i j
m c c c c c

= = ≠

= + + + + +∑ ∑ ∑E p E p Ep p pf f f f                (46b) 

Let us also put 
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( ) ( )1 22 4 2 2
0 m c c= +E p                                   (47) 

We proceed by successive iterations; replacing E  by ( )0E  in the right hand side of Equation (46b) gives 

( ) ( ) ( ) ( )
2 2 00 2 2 2 0 2
1 0 0 0

1,2,3 1,2,3

ii i ij
i i i j

i i i j
c c c

= = ≠

≈ + + + +∑ ∑ ∑E E E p E p p pf f f f                   (48a) 

or 

( ) ( ) ( )2 2 00 2 4 00 2 2 0 2 2
1 0

1,2,3 1,2,3

ii i ij
i i i j

i i i j
m c c mc c c

= = ≠

≈ + + + + +∑ ∑ ∑E E p p p pf f f f f               (48b) 

In the non-relativistic limit 2 2 2 2mc c c mc≈E p p   so that Equation (48b) approximately becomes 

( ) ( )
2 2 00 2 4
1 0 m c≈ +E E f                                     (49) 

Moreover in the weak field limit 00 1f  so that from Equation (49) we finally derive 

( )

2 00 2
2

0 2 2
mcmc

m
≈ +

pE f
+                                  (50) 

If we compare the above expression with the non-relativistic expression 
2

2

2
mc m

m
= +

pE U+                                     (51) 

we see that the particle is undergoing an effective gravitation potential 
00 2 2c=U f                                        (52a) 

Since µν
µν = Ig g  this is equivalent to 

2
00 2c= −U h                                       (52b) 

Since from Equation (42a) 2 2
00 2 mcρχ∇ ≈ −



h  the above expression of U  yields 

4
2

22
mcρχ∇ ≈U


                                      (53) 

By comparison with the expression of the classical gravitation potential 2 4π Gρ∇ =U  we get 
2

4

8πG
mc

χ =
                                         (54) 

If we had retained the 2 αβ
αβλ g g  term in the expression Equation (30) of the Lagrangian density of the 

gravitation field, we would have in Equation (52b) an additional constant term; the comparison with the classical 
gravitation potential implies 0λ = . The field equation Equation (37) now writes as 

( )( ) 2 4

16π2 G
m c

ρσ αβ
µα νβ µν αβ ρ σ µν

ρ
− ∂ ∂ = − τg g g g g g                         (55) 

5. Post-Newtonian Terms 
From the expressions Equation (42) we derive in the weak, slowly varying field limit 

00 21 2
c

≈ − −
U

g                                       (56a) 

21 2ii c
≈ −

U
g                                        (56b) 

0 0i ≈g                                          (56c) 

0i j≠ ≈g                                         (56d) 
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so that 

( )2 2 2 2 2 2
2 2d 1 2 d 1 2 d d ds c t x y z

c c
   ≈ − + + − + +   
   

U U                        (57) 

In addition, Equation (48b) gives 

( ) ( )
2 2 2 2 2 2
1 0 22 4m c c

c
≈ + +

UE E U p                               (58) 

This has to be compared with the Newtonian expression at the lowest order in 2 2cp  and mU  

( )2 2 4 2 2 2 2 2 2 2 2 4 4
22 ,m c c m c c o m c

c
= + + + +

UE p U p U p                     (59a) 

or 

( )
2 2 2 2 2 2

0 22m c c
c

≈ + +
UE E U p                               (59b) 

6. Conclusions 

Introducing the Planck length ( )1 23
PL c G−=   and the Planck mass ( )1 21

PM cG−=   leads to the following 
expression for the full Lagrangian density of the (field + particle) system 

( ) ( )( )2† †
3

1 1
8π P P

mmc
M L

ρσ µν ρβ σα
ρ σ αρ µ βσ ν

   = ∂ ∂ + − ∂ ∂  Ψ Ψ Ψ ΨL g g g g g g            (60) 

( )82.17651 10  kgPM −≈ × . According to that expression, the physical objects such as Pm M  have their dy-
namics mainly driven by the forces other than gravitation and the effective space-time metrics g  is the metrics 
generated by the external masses. For the objects such as Pm M , gravitation is a major driver of their dy-
namics, and they generate the gravitation field as well as they undergo it. 

The usual approach of general relativity is most adequate for describing the universe on a large scale in as-
trophysics and cosmology. The approach of this paper, derived from particle physics and focused on local refer-
ence frames, underlines the formal similarity between gravitation and the other interactions inasmuch as they are 
associated to the restriction of a global symmetry to a local one. 

In a 10-dimension space-time as it is considered in certain unification theories, gravitation is linked to the 
geometry of the 4 usual dimensions whereas the other fundamental interactions can be associated to the geome-
try of the 6 additional ones; in that approach extra fields (which eventually may account for dark matter and/or 
dark energy) naturally come out by regarding the geometry of the full 10-dimension set. 
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Abstract 
We propose a simple telescope with three-dimensional image capability for surface profile meas-
urements. Our method based on the algorithm of reflectivity-height transformation is applied to a 
traditional commercial telescope with a webcam for determining the third dimension of the test 
object. It is also useful for thickness, deformation, and surface profile measurements. 

 
Keywords 
Telescope, Three-Dimensional Measurement, Reflectivity, CCD, Webcam, Surface Profile 

 
 

1. Introduction 
In recent decades, telescopes have not undergone any major variations in their structures or applications. A pic-
ture from a telescope can be taken by a camera. We can take a picture in two-dimensional (2D) but not in three- 
dimensional (3D) format. In this paper, we propose a new telescope that has the ability to show and plot a 3D 
image for long distance surface profile measurements. The method is based on the reflectivity-height transfor-
mation, including the internal reflection effect [1] of a prism and the principles of the first-order optics. The dif-
ference of intensity or reflectance is proportional to the object distance and the deviation angle of the light. We 
have previously proposed 3D profilometers for both the transmission [2] and reflection [3] types, but they were 
applied for measuring smooth surface profiles of small areas or for use with a microscope. The method had been 
demonstrated and used in biological measurements [4]. The main structure of our 3D telescope combines a 
commercial telescope with a webcam and a parallelogram prism. These components are inexpensive and can be 
easily acquired. The experimental results of several coins have shown that the error percentage of thickness can 
be less than 4% for a telescope with a magnification of 25× and a measuring distance of 10 m. It will be appli-
cable for remote measurements in the future. 
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2. Method: Reflectivity-Height Transformation 
When a parallelogram prism made of BK7 with the base angle of 45˚ is used to be an angular sensor to sense the 
angle deviation of the object light, the light passing through it with twice internal reflections. n1 and n2 are the 
indices of refraction of the prism and air respectively. Assume that n2 = 1.000 and n1 = 1.517 (the average 
wavelength λ = 550 nm), and the range of external incident angle θ = 0˚ - 10˚. The simulation results of the re-
flectivities of the s- and p-polarized lights are shown in Figure 1(a), where Rs2 and Rp2 are represented the re-
flectivities of twice internal reflection of the s- and p-polarized lights, respectively. Apparently, the change in the 
reflectivity of the p-polarized light (dotted line) close to the critical angle is more sensitive than that of the s- 
polarized light (solid line) close to the critical angel.  

Regarding objects with a large change in height, we can prefer to select the s-polarized light as the light 
source because of its larger angle measurement range. Convert the practical measured curve into coordinates, 
where the x-coordinate is converted to RS2, y-coordinate is converted to θ, and convert the angle θ to be the 
function of RS2, as shown in Figure 1(b). 

From Figure 1(a), the change of θ  will result in the change of Rs2; on the contrary, we can derive the 
change of θ  from the change of Rs2, as shown in Figure 1(b). As a result, we receive the images from the 
webcam to record the light intensities of the incident angles close to the critical angle and the total reflection 
(TIR) respectively, and then use Matlab software to overlap the two images and calculate the reflectivity Rs2. 
When the interval of the two points of the object is x∆ , the reflection lights are projected into the parallelogram 
prism and then passed via a telescope to form the image on the webcam; the interval of the two points of the 
formed image correspond to x∆  is X∆ . If we take X∆  as the interval of the adjacent two pixels of the 
webcam, we can derive x∆  via the optical magnifying power. As shown in Figure 2, the two points have dif-
ferent heights, and the tilt angle is α ; thus, the difference in the reflection angles of the two points is 2α ; if 
α  is very small, the height difference between the two points can be expressed as: 

tanh x xα α∆ = ∆ ≈ ∆ ,                                  (1) 
If we can acquire the reflectivity difference Rs2 of the two points after imaging and calculate θ∆  via the 

function shown in Figure 1(b), we can derive α  via the optical magnifying power MP . 
As x X MP∆ = ∆  and 2MPα θ= ∆ , we can substitute them into Equation (1). The height difference can be 

rewritten as  

2
h X Kθ θ∆

∆ = ∆ = ∆ ,                                 (2) 

where 2K X= ∆  is a constant and if the tilt angle α is very small, i.e. 0θ∆ → , then θ∆  can be written as 
dθ , we can integrate them into the Equation (2), thus the surface height could be given as 

0dh K K hθ θ= = +∫ ,                                 (3) 

where h0 is the initial height. 

3. Experimental Results 
The system structure of the experiment is shown in Figure 3, and the object to be tested (1) is placed right in 
front of the telescope. The light source used in the experiment is a fluorescent lamp (2) (the average wavelength 
= 550 nm). When the object is placed far away from the system, it can be considered a parallel light, which will 
pass through device (3) (Polarizer). The transmission axis of the polarizer should be adjusted to 90 degrees to 
make sure that all received lights are the s-polarized lights. Afterward, the beam passes through device (4) (filter 
plate) and only green lights with specific wavelengths can pass through device (4). Next, device (5) (parallelo-
gram prism) is rotated by device (6) (rotation platform) until the angle of device (5) reaches the TIR angle and 
critical angle that is needed. Then, we can conduct observation using device (7) (telescope). Finally, we use de-
vice (8) (the image capturing unit, such as a webcam, or CCD) to capture images of the TIR and the critical an-
gle, and then process and analyze them by device (9) (personal computer (PC) with Matlab software) to calcu-
late the reflectivity Rs2 and h, where ∆Rs2 ≒ dRs2 can be considered the reflectivity difference of the adjacent 
pixels and dX can be considered the interval of the adjacent pixels. According to Equation (3), the surface height 
of object can be calculated and the 3D surface profile can be plotted. 
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(a)                                                      (b) 

Figure 1. (a) A simulation of the changes of the reflectivities of the twice internal reflections of the p- and s-polarized 
lights to the external angle; (b) The practical measured equation and relation curve of external angle θ versus reflectivity 
Rs2 after the coordinates converted.                                                                                 

 

 

α

β
αβ +

x∆

h∆

αβ +
β

 
Figure 2. When the tilt angle of two adjacent points on the 
object is α, the change in the reflection angle will be 2α.     

 

 
Figure 3. System structure diagram.                                

 
In order to measure more accurate 3D surface profiles, we need to use a green filter plate to perform the 

measurement. As described above, after we perform curve fitting for obtaining the external incident angle θ , 
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we can finally obtain the 3D surface profile of the object. In one of our experiments, two objects to be tested to-
gether are a key and an Australian coin and they are away from the system by 10 m. First, we measure the width 
and thickness of the samples using a vernier caliper. The width of the key is 18.99 mm and its thickness is 1.72 
mm; the width of the Australian coin is 23.6 mm and its thickness is 1.7 mm. Figure 4(a) shows the 3D surface 
profiles of the key and the Australian coin; the height of the higher part is about 2.09 mm and the height of the 
lower part (recession) is about 1.13 mm, as shown in Figure 4(b), and the length of the key is about 53.62 mm. 
The points marked in Figure 4(a) are the heights of the human portrait or the words protruding from the surface 
of the coin and the recession of the object to be tested. These show that the heights of point A, B, C, D, are 1.13, 
2.22, 2.26 and 1.248 mm, respectively. 

In addition to the above experiment, we also performed experiments on other coins to make sure the proposed 
method is feasible and to find out the average error range. We compared the average thickness with the meas-
urement results of the vernier caliper. The measurement results of the vernier caliper serve as the reference val-
ues. The error of the thickness is about 0.07 mm and the average error percentage is 4%. According to first- or-
der optics approximation, as the measurement distance of the structure is 10 m, the f-number is 5.346, and the 
diameter of telescope is 52 mm, the corresponding depth of field is 31 mm, the object range that we measured 
cannot exceed the limit [5]. 

4. Discussions 
The definition of the sensitivity S is written as  

SRS
h

∂
=

∂
                                      (4) 

∂RS is the reflectivity change corresponding to the micro height change. The highest sensitivity and the lowest 
sensitivity with a measurement range of 5.8˚ - 8.5˚ When the external angle is 5.8˚, we find that the highest sen-
sitivity S = 0.41 (change/mm); when the external angle is 8.5˚, we find that the lowest sensitivity S = 0.07 
(change/mm).  

Vertical resolution means the minimal surface height which the system can discriminate. Where S is the sensi-
tivity, ( )2 minsR∆  is the minimal reflectivity change which the CCD can discriminate, and the expression 
method of the gray level value of the CCD is 0 - 255, for 8 bits A/D converter, the vertical resolution can be de-
fined by the following equation  

( )2 minS
V

R
R

S
∆

=                                   (5) 

The vertical resolution of the system is shown in Figure 5; when the external angle is 7.2˚, the vertical resolu-
tion is 33.73 µm. 

The light source is an indoor fluorescent lamp, so the experiment does not need to be conducted in a dark 
room. Thus, we not only need to consider the stability of the power of the fluorescent lamp, but we also need to 
consider whether the system receives light from other sources in order to be aware of any measurement errors. 
Regarding the stability of the light source, we use the power meter to continuously measure the stability of fluo-
rescent lamp, as shown in Figure 6:  

As shown in Figure 6, the number of the sampling points of the x-coordinate is 400, and the sampling fre-
quency is 0.25 times per second; the power unit of the y-coordinate is μW. We can see the average optical power 
of the fluorescent lamp is 134.7 μW, and its swaying quantity is about ±0.06 μW. Therefore, we know that the 
swaying quantity of the fluorescent lamp is about 0.04%. For using the 8 bits A/D converter, the CCD’s gray 
level is in the region of 0 - 255, the minimal discriminable change is about 0.4%. As the light intensity change of 
the fluorescent lamp is lower than 0.4%, it will not influence the best light intensity resolution of the CCD; ac-
cordingly, we can let ( )2 min 1 256sR∆ = . 

Lateral resolution means the minimal discriminable interval. According to the Rayleigh Criterion, 
1.22lR L Dλ= × , where L  is the distance of the target to be measured, and D  is the aperture of the tele-

scope (or the effective light collection of the system). Accordingly, we know that the lateral resolution is deter-
mined by the measurement distance L  and the aperture D . When we increase the measurement distance, the 
minimal discriminable distance will increase; in other words, the lateral resolution will be reduced. On the other  
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(a) 

 
(b) 

Figure 4. (a) The 3D surface profiles of the key and the Australian coin; 
(b) The height diagram of the key and the Australian coin.                     

 

 
Figure 5. A curve diagram of the vertical resolution in response to the 
external angle change.                                             

 
hand, if the effective light collection aperture is smaller, the minimal discriminable distance will also increase 
and the lateral resolution will be reduced. If we want to improve the lateral resolution, we can use a telescope 
with a bigger aperture; that is to say, we increase to improve the lateral resolution. With the telescope that we 
currently use, D = 52 mm, the measurement distance is 10 m, and the lateral resolution is 0.13 mm. 

5. Conclusion 
This experiment adopts the angle deviation method by using the parallelogram prism, common telescope and 
webcam to measure the 3D surface profiles of coins with a thickness of several millimeters at a 10 m distance. 
The error percentage is about 4%. According to reflectivity-height transformation, this method converts the re-
flectivity into the height of the object point by point, and then acquires its 3D surface profile in real time. Thus, 
the device can be used for remotely monitoring or detecting the change of the surface profile. Examples include 
measuring a change in topography with aerial photos, monitoring dangerous or inaccessible environments, ob- 
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Figure 6. A stability diagram of the power of the fluorescent lamp as 
measured by the power meter.                                     

 
serving the cracks or deformation of buildings, investigating soil flows or floods, and remote testing for other 
purposes.  

Acknowledgements 
This study was supported in part by the National Science Council of Taiwan with contract number NSC 100- 
2221-E-150-067-MY2. 

References 
[1] Born, M. and Wolf, E. (1999) Principles of Optics. 7th Edition, University of Cambridge, Cambridge, 38-52.  

http://dx.doi.org/10.1017/CBO9781139644181 
[2] Tan, C.T., Chan, Y.S., Lin, Z.C. and Chiu, M.H. (2011) Angle-Deviation Optical Profilometer. Chinese Optics Letters, 

9, Article ID: 011201. http://www.opticsinfobase.org/col/abstract.cfm?uri=col-9-1-011201  
[3] Tan, C.T., Chan, Y.S., Chen, J.A., Liao, T.C. and Chiu, M.H. (2011) Non-Scanning, Non-Interferometric, Three-Di- 

mendional Optical Profilometer with Nanometer Resolution. Chinese Optics Letters, 9, Article ID: 101202.  
http://www.col.org.cn/abstract.aspx?id=COL201109101202-03  

[4] Chiu, M.H., Tan, C.T., Lee, T.S. and Lee, J.C. (2013) Non-Scanning Three Dimensional Optical Microscope Based on 
the Reflectivity-Height Transformation for Biological Measurements. Microscopy & Microanalysis, 19, 425-432.  
http://dx.doi.org/10.1017/S1431927612014365  

[5] Greivenkamp, J.E. (2004) Field Guide to Geometrical Optics. 1st Edition, SPIE Press, Bellingham, 35-36.  
http://dx.doi.org/10.1117/3.547461.p35 

http://dx.doi.org/10.1017/CBO9781139644181
http://www.opticsinfobase.org/col/abstract.cfm?uri=col-9-1-011201
http://www.col.org.cn/abstract.aspx?id=COL201109101202-03
http://dx.doi.org/10.1017/S1431927612014365
http://dx.doi.org/10.1117/3.547461.p35


Natural Science, 2014, 6, 1259-1265 
Published Online November 2014 in SciRes. http://www.scirp.org/journal/ns 
http://dx.doi.org/10.4236/ns.2014.616115   

How to cite this paper: El Naschie, M.S. (2014) The Gap Labelling Integrated Density of States for a Quasi Crystal Universe 
Is Identical to the Observed 4.5 Percent Ordinary Energy Density of the Cosmos. Natural Science, 6, 1259-1265.  
http://dx.doi.org/10.4236/ns.2014.616115 

 
 

The Gap Labelling Integrated Density of 
States for a Quasi Crystal Universe Is  
Identical to the Observed 4.5 Percent  
Ordinary Energy Density of the Cosmos 
Mohamed S. El Naschie 
Department of Physics, University of Alexandria, Alexandria, Egypt 
Email: Chaossf@aol.com  
 
Received 30 August 2014; revised 29 September 2014; accepted 15 October 2014 

 
Academic Editor: Leila Marek-Crnjac, Technical School Center of Maribor, Slovenia 

 
Copyright © 2014 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Condense matter methods and mathematical models used in solving problems in solid state phys-
ics are transformed to high energy quantum cosmology in order to estimate the magnitude of the 
missing dark energy of the universe. Looking at the problem from this novel viewpoint was re-
warded by a rather unexpected result, namely that the gap labelling method of integrated density 
of states for three dimensional icosahedral quasicrystals is identical to the previously measured 
and theoretically concluded ordinary energy density of the universe, namely a mere 4.5 percent of 
Einstein’s energy density, i.e. E(O) = mc2/22 where E is the energy, m is the mass and c is the speed 
of light. Consequently we conclude that the missing dark energy density must be E(D) = 1 − E(O) = 
mc2(21/22) in agreement with all known cosmological measurements and observations. This re-
sult could also be interpreted as a strong evidence for the self similarity of the geometry of space-
time, which is an expression of its basic fractal nature. 
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1. Introduction 
It is well known that many models and mathematical techniques that proved to be valuable in the low energy 
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domain of condense matter physics were found to be of considerable usefulness in clarifying basic questions in 
high energy physics [1]-[7]. Symmetry breaking and phase transition [3] are well known examples for the above, 
which resulted in the major discovery of the Higgs boson [4]. The hypothesis is also well known that the uni-
verse is a gigantic self similar structure [6] [7] as partially evidenced by the planetary system of the Rutherford- 
Bohr atom model [5]. Nevertheless the result of the present paper goes far beyond what the preceding fact could 
have led us to believe and it was rather a delightful unexpected result to find that the methods of solid state 
physics and the suspected self similarity of a fractal universe [6] [7] could lead to accurate results setting the gap 
labelling integrated density of states for a 3-D quasicrystals [8]-[12] equal to the ordinary energy density of the 
cosmos as found by COBE, WMAP and the Planck measurements [13]-[18]. In fact these various accurate 
measurements which lead to several Nobel prizes in physics [13]-[20] are in complete accordance with the 
theoretical results obtained in the last three years or so [21]-[25] and in turn these theoretical energy density 
derivations give identical results to the present one [16]-[25] as will be expanded upon in the following sections. 
In short the main objective of the present paper is to show that the methods of high energy physics and that of 
low energy solid state physics converge in a clear way leading to the same dark energy density. 

2. Integrated Density of States 
2.1. Background Information 
It is well known that electronic band theory is a very useful and successful theory in the physics of solids that 
solved difficult problems connected to the design of solar cells and transistors as well as illuminating funda-
mental properties of solids such as optical absorption and electrical resistance [8]. In this respect the density of 
states and the Brillouin zone plays a central role [8]. Thus the said density function is defined as the number of 
electronic states per unit energy for nearby electron energy while the Brillouin zone is polyhedron in Schrö- 
dinger wave vector space, which is related to a corresponding crystal lattice [8]-[12]. 

Now with a somewhat unconventional but well motivated idea in the back of our minds, namely that of draw- 
ing an instructive analogy between the zero density inside a band gap and the geometry and topology of the 
crystal lattice on the one side and ordinary energy and dark energy density contained in the structure of our 
cosmos on the other side, we will start here by extending the above concepts and notions to quasi periodic crys-
talline [8] [10] [11]. Luckily we already have at our disposal a gap labelling theorem to lean on as well as many 
results obtained notably by J. Bellisard [8], A. Connes and many others who applied the powerful mathematical 
machinery of K-theory and noncommutative geometry [26] to the problem. For example an extensively used 
standard model is the Fibonacci sequence of two letters a and b in which the frequency of the “a” is given by the 
golden mean [8] [11]. This we consider next. 

2.2. Gap Labelling Density of States of One Dimensional Discrete System 
Probably the simplest group of one dimensional systems to illustrate the theory at hand is an automatic se-
quences such as period doubling, the Rudin-Shapiro sequence and Thue-Morse sequence [8]. However the Fi-
bonacci sequence is the most appropriate for our purpose here not only because it is the simplest but also be-
cause it constitutes in the limit a one dimensional Cantorian space with a Hausdorff dimension equal  

( ) ( )0 5 1 2cd = −  and a Menger-Urysohn topological dimension 1n = −  while displaying a remarkable inte- 

grated density of states having the same information as that of a higher dimensional model. Let the two letters 
alphabet be given by { }0,1A =  and let the substitution be  

( )
( )
0 01

1 0

y

y

=

=
                                       (1) 

Following Bellissard’s general exposition and his notation we find two matrices [8] 

( )
1 1
1 0

M y  
=  
 

                                      (2) 

and 
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( )2

0 0 1
1 1 0
1 1 0

M y
 
 =  
  

                                   (3) 

The largest Eigenvalue of the above is ( )5 1 2P = + , i.e. 1P φ=  where ( )5 1 2φ = −  is the golden 
mean. Using the same notation and abbreviations of [8] the corresponding Eigenvectors are consequently 

1
V

φ
φ

 
=  − 

 

2

2 1
1
1

V
φ
φ
φ

− 
 = − 
 − 

                                      (4) 

and the integrated density of states (IDS) is given by [8] 

[ ]IDS a bφ= +                                      (5) 

where ,a b Z∈ . It is almost impossible for anyone familiar with noncommutative geometry or E-infinity theory 
to overlook that the preceding density is at a minimum formally identical to that of the compactified Penrose til-
ing dimensional function [7] [11] [26] as well as the bijection formula of Cantorian spacetime [7] [26] [27]. 
Thus as simple as the preceding analysis may be, it has far reaching consequences which we discuss next in the 
context of a K-analysis of the famous Penrose fractal tiling [11] [12] [26]. 

2.3. Landi’s K-Analysis of the Penrose Tiling  
As noted by Landi [12], the K-theory of Penrose universe treated as x-space by Connes [26] is straight forward 
and leads via Bratteli diagram and the fact that {0} is the only primitive ideal to the inclusion [12] 

1In : n nA A +⇒                                      (6) 

which is reminiscent of the previous recursive Fibonacci example. Proceeding in the usual way Landi can then 
prove the proposition that the c star algebra of the Penrose tiling gives rise to a group given by [12] 

oK Z Z= ⊕                                       (7) 

and 

( ){ }, ;oK a b Z Z a b oφ+ = ∈ ∅ + ≥                             (8) 

This result is again identical to that obtained by Connes and noting the one to one correspondence between 
the bijection formula of E-infinity Cantorian spacetime [7] [19] [26]-[29] 

( ) ( ) 11 nn
cd φ −=                                      (9) 

and von Neumann-Connes dimensional function it follows that ko+ as well as [IDS] are simply mathematical 
tautology, albeit an extremely instructive one bringing various theories for the micro cosmos and the large 
structure of spacetime [29] to come together and reveal their quintessentially identical nature. One must add 
however that the bijection formula is a far more compact notation and one could deduce ( )n

cd  for negative di-
mensions much easier than by using the recursive Fibonacci prescription of K-theory and noncommutative ge-
ometry. Thus for the empty set we see immediately that 1n = −  leads to [7] [27] 

( ) ( ) ( )1 1 21 21 1cd φ φ φ− − −− = = =                              (10) 

exactly as should be while the zero set is given clearly by [7] [27] 
( ) ( ) ( )0 1 10 1 1cd φ φ φ− −= = =                                (11) 

so that ( ) ( )1 0 2 1c cd d φ φ− + = + =  is nothing but our unit set [7] [27] 
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( ) ( ) ( )1 1 01 1 1 1cd φ φ−= = =                                 (12) 

Next we discuss the vital physical and cosmological implication of the preceding results. 

3. Ordinary and Dark Energy from Integrated Density of States and Gap Labelling 
One of the most important conclusions arrived at from the preceding Section 2 is that what we called topological 
probability nφ  are also Hausdorff dimensions for negative Menger-Urysohn space [7] [27] and consequently 
the inverse of a Hausdorff dimension of a corresponding positive dimension n. Actually we have known this fact 
since a long time from our work on E-infinity [7] [27]. However the slightly new twist is that these normed 
Hausdorff dimensions or probability corresponds to a subtle form of geometrical density with a physical mean-
ing. To explain what we mean in a more direct and specific way we could do nothing better than derive the cele-
brated Hardy’s probability for quantum entanglement [19]-[22] and proceed from there to the computation of the 
ordinary and the dark energy density of our universe and discuss its direct interpretation as an integrated density 
of states [8] which implies that our cosmos is akin to a gigantic quasi crystalline with Cantorian fine structure. 

Hardy’s quantum probability of entanglement [19]-[22] is an ideal starting point for various very good reasons. 
First it is an exact solution of two quantum particles using orthodox quantum mechanics a la Dirac [19]-[22]. 
Second this exact solution turned out to be a most surprizing quantitative answer with a strong qualitative fla-
vour being the golden mean φ  to the power of five, that is to say 

( ) ( ) 5
5Hardy 5 1 2 0.09016994393P φ  = = − =                       (13) 

Being a probability we could look upon it as being the inverse of a dimension, i.e. un-normed probability 
given by the bijection formula [7] [27]. Taking the dimensionality n to be n = 6 one finds [7] [27] [19]-[22] 

( ) ( ) ( )6 1 56 5 11 1 11 11
111

11

cd φ φ φ−= = = + = +
+

+

                     (14) 

Therefore we have the normed probability [19]-[22] 
( ) ( ) ( )6 5 51 1 11 Hardycd Pφ φ= + = =                           (15) 

Alternatively we could see P(Hardy) as living in a negative four dimensional space 4n = −  which leads to [7] 
[27] 

( ) ( ) 4 14 51cd φ φ− −− = =                                  (16) 

Here we tacitly made use of the notion of the degree of emptiness of an empty set introduced first by the late 
inventor of the word fractals, B. Mandelbrot [7]. This is so because the zero set n = 0 is the surface of the empty 
set 1n = −  while the empty set 1n = −  is the surface of an emptier still set 2n = − . Similarly 2n = −  is the 
surface of 3n = −  and 3n = −  is the surface of 4n = −  and so on add infinitum until we reach, via the phi-
losophical concept of infinity, the dual philosophical concept of a true insubstantial nothingness [7] [27].  

Let us return to ( )6
cd  and in particular ponder the meaning of its continued fraction. The geometry of contin-

ued fractions is a specialized and rich subject in its own right [30]-[32]. Here we mention only on passing the 
geometrical relevance of continued fractions in connection with SL(2, 7) Lie symmetry groups of which the 
holographic boundary of E-infinity theory, i.e. SL(2, 7) is a member as well as the density points theorems on 
measurable subsets and multi-dimensional continued fractions [32]. However our main attention should be 
placed on the appearance of the remarkable prime number eleven of super gravity and Witten’s M-theory [33]- 
[36]. Even in the simple form given here it is obvious that 511 φ+  represents a self-similar fractal-like version 
of the original M-theory spacetime (see [33] Figure 1 and Figure 2 as well as [36] Figure 3). It is easily reasoned 
that 511 φ+  is equal to the isomorphic length of a super symmetric space [33] [36], made of the bosonic 

34D n φ= = +  and fermionic 35D n φ= = +  of E-infinity theory [19]-[21]. The intersection of both spaces 
gives us therefore a super symmetric space with ( )( )3 3 54 5 22 2D n φ φ φ= = + + = +  where 52φ  is equal to 

( )3 31k φ φ= − =∈  of “tHooft-Veltman-Wilson” dimensional regularization [35]. Seen that way 22D n k= = +  
becomes not only a Hausdorff dimension but a measure for the ordinary energy density of our universe, namely 
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[13] [16]-[25] [33]-[36] 

( ) ( ) ( )2 2Einstein 22 22.18033989 22E E k mc mc= + = ≅                      (17) 

where the 22 may be viewed as the compactified dimensional subset of the 26 dimensions of the bosonic string 
theory [19]-[21]. In other words, for a normed m = 1, c = 1 we have E(Einstein) = 1 and the measurable energy 
density is simply ( )1 1 22 1 22 95.5D k= + ≅  percent in full agreement with all actual cosmic measure-
ments and observations [15]-[25]. Looking now at the entire situation in a global manner we could see not only 
that the very same mathematics which is developed for the very small is also applicable seamlessly to the ex-
tremely large but also that the physics underneath is quite similar. A band gap is evidently where a density of 
states function is equal zero [8]. In our spacetime model this could play the role of the empty set [33] [34]. The 
electrons on the other hand represent the analogue of the zero set. This is in fact quite reasonable from the 
viewpoint of fractal logic and the fractal counting of photons, which are the messenger particles, connected to 
the fermionic electron and which has a fractal weight number equal φ  rather than one. Consequently the elec-
trons will correspond to Cantorian dust responsible for the ordinary measurable energy density [17]-[25].  

4. Conclusions 
There is one aspect of theoretical physics that is so incredibly beautiful that one cannot find the right words to 
describe it. This is a first hand experience of the present author which happens whenever he notices that two to-
tally different fields can be directly connected and analogies established simply because the same stringent logic, 
i.e. the same mathematical pattern and schemes are obeyed by both fields. One such case is the connection be-
tween super conductivity and the high energy physics of elementary particles [1]-[4]. This is truly the unreason-
able effectiveness of mathematics which on deeper still reflection, is truly reasonable.  

The present work reveals a similar situation where the extremely small and large ultra obeys basically the 
same subgroup of R generated by Z and the golden mean number φ  so that the density or the frequency of ap-
pearance of a motive by certain tiling, in our case Klein-Penrose fractal universe, by virtue of the basic topology 
must be an element of the dimensional group given by von Neumann-Connes dimensional function [11] [12] [26] 
[27] or equivalently the K- and E-theory bijection formula [7] [8] [12] [26] [27]. In all cases it turns out that the 
probability of finding a Cantorian point in the fractal M-theory space which has a Hausdorff dimension equal to 
11 plus Hardy’s quantum entanglement, i.e. 511 φ+  is given simply by the inverse value of this dimension, i.e. 
( )5 51 11 φ φ+ =  [33] [34]. Since such a ‘point’ is super symmetric by definition, it is a double point and 5φ  

should be divided by n = 2 to give us the net value corresponding to a single “Cantorian” [27]. We have shown 
here, in accordance with earlier derivations, that 5 2φ  is the density of ordinary energy of the universe which 
accounts for only about 4.5% of the total energy while the rest, namely 1 − 4.5 = 95.5% is what has been dubbed 
the missing dark energy. Not only that but we established an analogous situation to a fundamental problem in 
condensed matter physics and showed that the very same mathematics govern the behaviour of electrons in met-
als as explained within the theory of gap labelling of Schrödinger operators [8]. 

From all of the above we have considerable renewed confidence in our proposal made some two decades ago 
that the universe as a whole can be regarded as huge quasicrystals [37]-[43]. Clearly the proposal is indirectly 
implied by the work of Penrose [38] as well as a powerful but largely unsung work of a Russian school [41]. The 
idea was then given new impulse by the work of a leading physicist and cosmologist, P. Steinhardt [43] and it 
may be possible to explain the origin of the forbidden 5-D symmetry of the found meteorite remnants by the ef-
fect of the quasicrystalline geometry of quantum spacetime on its initial quantum formation [36]. In fact all re-
cent astrophysical observations indicate a quasi self-similar universe as exposed in an excellent 2008 paper by R. 
Murdzek [44], which we give here together with the superb historical account in [6] as recommended reading. 
We think that future research following the ideas presented here may lead to a possible harnessing of dark en-
ergy using some innovative nanotechnological devices. 
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