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Abstract 
 
A new approach is proposed to describe the autowave processes responsible for plastic deformation localiza-
tion in metals and alloys. The existence of a quasi-particle, which corresponds to a localized plastic flow 
autowave, is postulated and its characteristics are determined. The above postulate leads to a number of cor-
ollaries and quantitative assessments that are considered herein. The deformation processes occurring on the 
macro- and micro-scale levels are found to be directly related. 
 
Keywords: Localization, Plastic Deformation, Autowave, Quasi-Particle 

1. Introduction 
 
The experimental studies of plastic flow in solids carried 
out during last decades [1,2] allow one to throw light 
upon the plasticity phenomenon and to detect the most 
important experimental fact that the plastic flow would 
exhibit a localization behavior from yield point to failure. 
Recently strong experimental evidences for the above 
viewpoint were presented independently by several 
workers [3-5]. In order to visualize the localization pat-
terns observed by mechanical testing, a technique of dou-
ble-exposure speckle-photography was developed [6].  

Some of the observed localization patterns are demon-
strated in Figure 1(a). As is seen from Figure 1(b), 
these have very complex structure characterized by a 
typical macroscopic scale of about 10-2 m. This suggests 
that the deforming medium becomes spontaneously 
stratified into macroscopic layers, with deforming (active) 
layers alternating with non-deforming (passive) ones. In 
a general case, the boundaries between such layers are 
mobile; therefore, the process of plastic flow is conven-
tionally considered as evolution of localized plastic flow 
patterns. 

The phenomenology and quantitative characteristics of 
the localization effect have been fully elucidated by now. 
Thus a detailed investigation of space-time periodic lo-
calization patterns [1,2] allows one to refer the localiza-
tion phenomenon to self-organization processes. The 
above assumption is only valid provided the term ‘self- 
organization’ is taken to imply, according to Haken [7], 
that the system acquires spatial, temporal or functional 

structure in the absence of any specific periodic external 
action. Of major importance is the finding that the local-
ized plastic flow patterns have all the particular features 
of autowave (self-excited) process. This comes into par-
ticular prominence at the linear stage of deformation 
hardening as the plastic flow localization takes on the 
form of phase autowave, which has length  10-2 m 

and propagation rate 
5 4 110 10 m sawV     . The auto- 

waves in question are distinct from the well-known plastic 
deformation waves that are generated in solids under 
shock loading which are described by Kolsky in [8].  

However, the nature of localized plastic flow phe-
nomena is poorly understood so that the challenge of 
interpreting rich experimental evidences on plastic flow 
macrolocalization can be daunting. To accomplish this 
demanding task, a new model of plastic flow localization 
is proposed herein.  

2. On the Observation of Localization  
Phenomena  

As noted above, the experimental observation of local-
ized plastic flow autowaves was carried on with help of a 
specially developed speckle photography technique re-
lated to focused-image holography [6]. The method de-
veloped makes feasible the experimental determination 
of displacement vector fields and the calculation of plas-
tic distortion tensor components for the deforming 
specimen. A vast array of wavelength and propagation 
rate data has been acquired and stored digitally in a 
computer.  
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Figure 1. (a) A typical example of localized plastic flow 
autowave generated at the linear work hardening stage in 
the single crystal of alloyed -Fe; (b) xx - local elongation; x 

and y- specimen length and width, respectively;  - nucleus 
spacing (autowave length); awV  - autowave propagation 
rate; the distributions of the plastic distortion tensor com-
ponents, xx , xy  and z , within the localization zone in 
the single crystal of alloyed -Fe. 
 

The spatial distributions of plastic distortion tensor 
components can be used to locate localized plastic flow 
nuclei; the kinetic characteristics of the nuclei can be 
determined from the temporal evolution thereof. The 
characteristics of autowaves are defined as follows. First 
the spatial period (length of autowave, ) is determined 
from the variation in the space co-ordinates of localiza-
tion nuclei with time (see Figure 2); then the time of 
variation, Т, is defined. Hence the phase rate of autowave 
propagation is given as awV T k   (here T 2  
is the frequency and 2k  is the wave number). 

 

Figure 2. The spatial () and temporal (T) periods of local-
ized plastic deformation as determined for the single crys-
tals of alloyed -Fe for n = 1 and n ~ 0.5 (linear and para-
bolic work hardening stages, respectively); )( - stress- 
strain dependence;  X t - variation in the localization nu-
cleus co-ordinates with time (●; ▲;▼; ■; +; ; ; -). 
 

The quantitative characteristics of autowave processes 
involved in the plastic flow localization were determined 
experimentally in our investigations [1,2]. The test 
specimens were prepared from the single crystals of FCC 
BCC and HCP alloys (Al, Cu, Ni and -Fe; -Fe, V and 
Nb and Mg, Zn, Zr and Ti, respectively) and from poly-
crystalline metals and alloys. The alkali halide crystals 
KCl, NaCl and LiF and some rocks were also studied. 
The mechanical characteristics and the shape of plastic 
flow curve are found to be determined by chemical 
composition, grain size (in the case of polycrystals) and 
tension axis orientation (in the case of single crystals). 
The plastic localization patterns observed for all materi-
als studied have many features in common which are 
discussed below. 
 
3. Correspondence between the Localized 

Plastic Flow Patterns and the Work  
Hardening Stages  

 
One of the striking results obtained in these investiga-
tions is the finding that the emergent localized plastic 
flow patterns strictly correspond to the well-known plas-
tic strain stages [9]. 

Using the Ludwik equation [10], the flow curve 

   is readily separated into individual stages, i.e. 

  n  0 ,              (1) 

where 0  is the proof stress,  is the work hardening 
coefficient and n is the hardening exponent. Especially 
convenient for this separation is the value n since it 
changes discretely with the plastic flow. Then the flow 
stages singled out on the curve    are matched against 
the respective specific patterns of plastic flow localiza-
tion. In what follows the localized plastic flow patterns 

(a) 

(b) 
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are discussed in the order of their emergence. 
The first to appear is a solitary front of localized plas-

tic flow, which travels along the specimen elongation 
axis at the yield plateau in the polycrystals (n = 0) or at 
the easy glide in the single crystals (n  0). In this case, 
an elastic-plastic transition takes place. The motion of 
such a front can be regarded as switching autowave [11]. 
The next pattern is a mobile set of parallel fronts sepa-
rated by distance , which is observed at the linear work 
hardening stage in the single-crystal and polycrystalline 
specimens (n = 1;  ~ ). In accordance with [8], the 
latter pattern corresponds to a typical phase autowave 
having length  and propagation rate awV . The third in 
the order of appearance is a group of immobile equidis-
tant localized plasticity nuclei, which occurs at the para-
bolic work hardening (Tailor’s) stage (n = ½; 21~ ) in 
most materials [9]. This pattern might be considered a 
stationary dissipative structure [11]. The autowave pat-
tern emergent at the pre-failure stage (0  n ½) is spe-
cifically associated with ‘collapse’ of the autowave [12] 
which takes place concurrently with the onset of 
macro-necking. The final stage of the plastic flow proc-
ess ( n 0) is ductile failure of material. The above phe-
nomena would emerge spontaneously in the specimen 
under constant-rate tensile loading. Following Seeger 
and Frank [13], we regard these phenomena as processes 
of structure formation.  

On the base of conclusive evidence obtained for a 
wide range of materials the following Rule of Corre-
spondence is introduced: in accordance with the acting 
work hardening law,    , each plastic flow stage in-
volves a special kind of autowave process. The rule for-
mulated above applies to all the plastic flow phenomena 
having a characteristic macro-scale of about 10-2 m. 
However, the work hardening law governs the mecha-
nisms involved in the interaction of lattice defects [6]. 
Therefore, the said rule apparently applies to the defect 
subsystem of the deforming crystal [9]. For this reason, 
the plastic flow is expected to manifest certain micro-
scopic features that are indications of microscopic effects. 
In our opinion, three such manifestations merit special 
note. These are considered below. 
 
4. On the Manifestations of Microscopic  

Effects  
 
4.1. Elastic and Plastic Deformation Invariant 
 
On the base of experimental data a significant regularity 
is established for the autowave process of plastic flow 
localization in a range of metals. Thus a close correla-
tion is found to exist between the product of the macro-
scopic parameters of the autowave process, awV , and 

the product of the microscopic (lattice) parameters of 
material, Vd . Here d is the spacing between the 

close-packed planes of the lattice and 
V is the trans-

verse elastic wave rate. The numerical data obtained for 
studied metals is listed in Table 1. Matching of this data 
suggests that the following equality is good within an 
acceptable range of accuracy  

1 2 3 2aw iV d V r V                  (2) 

Indeed, a numerical analysis shows that 3 id r  (here 

ir  is the Pauling ion radius [14]). Equation (2) is vali-

dated by the fact that the average ratio 2 awV d V    
 1.04  0.52 obtained for studied metals is about close 
to unity and the dependence  awd V V 

 is a linear one 

(see Figure 3). 
  Equation (2) is physically significant since it estab-
lishes a quantitative relationship between the micro-scale 
(lattice) characteristics (d and V ) of elastic waves 
which govern elastic deformation processes on the one 
hand and the macro-scale characteristics (  and awV ) 
of localized plastic flow autowaves which are generated  
 
Table 1. Matching of awV  and d V values calculated 
from Equation (2). 

awV ·107 d·1010 V ·10-3
 Vd ·107 

Metal 
(m2s1) (m) (ms1) (m2s1) 


Vd

Vaw2

Cu 3.60 2.08 2.30 4.78 1.50 
Al 7.92 2.33 3.23 7.52 2.10 
Zr 1.92 2.46 2.25 5.53 0.70 
Ti 3.50 2.24 2.96 6.63 1.06 
V 2.80 2.14 2.83 6.06 0.92 
-Fe 2.55 2.07 3.32 6.87 0.74 
-Fe 2.24 2.03 3.32 6.74 0.66 
Ni 2.10 2.03 3.22 6.54 0.64 

 

 

Figure 3. Verification of the validity of Equation (2) with help 
of a linear dependence between the ratios d  and awV V ; 
■ – easy glide stage; ● – linear work hardening stage. 
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in deforming media on the other hand. In this case, it 
might be reasonable to regard the products Vd and 

awV  as invariants of elastic and plastic deformation 
processes, respectively. The above regularity suggests 
that the elastic and the plastic processes simultaneously 
involved in the deformation ( 1  and 1  , respec-
tively) are closely related. The quantity V  is the rate of 
elastic stress redistribution in the deforming solid and the 
quantity awV is the rate of localized plasticity front rear-
rangement in the same solid. Thus, the macro-scale local-
ization of plastic deformation can no longer be regarded as 
a mere disturbance of plastic flow homogeneity by neck-
ing. What is more, the localization phenomena are taken to 
be an attribute of the plastic deformation, with their char-
acteristics being closely associated with and largely de-
termined by the properties of crystal lattice. 
 
4.2. Autowave Characteristics and the Planck 

Constant 
 
A numerical analysis suggests that for all metals and 
alloys studied the following equality holds good:  

hrV iaw  3 ,             (3)  

where  is material density. In other words, the quantum 
(Planck’s) constant h can be calculated by multiplying 
the values awV and which are localized plastic flow 
characteristics measured experimentally by the values 
and ir  which are hand-book material constants. Indeed, 
the calculated values h listed in Table 2 are close to the 
Planck constant h = 6.626  10-34 Js, with the average 
value h  being (6.44  0.88)  10-34 Js and the ratio 

hh 0.96  0.07 being close to unity. Thus the Planck 
constant can be estimated directly from the macro-scale 
characteristics awV  and , which appears striking in  

itself. 
 
4.3. Form of Dispersion Relation  

 
Let us consider the following quadratic dispersion law 
[15]  

 200 kk   ,           (4) 

where , 0  and 0k  are empirical constants. The val-
ues of these constants were derived for localized plastic 
flow autowaves from the experimental data in Figure 4. 
Note that the value  can be both negative and positive, 
i.e. for the easy glide stage, and for the linear work 
hardening stage, . Equation (4) is readily reduced to 
the canonic form 21 k     by substituting 0      

and 
0

0
sign

~

 


k
kk  (here ~  and k

~
 are the di-

mensionless frequency and the wave number, respec-

tively, and the signum function of is 
1

sign
1


 
 

 

for 0

for 0






). Wave processes that have quadratic dis-

persion law of the latter form would generally satisfy a 
number of nonlinear equations, e.g. the Schrödinger 
nonlinear equation, the sine-Gordon equation, etc., which 
are frequently employed to address self-organization 
processes occurring in nonlinear media [16]. Therefore, 
the dispersion relation (4) is taken to be an additional 
proof for plastic flow localization being involved in the 
self-organization of the deforming medium. Moreover, 
Equation (4) turned out to be formally equivalent to the 
de Broglie wave dispersion law for electrons in sharp- 
cornered potential well [17], which is significant in itself. 
 
5. A Postulate of Plastic Flow Localization 

and the Ensuing Corollaries: Introduction 
of a New Quasi-particle 

 
Taken as a whole the above localization patterns demon-
strate that the phenomenon in question has not only 
macroscopic characteristics of autowave process ( and 

awV ) but also microscopic ones (h and d or ir ). In view 

of the ratio ir  being about equal to 108, the key 
problem in this case is how the macro- and micro-scales 
could be reconciled. To overcome this problem, we pro-
pose to use an approach based on the wave-particle dual-
ism, which received wide application in the physics of 
solids [18]. We are led to postulate the existence of aq-
uasi-particle having effective mass, efm , quasimomentum, 

p, and energy, E, which corresponds to the autowave of 
localized plastic deformation having wavelength, and  

 

Figure 4. The dispersion law  k  established for local-

ized plastic flow autowaves generated at the stages of easy 
glide (1) and linear work hardening (2); ● – single crystals 
of Cu, Sn and alloyed -Fe; ■ – single crystals of alloyed 
-Fe; ▲- polycrystalline Al.  
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Table 2. Microscopic characteristics and the Planck constant values calculated from the data on localized plastic flow 
autowaves. 

·103 
510awV

 
efm  

2710


910d  
910ionr

 
h1034 

Metal 

(m) (ms1) (a.m.u) 

210
 

n 

(m3) (m) (m) 
ionrd  

(J·s) 
Cu 4.5 8.0 1.1 1.74 1 0.21 0.059 0.072 0.82 8.14 
Al 7.2 11 0.50 1.87 3 0.31 0.068 0.051 1.33 5.0 
Zr 5.5 3.5 2.05 2.24 4 0.53 0.081 0.079 1.03 6.13 
Ti 7.0 5.0 1.1 2.3 4 4.2 0.075 0.076 0.99 6.91 
V 4.0 7.0 1.42 2.81 5 0.33 0.069 0.059 1.17 6.52 
-Fe 5.0 5.1 1.76 2.81 8 0.33 0.069 0.064 1.08 6.32 
-Fe 4.3 5.2 1.77 3.0 8 3.75 0.072 0.064 1.13 6.32 
Ni 3.5 6.0 0.89 3.24 10 0.32 0.068 0.069 0.99 6.17 

 
propagation velocity, awV . Then it can be written that 

awef Vhm  .              (5) 

Equality (5) is a mathematical expression of the above 
postulate to which we conventionally add the equa-
tions ef awp m V k    and E    (here 2h ) for 
momentum and energy, respectively [19,20]. It is com-
mon knowledge that to validate a postulate, one has to 
match the corollaries ensuing from the same against ex-
perimental evidence. It turns out that a set of corollaries 
ensues from the above postulate which give an insight 
into the nature of localized plastic flow processes. These 
corollaries are considered below. 

Corollary 1. First we will demonstrate that the effec-
tive mass, mef, calculated from Equation (5) has a physi-
cal meaning; this quantity depends on the characteristics 
of the deforming crystal. Indeed, the calculated values 
listed in Table 2 for a number of metals are in the range 
0.5  efm  2 a.m.u. (here 1 a.m.u. = 1.6610-27 kg is 
atomic mass unit). Evidently, the volume is readily cal-
culated as efm ; then the length is found 

as 3 d . The latter value is close to the value ir , i.e. 

ird  , with the average ratio being ird = 1.07  

0.091. Thus, the effective mass, mef, turns out to be re-

lated to the lattice characteristics, ρ and ir . 

Apparently, the values mef calculated from Equation (5) 
differ slightly for each particular metal. The normaliza-
tion of effective masses, mef, to the atomic masses, mA , 

of respective metals yields normalized (dimensionless) 
mass 1 mef Am , which increases linearly with the 
number of electrons per unit cell, n (see Figure 5) [21], 
i.e.  

n  0 .              (6) 

The correlation coefficient for  and n values is ~0.95; 
it has a high statistical significance.  

Now we propose a physical interpretation of Equation 
(6) which is based on the consideration of jump-like dis-
location motion. Thus a dislocation would become ar- 

 
Figure 5. The dimensionless parameter, as a function of the 
number of electrons per unit cell, n.

  
rested at a local barrier until the thermal fluctuation 
causes its breakaway, which suggests that the plastic 
deformation results from the dislocation motion in a vis-
cous medium [22]. For dislV const , the motion of dis-

locations is controlled by viscous drag force per unit 
length, 

dislv BVF   (here B is the viscous drag factor for 
dislocations) [22]. For 

dislV const , an inertial term 

proportional to the dislocation acceleration, dislV , is 

added to the viscous drag force [23]. Then the total drag 
force, F , is given by 

 v in disl a dislF F F BV B V       ,    (7) 

where a  is the frequency of an elementary deforma-
tion act and B   apparently has the meaning of added 
mass per unit length of dislocation.  

In the case of metals, the factor B is determined by the 
interaction of dislocations with phonon and electron 
gases [22]; moreover, the contributions of phonon and 
electron gases, i.e. phB  and eB , respectively, are addi-

tive so that eph BBB  . In this case, the first and the 

second term in the right-hand side of Equation (6) are 
evidently connected with the contributions to the added 
mass, B  , of the viscous drag of both gases.  
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The term 0  from (6) is apparently independent of 

the kind of metal, which is reasonable since the proper-
ties of metal are only weakly dependent on the charac-
teristics of its phonon spectrum at temperatures exceed-
ing the Debye temperature [21]. However, the contribu-
tion of electron gas to the added mass should be propor-
tional to n, i.e. ~eB n  [22]. Hence it can be written   

      disldislephdislephin VnVmmVBBF    0~~~  (8) 

Thus Equation (8) relates the normalized mass, , to 
the contributions of phonon and electron gases. 

Corollary 2. Equation (5) can be rewritten as 




 


 3
ief

aw r

h

m

h
V .            (9) 

The quantity  from (9) is calculated as 3
ih r  . 

Then the calculated values,  , are matched with the 

experimental 
awV data. The average values obtained for 

the single -Fe crystals and polycrystalline Al are, re-
spectively, awV  = (2.86  0.44) 107 m2·s-1 ( = 3.2  

107 m2·s-1) and awV  = (7.75  1.36)107 m2·s-1 ( = 
18.4107 m2·s-1). 

Corollary 3. Equation (5) can be also rewritten as 

k
r

h

m

h
V

ief
aw 










 2

1  .      (10) 

It is shown above that dkdVV graw   and 

  dkkd   2 . Hence we can write 





0

0 02

kk

dkkd







.            (11) 

It follows from (11) that dispersion relation of quad-
ratic form can be written for localized plastic flow 

autowaves, i.e.    200
2

00 4
kkkk  


 . 

Apparently, the latter relation corresponds to (4). The 
coefficient  from the dispersion relation of quadratic 
form can be found by matching the experimental  k  

data against the calculated values  4  obtained 

for Fe and Al. Thus the experimental values  obtained 
for Fe and Al are 5.4108 m2·s-1 and 7.9107 m2·s-1, re-
spectively, and the calculated data are 2.5108 m2·s-1 and 
1.46107 m2·s-1, respectively. Both sets of data have 
practically the same order of magnitude. 

Corollary 4. It follows from Equation (5) that 
3

iaw rhV  .            (12) 

The terms in both sides of (12) evidently have the 
units of dynamic viscosity, i.e. kgm1s1  Pas. The 
calculated value   awV  is about equal to 5104 Pas 

for all studied metals. Hence the latter quantity can be 
identified with the viscosity of phonon gas, B, which 
controls dislocation mobility by quasi-viscous motion 
[22]. This is good indirect evidence for the validity of the 
same quantity, in particular, by interpreting the physical 
meaning of dependence (6).  

Corollary 5. The dispersion relation obtained for lo-
calized plastic deformation autowaves can be rewritten in 
the form appropriate for quasi-particles, i.e.  E E p   

 2

0 0E p p   (here 0E , 0p  and   are constants). 
Then the effective mass of the hypothetical quasi-particle 
is estimated [17] as  

    122122 
 kpEmef  .     (13) 

The experimental and calculated effective masses ob-
tained for iron and aluminum are 0.6 and 0.1 a.m.u., re-
spectively. This lends credence to the existence of the 

hypothetical quasi-particle having efm 1 a.m.u. 

Corollary 6. As is seen from Figure 4, the oscillation 

spectrum  2

0 0k k     has a narrow gap in the 
range 00    10-2 Hz. Hence for any temperature, 

0 Bk T   (here Bk  is the Boltzmann constant). Lo-
calization phenomena are liable to occur spontaneously 
at any temperature provided geometric constraints place 
no restrictions, in particular, in the case of small-sized 
specimens [1].  

Corollary 7. Finally, the jump-like plastic deformation 
in solids [24] can be explained with help of the above 
postulate. Let us rewrite Equation (5) as 

  1

i awL h rV   .            (14) 

Now suppose that the specimen length L accommo-
dates an integer m = 1, 2, 3… of autowaves having 
length , i.e. L m  , which precludes the occurrence 

of deformation within the clamps of the testing machine. 
With growing total deformation, , the elongation of the 
specimen occurs as  0 01L L L L      (here 0L  

is the original specimen length). Hence from (14) follows 
that 

  1

i awL h rV m    .         (15) 

For the linear work hardening stage, awV const . 
From (15) apparently follows that the specimen length 
would vary discretely ( ~L m ) in accord with the 
jump-wise deformation behavior, i.e. the specimen 
length would be accommodated to the emergent auto- 
wave pattern. Deformation jumps may occur by different 
mechanisms depending on the kind of material so that 
Equation (15) only states that this kind of deformation 
behavior is a must.  

From (15) follows that 1~ awL V  . The available ex-
perimental evidence [1] suggests that the autowave 
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propagation rate is proportional to the cross-head motion 
velocity, i.e. ~aw machV V . With increasing velocity of the 
movable clamp of the test machine, the amplitude of 
jumps is expected to grow less. The latter inference is 
supported by the experimental data obtained for Al at 1.4 
K [24]. 

Corollary 8. Now it transpires that Equation (3) of the 
form 3

aw iV r h      is readily derived from the same 
postulate provided 3

ef im r  . 

 
6. Conclusions 
 
It is pertinent to mention here the early efforts to apply 
quantum ideas to problems of strength and plasticity 
physics. Thus Steverding was the first to introduce the 
notion of elastic waves quantization by fracture [25]. By 
addressing the kinetics of brittle fracture, the existence of 
a quasi-particle in the deforming medium was postulated. 
The quasi-particle was identified with the tip of a grow-
ing crack; therefore, it got the name ‘crackon’ [26]. 
Quantum models were applied to explain the tunnel ef-
fect observed by dislocation motion [27,28]. On the other 
hand, recent theoretical and experimental studies indicate 
that the plastic flow involves wave processes [1-5,7,29, 
30]. 

The above findings justify the use of quantum con-
cepts to address plastic flow development in solids. In 
this approach one has to reconcile micro- and macro- 
scale manifestations of the localization phenomenon; 
therefore, physicists dealing with plasticity problems 
might consider it invalid. When the micro-scale (disloca-
tion) level is addressed, the quantization idea appears 
quite appropriate. In view of crystal lattice discreteness, 
the minimal possible shear is by the Burgers vector, b, 
which has microscopic scale d of about 10-10 m and 
hence might be regarded as a ‘quantum of shear defor-
mation’. Hence the use of (2) allows the quantization 
concept to be extended to the macro-scale level, i.e. 

awV  1 2d V  . 

The fact that the Planck constant value calculated from 
the data derived in rather ‘rough’ macro-experiments is 
close to a handbook value might be due to the manifesta-
tion of so-called ‘universality concept’ [31], which pos-
tulates that the system’s measurables are virtually unaf-
fected by the distribution of its major microscopic prop-
erties. In other words, both the qualitative and the quan-
titative characteristics of material substructure are only 
partly responsible for, e.g. plastic flow evolution, flow 
stress level, work hardening coefficient, etc.  

The corollaries ensuing from the postulate proposed 
herein have proven to be very fruitful to study deforma-
tion localization processes, which validates the concept 
of wave-particle duality. By way of summary it should 
be emphasized that the macro-scale effects (characteris-

tic scale 
macro L ) emerging in a plastically deforming 

multi-scale system are found to be directly related to the 
micro-scale effects (characteristic scale

 micro irL ), with 
the scale ratio being 810macro micro ir L L .  

The above gives justification to the use of a common 
approach, i.e. postulation of a quasi-particle correspond-
ing to a localized plastic flow autowave. This turns out to 
be a fruitful effort by explaining a number of relation-
ships in plasticity physics, which have remained poorly 
understood in the frame of traditional models of crystal 
plasticity. The postulated quasi-particle would be named 
“auto-localizon”. 

As far back as the 1960-ies Dzyaloshinski [32] was the 
first to discuss the possibility of measuring the Planck 
constant in mechanical experiments. In his paper this 
worker emphasizes the importance of studying the mac-
roscopic manifestations of typical quantum effects, e.g. 
superfluidity, superconductivity and the quantum Hall 
effect discovered later on. In the light of the foregoing it 
is maintained that the plastic flow in solids is analogous 
to all these phenomena; therefore, this might also be re-
garded as a macroscopic quantum effect.  
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Abstract 
 
The translational motion of a large polaron as whole is analyzed in the context of its effect on the broadening 
of an absorption optical spectrum. It was open question how important the role of translational degrees of 
freedom and the corresponding velocities are on the broadening. The Bogolyubov method of canonical 
transformation of coordinates is formulated for a system of an electron and field, taking into account rigorous 
fulfillment of the conservation laws. Separation of variables is carried out for the coordinates describing the 
translational degrees of freedom and the electron oscillations in a polarization well. The equations obtained 
for the electronic states explicitly depend on the velocity of the free polaron as a whole. An estimate is made 
for free polaron in ammonia. 
 
Keywords: Large Polaron, Translational Motion, Canonical Transformation, Broadening, Absorption Spectra, 
Ammonia 

1. Introduction 
 
ITS is well known that the absorption spectra of free 
large polaron consists of a broad featureless asymmetric 
band with a long tail extended to the short-wave length 
region. There is vast literature on the possible mecha-
nisms of broadening the optical spectrum of free polaron. 
S. I. Pekar [1] have studied the broadening of the optical 
absorption spectra of large polaron in crystal as a func-
tion of phonon dispersion. In the work [2] authors have 
calculated the optical absorption coefficient for free po-
larons using the multiphonons mechanism. The main 
idea in ref. [3] consist that broadening of the absorption 
spectra depends on width of an electronic band. In this 
case broadening of the absorption spectra to proportion-
ally electron effective mass at the bottom of a conductiv-
ity band [4]. However the question of a contribution to 
the broadening from the translational degrees of freedom 
and from the corresponding velocities is still unanswered. 
In this work the thermal motion of free quasiparticle as a 
whole is analyzed in the context of its effect on the 
broadening of the optical absorption spectra.   
 
2. Mathematical Method 

To analyze the effect of translational motion of a free 
large polaron on its absorption spectra, one must separate 

in the Hamiltonian the translation-invariant degrees of 
freedom from the coordinates describing the motion of 
the polaron as whole and derive the velocity dependent 
equations for the electron transitions. If the electron and 
quantum field are strongly coupled then the collective 
localized state of the field and particle is formed. In such 
a formation the electron motion is rather intricate. On the 
one hand the electron oscillated within a rather deep po-
larization potential well and undergoes the optical transi-
tions, and on the other, it moves together with the center 
of inertia of the system and participates in the transla-
tional random walk. The problem is to separate these 
motions correctly, rigorously taking into account the 
conservation laws. This can be conveniently done using 
Bogolyubov [5] method of canonical transformation to 
the collective coordinates. The Bogolyubov method is 
the most powerful analytic techniques available for dis-
cussing electron-phonon problems. This transformation 
removes the translational degeneracy and allows one to 
develop the successive approximation algorithm for the 
energy and wave function while simultaneously fulfilling 
the law of conservation of total momentum of the system. 
Some of the transformed variables are generalized coor-
dinates whose canonically conjugated momenta are the 
integrals of motion, which are defined by the symmetry 
properties of the original Hamiltonian and hence ulti-
mately ensure fulfillment of the conservation laws. Fol-
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lowing the Bogolyubov method, we reformulate the 
adiabatic theory of the particle strongly interacting with 
the quantum field. The resulting equations determine the 
electron transitions and depend explicitly on the transla-
tional velocity of free polaron. 

Within the effective mass one-electron continual ap-
proximation the Hamiltonian of the electron-phonon 
system has the form 

2
2 (0) (0)*

*
( )

2
i ir

f f f
f

p
H V e b V e

m
     fr fr  

1
( )

2 f f f f f
f

b b b b              (1) 

where the interaction form-factor is defined as ( )0
fV   

1/2 1/2( / )(4 / )fi fu V  , 1/2*(2 / )fu m   and the di-

mensionless coupling constant is 2
c  , (1 /c   

21 / ) / 2 fs e u   ; m* is the isotropic effective mass of 

electron, f is the frequency of the long-wave length 
longitudinal optical phonons of the polar medium; 
 and s  are the high-frequency and low-frequency 
dielectric constants of the isotropically polarizable di-
electric continuum, and r is the electron coordinate. The 
quantum amplitudes b f and b

f  of the polarization 
field, respectively, annihilate and create the field quan-
tum  f and obey the Bose-Einstein commutation rule 
[ , ]b b 

 ' 'f f ff .  
In order to develop the iterative procedure for calculat-

ing the eigenfunctions and energy eigenvalues of Hamil-
tonian (1) we modify the canonical transformation of co-
ordinates. For this purpose the electron coordinate is 
written as the vector sum of two variables 

/  r λ q ,                (2) 

where q is independent of r and means the coordinate of 
the center of gravity of the system, and λ describes the 
electron motion relative to the center. Before developing 
the perturbation theory, let us introduce in Hamiltonian 
(1) instead of the phonon creation and annihilation op-
erators, the complex phonon coordinates qf and the cor-
responding operators of conjugated momentum pf :  

( ) / 2q b b 
 f f f , ( ) / 2p i b b 

 f f f , 

(3) 

which satisfy the commutation rule [ , ]q p i' 'f f ff . 
The 1/γ factor in (2) and (3) allows one to describe the 
electron motion relative to the center of inertia even 
within the lowest-order nonvanishing term of the expan-
sion of the Hamiltonian in γ powers. Using Equations (2) 
and (3) and taking into account that λrλ/r  /)(/  

λ/   one can transform Hamiltonian (1) as 
2 2 2

2 (0)
*

2
22

iH V q e q q
m

  
    f(q λ / )λ

f f f f f
f f

p  

2

1

2
p p

  f f f
f

.             (4) 

One can see that, after changing the variables, the en-
ergy of the electron - field interaction and the field po-
tential energy are indeed of the same order in the γ pa-
rameter. Hamiltonian (4) is translation-invariant. Ac-
cording to Equation (3) the operator of the total momen-
tum of the system can be written as /i    q  
-i / - i q p    f f

f

r f , so that it is a strict integral of 

motion. It then follows that the q vector indeed means 
the coordinate of the center of gravity of the system. Be-
cause of a smallness of the last term in Equation (4), the 
effect of interaction of the electron with the quantum 
field reduces mainly to the appearance of a potential well 
[second term in Equation (4)] whose depth depends on 
the magnitude of the dimensionless coupling constant. 
As a result of the strong interaction, the quasi-particle is 
characterized by its own internal structure. The appropri-
ate internal states can be coupled to one another by the 
electronic transitions. 

The interaction of phonons with the charged particles 
is known to shift the equilibrium positions of the field 
oscillators relative to their unperturbed values. We thus 
supplement transformation (2) by the transformation of 
the field coordinates qf : 

( / ) exp( ), q u Q i  f f f fr u u *
f f , fQ Q

 f  (5) 

The translation-invariant Qf variables allow for the 
quantum fluctuations of the field near its new self-con-
sistent classical value which is determined by the set of 
c-numbers uf to be evaluated in the follows. Within the 
new variables (5) the interaction potential between the 
electron and the quantum polarization field retains its 
order of magnitude in γ. Note that the introduction of 
new coordinates (2) results in the appearance of three 
extra degrees of freedom in comparison to the original 
system. We therefore impose three additional conditions 
on the Qf coordinates, which can be chosen in a linear 
form without loss of generality:  

0v Q  *
f f

f

f                (6) 

This requirements, allow one to retain the number of 
independent variables after introducing the new electron 
and field coordinates. The vf values can be chosen in 
such a way that the orthonormalization condition 

*
f ff f v u  

f

, , 1, 2,3         (7) 

is fulfilled together with the requirement that 
*
f fv v . 

The coordinate transformations (2) and (5) provide ful-
fillment of the conservation law for the total momentum. 
Hamiltonian (4) can be further transformed after the op-
erator of momentum pf is expressed in the terms of the 
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new variables q, λ and Qf : 

Q
p i i i

q q Q q q

     
     

       k
f

ff f k f f

q λ

q λ
. (8) 

Putting uf independent of qk and differentiating (5) 
with respect to qk we get 

i i
e

qQ
i q e

q q q
 
 

  
  

f fq fq
f

k k k

f q
f  

1
[ ( ) ]i ie i u Q e

q
 


 

 


fq fq
fk f f

k

q
f .       (9) 

The derivative / q  kq is found by inserting (5) in the 

additional condition (6) and differentiating the identity 
obtained. The result is 

( ) 0i iv e i q e
q

 
 

 * fq fq
f kf f

f f

q
f f .    (10) 

The equation for the partial derivative of q with re-
spect to qk is obtained from Equation (10) taking into 
account transformation (5) and the condition (7) 

1
( )ii v e v Q

q q
 

 
 * kq *

k f f
fk k

q q
k ff     (11) 

This equation can be solved by iteration, with 1/γ as a 
small parameter. The following solution is then obtained 
within an accuracy of the terms on the order of 1/γ2: 

*

* *
2

1
[ ( )

1
( )( ) ...]

i

f l

ie v v v Q
q

v v v Q Q






  









kq * *
k k f f

fk

*
k f l

f,l

q
k f fk

k fl fl

     (12) 

Using the transformation of variables (2), one deter-
mines the partial derivative / /q q     f fλ q . Now, 

using this equality and Equation (12), one finally obtains 
the following expansion series for the / q  f  operator 

in terms of the λ, q, and Qf variables 

{ ( )i
k

k

e i i v v Q
q Q

   
   

  qf * *
f f f

f k

f fk
λ

P  

( ) ( )v v Q i u v
Q 
  

  
   * * *

f k k l f
k l l

k fk l f
q

  

*1
[ ( )( ) ( )v v v Q Q i u

Q 
 

 
  * *

f k l k l l
k,l l l

f kl kl l

( ) ( ) ]v v Q Q v v Q
Q

 
 

   * * * *
f k k f k k

k l kl
lk kf l k kf

q
 

*
2

1
[ ( )( )v v v Q Q Q

Q



 * *

f k l k l m
m mk,l

f kl kl m  

*( )( ) ] ..}v v v Q Q



 * *

f k l k l
k,l

f kl kl
q

       (13) 

where Pf  stands for the field generalized momentum; 
the latter is expressed as a linear combination of the 

/i Q   f  momentum: / /i Q v u Q     P *
f f f k k

k

f k . 

As the q coordinate is a cyclic variable, the corre-
sponding canonically conjugated operator of momentum 

/i   q  (which coincides with the total momentum 
of the system) commutes with Hamiltonian (4).  
Correspondingly, the / q  operator will be further  
replaced throughout by the total momentum  rP p  

b b
f

f ff . In order to allow for the momentum even in 

the first approximation, we introduce the I vector such 
that P = γ2I. As a result, translational effects appear even 
in the first order. The total eigenfunction of the system 
can then be written as 

2( , , ) exp( / ) ( , )Q i Q  f fλ q Iq λ .     (14) 

This function realizes a certain representation of the 
translation group and corresponds to the state with a 
fixed total momentum P of the system. It is convenient to 
perform, according to [5], one more unitary transforma-
tion of the wave function with respect to the Qf variable 
and rewrite the total wave function as  

2( , ) exp( )exp( / ) ( , )
f

Q i s Q i Q    f f f fλ,q Iq λ , 

(15) 

The complex numbers *s sf f  and can be chosen in 

a way to satisfy the condition 

0u s  f f
f

f .              (16) 

Transformation (15) can be used to expand the collec-
tive coordinates Hamiltonian in descending powers of 
the γ parameter: 

....01
2

2  HHHH        (17) 

where the following notations are used: 

2
(0)

2 *
2

22
iH V u e u u

m
  

    
 ff /λ

f f f f
f f

p

1
( )( )

2

i i
s v s v     

* *
f f f f f

f

If If
,     (18) 

1 ( )( )
i

H s v v 
   

 
* *

f f f -f
f

-f
If

f
λ

P  

(0) /[ 2 i
fV e u    fλ

f f
f

 

( ) ( )( ) ]
i i

s v s v v Q   
* * *

f f m m m m f
m

fI Im
fm , (19) 
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0

1 1
[2( )

2 2

i
H Q Q s v      


*

f f f f f f
f f

If

-( ( ) )v v Q u v Q
Q Q
 

  
   * *

f k k m f k
k m km k

k fk m f k

-( ( ) )v v s Q i v v Q
 

  

  
* * * *

f -f f k k f k k
k k

I
f f k k fkP

( v v s Q


  

 * *
f f f k k

k

f f kP  

( ) )]i v v Q 
* *
f k k

k

I
k fk .          (20) 

We also require that 

fC-If/ f
*
fff iuivs  )(  .      (21) 

The physical meaning of the C vector will be given 
below. Let us expand the total wave function Φ and en-
ergy E in powers of γ: 

....012
2  EEEE  , 

0 1 22

1 1
...

 
               (22) 

Upon substituting (22) in the equation HΦ = EΦ with 
Hamiltonian (17) and collecting the terms with the same 
γ powers, we obtain the following set of equations: 

2 0 2 0H E   , 

12011201  EEHH , 

021120021120  EEEHHH , ...(23) 

Because the H2 operator acts only on the field vari-
ables Qf  the zero-order wave function can be written in 
a multiplicative form )()(),( 00 ff λλ QQ  , where 

)( fQ is an arbitrary function of the Qf coordinates. 
Taking into account that the functions Φ0 and Φ1 are or-
tonormal, one has from the second equation in (23): 

0 2 2 1( ) | | 0H E      so that the ( )Q f  function 

obeys the following equation: 0 1 0( ) | | ( ) ( )fH Q      

1 ( )fE Q . This equation has a regular solution χ(Qf) 

only if 0 1 0( ) | | ( )H     is equal to zero, because the 
H1 operator is linear in the Qf variables. Taking into ac-
count the form of Hamiltonian (19) and the obvious re-
quirement that E1 = 0, one obtains from (23) the follow-
ing relation for determining the uf values for an arbitrar-
ily chosen χ(Qf): 

(0) /
0 02 ( ) | | ( ) ( / )iV e u s i v       fλ *

f f f f fλ λ If

( )( ) 0s iv v   * *
m m m m

m

mI / fm .    (24) 

The Equation (24) is derived under the assumptions 
that the operators Pf  satisfy the condition u f f

f

f P  

0  that directly follows from the Pf  definition. Sub-

stituting the additional requirement (21) and the condi-
tion (7) in (24) and assuming that the ground electronic 

state is described by the wave function )(0 λ , one finds 

from Equation (24) the self-consistent classical field 
components 

(0)
0 0

2 2

2 ( ) | exp( ) | ( )

( ( ) )

V i
u

    



 



*
f f

f
f

λ f / λ

fC
. (25)  

In the strong coupling limit, the H2 term in the Hamil-
tonian expansion (17) dominates and bears nontrivial 
information about the system. Using transformations (21) 
and taking into account that Hamiltonian H2 depends 
only on the λ variable, one can write the energy eigen-
value of the state as 2 0 2 0( , ) ( , )H Q E Q  f fλ λ , where 

the notation 
2

2 2
2 2 | | | |

2 2
E W u u 



 
     

 
  

f f f f
f f f

fC
 (26) 

is introduced. The first two terms in Equation (26) define 
the internal energy of large polaron. 

The equation for determining the lowest energy state 

wave function )(0 λ has the form 

2
(0)

0 2 02 ( ) ( )
2 *

iV u e W
m

     
 

  
 

 f /
f f

f

p
.  (27) 

Using Equation (25), it can be recast as 
22

0 0

02

0 0

| | ( ) | | ( )
2 ( )

( ( ) )2

( )

i

i

*

V e
e

m

W


 

    
 



 

 
 
  



(0)

2

fλ /
f f f /

f f

p

fC

 (28) 
which parametrically depends on the C vector. The inte-
gro-differential Equation (28) must be generally solved 
using the self-consistent method because the classical 
component of the field is influenced by the electronic 
state to the same extent as uf influence the electronic 
state.  

Let us now clarify the physical meaning of the C vec-
tor. For this purpose, we differentiate E2 in (26) with 
respect to C 

2 2

2 C C

u uE W
u u

C C  

    
         


 *

f f f*
f f

f

2
2

2 ( )
1 |u f 

         
 f

ff f

fC fC
| , α = 1, 2, 3,  (29) 

The C /2W derivative can be found using Equation 

(27). This can be done by differentiating (27) with re-
spect to C, 

2
(0) (0)0

02 2
2

i i
*

u
V u e V e

C Cm
   

 




  
   

  
  ff / f /

f f f
f f

p
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02
0 2 0

W
W

C C 





  
 

            (30) 

The average of Equation (30) for the state with the 

wave function )(0 λ  is 

(0)2
0 02 ( ) | | ( )iuW

V e
C C

 

 
   




  f f /
f

f

  (31) 

Using the value obtained of the classical field compo-

nent fu (25), Equation (31) can be transformed to 

(0)* 2 2
0 02 ( ) | | ( ) ( ( ) )i

u
V e      


  

 ff /
f f

f

fC , 

(32) 
Then, instead of (31), the required derivative can be 

represented as 

2 22 ( ( ) )
u uW

C C 





  
 

 *
f f

f
f f

fC .      (33) 

Substituting Equation (33) into (30), we get 
2

2 ( ) u uE
u u

C C C  

  
       
  *

f f*
f f

f f

fC
 

2

2| |u f


 
  
 

 f f
f f

fC
           (34) 

We now determine the I vector. For this purpose, let 
us multiply condition (21) by fuf and sum over the wave 
vector f. After applying the requirement (7) and condi-
tion (16), we obtain the following expression for the I 
vector: 

2( ) | |u


  f

f f

f fC
I .             (35) 

Let us differentiate (35) with respect to the C vector,  

2( ) ( )
| |

f

u
u u

 


  

   
f f

f
f

f f

I ff fC
f

C C
 

( ) u
u





*
f

f
f f

fC
f

C
             (36) 

One can easily see from a comparison of Equation (34) 
with (36) that  

2 IE
C

C C



 




  , α, β=1, 2, 3.        (37) 

We finally obtain  

2 2
C I CE E

C
I C I C I

I
C C

I

  

    


 

 




    
         


 



  


.  (38) 

Consequently, the following result is obtained after 

using the definition for the total momentum P = γ2I: 

PC  /2
2 E . However, by definition, P /2E  is 

merely the velocity v. Therefore, the C vector is related 
to the translational velocity of the polaron by expression:  

2 2
2 /E     vС P ,           (39) 

and determines to the γ2 factor, the mean velocity of the 
center of inertia of system. Hence the energy eigenvalue 
(28) of the self-consistent ground electronic state W2 
explicitly depends on the translational velocity of the 
quasiparticle. 

Let us now determine the translational effective mass 
of the polaron. Using (26) and assuming that the velocity 
of the center of inertia is small, which ordinary holds for 
thermal motion, we expand the energy eigenvalue of the 
system in series 

2
(0) (0) (0) 2 (0) 2
2 2

( )
| | | | ...

2 2
E W u u




    
 f

f f
f f f

fC
 

(40) 
The quantities that correspond to the zero translational 

velocity of the polaron are labeled by superscripts in 
Formula (40). After substituting relation (39) in (40), the 
following expression is finally obtained for the ground 
state energy of the system: 

4 2
(0) (0) (0) 2 (0) 2
2 2

( )
| | | | ...

2 2
E W u u

 


    
 f

f f
f f f

f v
 

(41) 
The last term in (41) can be regarded as the kinetic 

energy of the translational motion of the free particle as a 

whole: ** / 2kinE m 2v , where the notation m** stands 

for the ground state translational mass of the large pola-
ron: 

(0) 24
**

( ) | |

3

u
m




 
 f

f f

ff
 

(0) 2 24
0 0

3

2 | | ( ) | exp( ) | ( ) | ( )

3

|V i  
 

f

f f

λ λf / λ ff
 (42) 

If the electron is trapped by the polarization field, the 
interaction of the particle with the field fully “consumes” 
the rest mass of an electron. Indeed, it follows from the 
order-of-magnitude analysis of the variables in Equation 
(42) that the effective mass m** ≈ γ8m* >> m* is domi-
nated by the field inertia. 

The translational mass m** can be calculated using (42) 
if the wave function 0 ( )   is known. It can be found 
by solving the nonlinear integro-differential Equation 
(27). However, in practice, it is convenient to determine 
the ground state wave function using a direct variational 
method and varying the total energy functional 

2
2 (0) 2

0 0 0*

1
[ ( )] ( ) | | ( ) | |

22
F u

m
         f f

f

λ λ λ   

(43) 
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with 
(0)*

0 0(0)
2 ( ) | exp( ) | ( )V i

u
   




 


f
f

f

λ f / λ
. 

The approximate analytic form of a trial variational 
wave function 0 ( )   of a nondegenerate ground state 
can be established by expanding the exponential in 
Equation (27). Upon restricting ourselves to the quad-
ratic terms in the resultant series, we obtain the oscillator 
equation 

22
(0) (0)

0*

1
2 1 ... ( )

22
V u i

m

  
 

           
     

λ
f f

f

p f f
λ

(0)
2 0 ( )W  λ ,               (44) 

whose solutions are the Hermite polynomials. These 
functions can be regarded as good approximations to the 
wave functions of the ground and low excited states of a 
system with large γ. Therefore, for slow translational 
motion of particle we choose the trial ground state wave 
function in the following analytic form: 3

0 ( ) (    
6 6 1/4 2) exp( / 2 )     , where α is the variational 

parameter. Such an approximation for the trial function is 
consistent with the results of the shifted – 1/N – expan-
sion numerical technique that was applied in [6] and 
technique solving of nonlinear integral Equation [7] to 
the analysis of Equation (43). 

It was established earlier that the optical transition 
from the ground to the lowest lying electronic p-state is 
most probable (oscillator strength of 0.77 [1]). Because 
the transition time 1 15

0 ( / ) 10E s      is much 
shorter than the relaxation time 1310 s   of the polar 
lattice, the optical transition can be considered as vertical, 
i.e., proceeding at a fixed value (0)u f

of the classical 

component of the polarization field in the lowest elec-
tronic state. According to this premise and based on 
Equation (28), the initial electronic state is described by 
the equation: 

(0) 2

0 0 0*

2 |
2 ( ) | | ( ) ( )

2
i i

V
e e

m
      




    
  

 
f f / f /

f f

|p
λ λ λ

2(0) 2

0 0 0

|
2 ( ) | | ( ) ( )i i

V
e e     

 


 
  

 
 

f f / f /

f f f

| fC
λ λ λ   

)()( 0
)1(

0
)0(

0 λWW  ,             (45) 

whereas the final state (k) of electronic optical transition 
obeys the equation     

(0) 22

0 0*

|
2 ( ) | | ( ) ( )

2
i i

k

|V
e e

m
     




    
  

 
f f / f /λ

f f

p
λ λ λ

2(0) 2

0 0

|
2 ( ) | | ( ) ( )i i

k

|V
e e     

 


 
  

 
 

f f / f /

f f f

fC
λ λ λ  

(0) (1)( ) ( )k k kW W  λ .           (46) 

In Equations (45) and (46), the translational velocity 
of large polaron is assumed to be small, i.e., 

2 2( )  ff v and only quadratic terms are retained in the 

expansion of the potential. The wave function of the ex-
cited electronic p-state is chosen in the form 

2
1/2

( / 2 )
3/2 5 5

2
( ) cosk e  

  
 

  
 

λ   (47) 

where β is the variational parameter. 
It is convenient to transfer from Equation (45) to the 

equations 
(0) 2 (0) (0)*2

(0) (1) 2
0 0 0 0

|
( ) | | ( ) 2

2 *

V
W W

m
  

  


    
f f f

f f

|p
λ λ

2(0) 2 (0) (0)*|
2 f fV  


 

 
  
 

 
2 f

f f f

| f v
, 

(0) 2 (0) (k)*2
(0) (1) 2

|
( ) | | ( ) 2

2k k k k*

V
W W

m
  

  


    
f f f

f f

|p
λ λ

2(0) 2 (0) (k)*
2

|
2 f fV  


 

 
  
 

 
f

f f f

| f v
        (48) 

Here (0) f and (k) f  are the Fourier transforms of elec-

tron densities in the ground and excited electronic states. 
In the adopted approximation, the frequency of the most 
active electronic dipole transition can be written as 

(0) (0) (1) (1) (0) (1)
0 0 0 0 0( ) ( )k k k k kW W W W           , (49) 

where the second term depends on the polaron velocity, 
whereas the first term determines the optical transition 
frequency at the band maximum in the state with the zero 

center-of-mass velocity. The frequency )1(
0k  can be 

found from Equation (48) 
(1) 2
0 0k kS  v .               (50) 

The following notation is used in Equation (50) 
(0)

4 (0) (0) (k)
0 3

( ) | V
2 ( )kS    


  

f
f f f

f f

ff
.   (51) 

Such an approach in the phototransition calculation is 
justified if the impurity absorption spectrum lies between 
the IR-absorption region of the polar lattice oscillating 
and the absorption region of the strongly bound electrons 
of base material. We assume that the polarons are in 
thermal equilibrium and that the quasiparticle distribu-
tion over the velocities v is Maxwellian: 3/ 2( )F  v  

2( / )3 0
0 e

 v vv , where 2 **
0 2 /kT mv . Then, the full width 

at half maximum of the optical absorption spectra is re-
lated to the standard deviation D as 1/2 2 2 ln 2W D . In 
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this approximation, the intensity is symmetrically dis-
tributed relative to the (0)

0 frequency. The band be-
comes asymmetric in the presence of photo transitions to 
high-lying electron excited states. With the Maxwellian 
velocity distribution, the variance is 2 2

0kD     
2 2 ** 2

00 6 ( / )kk S kT m  . Then, the band width W1/2 is 
equal  

**
1/2 04 | | ( / ) 3ln 2kW S kT m .       (52) 

The approach presented to estimating the broadening 
of the absorption spectra is valid if the inequality 

(0)
0/ kt c  v  is fulfilled, where t is the mean free path 

time of the quasi-particle, and c is the light velocity. This 
inequality is fulfilled for the transition frequencies and 
temperatures of interest. 

 
3. Discussions and Conclusions 
 
The theory is applied to free polaron in ammonia. The 
electron is self-trapped owing to strong interaction with 
the quantum polarization field, which is generated by the 
dipole ammonia molecules librating around their equilib-
rium positions. Various investigations [8-12] have shown 
that many properties of electrons in ammonia may be 
described using the model of continual polarons. Within 
the framework of this model the possibility of existence 
coupled of two-electronic bipolaron formations in singlet 
state [13,14] has been established and magnetic and opti-
cal properties of metal-ammonia systems are explained 
[8,9]. The criteria for validity of the theory reduce to the 
following inequality: mef    . For an elec-
tron in ammonia, 0.885e eV  is the energy of the 
most active optical transition of a self-trapped electron 
[11], eVf 4.0 is the energy of the longitudinal po-
larization oscillations of the medium [15], and m  

6eV is the excitation energy of electrons of the main 
substance [11]. The orientational oscillations of mole-
cules about their equilibrium position in a polar liquid 
form elastic waves that may be treated as in crystal. As a 
result of the directionality and saturation of the intermo-
lecular hydrogen bonds for ammonia, the “quasicrystal-
linity” of the structure is comparatively well defined. Far 
from the critical point, the thermal vibrations of the 
molecules may be reduced to a set of Debye waves, as in 
a polar crystal, where the spectrum of collective oscilla-
tions in the liquid has a cutoff at longer wavelengths than 
in crystals [16] on account of the translational motion of 
the particles. The elastic continuum approximation does 
not generally allow for anisotropy and is far better appli-
cable to a liquid than to a crystal [17].  

The width W1/2 of the optical spectrum of free polaron 
in ammonia can be numerically estimated if the numeri-
cal parameters of the theory are given. At low concentra-
tions of the polarons, the dielectric constants ε∞ and εs 

can be set equal to their values in pure ammonia; i.e., ε∞ 
= 1.756 and εs = 22.7. The electron effective mass m* is 
usually determined from a comparison of the experi-
mental and theoretical positions of the absorption band 
maximum. At sufficiently low temperatures, the transi-
tion frequency is dominated by the first term in (49). 
Indeed, for the experimental measurements at tempera-
ture T = 225 K [11], we have the ratio 

(1) 2
0 0 0
(0) (0) ** (0) 4
0 0 0

3 1
1k k k

k k k

S S kT

m 


   
  

  

v
    (53) 

In this estimate, it is taken into account that, according 
to Formula (42), the effective mass of the solvated elec-
tron is m** = 0.02γ8m*. Therefore, the translational veloc-
ity contributes only insignificantly to the optical  
transition. It is mainly determined by the (0)

0k   
(0) (0)

0 kW W  term. A comparison of the theoretical posi-
tion of the band maximum with its experimental value 
0.88 eV [11,18] yields the value of m* = 1.73m for the 
electron effective mass, where m is the mass of a free 
electron.  

Let us estimate numerically the contribution from the 
translations of quasiparticle as whole to the full width at 
half maximum of the absorption spectra. For definiteness, 
we use the following parameter values: 0 8.5   

11310 s  [8], γ2 = 13.5. Then, Formulas (51) and (52) 
yield the value of W1/2 = 0.23 eV for the contribution 
from the thermal motion of the quasiparticle, which 
represents an appreciable part of the experimentally ob-
served value 0.46 eV [11,18]. The remaining part in the 
broadening of the absorption spectra of the polaron is 
likely to be due to the fluctuations of the polarization 
field [4] or other mechanisms which short discussed in 
Introduction. Equations (51) and (52) can be also used to 
calculate the temperature band-width coefficient; it  
occurred to be equal to 3

1/2 / 1.03 10 / KdW dT eV  . 
The experimentally measured [19,20] range (0.6 – 1.6) × 
10-3 eV/K of the temperature coefficient is in satisfactory 
agreement with the calculated value. 
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Abstract 
 
It is known that all candidates in dark matter (DM) particles (neutrinos, axions, supersymmetric particles etc.) 
can not explain the basic properties of DM. The same can be said on the proposed candidates in dark energy 
(DE) (for example, quintessence). In the paper it is shown that some problems connected with DM and DE 
can be solved in the framework of the byuon theory. Basic axioms and some conclusions of this theory are 
discussed. The existence of fundamental unobserved elements in nature, byuons is declared. Physical space 
in our Universe is the quantum medium of special objects 4b, formed in four-contact interactions of byuons 
(m4b c

2 ≈ 33eV). These objects determine the average density of substance (DM) in the Universe ~10-29 g 
cm-3. The byuon theory predicts a new interaction of natural objects with physical vacuum. This new force 
can cause the observed acceleration of our Universe. The estimations show that it is higher than the gravita-
tional force at distances of order to 1026-1028 cm. Some other consequences of the byuon theory are consid-
ered. 
 
Keywords: Dark Matter, Dark Energy, Byuon, New Force 

1. Introduction 

Some hard problems have appeared in astrophysics dur-
ing the last dozens of years. Observations show that ap-
proximately 4% of the cosmological energy density is 
accounted for by baryons, 23% by “the dark matter” and 
the reminder by “the dark energy” (see, for example, 
[1,2]). 

There are some evidences for the existence of dark 
matter (DM) and dark energy (DE). Here we enumerate 
basic ones only. 

1) In 1937 F.Zwicky measured velocities of galaxies 
in the Coma cluster and concluded that the total mass of 
this cluster must be much more than observable one to 
prevent the escaping of investigated galaxies from the 
cluster. 

2) The summarized mass of the observed gas and gal-
axies in the number of clusters is not enough to keep 
them inside of the cluster. 

3) The gravitational lensing by clusters of galaxies 
gives the mass of such lens much more than calculated 
masses of clusters. 

4) The rotation curves of galaxies [3] show that the 
total mass of the individual galaxy is approximately one 
order higher than the mass of gas and all stars observed 
in this galaxy. 

5) The observations of supernovae in distant galaxies 
(see, for example, [4]) show that our Universe expanses 
with an acceleration, and there is a source causing such 
type of expansion. 

The nature of dark matter and dark energy is unknown 
up to now. 

 
2. Dark Matter 
 
DM is not observed as a shining matter and must be 
characterized by extremely weak electromagnetic inter-
actions. It must be approximately collisionless and non- 
relativistic.  

DM is not primarily baryonic. The calculated amount 
of deuterium should be much smaller than observed one 
if the average baryon density was an order of magnitude 
higher than the modern value (~0.3 baryons per cubic 
meter). 

The mass interval for the possible candidates in DM is 

huge (from 10 -22 eV to 106 M⊙ ≈ 1072 eV). 
Let us discuss the most probable candidates in DM. 
1) Axions, light pseudo-scalar bosons [5,6] with mass 

μeV ≲ m ≲ meV. They could be detected by resonant 
axion-photon conversion in a magnetic field [7,8]. 

2) Neutrinos. Some laboratory experiments and cos-
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mological restrictions give the mass interval for all kinds 
of neutrinos: 

50 meV ≲ Σ mν ≲ 0.7 eV, or 0.0005 < Ων h
2 < 0.0076, 

where Ων = ρν/ρc , h = H0/100 km/sec/Mpc, ρc = 3 H0
2/  

(8 π G) is the critical density of the Universe, H0 is the 
Hubble constant.  

Super-symmetric theories put bosons and fermions in 
common multipletes. They give some possible candi-
dates in DM.  

1) The super-partner of the graviton, gravitino with the 
spin 3/2 [9]. 

2) Neutralinos. These are the four spin ½ Majorana 
fermion super-partners of the neutral gauge and Higgs 
bosons (χ0

1-4) [10]. There are also two charged Dirac 
fermion super-partners of charge gauge and Higgs bos-
ons, charginos (χ±

1-2).  
3) Axinos, a spin ½ partner of the axion [11].  
4) Non-topological solitons, Q-balls [12]. 
5) If our four-dimensional space-time is embedded in 

a higher dimensional space, the Kaluza – Klein excita-
tions of Standard Model states along the orthogonal di-
mensions may be as DM candidates [13]. 

6) Objects of many dimensions (branes) are described 
in string theories. Their fluctuations have been consid-
ered as particles (branons) which could be DM candi-
dates [14]. 

7) DM could be an ordinary matter in the mirror world 
where the only communication is gravitational. In this 
case our Universe and a mirror universe are two branes 
in a higher dimensional space [15]. 

8) At the last stages of inflation gravitational interac-
tions can produce a lot of weakly interacting massive 
particles which for mass scales of 1013 GeV could ac-
count for DM [16]. 

9) Primordial black holes have been considered as 
candidates in DM as well [17]. 

So, as observations give, baryons provide approxi-
mately 4% of DM, neutrinos ~0.3-3% of it. The rest 
(20-25%) is a non-baryonic DM. The nature of this part 
of DM is unclear. There are many problems with theo-
retical foundations and experimental evidences of the 
existence of particles mentioned above and described in 
cited papers. 
 
3. Dark Energy 

The nature of DE is much more unclear than that of DM. 
It is necessary for it to have the equation of state of the 
following form (see, for example, [18]): 

p = w ρ                    (1) 

where p is pressure and ρ is the energy density. The most 
probable value of the parameter w is approximately –1, 
as follows from the known observations. This implies 
that the energy density of such substance is constant and 
corresponds to the flat universe, i.e. the curvature K of 

the spatial sections (slices at constant cosmic time) is 
equal to zero. DE causes the acceleration of the expan-
sion of our Universe. Figure 1 shows the sum (solid line) 
of two potentials: The usual (negative) gravitational po-
tential φ1 (broken line) causing the attraction of two 
bodies and a positive constant potential φ2 giving the 
repulsion at large distances (r > r*). 

One of the possible sources of DE is “quintessence” 
[19], a scalar field Φ rolling slowly in a potential. Most 
quintessence models give for such scalar fields 

mΦ c2 ~ 10-33 eV                (2) 

In quantum field theory light scalar fields are hard to 
understand. In any case these fields should give rise to 
long-range forces which must be observable. It is sur-
prisingly why such quintessence field has not been de-
tected up to now. 

There are many problems with other models of DE 
(see, for example, [18]). 

In this paper we shall try to explain DM and DE in the 
framework of the byuon theory. First of all we will de-
scribe briefly the foundations of this theory. 
 
4. Basic Axioms and Hypotheses: Space, 

Time, and Physical Vacuum in the Light 
of the Byuon Theory 
 

Any theory begins with axioms, that is, with basic pos-
tulates accepted without proofs. 

Thus, let us assume that there are no space, no time, 
no world of elementary particles of which all physical 
bodies consist, but there is an unobservable object, a 
byuon (i) [20-25], being unobservable in itself and 
characterized by discrete states (i.e. numbered by the 
series of natural numbers) having inherent “vectorial” 
property. The expression for (i) is  

Ф(i) = [Ag X(i)]  (– 1  [Ag X(i)] )      (3) 
where X(i) is “length” of the byuon, a real (positive or 
negative) value depending on the index i = 0,1,2,…k,… 

 

Figure 1. Scheme of two body interactions in our Universe. 



Y. A. BAUROV  ET  AL.                                   
 

Copyright © 2010 SciRes.                                                                               JMP 

19

Index i is a quantum number for (i)1. The explanation 
of square brackets has been given further. The dimension 
of byuons is equal to the dimension of electric charge (in 
the CGSE-system) or of magnetic flux or of the Dirac’s 
monopole. The quantity Ag is some internal potential 
being equal in magnitude to the cosmological vectorial 
potential Ag, a new fundamental vectorial constant in-
troduced in [26,27] (Ag  1.951011Gscm). 

Thus, Ф( )i


can take both real and pure imaginary 
values. 

The whole set (i) forms a one-dimensional space R1 
in index i. 

According to this conception, by the discrete time is 
meant, for the byuon, a discrete change in the index i (its 
increase or decrease) is possible. In connection with the 
discrete time, a quantum of time 0 and quantum of space 

0
~x  are introduced in the one-dimensional discrete space 

R1 formed by byuons (0  0.9  10–43 s, 0
~x  2.8  10–33 

сm). The distance between byuons is defined therewith 
as a difference in their lengths x(i). The space R1 is dis-
crete by definition. 

Since the space R1 is discrete, one of methods of pa-
rametrization of X(i) is X(i) =

ox~ i, or X(i) = - ox~ i. 
Statics. In the set {(i)}, there are meant no static 

states with time t > 0. 
Kinematics. Depending on whether the length X(i) 

positive or negative, decreases or increases in magnitude, 
free byuons (i.e. not interacting one with another) can be 
only in one of the four so called vacuum states (VS) II+, 
I+, I–, II–. Further we will omit sometimes VS in the ex-
pressions like VS II+. 

Introduce the following definitions. 
1) A free byuon is in the state II+ if its positive length 

discretely, in a quantum of time 0, increases by a quan-
tum of distance 0

~x  with the speed of propagation (in-

crease in length) 0
0

0 0~
c

x
c 





 (c0 is the light speed). 

Hence the speed of byuons is the ratio of their lengths to 
the postulated quantum of time.  

2) A free byuon is in the state I+ if its positive length 
discretely, in a quantum of time 0, decreases by 0

~x . In 

this case 0
0

0
~0

c
x

c 



 . 

3) A free byuon is in II– if the modulus of its negative 

length increases by 0
~x  in time 0 with 0

0

0x
c


 




 

0c  . 

4) A free byuon is in I– if the modulus of its negative 

length discretely, in time 0, decreases by 0
~x . In this 

case 
0

0

0 )~(0
c

x
c 





. 

From the definition of byuons it is seen that they are in 
perpetual dynamics of generation and annihilation, ex-
tension and contraction. The collection of free (not in-
teracting) byuons in VSs II+, I+, I–, II– forms physical 
vacuum of the one-dimensional space R1 of index i 
(about properties of R1 will be said below). Recall how-
ever that in this model of physical vacuum, time is a se-
quence of events of byuon generation (extension) and 
“collapse” (contraction). These correspond to each byuon 
its own count of time measured by the natural number 
series. One of the two directions of the one-dimensional 
space R1, coincident with that of a byuon with the maxi-
mum x(i) in VS II+, is taken for the positive direction of 

the vector А


G and )(iФ


. 

The average magnitudes for byuons being in the above 
described VSs at maximum i=k, are determined from the 
following expressions (see 1, and [20-22]): 

1 1

1

1

1 1

2 1
[ ] 0,

2

2 1
[ ] 1 0,

2

2( ) 1
[ ] 1 0,

2

2( ) 1
[ ] 0,

2
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G
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consti
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consti
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constk i
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k A













 

 
     

 
        
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       

  
      

 

 

 

 

 (4) 

where .
34

2
0

00
1 e

hchc
const  is some constant. As we will 

see later h is equal to the Plank constant and e0 is the 
electron charge. (See Appendix 1). The square brackets 
mean the average value for byuons between previous and 
subsequent magnitudes because any observations are 
possible during time intervals much more than a time 
quantum only.  

Assume that for the byuons with the length greater 
than 0

~x , only contact interactions are realized, by which 

we will mean existence of at least two byuon VSs at a 
quantum of space R1. 

Hypothesis 1. Assume the observable three-Dimen- 
sional space R3 to appear as a result of minimization of 
the potential energy (PE) of VSs byuon interactions in 
the one-dimensional space R1 formed by them. We con-
struct PE from the taking into consideration of dimen-
sions. More precisely, the space R3 is fixed by us as the 
result of this byuon dynamics. In the space R3 therewith 
the dynamical processes for objects with the residual 
positive potential energy of byuon interactions originate, 
and in consequence, the wave properties of elementary 

1It should be explained that the vector (i) is not an ordinary vector in 
some space but an object with “inner” vectorial properties that are 
manifesting themselves when the value x(i) changes in the process of 
physical space formation. 
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particles arise. 
PE means the extreme value of the expression with the 

dimension of energy. This expression is formed using all 
possible vacuum states of byuons and the distance in the 
R1 space. This distance is taken positive values only.  

The proposed hypothesis requires to develop a 
mathematical model based on a new algebra of probabil-
istic events since the elementary events (a discrete de-
crease ( Ä ) or increase (D) in the length of byuon) are 
assumed to be probabilistic in character. Hence for the 
byuons of the minimum length we may say about the 
existence, with certain probability, of the events Ä D 
0. Note that in [9] an algebra of events is given, being a 
development of the Boolean algebra with the proviso that 
Ä D = 1. For the deterministic approach used in [28], 
the event Ä D  0 is illogical by von Neumann, but in 
the probabilistic space of events the existence of Ä D  
0 is possible. 

In this paper only the physical statement of the prob-
lem will be considered, and results of evaluations made 
in support of the hypothesis advanced, will be given. 

The space R1 is formed from the set of byuons in such 
a manner that at its i-th point there exist all the byuons 
with the lengths smaller than X(i) or equal to X(i) for X(i) 
> 0, and those with the absolute values smaller than X(k-i) 
for X(k-i)<0, where k is some period in i. 

The assumption that two neighboring byuons (the i-th 
and (i + 1)-th; (i + 1)-th and (i + 2)-th etc.) being in vac-
uum states II+

 will interact, is unreasonable since in this 
case the definition of byuons for this VS would be violated 
at the point of interaction. Such interaction is possible only 
between the i-th and (i-k)-th byuons in the state II+ if they 
form a “loop” in the space R1 (by the “loop”, the periodic-

ity of the process in i is implied), i.e. the two byuons 
iII  

and 
kiII  will be observed simultaneously at one point 

of the space R1. The least possible value of k is k = 3. In 
Figure 2 shown is the interaction of byuons in the vacuum 

states 
1II  and 

4II  (the smallest loop). The byuons in 

the state II– interact likely. 
 

0 

1 2

II+
4

II+
1 II+

3

II+
2  

Figure 2. Interaction of byuons in vacuum states II1
+ and 

II4
+ (the smallest loop). 

The byuon states I+ and I– can occur only if the byuons 
have already been in VS II+ and II–, respectively. At 
maximum positive potential energy of byuon interaction 
there exists a single variant of “occupancy” (Figure 3). 

The probability of the minimum four-contact interac-
tion of the neighboring in i byuons I+II+  I–II– (“” 
symbolizes interaction) with randomly appearing states 
I+ and I–, is equal to 1/16 [20-22]. That is quite under-
standable when analyzing possible four-contact interac-
tions (see Figure 4)). All other possible variants of the 
four-contact interaction are unobservable either because 
one cannot introduce them without violating the defini-
tion of byuons or in view of imaginary energy of such 
interaction. 

Note once more that there exist only two directions in 
the one-dimensional world, the first of which corre-
sponds to increasing index i for byuons with X > 0 (vac-
uum II+), and the second corresponds to decrease in i for  
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INkP – i – 4
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–

–

A

D X > 0

D X < 0  

Figure 3. Completion of vacuum states II+ and II– by vac-
uum states I+ and I–, respectively, at the maximum potential 
energy of interaction. 
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Figure 4. The possible variants of four-contact interaction 
of byuons. Square means that this interaction can realize in 
nature. 
 
such byuons (vacuum I+). These directions are coinci-
dent with those for byuons with X < 0: II– with I+, and 
I– with II+. It is clear from above definitions that the 
byuon with the maximum length X(i) in VS II+ deter-
mines the positive direction, and directions of other 
byuons are correspondent with it. 

The four-contact interaction of byuons is realized 
within a time  = 0

~  only at points D of the R1-space 

(Figure 3), i.е. at the points where introducing an inter-
action with PE > 0 is possible. In Figure 3 the arrows  
corresponding to byuons show directions of a decrease or 
an increase in their lengths relative to the origin of the 
coordinates introduced, for example, where i  0 (in its 
direction the absolute value of the byuon length de-
creases (states I+ and I–), and it increases in the opposite 
directions (states II+ and II–)). At the points A in Figure 
3, the coordinate denoting place (time) of byuon interac-
tion cannot be fixed because of violating, in such a case, 
the definitions of the byuon states (in one quantum of the 
R1-space within a time 0, the byuons with II+I+ I–II– 
should not be present). It is assumed that before the ori-
gin of VS II+ with the minimum length (i = 1), the byuon 
vacuum states II– and I– with any possible lengths are 
already in existence. 

The propagation of byuons in VSs II+I+ and I–II–, the 
interaction between which occurs with imaginary energy 
(see below ), presents two wave-like processes (see be-
low) directed towards each other at X(i) > 0 and X(i) < 0, 
respectively. These processes are unobservable. A really 
observable signal can be transmitted by means of such 
processes only in the four-contact byuon interaction II+I+  
I–II–. 

Let us obtain an equation characterizing the propaga-
tion of the four-contact interaction of byuons in R1. In-
troduce functions of index i, characterizing the origin of 

such or another VS by byuons: 2 ,i k i

II II 
   , determining 

the processes of byuon length magnitude origin and in-
crease at positive and negative X(i), respectively; 

2,i k i

I I 
   , determining the processes of byuon length 

magnitude cancellation and decrease at positive and 
negative X(i), respectively. 

The physical sense of the introduced functions consists 
in that their product determines the probability of 
two-contact interaction of byuons (for example, 

2i

II 
   

2i k

II 
   determines the probability of interaction of 

byuons 
ki

II

i

II
XAXA 

  22 ][][ и ), the product of four 
functions determines the probability of four-contact in-
teraction, the product of eight functions gives the prob-
ability of eight-contact interaction. These products 
should be positive, and in this case only they can de-
scribe an observed event.  

The probability of a single event is no greater than 1. 
Depending on which range is i in (0  i < k, k < i < 

Nk, Nk < i < NkP where k, N, P are the assumed periods 
in i) various types of contact interactions between 
byuons may be introduced. Hence the normalization of 
the introduced functions should be dependent on i. 

Let us normalize the introduced functions for the case 
0  i < k in the following manner 

( )/2
2 2 2 2 2

0 0 2

NkP k j i
j j NkP j NkP j

II I II I
j

NP 


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(5) 
1

2

1 0

j iNP
NkP j NkP j k

II II
j
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
 


   

 

    ,       (6) 

( ) /2
2 2 2

0 0 2

NkP k j i
j NkP j

II I
j

NP


 

 
   

 

    ,      (7) 

( )/2
2 2

0 0 2

NkP k j i
j NkP j

I II
j

NP


 

 
  

 

    .      (8) 

When normalizing, it is taken into account that within 
a period in i = k, one four-contact interaction occurs with 
probability 1. 

Let us obtain an equation in terms of -functions, de-
scribing the propagation of a four-contact interaction of 
byuons. For that we may write the following relation-
ships as to the origin of VSs II+( II

f ), I+( I
f ), II- ( II

f ), 

I - ( I
f ) depending on certain VSs of the byuons 

neighbouring in the index i: 

2 1 2 2

1 2

1 1 2

2 1 2 2

[ , , , ],

[ , , , ],

[ , , , ],

[ , , , ].

i i i NkP i NkP i

II II II I II I
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   (9) 
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Assuming only linear dependences in Expressions (9) 
as well as equiprobability of VSs of byuons neighbour-
ing in i, we obtain the following equations for -func- 
tions of four-contact interactions of byuons: 

2 1 2 2

1 2

1 1 2

2 1 2 2

,

,

,

.

i i i NkP i NkP i

II II I II I

i i i NkP i NkP i

I I II II I

NkP i NkP i NkP i i i

II II I II I

NkP i NkP i NkP i i i

I I II II I
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    
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     

     

     

     

 (10) 

From the first and second pairs of Equations (10) we 
obtain, respectively, the following equations: 

1 1 1 1[ ] 0i i i i

II I II I   
         ,          (11) 

0][ 1111  


iNkP

I

iNkP

II

iNkP

I

iNkP

II
  (12) 

where  denote the second finite differences in index i. 
It is seen from Equations (11) and (12) that the process 

in i is of oscillatory character for the functions  

1( i

II  

)1
i

I
 and )( 11 

  iNkP

I

iNkP

II
. These functions de-

termine the A-type points in the space of index i shown 
in Figure 3, i.e. the points at which we cannot introduce 
interaction of byuons. The A-type points in the space R1 
determine as if “ruptures” in i, between which there exist 
objects with energy E > 0. 

For the case i  k, write an equation for an increment in 
potential energy of a byuon interaction E(i), correspond-
ing to the occurrence of VSs 2


iII  and .I i

  Minimiza-

tion of E(i) is assumed to be going at each step in i. 
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    (13) 

 

where 2,, ,..., 


ii

III

iNkPkiNkP

IIII
EE , etc. are maximum values 

of potential energy of interactions of byuons with the 
lengths X(NkP-i-k) < 0 and X(NkP-i) < 0 in VS II–, as well 
as byuons with the lengths X(i) and X(i + 2) in VSs I+ 
and II+, respectively; сosI+II+, сosI–II– etc. are functions 
minimizing the potential energy of interactions of byuons 
entering into the expressions for ,,..., ,22, iNkPiNkP

III

ii

III
EE 


 

etc.; these functions are “responsible” for the appearance 
of a minimum plane object and the introduction of the 
concept of spin (see below). Functions сosI+II+ are not the 
usual Cos-functions, because we work up to now in 
one-dimensional space of i –indices. These Cos\s can 
have values from 0 to 1. Upper and lower indices in (13) 
correspond to interactions of byuon VSs, 

The difference in the average values of byuon lengths 
calculated basing upon the definition of byuons with the 
use of the rule of circular arrow (see Figure 5), is taken 
as a distance between the interacting byuons to find E(i) 
> 0. The meaning of this rule is that the said distance is 

calculated as the difference in the length values of the 
subsequent and preceding byuons in the direction pointed 
by an arrow. 
 

II+

I–

I+

II–

 

Figure 5. The rule of circular arrow for determining the 
distance between byuons. 
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The lengths of byuons are: 

1 1 1
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The distance between byuons does not depend on i and 
may take by magnitude only two values: 
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or multiples of them, for example, 
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The expressions determining the maximum energy of 
byuon interactions are written as 
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(14) 

The minimization of E(i) is achieved in the func-
tional space of the following variables: 

NP,k,cos,cos,,,,Ψ iNkP,ikNkP
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0
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   

(15) 

It is assumed therewith that the conditions of symme-
try during the “closure of the loop” in i are fulfilled as 
well as symmetry of the world and antiworld, which 
conditions can be represented as: 

...;coscos
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coscoscos
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  (16) 

The functions сos II+I– , сos II–I+ are considered as equal 
to 1. 

Initial conditions for - function are preset to be 

0,,
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Using the solutions of the Equations (11) and (12): 
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the space of variables down to four: , 2cos ,i i
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Now, taking into account the normalizing Expressions 
(5-8), seek for min E(i) by the steepest descent method. 
When retaining only 14 terms of the series in (16) and 
(5), min E(i) will correspond to the following values: 
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, 5

15 60

0.999(6), 1.00136 10 , 0.999(8),

1.100043 10 , cos 1.01887 10 ,

cos 1.20013 10 ,

6.2 10 , 3 10
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 (15) 

With increasing n, as is seen from the solutions given 
and Figure 6, k (the first period in i) approaches its value 
obtained in [25,26] on the base of physical considera-
tions as an integer part of the ratio 0 0 .x x   153.2 10  

Thus, we can now obtain, with the aid of the calculated k, 
one of the fundamental dimensions in physics of ele-
mentary particles, х0  10–17 cm, with the only quantum 
of space 0

~x  given. This mathematical result raises 

prospects that the advanced hypothesis is true. It reflects 
the nature of physical space and vacuum. 

The minimum 1E(i) was sought for a case when Nk < 
i  NkP. In this case the normalizing expressions for the 
arising interactions of byuons have the form: 

2

2
2 2 2 2

0 2
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j i

j j NkP j NkP j

I II I II
j N k

i N P

k
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 

      ; 

 

 

Figure 6. k as a function of the number n of the terms of the 
series. 
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The expression for 1E(i) becomes more complicated: 
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(E(i) is taken from Equation (10), taking into account for 
multiplication over index i as was shown above (i + 2, I + 
2-k, i + 2-2k etc.). 

The search for min E(i) with the use of the chain of 
Equations (7) in the space of similar variables with simi-
lar initial conditions (where i = 0 corresponds now to i = 
Nk), leads to practically the same results:  
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It is interesting that at i < k and even at i  Nk (Table 

1), a significant part in the magnitude of E(i) is poten-
tial energy of the byuon interaction in VS IIII, and at i 
 NkP the four-contact interaction of byuons in VS 
II+I+III becomes determining. 

Let us consider a simplified case when only the period 
in i, equal to k, is present in the antiworld. Then we have 
from the necessary condition of minimum E(i) with 

respect to the function 
2Ψi

II 


 (i.e. from the equa-

tion 0
)(

2








i

II

iE


 ): 

Table 1. The values of potential energy E in vacuum states 
(II+  II+), (II+I+ I II), (II II) depending on the i index. 

i 
E [erg] 

Nk NkP 

EII+II+ 1013 1095 
EII+I+I –II – 1070 10111 

EII – II – 1095 1013 

.
]3)2([)32(

)12(]1)([11
cos







 



iki

iik

kik

II

i

I
III

  (20) 

If i << k, N = P = 1, and hence, according to Equation 

(5) 
0

1
j i

j k j

I II
j

 






   , we obtain from Equation (20) 

сosII+I+  1/k. 
Thus, as show our numerical calculations and analyti-

cal estimations, the minimization of E(i) leads to values 
of functions сos II+I+ etc. if not zero but extremely small. 

Note that the functions сos II+I+ for the case of NP 
“loops” in VS II (see (18)) and for the case when N = P 
= 1, differ by ten orders of magnitude. The physical 
meaning of these functions will be shown further. 

Put a question, where disappears and into what kind of 
energy the potential energy of byuon interaction trans-
forms? An answer seems to be simple, of course, - into 
the kinetic energy of rotation (since сosII+I+ << 1, see (18, 
20)). But the rotation of what and around what? And why 
do we assume the law of conservation of energy to be 
fulfilled here? After all, it makes no sense to say about 
uniformity in time for this statement in which the time is 
discrete! Let us answer these questions. 

As it was shown above, the optimum values of the 

functions ,cos,cos 2,,2 


iNkPiNkP

III

ii

III
 etc., are much less 

than 1 but non-zero. The smallest values of сosII+I+  1/k 
correspond to residual (finite) potential energies Ek, from 

which, as we will further assume, the smallest part (asso-
ciated with the formation of the own space of elementary 
particles) of the potential self-energy of elementary par-
ticles corresponding to the known Einstein’s relationship 
Ek = mc2, is added together. Determine the minimum 
value of Ek. It is seen from Equation (13) that for the 
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simplest objects with N and P approximately equal to 1, 
the minimum Ek is equal to the potential energy of the 
four-contact interaction of byuons with the minimum 
values of сosII+I+, сos II–I–. 

In view of the normalization (5) we have for this case 




III

kk

IIIIIIIIIk EEE coscos ,22,0)0(

min
.     (21) 

From that, with the condition (16), and using Equation 

(14) and the equality сosII+I+  1/k, we obtain )0(

minkE  

33 eV. 
Consider the process of energy transformation for the 

four-contact byuon interaction occurring within a time 
quantum 0 (Hence, the transformation must be discrete). 

Any value of i can be redenoted with an another index, 
for example, with j, , , etc., which may be set equal to 
zero. At each point then, where j =  =  =...= 0, there 
will be always present an own system of account of the 
indices j, , , etc., as well as the minimum energy of 

four-contact byuon interaction )0(

minkE 33eV. Note that 

this minimum energy is limited in index i by values i = 0 
and i = 2 (point A Figure 3). 

Thus, we have in R1 two sets of points A({A}) and 
D({D}), between which the dynamic process of renumera-
tion goes in connection with the properties of vacuum 
states of the discrete objects, the byuons II+, I+, I–, II–: 

the time i+1 






...,,2}{

...,1,1}{

iiA

iiD
 

the time i+1+0







...,1,3}{

...,,2}{

iiA

iiD
 

The set R1 may be represented, at some i-th point of time 
as the join of {A} and {D}, i.e. R1 = {A} U {D} (Figure 7). 

Hence the space R1 segregates into the subspaces RD 
of D-points and RA of A-points. Thus, we may say about 
the motion of D-points relative to A-points. A new, sec-
ond coordinate appears, symbolize it by YAD (Figure 7).  

 

Di+1

Yi, i+1

{R }1

Di–1

Ai

AD

{A} {D}

 

Figure 7. Representation of the set {R1} as a union of sets of 
the points {A} and {D}. 

The minimum value of YAD: )1(|00min
iCY AAD    

.
~

| 0XiD   The minimum object appears. Assume that 

its appearance (new coordinate) corresponds to the 
minimum action h ( see [1-3], h = (([Агxo]II

+[Aгxo]I
-)/co) 

xo/ct* and elementary electric charge eo
2 = (1/(4√3)) 

Аg
2xo

2(xo/ct*)3/2 ). We may then introduce the concept of 
momentum for objects with the residual PE of a byuon 
interaction by writing the relationship hYP ii

AD
i

D   1,1  

where 1i
DP  is the momentum of the point D numbered 

i+1 relative to the point A with the number i. Similar 
relationship can be written in any point from {A}. The 

direction of the momentum vector 1i
DP 


 corresponds to 

that towards the point Di+3 
of the subspace RD. The direc-

tion of the coordinate 1, ii
ADY  corresponds to the vector 

directed from the point Ai to the point Di+1. 

The appearance of the minimum plane object and re-
alization of the minimum action are connected with the 

origin of the quantum spin number ,][ 1,1   ii
AD

i
D YPS  

expressed numerically in minimum actions h. 
The function сosII+I+ etc. minimizing E(i), will be 

further considered by us as cosines of the angles between 
the vector 1i

DP  and 1, ii
ADY  i.e. before the byuon inter-

action, the space R1 represents, at some time point , a 
certain discrete straight line of points {D} and {A}, and 
at the time point  + 0 forms a line, broken at points {D}. 
That is the minimum interaction of byuons has occurred.  

If an “observer” was able to perceive objects with E>0 
only every  = k0, he would simultaneously (within a 
time quantum 0) fix all the planes arrived to the point of 
“observation”, and “see” already the three-dimensional 
world formed from the plane world in the result of its 
dynamics within the time  = 0. Why the three-dimen-
sional and not N-dimensional one? Because the set of 
two-contact interactions of byuons is divided, depending 
on reference point (Figure 2, i = 0, 1, 2), into three sub-
sets M0, M1, M2 (the lower index denotes reference point), 
corresponded by three one-dimensional subspaces R1,0, 
R1,1, R1,2 while introducing metric properties. Explain the 
above said. 

As was indicated above, any value of index i can be 
always redenoted by j and then j = 0, 1, 2 corresponds to 
reference points. Redenoting i + 1 by , i + 2 by  etc. 
leads, depending on reference points, to formation of 
three families of subspaces embedded in each other: 

reference point “0” 
0,10,10,10,1 RRRR ji   etc.; 

reference point “1” 
1,11,11,11,1 RRRR ji   etc.; 

reference point “2” 
2,12,12,12,1 RRRR ji   etc., if 

i > j >  >  etc. 
Thus, in connection with the existence of three inde-

pendent reference points for the new pair interactions, 
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the three independent coordinates should be given to fix 
a pair interaction with respect of the three reference 
points, i.e. R3 can be represented as R3 = R1,0  R1,1  R1,2. 
Note that R1,0, R1,1, R1,2 consist of the sets of points {A} 
and {D}, i.e. at each subsequent point in time, renumera-
tion of points A and D and “spinning” of objects with E 
> 0 in the subspaces R1,0, R1,1, R1,2, occur. In this manner 
the concept of spin is introduced for objects with E > 0 
in R3. For objects of a big size (as a result of described 
minimization of PE), the rotation will be always take 
place since the byuons are not closed in a volume of R3 
due to cosII+II+  0. That is why, planets, stars and so on 
rotate, with the main part of potential energy of byuons 
being transformed into energy of rotation.  

Advance (without proving) the following theorem: 
If a system is closed, the amount of information in it is 

constant. 
That is, transformation of one information image into 

another is possible in the system, but the total amount of 
information does remain invariable. 

Note that by information we mean here not informa-
tivity as in theory of information developed by Hartly 
and Shannon [29] on the basis of entropic approach, but 
the numbers of information bits (the values “0” and “1”) 
in one or another information subsystems of the system 
of considered objects (the combinatoric approach [30]). 
By “1” we imply here accomplishing the minimal act 
(minimum action h/2) in the system with formation of an 
object with E > 0 from byuons, and by “0” disappearing 
of the object with E > 0 is meant. 

On the base of the theorem, write the following equal-
ity for informational units (bits) in the subspaces R1 and 
R3: 

NSh

kSE

3

110

22
2




             (22) 

where N is the number of information images in R3 
(N=сt*/х0 - the second period in i); S3 the complex of the 
information image in R3 (number of “loops” of length N; 
S3 = 1, 2, ...); E1 potential energy of minimum four-con-
tact interaction of byuons in R1 if сosII+I+ = сos II–I– = 1; 

h

SE 2110 
 is a transformation factor of recounting the 

number of information images (k) in R1 into that in R3 for 
i  kN; S1 is complex of the information image in R1 
(number of “loops” of length k, S1 = 1, 2, ...). 

By an information image in R3, one means one or an-
other quantum number of an elementary particle. 

With Equation (22), the expressions for lepton masses 
obtained in [20-22] (see Appendix 1) become more un-
derstandable (for example, 

min

2 0 *
033e km c E N eV ct x     

2 *
02

e
m c ct x  ). 

Taking k from the solution of the problem of searching 
the minimum E and substituting S3 = 1, S1 = 1 into 

Equation (22), we find N = 1.544  104 = сt*/х0 , and 
knowing N and NP from this solution, determine P  
1042. The value of 0

~x kN  10-13 сm. 

Thus, we find all the periods of byuon motion in i, 
corresponding to the following scales of our World: 10-17 

cm is a characteristic scale of weak interactions ( for 
larger lengths our World is three-dimensional and almost 
orthogonal, for an empty space with the 10-15 precision); 
10-13 cm is a characteristic size of proton and atomic nu-
clei, 1028 cm is the radius of our Metagalaxy or the ob-
servable part of our Universe.  

(See: Appendix 1 – The expressions for masses of ul-
timate particles; Appendix 2 – A qualitative distinction 
between the theory of byuons and previous physical 
theories. See in [21] “Force-free physics. A qualitative 
pattern of a common approach to unifying all interac-
tions. A novel principle of relativity.”) 

It should be also noted that to calculate the fundamen-
tal constants h, e0, c; constants of known interactions, 
masses of main baryons, leptons, and mesons , only three 
numbers ox~  0, |Ag| should be given since the charac-

teristic dimensions ox~   10-17 cm, ct*  10-13 cm and 

1028 cm are found from the minimum PE of byuons and 
from the information theorem.  
 
5. Dark Matter and Dark Energy in the 

Byuon Theory 
 

Determine the average density of substance in the Uni-
verse while taking i = NkP and, hence, its characteristic 

dimension cmNkPx 28
0 10~   (it coincides with the as-

sumed radius of the Universe). The total energy in the 

Universe can be represented as NkP
h

0
. Its value is 5.4  

1077 erg, and the corresponding equivalent mass  6  
1056 g. The uniformity of distribution of substance over 
the sphere with the radius NkPx0

~  gives the density of 

substance in the Universe  10-29 g cm-3, which is meas-
ured in the known observations. 

Through the set {A}, information exchange occurs 
between points of the set {D}, which is the main mecha-
nism determining physical essence of the Heisenberg 
uncertainty interval in the conception of physical space 
and physical vacuum. Without introducing the points {A}, 
the connection between D-points is realized in one direc-
tion only, in that of increasing index i with the speed no 
greater than c0. 

According to the developed conception of physical 
vacuum structure, we can determine a momentum and a 
coordinate of such a complex object as an elementary 
particle only with an accuracy of the momentum and the 
coordinate entering into the relationship PD

i+1
 YAD

i,i+1
 = h 

governing the momentum of D-points mapped into R3 
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according to (22). Here YAD
i,i+1 is any distance in 

one-dimensional space between the points A and D (cf. 
Figure 7). That is, writing the uncertainty relation in R3 
for some elementary object  as PX  h/2, we mean 
P and X to be caused by the process of R3 formation 
from byuons, i.e. determined by quantities of PD and YAD 
type.  

Its momentum corresponding to the minimum mo-
mentum for elementary particles, can be given in general 
form as [20-22] 

cEФP k
0

min
 , 

where  is probability of observing the object 4b formed 
in the process of the four-contact interaction in some 
region of space R3. 

If the objects 4b are free (that is, they create not an 
elementary particle but space free of them), then 

0
2
0

3
0

~4

~

16

1

xx

x
Ф


 , where 0

~x  10-33 cm, and x0  10-17 cm. 

In this case, if the scatter in values of the momentum is P 
for an elementary object Δp, then the uncertainty in the 
coordinate in R3 for the object 4b will be equal to 1028 cm. 
This value X has given us earlier the possibility to ob-
tain the density of matter in the Universe, observed    
in experiment, by way of averaging it over the sphere   
1028 cm in radius. From the modern point of view [cf. 
Arxiv: 0710.3018v1 [physics.gen-ph] 16 Oct.2007 ] the 
4b-objects with m4bc

2 = 33 eV and X= 1028 cm, form 
the so-called the cold dark matter – the quantum medium 
corresponding to the observed physical R3 – space. 

If the object 4b is not free (that is, it forms the internal 
geometry of an electron, for instance), then 

3
0

2
0 0

1
Ф

16 4 ( )

x

Nx x
  ,           (23) 

and we can write the following expression for an assem-
blage of objects 4b forming an electron (for which mec

2 = 
NEkmin): 

Nc

E

c

NE

xNx

x
p kk

00

0
2

0

3
0 minmin

64

1

)(416

1



   (24) 

Using Equation (24) we obtain the uncertainty in co-
ordinate Δx in R3 of the order to 10 cm for the assem-
blage of N objects 4b, that is, the electron, due to wave 
properties of N objects 4b, carries information on its 
properties not over distances of 10-8 cm (characteristical 
dimension of the de Broglie wave for electron at the 
temperature of 300 K) as would be in the case of a point-
wise particle but over distances of the order to 10 cm. 

When considering not N objects but one object 4b in 
the electron (that is, when Formula (23) is valid) then Δx 
 105 cm. Hence the less is an information on conditions 
of internal spatial characteristics of electron, the more is 
the scatter in coordinate. 

In the modern terminology [cf. Arxiv: 0710.3018v1 
[physics.gen-ph] 16 Oct.2007 ] 4b-objects forming ele-
mentary particles (their charges, masses and so on) and 
having X from 10 to 105 cm create the hot or warm dark 
matter. 

In [21] a qualitative pattern of a common approach to 
unifying all interactions is shown 

The byuon theory predicts a new anisotropic interac-
tion of natural objects with physical vacuum. 

Peculiar “taps” to gain new energy are elementary par-
ticles because their masses are proportional to the 
modulus of some summary potential A that contains 
potentials of all known fields (Appendix 1). The value of 
A cannot be larger than the modulus of Ag [20-22]. In 
accordance with the experimental results shown in 
[22,31], this force ejects any substance from the area of 
the weakened A potential along conal surfaces at angles 
of 100о ± 10о around the vector A direction. This vector 
has the following coordinates in the second equatorial 
system of coordinates: right ascension   293  10 
(19h 20m ), declination   36  10 [22,31]. The vector 
A is parallel to the vector Ag practically. 

The new force is of nonlinear and non-local character 
as to variation of some summary potential A and may be 
represented by some series in A [20-22,32]. 

The expression for the new force takes the form : 
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
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
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 G


   (25) 

Here N is the number of stable elementary particles in 
the body (electrons, protons and neutrons). 

Note that expression for the new force (25) is local 
(we cannot deal with the nonlocal ones as yet), therefore, 
to account for the nonlocality of the phenomenon, we 
will take А equal to the difference in changes of the 

summary potential | А

| at the location points of a test 

body and a sensor element [20-22]. 
These changes being equal, the force will be absent. 

Depending on the relative position of the sensor and the 
test body, A can take as a positive, so a negative value.  

To estimate a role of gravitational field in a change of 

| А

| we put forward the maximal gravitational potential 

φmax, determined for proton by the following relation-
ship: 

mp φmax= e| Ag |,             (26) 

where mp is the proton mass. Then the contribution of 

φmax in the change of | А

| is described by the following 

equality: 
φmax cos mp=eAv/c,           (27)  

where v is in this case the velocity of our Galaxy relative 

to the neighbouring galaxies, cos = iNkPiNkP

IIII




,2cos (15). 

It characterizes nonorthogonality of our World at the 
moment of the formation of the space of elementary par-
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ticles.. It is worth noting that potentials of physical fields 
have the physical meaning only for interacting byuons 
when elementary particles are generated with their 
masses and charge numbers. As for the vector potential 
of magnetic field it is gauged so that its value on the axis 
for example of the solenoid equals zero; x1 is the coordi-

nate, directed from the point of the most decreased А

 

on a winding to the vector А


G. 
The analysis of the specific experimental results with 

high field magnets (see [20-22,32-35]) has led to the 
following expression for (A): 
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Here r is the radius of the circle where the test body is 
located on; y is the difference in coordinates y of the 

sensor and the body [20-22]; 23*
0 )( ctx  is the part of 

energy 2
00

2
0 ||22 cAmcm

e G


 , which can be acted upon 

by the electromagnetic field potentials. 
Using the linear term only in the expansion of (25) by 

А, we obtain the following formula for the modulus of 
the new force: 

F =2Nmνc
21

2.ΔA (ΔA/ΔX).
                (29) 

It is worth noting that the experiments for the scanning 
the celestial sphere by the pulsed plasma generator [22,31] 
to detect some directions in space, where energy is more 
than the average value, are the final stage in the determi-
nation of the direction of the new force. This direction 
was determined before by the using the high field mag-
nets [20-22,32-35], by the investigations of the rate of β - 
decay for a number of radioactive elements [20-22,24, 
25,36], by the investigations with high precision gra-
vimeters [20-22,37], and by plasma generators of other 
types [20-22,38].  

Experiments with high field magnets [1,2] showed that 
the new interaction had the most probably an isotropic 
component as well. 

Let us discuss the nature of the dark energy in the 
framework of the byuon theory on the base of potentials 
of physical fields. 

It is known that the gravitational potential φ is nega-
tive, and therefore for any summation of potentials it 
decreases the modulus of A. Masses of elementary par-
ticles are proportional to this modulus. Hence the new 
force will push out any material body from the region of 
the decreased modulus of A, because a defect of energy 
ΔE = Δmc2 will appear and the corresponding force will 
act to the region with undisturbed value of A. Any ma-
terial body decreases in its own region the modulus A. 
due to potentials of physical fields of all its elementary 
components, i.e. creates the gradient ΔA/ΔX.. Gravita-
tionally acting mass, for example, our Galaxy, creates 

around itself the gravitational potential φ. To estimate the 
action of one galaxy to another we put in the Formula 
(29) the potential φmax from (26) and ΔA from (27) 
(ΔA = A). Let us estimate the distance RGG where the 
new force F from (29) will be higher than the gravita-
tional force Fg (Figure 1): 

RGG ≥ GMg
2/(2Nmνc

21
2 cos2 φmax

2 (mpc/ve)2)  (30) 

where G is the gravitational constant. 
Here Mg is the mass of the one of interacting galaxies. 

We consider an interaction of two galaxies with 1010 
stars, assume that the mass of each star is of order to the 
solar mass (~ 1033 g) and a relative velocity of each gal-
axy v = 100 km/sec and 1000 km/sec. From our experi-
ments 1 = 10-12 [20-22,51]. As the result we obtain from 
(30) RGG ≥ 1026 cm for v = 100 km/sec and RGG ≥ 1028 

cm for v = 1000 km/sec. 
Thus we have estimated the magnitude of the distance 

between galaxies above which they scatter under the 
action of the new force. The estimate obtained seems as 
reasonable and indicates that the physics of byuons is 
perspective to explicate the nature of dark energy and 
dark matter. 
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Appendix 1: 
 
The Planck constant and electric charge is determined by 
the following Expressions [20-22]: 

h = (([Аг*xo]II
+

*[Aг*xo]I
-)/co)*xo/ct* 

eo
2 = (1/(4√3))*Аг

2xo
2(xo/ct*)3/2 

The masses of ultimate particles can be described by 
the following Expressions [20-22]: 
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Appendix 2: 
 
It is known that any novel physical model of the Uni-
verse must meet the following criteria. First, all the dis-

covered laws of nature as well as sufficiently well estab-
lished models of one or another physical phenomena 
must follow from the new model as asymptotical ap-
proximations. Second, the new theory should have the 
capability for predictions. That is, it should guide an ex-
perimental way to the gain of new knowledge, as the 
theory itself gives nothing but only points such a way. 
Criterion of truth is an accurately performed experiment 
independently confirmed by various authors. The theory 
of byuons [20-22] seems to meet the above criteria. That 
is a theory of “life’ of special discrete objects from 
which the surrounding space and the world of elementary 
particles form. The intrinsic dynamics of byuons deter-
mines such fundamental phenomena as the course of 
time, rotation of planets and stars, spins of elementary 
particles, asf. 

What is a qualitative distinction between the theory of 
byuons and previous physical theories? 

First, the physical space was always given, in one way 
or another, and motion equations for a system of objects 
under study were written in that space. Space could be 
uniform continuum (Newton, Minkovsky) or discrete, 
one-dimensional or multidimensional, asf. In present-day 
cosmological models of the Universe origin (the Ga-
mov’s Big Bang [39], the Linde’s model of bulging 
Universe [40], and so on), space is always given, too. 
But in the theory of byuons, the physical space (neces-
sarily three-dimensional one, not ten-or-more- 
dimensional as in some modern physical models) is a 
special quantized medium arising as the result of interac-
tion of byuon’s vacuum states (VSs). That is, space is not 
given but arises. Therewith the appearing 
three-dimensional space must have an insignificant 
global anisotropy, as distinct from all basic isotropic 
models with the same properties in various directions. 
The said anisotropy denotes the existence of some cho-
sen direction caused by the existence, in nature, of a new 
fundamental vectorial constant, the cosmological vec-
tor-potential Ag entering into the definition of the byuon. 
That new constant is associated with the prediction of a 
novel anisotropic interaction of natural objects between 
themselves and with the physical vacuum, a lowest en-
ergy state of physical fields. 

It should be noted that in the literature spaces with lo-
cal rather than global anisotropy are considered [41], for 
example, the Finsler’s space-time [42], but the local ani-
sotropy is given therein “by hand”. That is, an author 
himself directively introduces it into his model instead of 
obtaining from some general principle. For example, 
there are domain models of the Universe. 

Secondly, the physical sense of time notion is not yet 
revealed in science in the present state of the art [43]. 
The general philosophic concept of time as a form of 
matter existence, which expresses the order of change of 
objects and phenomena as a sequence of events, does not 
indicate a common nature of those events. As a rule, 
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people tie their time to a particular periodic process: ro-
tation of the Earth around its axis, Earth’s orbiting 
around the Sun, oscillations of a quartz system, asf, 
without becoming aware of inner, profound sense of time. 
Standard physical time references, for example, quantum 
or, what is the same, atomic clock with instrument error 
on the level of 10-11 per year and moderate resolution of 
the order to 10-13 seconds, give us no possibility of ap-
proaching the knowledge of time essence. The byuon 
theory reveals physical essence of time as a discrete se-
quence of changes in the byuon’s “length”, its quantum 
number. A possibility therewith arises, to synchronize 
clocks at great distances comparable with dimensions of 
our Metagalaxy, due to the quantum process of physical 
space formation from the byuon’s vacuum states (VSs). 
That possibility distinguishes substantially the theory of 
byuon’s from A. Einstein’s special theory of relativity 
(STR), in which clocks can be synchronized only when a 
signal has passed between them with speed of light co. It 
should be noted at once that in the byuon theory, material 
objects cannot move with a speed faster than the light 
speed (that is similar to the STR’s postulate on finite 
propagation velocity of interactions), but synchronization 
of clocks occurs by a quantum way without introducing 
the concept of speed. That is, some object originated in 
the course of interaction between byuon vacuum states 
and forming the physical space, is at a time in two spatial 
regions being very distant from each other in the 
three-dimensional space arising. 

Third, an essential distinction of the byuon theory 
from modern models in the classical and quantum field 
theories [44] is that the potentials of physical fields 
(gravitational, electromagnetic, asf.) become, in the the-
ory of byuons, exactly fixable, measurable values. Recall 
to the reader that ordinary methods of measurement are 
capable to measure solely a difference of potentials. 
Therefore, in the existing field theory, potentials are de-
fined only with a precision of an arbitrary constant or the 
rate of change of the potentials in space or time (gauge 
models). But in the theory of byuons, field potentials 
become single-valued since there are formed, on the set 
of byuon VSs, field charge numbers which generate the 
fields themselves, as, for example, the electric charge of 
an electron generates an electric field. The physical sense 
of field as a special form of matter, loses its basic mean-
ing because all the observable events can be described on 
the basis of the byuon theory without introducing the 

concept of force, and hence of field.  
An important methodic distinction between the byuon 

model and all those existent in the theoretical physics of 
today, is that the latter use images with properties of real 
objects, - for example, strings in the physics of elemen-
tary particles [45], superstrings, membranes when creat-
ing a unified field theory [46], asf. But the byuons are 
unobservable objects having no analogues in the nature 
though all the natural objects appear in the result of in-
teraction of byuon VSs. 

The proposed pattern of formation of the observed 
space R3 on the basis of dynamics of the finite set of 
byuons animates, fills with a sense, and supplements the 
physical results on properties of elementary particles, 
described in [34,35]. For example, if some elementary 
object appearing in a byuon interaction has, with the 
probability near 1, the vacuum state I+ of a byuon com-
pleting formation of its quantum numbers (the greatest 
period of byuon interaction of the order of kN), such an 
elementary object will be stable as well as its properties 
will, since quite a definite amount of information will be 
locked up by VS I+. This relates, for example, to the 
electron. 

Thus, as opposed to gauge models in which the level 
of symmetry constantly grows for more complete, all- 
embracing, and unified description of the surrounding 
world [23-28], and to obtain massive particles it is nec-
essary to use “by hands” the Higgs mechanism (spontan 
violation of symmetry), in the present model there exists 
first a one-dimensional world (its direction, i.e. that of Ag, 
is determined by the byuon with the maximum x(i)), then 
its symmetrization takes place, and the space R3, with the 
world of elementary particles originates. At that some 
insignificant (~1/k (~10-15)) asymmetry of “empty” R3 
remain as well as that of the 10-5 order inside the ele-
mentary particles. 

It should be also noted that to calculate the funda- 
mental constants h, e0, c; constants of known interactions, 
masses of main baryons, leptons, and mesons according 
to formulae (11e), only three numbers ox 0, |Ag| should 

be given since the characteristic dimensions ox   10-17 
cm, ct*  10-13 cm and 1028 cm are found from the mini-
mum PE of byuons and from the information theorem.  

Notice that in [20-22,24,25,31-38], results of some 
fundamental experiments in support of the basic theo-
retical statements have been described 
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Abstract 

The problem of magnetization change across the direction of magnetic field for a magnetic layer with 
non-symmetric boundary conditions was treated. The exact solution of the problem for the magnetization 
components mx and my was written in the form of complex combination of Jacobian elliptic functions and 
elliptic integrals. This allows one to demonstrate both the static mode and all dynamic modes for the mag-
netization distribution across the layer thickness. The static mode and several dynamic modes, as well as the 
first and second derivatives of the magnetization components, were calculated. Also, average values of the 
magnetization components mx and my for the static mode and three dynamic modes were calculated in 
dependence on the magnetic field. The obtained results can represent an interest in the large amount of ap-
plications of magnetic devices such as recording media, memory chips, and computer disks. The results are 
also useful for checking different numerical methods recently applied to study the problem, because it is 
thought that any numerical method cannot demonstrate solutions for the dynamic modes. 

Keywords: Landau-Lifshits Equations, Thin Films, Magnetization, Static and Dynamic Modes. 

1. Introduction 

The Landau-Lifshits equations first derived by Landau 
and Lifshits on a phenomenological ground in [1,2] are 
fundamental equations in the theory of ferromagnetism. 
The study of the equations can demonstrate the magneti-
zation distribution inside a ferromagnetic material and is 
a very challenging problem in physics and mathematics. 
Indeed, the study of them can be useful for a set of ap-
plications of magnetic devices [3,4] such as recording 
media and computer sensors, disks, and memory chips. 
The numerical and theoretical studies of the equations 
can be found in many works carried out in the last sev-
eral decades (for example see [3-10]). However, it is 
thought that any numerical treatment can not demon-
strate existence of a set of additional solutions. These 
solutions can improve understanding of magnetization 
distributions in a ferromagnetic layer when different re-
gimes of application of magnetic fields can be realized 
for a domain in the layer.  

It is assumed that in a ferromagnetic layer on an 
anti-ferromagnetic substrate, the vector of magnetic 
momentum M can be clamped at the boundary between 
the layer and the substrate. In this two-layer system, 
some magnetic structures [11,12] can appear when an 
external magnetic field is applied in the layer plane. 

These magnetic structures are characterized by inhomo-
geneous turn of the M across the layer thickness. In 1980, 
Zakharov and Khlebopros [13] reported that solutions 
written in [12] for the magnetization distribution in a 
magnetically-soft layer on a magnetically-hard substrate 
under axial application of a magnetic field can be written 
in a novel way. Also, some solutions of the problem 
were originally found by Aharoni [11] in 1959, using the 
Jacobian elliptic functions [14,15]. Also, the excellent 
and classical book [16] by Collatz provides solutions of 
eigenvalue problems with different boundary conditions.  

In 1995, the further theoretical investigations by Zak-
harov [17] considered the magnetic reversal of a mag-
netic system in a layer across anisotropy. Studying one 
of the magnetization components of the first dynamic 
mode, it was shown that magnetization in the layer after 
the dynamic threshold can turn from the equilibrium po-
sition and becomes opposite to the field over the entire 
thickness of the layer. It was also assumed in [17] that 
this occurs in a similar manner as a rod loaded by a 
transverse force is bent oppositely to the force direction 
as soon as the first dynamic threshold is achieved. Note 
that an infinite number of all higher-order modes fol-
lowed the single static mode can be called the dynamic 
modes. In 1949, this definition of dynamic loss of stabil-
ity was first given by Lavrent’ev and Ishlinskii [18] 
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when they studied a shock loading applied to rods. In-
deed, the problem of magnetization change along the 
direction of magnetic anisotropy of a magnetic layer with 
non-symmetric boundary conditions is similar to the 
Euler problem of stability of an elastic rod. Note that 
exact solutions for the problem of transversal loading of 
the rods were recently given in the work [19]. It is 
thought that magnetic systems are more convenient for 
studying the dynamic buckling because of many experi-
ments on these systems which can be performed.  

It is also thought that these magnetic layered struc-
tures can represent an interest in the development of 
idea of creation of the metallic transistor [20-22] be-
cause an applied magnetic field can easily create an 
inhomogeneous distribution of the magnetization. In-
deed, it is possible to study some effects resulting from 
the problem. Also, it is thought that the theoretical 
studies can be important for grasping some processes 
when liquid crystals and seignette-electrics are switched 
by super-strong fields. Some interesting experimental 
data can be found in the review paper [23] for the novel 
evaluation of the problem.  

This theoretical study of the magnetization distribution 
provides exact solutions leading to existence possibility 
of infinite number of dynamic modes in addition to the 
single static mode. In the studied case, the magnetic field 
is transversely applied. The following section describes 
the theory. The third section investigates the magnetiza-
tion components concerning extreme and inflexion 
points. In addition, the fourth section provides the mag-
netization distribution in the case when the magnetic 
anisotropy is accounted.  

2. Theory 

The magnetic layered system is shown in Figure 1 when 
a ferromagnetic layer with the thickness d is situated on 
an anti-ferromagnetic substrate. The z-axis is directed 
parallel to the normal to both the layer surface and the 
interface between the layers; z = 0 at the interface. The 
x-axis and y-axis lie in the plane of the interface. It is  

 
 

H 

Magnetically-soft layer 

Magnetically-hard layer 

M 

Z 

Y 

X 

 

Figure 1. The configuration of a magnetically-soft layer on 
a magnetically-hard layer. 

possible to treat domains with equal width and with neg-
ligibly thin walls such that the walls’ energy can be 
omitted. The applied magnetic field H is directed along 
the y-axis, and the initial direction of the magnetization 
vector M is towards the x-axis negative values as shown 
in the figure. The applied H can turn the magnetization 
vector M.  

The Landau-Lifshitz Equation (1) can be written in the 
following form [13]: 

)(e
jjj g HMM 


               (1) 

where × is the vector cross product, g is the exchange 
coupling constant (gyromagnetic ratio); j = 1, 2. In Equa-
tion (1), the term on the left represents the first derivative 
of Mj with respect to time. The boundary conditions for 
Equation (1) are chosen as follows: 

Mix = –M, Miy = Miz = 0 at z = 0 and ∂Mi/∂n = 0 at z = d 
(2) 

when the n is directed along the surface normal. In Equa-
tion (1), the effective magnetic fields Hi

(e) can be written 
in the following form for this case: 

i

dm
i

e
i

E

M
HMH




 22)(           (3) 

where α is the constant of exchange for a ferromagnetics, 
H represents external constant and altering magnetic 
fields. The energy Edm related to demagnetization fields 
existing at the domain boundaries can be written in the 
form of [13]:  

    2
21

2
214

8

1
xxxzzdm MMMME    

    2
21

2
21 zzzyyy MMMM          (4) 

where the demagnetization factors ηj are as follows: ηx = 
0, ηy = 4πd/(d + D), ηz = 4πD/(d + D) [13] with d and D 
representing the layer thickness and domain width, re-
spectively. It is possible to use normalized field h = H/M 
and normalized magnetization m*i = Mi/M. The m*i de-
pend on the coordinate z and time t, and can be written as 
corresponding static and dynamic terms: m*i(z, t) = mi(z) 
+ μi(z, t). The dynamic μi(z, t) were treated in [13] and do 
not represent a studying subject of this work. Note that in 
the treated case, the static magnetization components of 
mi(z) satisfy the following relationships:  

xxx mmm  21 , yyy mmm  21 , 021  zz mm , 

122  yx mm                  (5) 

After several complicated mathematical transforma-
tions described in [13] and accounting Equations (2)-(5), 
Equation (1) can be represented as: 

0)(
2

2

2

2























yxyy

x
y

y
x mmhm

z

m
m

z

m
m   

  (6) 



A. A. ZAKHARENKO                                     
 

Copyright © 2010 SciRes.                                                                               JMP 

35

with boundary conditions 

mx = –1 at z = 0 and ∂mx/∂z = 0 at z = d      (7) 

In Equation (6), the material parameter β represents 
the constant of single-axis anisotropy; h = H/M. Using 
the coupling between the magnetization components mx 
= cos(χ) and my = sin(χ), the Equation (6) can be rewrit-
ten in the following form:  

0)cos1(sin
2

2

 



b

h

dz

d
          (8) 

with the boundary conditions for the angle χ in the case of 
transversal loading of a magnetic field (see Figure 1) 

χ = π/2 at z = 0 and ∂χ/∂z = 0 at z = d       (9) 

That leads to the equation of oscillations of the mathe-
matical pendulum in the simplified case of b = (ηy + β)/h 
= 0 (ηy → 0 and β → 0):  

0sin2
2

2

 
q

df

d
             (10) 

In Equation (10), the f represents the normalized layer 
thickness, f = z/d, and q2 = d2h/α.  

It is now necessary to separate variables such as χ and 
f. Setting intermediate variable T = dχ/df, it is possible to 
get the following equation TdT/df = –q2sin(χ)[1 + bcos(χ)] 
resulting in T2 = 2q2cos(χ)[1 + 0.5bcos(χ)] + const, and 
hence dχ/df = sqrt{const + 2q2cos(χ)[1 + 0.5bcos(χ)]}. 
Using the well-known trigonometric formula cos(χ) = 1 – 
2sin2(χ/2), it is possible to write an intermediate result:  




222*

1 sin)cos1(1

2d
d

bkC
f


       (11) 

with C1
2 = (2 + b)q2 +const, ψ = χ/2 and the parameter 

k*2 ≡ 1/k2. The complicated case of Equation (11) is dis-
cussed below. In the simplified case of b = 0, the con-
stant C1

2 → C2 = 4q2k2 = 2q2 + const and 




22* sin1

d
d

k
fkq


            (12)  

In order to obtain the function ψ(f), the right side of 
equality (12) can be written in the form of the elliptic 
integral of the first kind:  

**),( CkFkqf             (13) 

where C* is a constant which should be determined from 
the boundary conditions. The elliptic integral of the first 
kind can be calculated with the descending Landen 
transformation [15]. Applying the boundary condition (9) 
at z = 0 (f = 0) and using the transformation formulas F(ψ, 
k*) = kF(ψ*, k) and sin(ψ) = ksin(ψ*) for k*2 = 1/k2 [14,15], 
the constant C* can be found as a function of k: C* = 
kFk(k) with  

)),2/2(arcsin()( kkFkFk           (14) 

Equation (13) can then be written as  

)(,
sin

arcsin kFqfk
k

F k



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








         (15) 

and applying the function such as sine to both sides of 
Equation (15), one can get  

),(snsin kuk               (16) 

where u = qf + Fk(k) and sn(u, k) is the elliptic sine rep-
resenting one of the twelve Jacobian elliptic functions 
[15]. The function sn(u, k) can be also calculated with 
the descending Landen transformation [15]. Note that 
F(φ, k) = u and φ = am(u) from [14,15]. Hence  

)],(snarcsin[2 kuk            (17) 

Applying the boundary condition (9) at z = d (f = 1) 
the parameter q can be also obtained as a function of k 
from the following equality: 

),(cn2
d

d
kukq

f


              (18) 

It is apparent that dχ/df = 0 if the elliptic cosine cn(u, k) 
= 0 that is satisfied for u = ρK(k) with ρ = 2τ – 1 and τ = 
1, 2, 3, … , where K(k) = F(π/2, k) is called the complete 
elliptic integral of the first kind. Therefore  

 222 )()(/ kFkKhdq k         (19) 

and  
  )()()( kFfkFkKu kk           (20) 

Note that the parameter k2 should be confined in the 
following range: 

12/1 2  k               (21) 

The exact solutions for the magnetization components 
mx and my can be written as functions of the Jacobian 
elliptic functions sn(u, k) and dn(u, k) in the following 
complicated form: 

 ),(sn),(dn2 kukukmx           (22) 

),(sn21 22 kukmy            (23) 

where dn(u, k) is called the elliptic delta-amplitude.  
Using the effective magnetic field Ha of anisotropy 

[13] defined as  22dha  , Equation (19) can be 

written as  
   22 )()(2 kFkKhh ka          (24) 

The average values, mx and my, of the magnetiza-
tion components (22) and (23) can then be written in the 
following form: 
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where E(amu, k) represents the elliptic integral of the 
second kind.  

The exact solutions (25) and (26) were first introduced 
in [19] describing the dynamic instability in the nonlin-
ear problem of a cantilever. Figure 2 shows the depend-
ence of the values of mx and my on the normalized 
values of h/ha for the static mode and several dynamic 
modes. The exact values of h/ha calculated with formula 
(24) are listed in Table 1. It is thought that these tabu-
lated values of h/ha can be useful for researchers to check 
accuracy of different numerical methods.  
  The behaviors of the magnetization components mx 
and my as functions of the f = z/d are shown in Figure 3 
(static mode) and Figures 4, 5, 6, and 7 (several corre-
sponding dynamic modes) for several values of the pa-
-rameter k2. It is clearly seen in all the figures that the 
satisfaction of the boundary condition of mx(f = 0) = –1 
occurs. It is also seen in Figures 5 and 6 that the mini- 
mum values of the component my = –1 are significantly 
closer to each other for the different values of k2 and the  
larger values of the f. This can mean that the magnetiza-
tion vector M can be aligned along the y-axis just below 
the layer surface for the large values of ρ and f → 1, and 
any values of k2 in the range: ½ ≤ k2 ≤ 1. Note that Fig-
ure 7 shows the limit case of k2 = 1 for the fourth  
 

dynamic mode with ρ = 9. It is noted for comparison that 
in [17] homogeneous magnetization distributions were 
shown in the case of the axial loading of magnetic 
field. The following section theoretically investigates the 
magnetization components mx and my written in Formulas 
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Figure 2. The dependence of the average magnetization 
components mx and myon the values of h/ha for the static 
mode (ρ = 1) and three dynamic modes (ρ = 3, 5, 7). 

Table 1. The values of h/ha with a high accuracy calculated with formula (24) for the static mode (ρ = 1) and four dynamic 
modes (ρ = 3, 5, 7, 9). 

h/ha 
k2 

τ = 1, ρ = 1 τ = 2, ρ = 3 τ = 3, ρ = 5 τ = 4, ρ = 7 τ = 5, ρ = 9 

0.5 0.0 5.57281572 22.29126287 50.15534147 89.16505150 

0.6 0.16567298 8.34803259 28.85368867 61.68264124 106.83489028 

0.7 0.35546612 10.48881628 34.58708571 72.65027440 124.67838235 

0.8 0.61298524 13.37289437 42.65213110 88.45069543 150.76858736 

0.85 0.80045211 15.49579728 48.69611846 100.40141566 170.61168887 

0.9 1.08028952 18.67880751 57.82731652 118.52581656 200.77430761 

0.99 3.19667416 42.16367438 125.41284831 252.94419597 424.75771734 

0.999 6.35289569 75.41909073 220.47314024 441.51504424 738.54480272 

0.9999 10.58349145 118.41697367 342.64545246 683.26892783 1140.28739976 

0.99999 15.88920579 171.10175649 491.73272506 977.78211149 1629.24991578 
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Figure 3. The magnetization distribution for the configura-
tion of a magnetically-soft layer on a magnetically-hard 
layer versus the value of z/d; the static mode with ρ = 1. 
Several values of the parameter k2 are shown: k2 = 0.5, 0.6, 
0.85, 0.99, 1 – 10–5. 
 
(22) and (23) concerning study of their derivatives with 
respect to f = z/d.  
 
3. Derivatives of the Magnetization  

Components 
 
The first derivatives of the magnetization components mx 
and my with respect to f = z/d read: 
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where  
)()(dd kFkKfu k                (29) 

Note that the derivative du/df in Equation (29) is equal 
to a constant for each ρ and k. In Equations (27) and (28), 
the first derivatives of the mx and my with respect to the 
function u can be written as follows:  
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Using Equations (27) and (28), the second derivatives 
of the mx and my with respect to the f can be written as 
follows: 
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Figure 4. The magnetization components mx and my versus the value of z/d; the first dynamic mode with ρ = 3. The val-
ues of parameter k2 are the same to those for the static mode shown in Figure 3. 
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Figure 5. The magnetization components mx and my versus the value of z/d; the second dynamic mode with ρ = 5. The 
values of parameter k2 are the same to those for the static mode shown in Figure 3. 
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Figure 6. The magnetization components mx and my versus the value of z/d; the third dynamic mode with ρ = 7. The val-
ues of parameter k2 are the same to those for the static mode shown in Figure 3. 
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It is stressed that the second derivative of the function 
u with respect to f in Equations (34) and (35) equals zero 
due to the linear dependence u(f) because K(k) and Fk(k) 
are constants. In Equations (34) and (35), the second 
derivatives of the mx and my with respect to the function 
u can be written in the following form: 
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u
        (39) 
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Figure 7. The magnetization components mx (solid line) and 
my (doted line) versus the value of z/d; the fourth dynamic 
mode with ρ = 9. The value of parameter k2 equals to 1. 
 

In the same manner, it is possible here to write all de-
rivatives of the mx and my with respect to the f: 

d d d

dd d

nn n
x x

n n

m m u

ff u

 
  

 
             (40) 

d d d

dd d

nn n
y y

n n

m m u

ff u

 
  

 
             (41) 

where the index n is an integer and n > 0. 

The first and second derivatives of the mx and my are 
shown in Figure 8 for the static mode with ρ = 1. It is 
clearly seen in Figure 8 that the first derivatives of the 
mx commence with zero values at f = 0 and they together 
with the first derivatives of the my become equal to zero 
at f = 1. The second derivatives of the mx and my for the 
static mode shown in Figure 8 were calculated with for-
mulae (36)-(39). For the first dynamic mode, the first and 
second derivatives of the mx and my are shown in Figures 
9 and 10, respectively, as the functions of the values of 
z/d. It is seen in Figure 9 that the first derivatives of the 
mx commence with zero at f = 0 and the derivatives of the 
mx and my become equal to zero at f = 1 that is similar to 
the case of the static mode. 

4. Non-Zero Value of the Parameter B and 
Discussions  

In the case of non-zero parameter b, the magnetization 
components mx and my were recently written as functions 
of the Jacobian elliptic functions sn(u, k) and dn(u, k) in 
the following complicated form [13]: 

)),(sn1/(),(sn),(dn2 2222 kukukukmx    (42) 

)),(sn1/(),(dn21 222 kukumy         (43) 

According to [13], the parameter ζ represents a func-
tion of both parameters k and b, which are independent 
of each other. The parameter ζ can have any value from 0 
to 1, and the parameter b can be written as the following 
function of the k and ζ [13]: b(k, ζ) = ζ2/( k0

2 – 2k0
2ζ2 + ζ2) 

with k0
2 = (k2 – ζ2)/(1 – ζ2). 

 
First derivatives of mx and my
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Figure 8. The first and second derivatives of mx (solid line) and my (doted line) with respect to the u versus the value of z/d; 
the static mode with ρ = 1. The values of parameter k2 are the same to those for the static mode shown in Figure 3. The fac-
tors du/df = ρK(k) – Fk(k) for the first derivatives of mx and my are as follows: 0, 0.64, 1.41, 2.81, 6.26 for k2 = 0.5, 0.6, 0.85, 
0.99, 1 – 10–5, respectively. The factors (du/df)2 for the second derivatives of mx and my are as follows: 0, 0.41, 1.98, 7.89, 39.2 
for the corresponding k2. 
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Figure 9. The first derivatives of mx and my with respect to the u versus the value of z/d; the first dynamic mode with ρ = 3. 
The values of parameter k2 are the same to those for the static mode shown in Figure 3. The factors du/df = ρK(k) – Fk(k) for 
the first derivatives of mx and my are as follows: 3.71, 4.54, 6.18, 10.2, 20.5 for k2 = 0.5, 0.6, 0.85, 0.99, 1 – 10–5, respectively. 
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Figure 10. The second derivatives of mx and my with respect to the u versus the value of z/d; the first dynamic mode with ρ = 3. 
The values of parameter k2 are the same to those for the static mode shown in Figure 3. The factors (du/df)2 for the second 
derivatives of mx and my are as follows: 13.8, 20.6, 38.2, 104, 422 for k2 = 0.5, 0.6, 0.85, 0.99, 1 – 10–5, respectively. 
 

Zakharov and Khlebopros [13] represented solutions (42) 
and (43) as the exact solutions for the magnetization 
components mx and my in the case of the axial loading of 
the magnetic field H. Indeed, in the case of the axial 
loading, they satisfy the boundary condition my(b ≠ 0, f = 
0) = my(b = 0, f = 0) = –1 and the relationship between 
the components: mx

2 + my
2 = 1. It is thought that the fol-

lowing must be fulfilled: my(b ≠ 0, f = 1) = my(b = 0, f = 
1) because cos(ψ = π/2) = 0 at f = 1 in Equation (11). 
However, that is also not fulfilled using solutions (42) 
and (43). Note that in the case of the axial loading of the 

H, the magnetization vector M should be directed to-
wards negative values of the y-axis that is anti-parallel to 
the vector H. It was also found that in the case of trans-
versal loading of the magnetic field, solutions (42) and 
(43) can satisfy only the relationship mx

2 + my
2 = 1, be-

cause it should be true for any u and k. In this case of 
transversal loading according to the boundary condition 
at f = 0, the magnetization component mx should equal to 
–1. However, that does not occur for any non-zero pa-
rameter ζ, using Equations (42) and (43). It is thought 
that any solution of the problem in both cases of the 
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transversal and axial loading for b ≠ 0 should satisfy the 
boundary conditions similar to what occurs in the case of 
b = 0, using Equations (22) and (33) in both cases of the 
transversal and axial loading of the magnetic field H. 
Therefore, one method is offered in this paper below to 
numerically obtain solutions for the case of b ≠ 0, which 
entirely satisfy the boundary conditions at f = 0 and f = 1 
for the cases of the transversal and axial loading such as 
in the problem of b = 0.  

Equation (11) can be written as follows:  




222*

1
sin1

2d
d

Ak
fC


           (44) 

with C1
2 = (2 + b)q2 +const, ψ = χ/2 and the function A2 

= 1 + bcos2(ψ). Here, it is assumed that in Equation (44), 
the function A results in the parameter k* that is conven-
ient in order to cope with an integral in the form of the 
elliptic integral of the first kind. Hence, Equation (44) 
can be written as:  




22* sin1

d
d

b

b
k

fqAk


            (45) 

with the parameter kb
*2 = k*2A2 and kb

*2 ≡ 1/kb
2, hence kb

2 
= k2/A2. Note that in this case in Equations (44) and (45), 
the constant C1

2 = 4q2k2 = 4q2kb
2A2 represents a function 

of the parameter b and angle ψ, but it should also remain 
a constant.  

It is thought that the following mathematical transfor-
mations can be written in the same manner as Formulas 
(13) to (23): the right side of equality (45) can be also 
written in the form of the elliptic integral of the first kind:  

**),( CkFqAfk bb               (46) 

where C* is a constant which is also determined from the 
boundary conditions. Applying the boundary condition 
(9) at f = 0 and using the transformations F(ψ, kb

*) = 
kbF(ψ*, kb) and sin(ψ) = kbsin(ψ*) for kb

*2 = 1/kb
2, the 

constant C* is analogically found as follows: C* = 
kbFkb(kb) with  

)),2/2(arcsin()( bbbkb kkFkF          (47) 

giving 

)(,
sin

arcsin bkbb
b

kFqAfk
k

F 
















        (48) 

Note that in Equation (48), the parameter kb is absent, 
and hence qA represents a function, but not a constant. 
Indeed, it is also possible to apply a harmonic function 
such as sine to both sides of Equation (48) that results in 
the following: 

),(snsin bbb kuk              (49) 

with ub = qAf + Fkb(kb). It is also noted that F(φ, kb) = ub 
and φ = am(ub). Hence  

)],(snarcsin[2 bbb kuk            (50) 

Utilizing boundary condition (9) at f = 1, the parame-
ter qA is also obtained as a function of kb.  

It is apparent that dχ/df = 0 if the elliptic cosine cn(ub, 
kb) = 0 that is satisfied in the case of b ≠ 0 already for ub 
= ρK(kb) with ρ = 2τ – 1 and τ = 1, 2, 3, … . There-   
fore, it is possible to write the following result: 2 2q A   

 2
( ) ( )b kb bK k F k  . Hence  

  )()()( bkbbkbbb kFfkFkKu         (51) 

The solutions for the mx and my can be also written in 
the form of the Jacobian elliptic functions, namely sn(ub, 
kb) and dn(ub, kb): 

 ),(sn),(dn2 bbbbbx kukukm         (52) 

),(sn21 22
bbby kukm            (53) 

Using the effective magnetic field ha of anisotropy, it 
is possible to write as follows:  

    222 /)()(2 AkFkKhh bkbba       (54) 

Note that solutions (52) and (53) for the case of b ≠ 0 
look like the exact solutions in Equations (22) and (23) 
for the case of b = 0. Therefore, they should satisfy the 
boundary conditions at both f = 0 and f = 1. It is obvious 
that solutions (52) and (53) are formed from the exact 
solutions in Equations (22) and (23) by the following 
substitutions: k → kb and u → ub. Note that in the case of 
b ≠ 0, the parameter kb depends on both the parameter b 
and the angle ψ = χ/2. Therefore, the angle ψ depends on 
the kb(ψ) in Equation (49), so that as soon as the angle ψ 
is changed, the kb(ψ) is also correspondingly changed. 
Indeed, it is necessary to apply the following recursive 
procedure using Equation (50): 1N   2arcsin[ ( )b Nk   

sn( ( ), ( ))]b N b Nu k   (N = 0, 1, 2, …). The right angle χ 

is found when χN+1 = χN. Fortunately, this numerical 
problem can be resolved. It is thought that for the nu-
merical procedure to compute magnetization components 
(52) and (53), the exactly determined angle χ in the case of 
b = 0 can be used as an initial guess χ 0 to numerically find 
the right angle χN in Equation (50) for the case of b ≠ 0. It 
was set in the numerical procedure to interrupt the calcula-
tion process when abs(χN+1 – χN) < 10–7. Note that such 
numerical calculations can be readily completed with a 
modern computer, for instance, a laptop with a 20-inch 
monitor and a four-core processor. It is also thought that 
this numerical method can be useful for finding solutions 
when the function A represents more complicated function 
of the angle ψ, depending on several parameters bi.  

To compare the solutions for the cases of b = 0 and b ≠ 
0, Figures 11 and 12 show the magnetization compo-
nents mx and my (transversal loading of a magnetic field) 
for the static mode (ρ = 1) and the first dynamic mode (ρ 
= 3) respectively. It is possible to notice in the figures 
that in the case of the dynamic mode in Figure 12, the  
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Figure 11. The magnetization components mx and my versus 
the value of z/d for the static mode (ρ = 1) for k2 = 0.7, 0.8, 
and 0.9. Solid lines are for b = 0 and the dashed lines are for 
b ~ 0.158, 0.139, and 0.123, respectively. 
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Figure 12. The magnetization components mx and my versus 
the value of z/d for the first dynamic mode (ρ = 3) for k2 = 
0.7, 0.8, and 0.9. Solid lines are for b = 0 and the dashed 
lines are for b ~ 0.158, 0.139, and 0.123, respectively. 
 
difference between the cases of b = 0 (solid line) and b ≠ 
0 (dashed line) is more significant than that for the case 
of the static mode in Figure 11. The figures show the 
magnetization behaviors for relatively small values of b 
< 0.2. Also, it is clearly seen that for the dynamic mode, 
the values of the components mx and my reach – 1 at the 
smaller values of z/d for the case of b ≠ 0.  
 
5. Conclusions 
 
This paper demonstrated the magnetization distribution 

in a magnetically-soft layer (ferromagnetics) on a mag-
netically-hard substrate (anti-ferromagnetics) when the 
applied magnetic field is perpendicular to the initial 
magnetization. Solutions were written in the form of 
combination of the Jacobian elliptic functions and elliptic 
integrals. The average values of magnetization compo-
nents, mx and my, were calculated in dependence on 
the applied magnetic field. The static mode and several 
dynamic modes of magnetization components mx and my 
were also calculated in order to illuminate their distribu-
tions across the layer thickness. The first and second 
derivatives of the magnetization components were also 
calculated. Also, it was found that the inclusion of mag-
netic anisotropy (b ≠ 0) in calculations can complicate 
the finding of the magnetization components and show a 
significant difference. Note that the utilized solutions for 
the problem completely satisfy the boundary conditions 
applied to the magnetically-soft layer with inhomogene-
ous boundaries. 
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Abstract 
 
We develop the discrete derivatives representation method (DDR) to find the physical structures of the 
Schrödinger equation in which the interpolation polynomial of Bernstein has been used. In this paper the 
particle swarm optimization (PSO for short) has been suggested as a means to improve qualitatively the solu-
tions. This approach is carefully handled and tested with a numerical example. 
 
Keywords: Discrete Derivatives, Spectra, Wave Function, Particle Swarm 

1. Introduction 

Several different methods, analytical and numerical have 
also been formulated and modeled during the past dec-
ades for the study of the solutions of the wave equation 
with different structures. It is known also that for very 
limited potentials, Schrödinger equation is exactly solv-
able [1-6]. 

The latest numerical approach to date is the differential 
quadrature method [1] introduced for energy spectra es-
timate. It was first applied to Schrödinger equation in the 
linear case, where the solution is not correctly reproduced 
in the domain in which strong oscillations can arise, or 
simply for instance in the case of highly excited states. 

Further calculations are pursued for the construction of 
the solution by a suitable choice of the interpolating 
points using the particle swarm optimization (PSO) [7] 
together with the discrete derivatives representation 
method. The aim of the present work is to develop a gen-
eral numerical procedure for the wave equations that is 
universally applicable. 

2. Formulation of the Discrete Derivatives 
Representation Method (DDR) 

In this section, the description of the discrete derivatives 
representation method can be summarized as follows: the 
radial Schrödinger equation in the framework of the 

spherically symmetric potential ( )V r r

=

 is written as 

( ) ( )n l n l

d
w r S r eS r

dr

2

, ,2
- ( )
é ù
ê ú+ =ê ú
ë û

        (1) 

where m E
2

2e = . We treat the case where the potential is 

central, and the Equation (1) is identified as the reduced 

Schrödinger equation, 
2 2

2m Kw r V r
h r

( ) ( )= +  is the ef-

fective potential where K  is expressed in terms of the 
angular momentum quantum number l  by l l( 1)+ , and 

the radial function n lR r, ( )  is related to ( )n lS r,  by the 

relation ( )n l n lS r rR r, ,( ) = . The radial variable r runs 

from a to b  with a 0>  and b  can be infinite. In 
general, in some problem, the Schrödinger operator re-
quires a change of variables. At this point, we need to 
make a universal transformation on the variable r . 

Let z r( )j=  be the new variable, where r( )j  is a 

smooth invertible function ( r z( )j-= ), and it is also 

easy to see that this definition preserves always the ei-
genvalue equation. 

We can express the solution n lS z, ( )  by making the 

substitution 

ΨasS z S z z z( ( )) ( ) ( )rj- =             (2) 

where we have now dropped the n l,  subscript for sim-
plicity. z( )Y  is a polynomial function in which will be 

defined in the following, asS z( )  is a asymptotic solution 
to be determined, and r  is arbitrary quantity, and can be 
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expressed in terms of the parameters of the potential. 
After substitution in (1) it can be verified that the func-

tion z( )Y  must be solution of the equation 

Ψh z( ) 0=                    (3) 

where the differential operator h  is defined by  

d d
h F z A z D z

dz dz

2

2
( ) 2 ( ) ( )= - - +           (4) 

for simplicity, we abbreviate as follows 

( )

( )

( )

where

as

as

as as as

F z

S
A z S z

D z w z C z
z z

C z S S S
z

2

2

2

2

2

2

1
2
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2

( 1)2
( ) ( ( )) ( )

2
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j

r jj
j

r rr jj e j
j

r j

j

¢

æ ö÷ç ÷ç ÷ç ÷÷çè ø

-

æ ö÷ç ÷ç ÷ç ÷÷çè ø

- ¢ ¢¢

æ ö÷ç ÷ç ÷ç ÷÷çè ø

¢=
é ù
ê ú¢¢ê ú¢= + +ê ú
ê ¢ ú
ê úë û

é ù
ê ú¢¢ -ê ú¢= - - + +ê ú¢ê ú
ë û

é æ ö÷ç ÷ç ¢¢ ÷ç ÷= + +ç ÷ç ÷ç ÷¢ ÷ç ÷çè øë

ìïïïïïïïïïïïïïïïïïíïïïïïïï ùïï ê úïï ê úï ê úïï ê úïï ê úûïî
(5) 

Now, we introduce the discrete derivatives representa-
tion method in which any derivative discretized at any 
grid point can be expressed by a linear combination of 
functional values at all discrete points over the interval 

a[ ( )j , b( )]j  of the variable z . 

The term Ψhé ùê úë û  involves the different derivatives and 

can be expressed as a constant coefficient eigenfunction 
combination at all discrete points over the interval a[ ( )j , 

b( )]j  as 

Ψ Ψ
N

ij ji
j

h β z i N
0

( ) for 0,...,
=

é ù = =ê úë û å         (6) 

iz( )F  represents the eigenfunction value at grid point 

iz . The weighting coefficients ijβ  are established with 

the choice of the test function and specifically taken as 
the Bernstein interpolated polynomial of N  th degree as  

( )1 0,1
N j

j
N j

N
B x x x j N x

j, ( ) , 0,..., ,  and 
-æ ö÷ç é ù÷ç= - = Î÷ç ê ú÷ ë ûç ÷çè ø

(7) 

and the associated sequences jz{ } , 1 j N£ £  of the 

z  -variable linked to Bernstein points j
j N

x =  by the 

relation ( )j jz b a x a( ) ( ) ( )j j j= - + . The term 
N

j

æ ö÷ç ÷ç ÷ç ÷ç ÷çè ø
 

in (7) denotes the binomial coefficient. A given function 

g x( )  can then be approached using (7) by 
N

N j N j

j

g x g x g x B x,

0

( ) ( ) ( ) ( )
=

» = å         (8) 

It follows that from (6,7,8), we can establish the un-

known weighting coefficients ijb  for the total Hamilto-

nian h  as 

ij i ij i ij i ijD z A z F z(0) (1) (2)( ) 2 ( ) ( ) ,b a a a= - -      (9) 

the superscripts 0, 1 and 2 in parentheses do not indicate 
powers, but merely identify the derivatives of the Bern-
stein’s polynomial with which the quantities ija  are 

associated. 

( )

k
N j ik

ij k k

d B x
k

dxb a

,( )
( )1

, 0,1,2
( ) ( )

a
j j

= =
-

   (10) 

Having found the weighting coefficients ijb  in terms 

of the energy, one can accurately solve the following ma-
trix equation and therefore the original problem (1) 

Ψ 0 bé ù =ê úë û                 (11) 

In the above expression, bé ùê úë û  is a ( ) ( )1 1N N+ ´ +  

matrix with elements i jb , and F  is a column vector 
with components 0(Ψ( ),z  1Ψ( ),z ... , Ψ Nz( )) . more 

complete description will be given later on with two spe-
cific examples. 
 
3. Strategy of Particle Swarm Optimization 
 
A new stochastic algorithm has recently appeared, 
namely “particle swarm optimization” PSO. The term 
‘particle’ means any natural agent that describes the 
swarms behavior. The PSO model is an appropriate parti-
cle simulation concept, and was first proposed by Eber-
hart and Kennedy [11-13]. 

In what follows, we present the main steps of the strat-
egy of the PSO algorithm. We assume that each agent 
(particle) i  can be represented in a multidimensional 
search space N  by its current position i iX x 1( ,=  

ix 2, . . .,  iNx )  and its corresponding specific velocity 

,i iV v 1(=  2 ,iv . . . ,  iNv ) . Also a memory of its personal 

(previous) best position is represented by i iP p 1( ,=  

2ip ,  ...,  iNp ) , called (pbest), the subscript i  range 

from 1 to s , where s  indicates the size of the swarm. 
Commonly, each particle localizes its best value so far 
(pbest) and its position, and consequently identifies its 
best value in the group (swarm), called also (sbest) 
among the set of values (pbest). 

Now each particle i  moves according to the following 
system as 
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k k k k k k k k
ij j ij i j i j j i jv w v c r pbest x c r sbest x1

1 1 2 2[( ) ] [( ) ]+ = + - + -  

(12) 
k k k
ij ij ijx v x1 1+ += +               (13) 

where k
ix 1+ , k

iv 1+  are the position and the velocity vec-

tor of particle i  respectively at iteration sequence 
k 1+ , c1  and c2  are acceleration coefficients for each 

term exclusively situated in the range of 2 to 4, jw  is 

the inertia weight with its value that ranges from 0.9 to 

1.2, whereas kr1 , kr2  are uniform random numbers be-

tween zero and one. For more detail, the double subscript 
in the relations (12) and (13) means that, the first sub-
script for the particle i  and the second one for the di-

mension j . The good choice of the inertia weight jw  

is crucial in the PSO success. In the general case, it can be 
initially set equal to its maximum value, and progres-
sively we decrease it if the better solution is not reached. 

In the relation (12), k
ijv 1+  is often replaced by k

ijv 1 / s+ , 

where s  denotes the constriction factor that controls the 
velocity of the particles. 

The features of this algorithm can be summarized with 
the following steps: 

Step 1: Set the values of the dimension space N , and 
the size s  of the swarm ( s  can be taken randomly). 

Step 2: Initialize the iteration number k  (in the gen-
eral case is set equal to zero). 

Step 3: Evaluate for each agent, the velocity vector us-
ing its memory and Equation (12), where pbests and sbest 
can be modified. 

Step 4: Each agent must be updated by applying its ve-
locity vector and its previous position using Equation 
(13). 

Step 5: The steps 3, 4 and 5 can be repeated, succes-
sively until a convergence condition is satisfied. 

The practical part of using PSO procedure is examined 
in the following example. 
 
4. Example 
 
It is interesting to take the same case as in [1] of the 
quasi-exact solutions for the singular even-power anhar-
monic potential to cast a light on the previous and present 
results. 

V r ar br cr a c2 4 6( ) ; , 0- -= + + >       (14) 

a , b and c  are free parameters, whose bound states 
can, of course, be found in closed form [5,6,8]. This  
type of potential has been handled by Varshni [9]. The 
details of the solutions can be found in [9]. The discrete 
points generated with the algorithm examined above, 
have been applied successfully on this examples are listed 
in Table 1. 

With this potential, the results for the first three energy  
levels obtained by the present method, the [1], the nu-
merical integration of the Schrödinger equation, and the 
introduction of an ansatz for the state-function [9] are 
listed in Table 2, where the error tolerance: TOL 810-= . 
With this tolerance and the number of the interpolation 
points N 17= , the PSO results under consideration are 
very satisfactory. The wavefunction R r( )  is displayed in 

Figure 1.This illustration corresponds to following pairs 
of parameter ( c , b ) of Table 2: (10, -30.6637974), and 
(1, -14.2653094) for the first excited state, and the second 
excited state respectively. 

Table 1. The best interpolating points ix  generated by 
PSO algorithm for this example. 

i  ix  i  ix  

1 0.2910 12 2.5975 

2 0.7778 13 2.8191 

3 0.8263 14 3.0029 

4 0.8359 15 3.6242 

5 0.9794 16 3.7235 

6 1.0779 17 3.8154 

7 1.2836   

8 1.6411   

9 1.6526   

10 1.9432   

11 2.3253   

 
Table 2. Values of the energies E0 , E1 , and E2  in a.u. 
obtained for the ground state, the first excited state, and the 
second excited state respectively, (with a 1= , l 0= ), 
where the superscripts a, b, c, and d denote the results ob-
tained by numerical integration of Schrödinger equation: 
[9], by the ansatz for the first three bound states: [9], by the 
[1], and by the present work respectively. 

c 1 10 100 
b –14.2653094 –30.6637974 7.8573936 

0E   

d

c

b

a

8.7857393

8.7857394

8.7857394

8.7857393

 

1E  

d

c

b

a

2.3032559

2.3032559

2.3032559

2.3032559

  

2E

a

b

c

d

2.2653095

2.2653094

2.2653094

2.2653095





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Figure 1. wavefunction R r( )  obtained with the present 

method, where r  is in a.u. for the singular even-power 
anharmonic potential. Full curve ( 10c = , 30.6b = -  
637974 ), first excited state; dash curve ( 1c = , b =  

14.26- 53094 ), second excited state. 

 
5. Comments and Concluding Remarks 
 
In this work we have presented a new formulation that 
uses the PSO algorithm together with the DDR method 
for the computation of the bound-state eigenvalues and 
the associated eigenfunctions of linear differential op-
erators such as the Schrödinger-like equation resulting 
from a quantum system, with which one can receive re-
sults that are not available with the interpolating points 
of Tchebychev type, especially when the wavefunction is 
not smooth. 

Although the previous DDR method with the PSO 
procedure provides substantially better accuracy than the 
conventional Tchebychev’s interpolating points used in 
[1] which are always known to be the only best points 
which permits a good approach of the interpolating func-
tion. The preliminary results, obtained through the use of 
the PSO method, show a good improvement of solutions 
for the example which has been selected here as a testbed. 
For instance, Figure 1 shows graphically the wavefunc-
tion obtained by PSO procedure. Furthermore, the shape 
of the wave functions is preserved for all configurations 
and the error tolerance is 10-8. 
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Abstract 
 
The fracture toughness, the driving force and the fracture energy for an infinite plate with a fractal crack are 
investigated in the fractal space in this work. The perimeter-area relation is adopted to derive the transforma-
tion rule between damage variables in the fractal space and Euclidean space. A plasticity yield criterion is 
introduced and a damage variable tensor is decomposed into tensile and compressive components to describe 
the distinct behaviors in tension and compression. A plastic damage constitutive model for concrete in the 
Euclidean space is developed and generalized to fractal case according to the transformation rule of damage 
variables. Numerical calculations of the present model with and without fractal are conducted and compared 
with experimental data to verify the efficiency of this model and show the necessity of considering the fractal 
effect in the constitutive model of concrete. The structural response and mesh sensitivity of a notched unre-
inforced concrete beam under 3-point bending test are theoretical studied and show good agreement with the 
experimental data. 
 
Keywords: Fracture Mechanics, Damage Variable, Fractal Space, Constitutive Model 

1. Introduction 

Concrete has been widely used in civil engineering for its 
good in-situ casting and molding abilities. As a quasi- 
brittle material, the fracture behavior of concrete receives 
much of researchers’ concerns. Though classic fracture 
mechanics which is based on the assumption of smooth 
cracking in materials can analyze concrete properties and 
meet the need of structure design in a certain extent, no 
advance is made to explain the failure mechanism from 
the change of the concrete internal structure. The difficulty 
mentioned above has a hindering effect for researchers to 
improve the mechanical property of concrete. 

Fractal geometry is established by Mandelbrot in 
1970s [1], which plays an important role in the develop-
ment of fracture mechanics theory. Researches show that 
the fracture zone of metal, rock and concrete has fractal 
characteristics [2-4]. This leads a widely use of fractal 
geometry in many fields of material science, for in-
stances, the Sierpinski carpet was adopted by Carpinteri 
et al. [5] to simulate the composition of concrete cross 
section, and the fractal effect was also introduced into 
the cohesive crack model. Another remarkable applica-
tion of fractal geometry is to describe the roughness of 

cracks quantitatively. Saouma et al. [6] and Issa et al. [7] 
investigated the crack profiles of concrete through tests 
and pointed out that cracks in concrete have an average 
fractal dimension of 1.1. Meanwhile, Issa et al. [7] ana-
lyzed the fracture surface of concrete and found its frac-
tal dimension is about 2.1 to 2.3. 

Studies on the damage of concrete point out that the 
propagation micro defects, i.e. microvoids and micro-
cracks, etc, is the mainly cause of the macro fracture of 
materials. Based on this fact, a new kind of constitutive 
model for concrete, called the damage constitutive model, 
is developed within the framework of continuum damage 
mechanics. In this model, the choice of damage variable 
is a key to control the effectiveness and performance. 
Because of the heterogeneity of concrete, definition of 
the damage variable still remains at the state that the 
change of material macro property, such as elastic 
modulus and stress, are used to reflect the development 
of damage indirectly, and no direct relation is set with 
the intrinsic deflects. As the progress in studying fractal 
phenomena, some researchers try to explore the damage 
growth by means of fractal geometry. Zhao [8] defined a 
damage variable as a function of the area of fracture sur-
face, and proposed a new damage constitutive model for 
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rock in which the fractal effect was taken into account; 
Guarracino [9] gave out a damage variable as the ratio of 
the porous and REV (or the representative elementary 
volume) volume fraction of materials and presented a 
fractal constitutive model for rock. 

In this work, the fracture behaviors of a material with 
fractal cracks are investigated by using fractal geometry. 
Theoretical expressions of the fracture toughness, the 
driving force and the fracture energy is derived conse-
quently. The transformation rule of a fractal damage va-
riable in the fractal space and a apparent damage variable 
in the Euclidean space is obtained by adopting the pe-
rimeter-area relation. This rule is introduced into a new 
plastic damage constitutive model of concrete presented 
in this research. A notched plain concrete beam under 
3-point bending test is simulated to verify the efficiency 
of the model. 
 
2. Fracture Parameters in the Fractal Space 
 
2.1. Simplification of Fracture Zone 
 
Figure 1 illustrates an infinite plate with a fractal cut in 
uniaxial tension. The cut releases the stress in a fracture 
domain, whose shape can be approximated as an ellipse 
[10]. A standard Koch fractal curve is employed to con-
struct the boundary of the crack, see Figure 2. n denotes 
the construction step. Keep the area of frac 
ture zone as a constant of 2

0a , then the fractal dimen-

sion D of the crack is independent on the yardstick 

03 n a   , where η is a shape parameter and η=2π 

when smooth cracking. 
 
2.2. Critical Cracking Stress 
 
According to the fractal theory [1], the real length 2a and 
the apparent length (projected to the axial) 2a0 of the 
crack has the following relation: 

1
0
D Da a                      (1) 

The surface energy of the fracture surface is: 
 

 
 

Figure 1. A fractal crack in the infinite plate. 

 
 

Figure 2. Construction of the crack boundary with a stan-
dard Koch fractal curve. 

 
1

0( ) 4 4 D Da ta t a                   (2) 

where t is the plate thickness. The perimeter C of the 
fracture zone is: 

1
04 4 D DC a a                     (3) 

Thus, one gets the zone area A as follows by adopting 
the perimeter-area relation 

   
2 2 42

2 2
0 02

D

D DDA a m C m a   


           (4) 

where the proportional coefficient m is: 
42 Dm                      (5) 

Therefore, the strain energy released during the crack-
ing process can be written as: 

2 2
2
0

0 0

( )
2 2

t t
U A a

E E

                   (6) 

where σ denotes the tensile stress of the plate; E0 is the 
elastic modulus. For a plate strain state, one needs to 

replace E0 in Equation (6) with  2
0 01E  , where ν0 is 

the Poisson’s ratio. 
The Griffith fracture criterion state that: materials 

cracks when the released elastic energy ΔU equals to the 
surface energy Π concentrated in the fracture zone for an 
infinitesimally small increment of the crack length da0, 
i.e., 

 
0

0
d U

da

  
                 (7) 

Substituting Equations (2) and (6) into Equation (7), 
one obtains the critical cracking stress σc for materials as: 

1 2 1
0 04 D D

c E D a                   (8) 

For a smooth cut case, D=1.0, η=2π, and we have: 

0

0

2
c

E

a





                  (9) 
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2.3. Fracture Toughness 
 
Wunk and Yavari [11] studied the stress field at the frac-
tal crack tip, and presented the component σy in y direc-
tion as shown in Figure 1. 

 
  cos( ) sin sin 1

2

f
I

y

K

r
     


       (10) 

where f
IK  is the fractal stress intensity factor; α repre-

sents the singularity order of the stress field, and can be 
expressed as: 

2

2

D



 , 1 2D               (11) 

in terms of D for a self-similar fractal crack. 
For D=1.0, we have α=1/2 and f

I IK K , and Equa-

tion (10) degenerates to the smooth cracking case as: 

 
1 3

cos sin sin
2 2 22

I
y

K

r

  


        
     (12) 

When σy=σc, 
f f

I ICK K , the crack begins to grow. Re-

ferring to Equations (8) and (10), one obtains the fractal 
fracture toughness for materials: 

 
 

1 2 1
0 02 4

cos( ) sin sin 1

D D
f

IC

r E D a
K

   
    

      


   
    (13) 

Figure 3 illustrates the relation among f
ICK , D and a0. 

It can be noted from Figure 3 that f
ICK  decreases with 

the increasing of the crack length; If a0=0,  
f

ICK  tends to be infinite, and no crack exists in materials, 
which verifies the concept that the growth of initial de-
flects leads to the final failure of materials. The greater 
the D value, the more bifurcated the cracks are, and the 
larger f

ICK  is, which indicates that roughness has a hin- 

 

 
Figure 3. Influences of D and a0 on f

ICK . 

dering effect on the cracking of materials. 
 
2.4. Driving Force 
 
Classic driving force is defined as the strain energy dis-
sipated to form a unit fracture area [11], and can be ex-
pressed as: 

   2

0

1

2
IU K

G
t a E

 
   


            (14) 

Submitting Equations (1) and (6) into Equation (14), 
one gets: 

2
2 1
0

02
f D DG a

E D

                  (15) 

For the mode I cracking case, G f reaches its maximum 
value max

fG  when σ increases to the tensile strength σt of 

materials: 

2
2 1

max 0
02

f D DtG a
E D


               (16) 

We also have the cracking resistance GIC of materials 
as: 

1
2

2ICG
t a


  


             (17) 

If max
f

ICG G , cracking occurs, and cracks does not 

grow when max
f

ICG G . This is the G-fracture criterion 

for fractal cracks. 
 
2.5. Fracture Energy 
 
The fracture energy GF of materials is defined as the area 
under the stress vs. the crack open displacement curve in 
the cohesive law, and represents the energy dissipated on 
the unitary crack surface [12]. GF is usually determined 
by tests. For a large size specimen, the fracture energy 

*
FG  equals to the max driving force max

fG  expressed in 

Equation (16), approximately. Therefore, fracture energy 
GF for a normal size specimen has relation with max

fG  as: 

* * *
max
f

F N FG A G A G A              (18) 

where AN and A* are the real areas of the fracture surfaces 
corresponding to the normal size and large size speci-
mens, respectively, with a transformation as: 

2 2
*

*

,

D

ch
N

ch N

l
A A

l


 

   
 

             (19) 

where *
chl  and ,ch Nl  are the characteristic lengthes cor-

responding to A* and AN, respectively. Usually, *
chl  is 

taken to be the minimum threshold of characteristic 
lengths. For concrete, *

chl = 0.15 mm when
0f
 = 100 MPa 
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and *
chl = 0.15 mm when 0f

 = 200 MPa [13], and *
chl  

can be obtained by linear interpolation for other strengths. 

,ch Nl  is given by [14]: 

, 02ch Nl a b                 (20) 

where the constant b < 1 represents the initially cracked 
portion of the interface prior to load application, 2a0 is 
the initial crack diameter and is assumed to be equal to 
the maximum aggregate size in concrete. 

Substituting Equations (16) and (19) into Equation 
(18), one obtains 

2 2 2
, 2 1

0*
02

D

ch N D Dt
F

ch

l
G a

E Dl






  
    
 

     (21) 

Here 2a0 needs is considered to be the final length of 
the main crack for concrete, and represents a specimen 
size. Figure 4 shows the behaviors of GF as the changes 
of a0 and D. We can find that GF increases with the in-
creasing of these two factors. 
 
3. Damage Variable 
 
An apparent damage variable is defined as the ratio of 
the effective bearing area Ak and the cross section area Ac 
of materials, and has the following form: 

k

c

A

A
                     (22) 

For a Euclidean shape, the area A0 and the perimeter 
C0 have the following relation: 

2
0 0 0A m C                   (23) 

where m0 is a shape constant. Substituting Equation (23) 
into Equation (22), one obtains the expression for the 
apparent damage variable   as follows: 

and 
2

k

c

C

C


 
  
 

                  (24) 

where Ck and Cc are the perimeters corresponding to Ak 
and Ac, respectively. It is reasonable for us to take Ck  

 

 

Figure 4. Influences of D and a0 on GF. 

Cc as the crack length in one direction and the total 
length of all cracks in all directions in a unit cell at fail-
ure, respectively. 

By referring to Equation (1), the perimeter C of a 
fractal damaged surface and the counterpart C0 in the 
Euclidean space has the following relation: 

1
0
D D

chC C l                  (25) 

Substituting Equation (4) into Equation (22), concern-
ing Equation (25), and based on the fact that cracks in 
concrete is statistically self-similar fractal when the 
yardstick δ ranges from 0.263 to 1 [15], one obtains the 
following expression for a fractal damage variable in the 
fractal space: 

1 1

ˆ 16 c kD D 
 

  
                 (26) 

where Dk = 1.0 ~ 2.0. From Equation (29), we find that 
only the fractal dimension is different between the fractal 
and apparent damage variables, and δ has no influence 
on this relation. Since Ac is the cross section area of ma-
terials, which indicates Dc = 1.0, thus Equation (26) can 
be rewritten as: 

1
1

ˆ 16 kD
ij ij 

 
  

                  (27) 

For a smooth crack, Dk = 1.0, and no fractal effect ex-
ists, and we have: 

îj ij                     (28) 

From the above discussion, we notice that the apparent 
damage variable in the Euclidean space is a special case 
of the fractal damage variable in the fractal space, and 
the fractal damage variable is the generalization of the 
apparent damage variable. Figure 5 illustrates the dif-
ferences between the two kind damage variables in uni-
axial compression with an assumption that Dk takes the 
average value of 1.1, and the original evolution data for 
apparent damage variables is referred from reference 
[16]. 
 

 

Figure 5. Evolutions of damage variables for concrete in 
uniaxial compression cases. 
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4. Plastic Damage Constitutive Model for 
Concrete 

 
Among the various existed constitutive models for con-
crete, the plastic damage model has a better effect to 
characterize the stiffness degeneration, the strain soften-
ing and the unilateral effect of concrete under various 
loading conditions. 
 
4.1. Decomposition of Effective Stress Tensor 
 
In view of the fact that the typical failure modes of con-
crete are cracking in tension and crushing in compression, 
we decompose the effective stress tensor into tensile and 
compressive parts (denoted by σ  and σ , respec-
tively) by utilizing spectral decomposition technique 
[17,18]: 

: σ P σ                  (29) 

:   +σ σ σ P σ               (30) 

where P+ and P- are the fourth-order projection tensors 
expressed as [19]: 

  i ii ii
i

H   P p p            (31) 

  P I P                  (32) 

where I is the fourth-order identity tensor;  iH   

represents the Heaviside function calculated for the ith 
eigenvalue i  of σ ; Pij is the second-order tensor and 

is defined as: 

 1

2ij ji i j j i    p p n n n n       (33) 

where ni is the ith normalized eigenvector corresponding 
to i . 

 
4.2. Plasticity 
 
We adopt a plasticity yield function f and a plastic poten-
tial function Fp as: 

    1 2 max
ˆ, 3f I J    σ κ κ  

   1 0c   κ             (34) 

2 13p pF J I               (35) 

where   2x x x   denotes the Macaulay bracket 

function, max̂  is the algebraically maximum effective 

principal stress. α, β and c are parameters with the fol-
lowing forms [20]: 

0 0

0 02
b

b

f f

f f


 

 





; 

 
     1 1

c

c
  



   
κ

κ
 

   c f κ κ ;    c f κ κ  (36) 

where 0bf
  and 0f

  are the initial equibiaxial and uni-

axial compressive yield stresses, respectively. 0 0bf f   
lies between 1.10 and 1.20 from experiments, therefore, 
α varies from 0.08 to 0.12.  c κ  represent the inner 

cohesion, and  f  κ  are the evolution stresses (posi-

tive values are used here in compression) in the effective 
stress space due to plastic hardening or softening under 
uniaxial tension and compression, respectively. 1I  is 

the first invariant of the effective stress tensor, 2J  is 
the second invariant of the effective deviatoric stress 
tensor. αp ≥ 0 is a dilation parameter with 0.2 ≤ αp ≤ 0.3 
for concrete. 

According to the flow rule, the rate of the effective 
plastic strain p  can be written as: 

2

3

2 3

p
ijp p p p

ij ij
ij

sF

J
    



     
   

       (37) 

where p  is a plastic consistency factor, and can be 
determined by the consistency condition for the yield 
surface f, which can be expressed in the Kuhn-Tucker 
form as: 

0f  , 0p  , 0p f  , 0p f        (38) 

In this study, the linear isotropic hardening rules are 
introduced to describe the change of the yield surfaces in 
the effective stress space, and can be expressed in simple 
forms as [21]: 

  p
yf f E     κ             (39) 

where yf   are the effective yield strengths in uniaxial 

tension and compression, and have approximate values 

as 0yf f   and 0yf f  , respectively. 0f
  are the 

uniaxial yield strengths of concrete corresponding to 
tension and compression, respectively. pE   are the 
effective plastic hardening modulus in uniaxial case, and 
have relation with the elastoplastic tangent modulus 

epE   as [22]: 

0

0

ep
p

ep

E E
E

E E







               (40) 

According to the plasticity consistency condition, we 
have: 

0
f f

f
 

  
 

σ κ
σ κ

                (41) 

and obtain the rate form of the constitutive equation as 
follows: 

0,

p
p

ij ijkl kl
kl

F
C  


 

   
           (42) 

where C0,ijkl is the fourth-order undamaged elastic stiff-
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ness tensor. 
Accounting for the coupling of tension and compres-

sion, κ  can be written as [22]: 

 max min, (1 )
Tp pw w   κ            (43) 

where max
p  and min

p  are the maximum and minimum 

values of the equivalent plastic strains p
ij ; w is the 

weight factor and has the following form: 
3 3

1 1

ˆ ˆ
i i

i i

w  
 

               (44) 

where ˆ
i  are the principle stresses. 

Substituting Equations (42) and (43) into Equation 
(41), we obtain: 

0,

1p
ijkl klp

ij

f
C

h
 










           (45) 

where ph   can be expressed in the following forms: 

0,

max
ˆ

p p
p

ijkl
ij kl

f F f F
h C w

   




   
 
   

     (46) 

 0,

min

1
ˆ

p p
p

ijkl
ij kl

f F f F
h C w

   




   
  
   

   (47) 

where max̂  and min̂  are the maximum and minimum 

effective principle stresses, respectively. Therefore, we 
can rewrite the rate form of the relation Equation (42) for 
the effective stress and the strain as: 

ij ijkl klC                   (48) 

where Cijkl is the elasto-plastic tangent stiffness tensor 
and has the following form: 

0, 0, 0,

1 p

ijkl ijkl ijrs mnklp
rs mn

F f
C C C C

h  
 

 
 

    (49) 

 
4.3. Helmholtz Free Energy 
 
A damage constitutive model of a material is based on 
the second law of thermodynamics which states that all 
the selected internal variables must satisfy the Clau-
sius-Duhem inequality for any irreversible process under 
an isothermal condition, and has a simple form as: 

: 0 σ ε                  (50) 

where σ and ε are the stress and strain tensors,   is the 

total Helmholtz free energy (HFE) which can be consid-
ered as the sum of the elastic part e  and the plastic 

part p , that is: 

     , , , ,e e e p   ε κ Φ ε Φ κ Φ     (51) 

where Φ  is the damage variable tensor. 
We decompose e  into tensile and compressive 

parts as: 

     , , ,e e e e e e        ε Φ ε ε     (52) 

where 

       0

1
, 1 1 :

2
e e e e e e            ε ε σ ε  (53) 

       0

1
, 1 1 :

2
e e e e e            ε ε σ ε  (54) 

where    0 : 2e e e  ε σ ε  represent the initial elastic 

strain energy of materials;   are the tensile and com-

pressive components of Φ . Therefore, we derive: 

       0 0
1 1

e e e e

e e

 
 

 
 
 

   
 

ε ε
σ

ε ε
 

   1 1       σ σ            (55) 

The incremental form of Equation (55) can be ex-
pressed as: 

   1 1 d d            +σ σ σ σ σ      (56) 

Equations (56) and (48) form the final plastic damage 
constitutive equations for the plain concrete. 

Similarly, we can rewrite p  as: 

     , , ,p p p         κ κ κ      (57) 

Referring to the fact that the contribution to the plastic 
HFE from plastic strains of concrete in tension is much 
smaller comparing to the one in compression, we assume 
that 0p   . Thus, we have: 

       0, 1p p p        κ κ κ      (58) 

Substituting Equations (51), (52) and (58) into Equa-
tion (50), we get: 

: 0
e p

e p
e

       
           

σ ε σ ε κ Φ
κ Φε

     (59) 

Since the above inequality must be satisfied for any 
elastic strain εe, we have: 

e

e





σ
ε

                   (60) 

0YΦ                     (61) 

: 0
p

p 
 


σ ε κ

κ
                (62) 

where Y  is the damage energy release rate and can be 
expressed as: 


 


Y

Φ
                   (63) 

According to the above discussions about the total 
HFE, we can rewrite Y  as: 

0Y                      (64) 
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We define the damage criteria in tension and compres-
sion for concrete, respectively, as: 

 , 0g Y r Y r                 (65) 

where r  are the current damage thresholds whose ini-
tial values is denoted by 0r

 . Equation (65) indicates that 

damage is initiated when Y   exceed the corresponding 
damage thresholds r . 

Initial strain energy of materials can be written as: 

   0 0 0

1
: : 0

2
e e e e e    ε ε ε C ε         (66) 

   0 0 0
e e p     ε κ             （67) 

where 0
e   is the initial strain energy of materials in 

compression, and can be expressed as: 

   20
0 0 2 1 0 1 1

0

1 21
2 1 0

2 3
e J I I I

E


             

  

 (68) 

 0 2 1 2 1 1

1
6 2

2 3

p
p pJ I J I I

 


     
    

 
κ

s



2 1 2 1 1
0

1
6 2

2 6
pJ I J I I

E
     

    
 

 

(69) 

where 2: 2J s s s  is the norm of s ; 

2

1
:

2
J    s s  is the second invariant of the compres-

sive effective deviatoric stress tensor s ; 1I
  and 1I

  

are the first invariant of σ  and σ , respectively. 

02 pE    s  is a material parameter. 

Therefore, 0   has the following form in compres-

sion case: 

 2

0 0 2 1 1 2 2 1 3 1 13 2J I J I I I             
 (70) 

where parameters Ω0, Ω1, Ω2, Ω3 are 

   
 0

0
0

6 2 1

6E

 
  ; 

 1

0

3

6 2 1

p



 

 
  

 
0

2

0

1 2

6 2 1





 

 
; 

 
0

3

0

0.5 3

6 2 1




 
 

 
 (71) 

Assume that concrete is in biaxial compression, which 
indicates σ3≡0, and we have: 

 

 

2 2 0
0 1 2 1 2

0 0

2 2
1 2 1 2 1 2

0

6 66 3

6 6

6
             

6

p

Y
E E

E


    

      

   
   


   

  (72) 

For an uniaxial compression case, we denote the uni-
axial compressive ultimate strength as 0f

 , and have 

σ1= 0f
 ,σ2=0. We can derive the initial damage threshold 

0r
  as: 

   0

0
0

3 6 1
6

p
f

r
E




               (73) 

And for an equibiaxial compression case, we use 0bf
  

to denote the biaxial compressive ultimate strength. One 
gets σ1=σ2= 0bf

 , and derives 0r
  as: 

 
   0

0 0
0

6 1 6 1 2
6

b p
f

r
E

 


           (74) 

Noticing that the initial damage threshold is unique for 
a material, we obtain the expression for Ω from Equa-
tions (73) and (74): 

  
     

2

0 0 0

2

0 0

6 1 3

6 1 6 1 2

b

p p
b

f f

f f



 

 

 

 
 

  
   (75) 

For concrete, one has 0 0bf f   = 1.10~1.16 and p = 

0.2~0.3. Assuming ν0=0.2, and substituting the above 
three parameters into Equation (74), we find that Ω ≥ 0 is 
always hold. Thus we have 0

p  ≥0 (see Equation (69)), 

and 0 0 0
e pY         ≥0, and finally have Y  ≥0. 

Accounting for the fact that damage is irreversible, we 
get  ,  ≥ 0. Therefore, the total HFE defined in 

Equation (51) satisfies the thermodynamic consistency, 
or satisfies the inequality of Equation (61). 

Equation (75) reaches the limit state Ω→+∞ when 

 
 

2

0 0

2

0 0

1

2 1

bp

b

f f

f f


 

 





, and the undamaged area of a ma-

terial in compression can be characterized by the follow-
ing inequality: 

 2 2 2 2
1 2 1 2 1 2 1 2 1 2

p                 

  01 p f                  (76) 

Figure 6 illustrates the changes of the undamaged ar-
eas with αp. We find that the increase of αp will lead an 
expansion of the undamaged area. 

 
4.4. Evolution Laws 
 
The evolution laws proposed by Faria et al. [18] are 
adopted in this research. Damage variables (in the Euc-
lidean space) and their rate forms are expressed as: 

0

0

1 exp 1
r r

B
r r


 

 
 

  
    

   
        (77) 
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Figure 6. Influences of αp on undamaged domain. 
 

 0

0

1 1 exp 1
r r

A A B
r r


 

   
 

           
     

  (78) 

0dr h                     (79) 

where 

 
 

0
2

0

exp 1d
G r B r r r

h B
r rr

     
 

 

   
        

   (80) 
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 

0
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1d
G r r

h A
r r

  
 

 


  


 

0 0

exp 1
A B r

B
r r

  


 

  
   

   
          (81) 

where A- is a material parameter, and can be determined 
by the uniaxial compression test; B± can be expressed as: 

 

1

0
2

0

1
0

2
F

ch

G E
B

l f








 
   
 
 

            (82) 

where FG  is the fracture energy of a material and can 

be determined by tests or from Equation (21). 

Replacing   in the above model by ̂   in Equa-

tion (27), we can generalize the Euclidean constitutive 
model for concrete to the fractal space. 
 
5. Example Analysis 
 
5.1 Comparison of Constitutive Models 
 
In this section, numerical simulations of the present 
model considering fractal effect are performed for con-
crete under different loading conditions, and compari-
sons of the results are done with some experimental data, 
i.e. the unaxial loading test by Karsan and Jirsa [23] and 
the biaxial loading one by Kupfer et al. [24]. Material 
parameters for concrete are listed in Table 1. The values 
of E0, ν0, α

p and α are obtained from the study of Lee and 

Fenves [18]; Average values of lch,N, *
chl , η, a0, b and Dk 

are used here because of their narrow range intervals. 
Therefore, we can obtain the fracture energy for con-

crete from Equation (21) as: FG =45.3N/m in tension 

and FG =1497N/m in compression. 

 
5.1.1. Uniaxial Tension 
Both the predictions of the present model with and 
without the fractal effect and the test data obtained by 
Karsan and Jirsa [23] for concrete under uniaxial tension 
are illustrated in Figure 7(a). We can find that the two 
kind results of the present model agree well with the test 
data in the stress hardening stage. Comparing with the 
case of no fractal, the prediction considering the fractal is 
more coincident with the test. In the last large deforma-
tion stage, the three behaviors are close with each other. 
 
5.1.2. Uniaxial Compression 
Figure 7(b) shows the comparison of the calculation 
results of the present model and the test data for concrete 
under uniaxial compression obtained by Karsan and Jirsa  
 

 
(a) 

 
(b) 

Figure 7. Comparison of the constitutive curves of the pre-
sent model with test results (Karsan and Jirsa 1969) in the 
uniaxial loading conditions. (a) Uniaxial tension; (b) Uniax-
ial compression. 
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[23]. Comparing with the uniaxial tension case, both of 
the two kind results of the model are more efficient to 
simulate the concrete compressive behaviors. The pre-
dictions considering fractal is slightly lower than the two 
other data. 
 
5.1.3. Biaxial Tension 
In this simulation, equibiaxial tensile condition is 
adopted, and material parameters are taken as the same 
as those listed in Table 1. Figure 8(a) gives the behav-
iors obtained from the present model and the test in bi-
axial tension [24]. We find that the two kind theoretical 
results are coincident with the test data; in the initial 
strain softening stage, the result concerning no fractal 
agrees with the test better, but there is obviously a dif-
ference between them comparing with the data consider-
ing the fractal effect. All these show the superiority of 
the proposed model. 
 

Table 1. Material parameters for concrete. 

E0=31.7GPa ν0=0.2 0f
=3.48MPa 0f

=20MPa 

α=0.12 αp=0.2 δ=0.286 *
chl=0.156mm 

η=2π a0=6.0mm b=0.79 Dk=1.16 

 

 
(a) 

 
(b) 

Figure 8. Comparisons of the constitutive curves of the 
present model with test results (Kupfer et al. 1969) in the 
biaxial loading conditions. (a) Biaxial tension (σ1: σ2=1:1); 
(b). Biaxial compression (σ1: σ2=-1:-1). 

5.1.4. Biaxial Compression 
In equibiaxial compression, concrete shows a good plas-
tic deformation ability which can be found both in the 
proposed model and the test [24]; see Figure 8(b). The 
three curves are well close with each other. Comparing 
with the three other loading cases discussed above, the 
peak stress increases obviously, accompanied by the 
slowest decreasing softening stage in biaxial compres-
sion, which indicates a good compressive capacity of 
concrete under the confining pressure condition. Spe-
cially, model with fractal damage variables is more ac-
curately than the one with apparent damage variables. 
 
5.2. Structural Analysis 
 
An unreinforced notched concrete beam under 3-point 
bending is simulated to verify the efficiency of the pre-
sent concrete damaged plasticity model. This problem 
has been studied extensively both experimentally by Pe-
tersson [25] and analytically by Meyer et al. [26], among 
others. This beam is simply supported at both ends with 
concentrated force acting at the center. Its sketch is illus-
trated in Figure 9 (unit: m). 

The measured parameters of concrete are: elastic mo- 
dulus E0=30GPa, Poisson’s ratio ν0=0.2, density ρ0 = 
2400 kg/m3 and uniaxial tensile strength ft = 3.33 MPa. 

The present constitutive model considering the fractal 
effect of concrete is adopted for the theoretical analysis. 
The model parameters are taken as: FG  = 138 N/m, 0f

  

= ft = 3.33 MPa, 0f
  = 30 MPa, and other properties are 

same as that listed in Table 1. The beam is under the 
plane stress condition. Accounting for the symmetry of 
both the structure and the load, only one half of the beam 
is modeled. The model is meshed with 280 4-node bilin-
ear, reduced integration plane elements. The beam is 
loaded by prescribing the vertical displacement at the 
center of the beam until it reaches a value of 0.0015 m. 
The Riks method is used to solve this problem. 

Figure 10 illustrates the variation curves of the con-
centrated force and the center displacement of the beam 
calculated from the theoretical analysis and the Peters-
son’s test [25]. We can note that the theoretical result is 
coincidence with the test at the loading stage and slightly 
higher then the test at the unloading branch. Figure 11 
shows the distribution of the principal tensile stress of 

 

 

Figure 9. Notched beam: geometry and dimensions (unit: m). 
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the structure as well. 
Mesh sensitivity is investigated in this study by mesh-

ing the structure into coarse and fine grids, respectively, 
with 70 and 1120 same type elements with the medium 
mesh case. Resolving the above problem at the same 
condition, we get the relation between the load and dis-
placement in center. Figure 12 represents the relation 
curves corresponding to the three kind meshes. We find 
that: comparing with the coarse mesh case, the structural 
responses agree well for the other two meshes. The 
structure is not sensitive to the mesh size in general. 
 
6. Conclusions 
 
In this research, the fracture toughness, the driving force 

and the fracture energy of a material with fractal cracks 
are investigated and their theoretical expresses in the 
fractal space are derived based on fracture mechanics and 
fractal geometry. The surface energy and the strain en-
ergy in the fractal fracture zone are theoretical expressed 
in the fractal space. The transformation rule of damage 
variables in the fractal space and the Euclidean space is 
obtained which indicates that the apparent damage vari-
able in the Euclidean space is a special case of the fractal 
one in the fractal space with the fractal dimension of 
cracks equals to 1. We introduce a plastic yield function 
and decompose the damage variable tensor into tensile 
and compressive parts to establish a plastic damage con-
stitutive model for concrete in the Euclidean space. Gen-
eralization of this model to the fractal space is done by 
utilizing the damage variable transformation rule. 

 

 

Figure 10. Comparison of the theoretical and experimental data for the load vs. displacement curve. 
 

 

Figure 11. Distribution of the principle tensile stress. 
 

 

Figure 12. Influences of mesh size on structural response. 
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Comparisons of the results obtained from the present 
model and tests for concrete under different loading con-
ditions are done to verify the efficiency of this model and 
show the necessity of considering the fractal effect in the 
constitutive model of concrete. The present model con-
sidering the fractal effect is used to analyze a notched 
plain concrete beam under 3-point bending. Mesh sensi-
tivity is also concerned. The numerical results show the 
efficiency and validation of the present model for struc-
tural analysis. 
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Abstract 
 
We calculate the transformation laws of the general linear superfield  , ,V x    and chiral superfields under 

1N   supertranslations  exp i Q Q        to all orders in the translation parameters  , . We use the 

superfield formalism with complete expansions of the component fields in the coordinate shifts 

 x i             . The results show in particular how a general supertranslation transforms each 

component field of a supermultiplet into a complete superfield. The results also provide complete parametri-
zations of orbits of component fields under supertranslations. 
 
Keywords: Supersymmetry, Supermultiplets, Supertranslations 

1. Introduction 

Quantum field theories with exact correspondences be-
tween bosonic and fermionic helicity states are not only 
basic ingredients for superstring theories, but have 
dominated both theoretical investigations and experi-
mental searches for particle physics beyond the current 
“Standard Model’’ of particle physics for over three dec-
ades now.  

The minimal version of supersymmetric extensions of 
the Standard Model extends the generators M , p  

of the Poincaré group by a set of fermionic generators 

Q  and Q  in the (1/2,0) and (0,1/2) representations of 

the proper orthochronous Lorentz group in four dimen-
sions. It has been recognized early on that this extension 
of the Poincaré algebra can be represented linearly (and 
in a reducible, but not fully reducible manner) on a set 
comprising 4 complex spin-0 fields, 4 Weyl spinors and 
one complex spin-1 field. This set constitutes the so 
called general linear multiplet or general linear superfield 
V  and its irreducible subsets had also been identified. 

It is sufficient to know the action of the supertransla-

tion generators Q  and Q on the components of V , 

or equivalently the action of the supertranslation 

 exp i Q Q      
 to first order in the parameters  , 

  , to construct supersymmetric action principles and 

the related supercurrents. Therefore the first order trans-
formation laws for the components of V  have been 
calculated a long time ago and can be found in many 
books and review articles on supersymmetry and with 
our current understanding this is all that is needed to 
discuss the physical implications of supersymmetry. Re-
cent research in supersymmetry focuses on important 
applications like new solutions and structure of super-
gravity theories [1-5], impact of supersymmetry on per-
turbative calculations [6], cosmological implications of 
supersymmetry [7-9] and in particular the interesting 
problem how supersymmetry can be reconciled with a 
cosmological constant and help to explain it [10,11]. The 
structure of superpotentials in theories with broken su-
persymmetry is also an active area of research with phe-
nomenological relevance [12-14]. 

From a mathematical point of view it is clearly desir-
able to also have the full transformation properties of the 
general linear multiplet readily available for reference. 
To provide such a reference is the purpose of this paper. 
To make these results also easily accessible for beginners 
in supersymmetry, the super-Poincaré algebra and the 
basic techniques of superspace calculations are also re-
viewed. Therefore the outline of the paper is as follows. 

Our conventions for spinor representations of the 
Lorentz group and the super-Poincaré algebra are intro-
duced in Section 2. Superspace is reviewed in Section 3 
and the full supertranslation properties of the component 
fields of the general linear multiplet are calculated in 
Section 4. *This work was supported by NSERC Canada. 
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Chiral superfields provide a particular irreducible re-
presentation within the reducible linear multiplet. Due 
to their practical relevance for the supersymmetrization 
of matter fields, the resulting supertranslation properties 
of the components of chiral superfields are listed in 
Section 5. 

Appendix 1 contains a translation of our results into 
the conventions of Wess and Bagger [15]. The relevant 
spinor indices are reviewed in Appendix 2.  

Our conventions for spinor representations and super-
space calculations differ from Wess and Bagger only 
with regard to the definition of superderivatives and the 
definition of the 2nd order epsilon spinors with lower 
indices. Sections 2 and 3 are included to make the paper 
self-contained and easily accessible and to clarify con-
ventions. However, the new results in Sections 4 and 5 
are not affected by the different definitions. The cogno-
scenti should therefore go straight to Section 4. 
 
2. The Super-Poincaré Algebra 
 
The basic methodology for calculations with linear su-
per-multiplets in four dimensions was developed some 
35 years ago by Wess, Zumino, Salam, Strathdee and 
Ferrara [16-19]. This section and the following section 
provide a brief but concise introduction to the calcula-
tional techniques of supersymmetry and its linear repre-
sentations in four dimensions. 

We use 00 1    for the Minkowski metric and 

standard notation    with 

   

   

0 0 1 1

2 2 3 3

1 0 0 1
, ,

0 1 1 0

0 1 0
,

1 0 1

i

i

 

 

   
          

   
   

             

 

 

 

for the Pauli matrices. 
Complex conjugation turns undotted indices into dot-

ted indices and vice versa, 

  ,a


     

and hermiticity of the Pauli matrices implies for the 
complex conjugate matrices 

. 
                     (1) 

We pull spinor indices with the two-dimensional epsi-
lon spinors 

12 12
12 12

1, 1,

, ,

, .

  
  

  
  

       

       

       

 
 

  
  

           (2) 

The Equations (1) then imply that the conjugate Pauli 
matrices with upper spinor indices are 

.   
    

 
                (3) 

Numerically, we have with the upper index positions 
for the barred matrices and lower index positions for the 
unbarred matrices 

0 0 , .i i       

Although not formally required, use of upper indices 
for barred Pauli matrices and lower indices for un-
barredPauli matrices is a useful and very common con-
vention. 

Relations for Pauli matrices are meticulously compiled 
in [15]. For convenience, we recall those relations which 
are directly relevant for the derivation of supertransla-
tions to all orders,  

2 ,   
        

               (4) 

  2 ,
 

     
                   (5) 

  2 ,
 

     
        

 
           (6) 

  2 ,Tr 
           

           (7) 

and 0123 .i         
              (8) 

The factor 0123 1    was included to allow for ready 

use of both conventions for the four-dimensional epsilon 
tensor. 

We will briefly recall below that pulling spinor indices 
with the 2nd order epsilon spinors is motivated by the fact 
that this yields Lorentz invariant spinor products 

,  
                      (9) 

where the anti-commutation property of spinors was used. 
Conjugation also implies re-ordering of spinor quantities, 
such that conjugation of (9) yields 

. 
  

           
 

 
        (10) 

The vector representation matrices of the Lorentz al-
gebra, 

  ,L
  

    
      

appear as structure constants in the Poincaré algebra. The 
spinor representations of a proper orthochronous Lorentz 
transformation 

1
exp exp
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i
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are given by 
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The relations 

   0123

1
,

2
Tr S S i                (11) 

   0123

1
.

2
Tr S S i                (12) 

are used in the derivation of supersymmetric Maxwell or 
Yang-Mills actions.  

The spinor products (9,10) are invariant because the 

matrices  U   and  U   are (2, )SL   matrices, 

    ,U U
  

 
      

    .U U
 

  
    


  
            (13) 

Stated differently, the epsilon spinors are Lorentz in-
variant. 

We can now write down the super-Poincaré algebra in 
the form 

   , ,M M i L M i L M
 

      
      

 , ,M p i L p


   
     

  ,,M Q S Q


   
      

 , ,M Q S Q
 

  
    

 
          (14) 

 
   

, 2 2 ,

, 0, , 0,

, 0, , 0.

Q Q p p

Q Q Q Q

p Q p Q


    

   

   

  

 

       

  





 

The (2, )SL   property (13) reads in first order 

   S S  
  

 

and implies that Equation (14) can also be written as 

 , .M Q Q S


   
   



 
 

The super-Poincaré algebra satisfies all the pertinent 
super-Jacobi identities as a consequence of the represen-
tation properties of the vector and spinor representations 
of the Lorentz algebra. The particular super-Jacobi iden-
tity 

     , , ,, , ,M Q Q M Q Q M Q Q        
             

holds as a consequence of the fact that the Pauli matrices 
have the same form in every inertial frame, 

 

 

 

1

4
1

.
4

L
   

     

 
    


    

     

     

    

  





 

       (15) 

This can be verified from Equations (5,6) by commut-
ing the   matrices into the middle positions in the 
products on the right hand side. It can also be verified as 
a direct consequence of Equation (8). 
 
3. 1N   Superspace 
 
The Poincaré algebra is realized on spacetime coordi-
nates x  through derivative operators  

  .,M i x x p i                    (16) 

In a nutshell, superspace is based on the observation 
that this construction can be extended to the su-
per-Poincaré algebra by supplementing Minkowski 

spacetime with fermionic coordinates   and    and 
corresponding fermionic derivatives 

, .   
          

 
             (17) 

The super-Poincaré algebra is then realized on the su-

perspace coordinates  , ,x      by amending the 

representations (16) of the bosonic operators with the 
realizations 

, ,Q i Q i   
                  

       (18) 

for the fermionic operators and complementing the Lor-

entz generators to include the action on Q  and Q , 

      .M i x x S S
 

         
          





 

A superfield  , ,V x    maps a spacetime point x  

into the algebra over   which is generated by the five 

elements  1, ,  , subject to the relations (35,36) in the 

Appendix A.2. Note that this definition explicitly refers 
to the fermionic arguments of V . Supertranslations are 
based on the concept that there are infinitely many in-

carnations of the four fermionic generators   and    
and that we can freely move between these infinitely 
many copies of the same algebra. In particular, if 

 1, ,   and  1, ,   generate the same algebra, we 

require that  1, ,      also generates the same 

algebra. This requirement is equivalent to an-
ti-commutation properties 

, ,                   

and the corresponding conjugate equations, i.e. the alge-

bra generated by  1, ,   is a subalgebra of a corre-

sponding infinite-dimensional algebra. 
The relations in Appendix A.2 imply that the expan-

sion of every superfield with respect to the fermionic 
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elements   and    can be written in terms of four 

scalars        , , , ,x M x N x D x  four Weyl fermions 

       , , , ,x x x x     and a vector field  A x , 

         
         2 2 2 2 2 2

, ,

.

V x x x x A x

M x N x x x D x


             

              

  The commutation relations 

 
, , , ,

,

i Q i Q

i Q Q x i

   

  

              
                 

 

 

imply for unitary supertranslations 

 
 

, , exp , ,

, , ,

x i Q Q x

x i

             

               
 

and therefore 

   
  

, , , , exp

, , .

V x x i Q Q V

V x i

            

               
  (19) 

We can calculate the transformation properties of the 
component fields by comparing 

         
       
 

2 2 2 2

2 2

, ,V x x x x A x

M x N x x x

D x


                 

              

 

with the expansion of the right hand side of (19) with 

respect to the fermionic variables   and   . 

 

4. Supertranslations of the General Linear  

  Multiplet 

 
Equation (19) implies in particular that supertranslations 
shift the argument x  of component fields to 

 .X x i                     (20) 

We can calculate the transformation properties of the 
components of the supermultiplet V  to all orders in the 

translation parameters  ,  , by expanding the right 

hand side  

    
    

, ,V X x i

x i

               

             
 

of Equation (19) to all orders in   and  . 
The first step requires the expansion of the component 

fields with respect to the coordinate shifts   

  ,x i               

e.g.  

       

    

  
   

  
    
     

1

2

6

1

24

X x i x

x

i

x

x

x i x

 


   
 

   

 
  

   

   
   

 


             

                    

                 

            

                  

                     

            

    

   

   

 

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2 2

1
2

4
1

2

4
1

,
16

x

x

i
x

x




   
 

 


             

                 

               

         

and corresponding expansions for combinations of the 
other eight component fields with various factors, which 
are different in each case due to the presence of fer-
mionic variables in the extra factors. Altogether, this 
includes 35 more relations, e.g. 

     

   

 

   

 

2 2 2 2

2 2

2

2 2 2 2

2
1

2 4
1

4
1

4

.
8

i
X x x

i
x x

x

x

i
x

 
 







   
 




           

          

        

               

         

 

Substitution of all the expansions in terms of standard 
words in the Grassmann variables into Equation (19) 
yields the full supertranslation properties of the compo-
nent fields, which are reported in Equations (21-29). The 
transformation equations of the component fields are 
organized by contributions from the nine component 
fields   ,x   ,x   ,x   ,A x   ,M x   ,N x   ,x  

  ,x  and  D x , instead of organization by expan-

sion in the supertranslation parameters   and  . In 

this way, supertranslations act on the component fields 
like matrices which have Grassmann valued differential 
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operators as entries. The reader can easily re-organize the 
transformation equations in terms of supertranslation 
parameters. The supertranslation equations are 

       
     

     

2 2

2 2 2 2 ,

x x x x

A x M x N x

x x D x




    

   

     
      (21) 

     

 

   

   

   

   

 

2

2

2 2

2 2

2

2

2

2
2

2

2 ,

x i x x

i
x

i
x A x

i
A x M x

i M x x

i
x x

D x




 
 

 
 

 
 




 
 

       

        

        

      

       

           

 

    (22) 

     

   

   

   

   

   

2

2

2

2 2

2 2

2

2

2

2

2

2 ,

i
x i x x

i
x x

i
A x A x

N x i N x

i
x x

x D x

 
 

 
 

  
  




 
 

           

        

        

      

          

    

   (23) 

     

     

   

     

2 2

2 2 2

2 2 2

2 2

1

4 2
1

4 2
1

4

,
2

i
M x x x

i
x A x M x

i M x M x

i
x x D x













         

        

       

         

    (24) 

     

     

   

     

2 2

2 2 2

2 2 2

2 2

1

4 2
1

4 2
1

4

,
2

i
N x x x

i
x A x N x

i N x N x

i
x x D x













        

        

       

       

      (25) 

   

   

   

   

   

    

    
     

2

2 2 2

2 2

2

2 2 2

2 2

2

1

2

2
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
  


  

 
    
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      

           

              

            

       

         

      

          

      

   

   
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i
x x

x i x
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x D x


  

 


  

        

       

            

    (26) 

For conversion of the last equation into standard 

words in the Grassmann variables   and  , note that 

from Equation (8) 

   

 
0123

0123

1

2 2

.

i
F x F x

F x

    
    




               

     
 

The remaining transformation equations are 

     
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   

   

    
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2
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2

2
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i
x x x

x

x

i i
x A x
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i
x

i
i x x

D x
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




 
 

  
  

 
  




 
 

 
 

           

       

        

          

       

       

        

           

 

   (27) 



                                            R. DICK 
 

Copyright © 2010 SciRes.                                                                               JMP 

64 

   

      

   

   

   

     

   

     

2 2

2

2 2 2 2 2

2 2

2

2 2 2

4
1

2
4

1

8 4
1

2 4
1

2
1

2 2

2

2 ,

i
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i
x x

i
A x A x

A x i M x

i
M x x x

i
x

i x D x




 
  




  
  

  
  




 
 




        

            

          

         

         

         

        

        

  (28) 

   

   

    

     

   

2 2 2 2

2 2 2 2

2

2 2 2 2

1
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8 8
1

2
4
1 1

4 4 2

.
2

D x x

i i
x x

A x A x

i
M x N x x

i
x D x

 
 

 
  







      

              

        

           

     

 (29) 

These transformation laws are compatible with the re-

ality constraints    †, , , ,V x V x      which define 

the vector multiplet, 

           † †, , ,x x x x A x A x         

           † †, , .M x N x x x D x D x      

 
5. Supertranslations of the Chiral Multiplet 
 
Besides the superderivatives (18) one can also define 
supercovariant derivatives [18,19] 

, ,D i D i   
                   

       (30) 

such that  

     , 0, , 0, , 2 ,D D D D D D i 
      

        

and 

       , 0, , 0, , 0, , 0.Q D Q D Q D Q D      
       

The condition for chiral superfields 

   , , 0i x 
             

is therefore invariant under supertranslations . 
The basic solutions 

 0, 0,D D x i  
          

imply [15] 

     
   2

, , ,

.

x x i x i

x i F x i

               

          
 

The relation 

   2 2 21

2
 

                

yields 

     

   

   

2 2 2

2 2

, ,

1

4

.
2

x x i x

x x

i
x F x







         

      

        

     (31) 

The chiral superfield corresponds to the following 
substitutions in the general superfield V , 

         0, , ,x A x i x M x F x        

       0, 0, ,
2

i
N x x x x 

          

   21
.

4
D x x    

It is clear from the construction, but can also be 
checked explicitly that these constraints are compatible 
with the transformation laws (21-29) of the full linear 
multiplet. 

We find the following supertranslations of the com-
ponents of the chiral multiplet, 

       

     

2 2 2

2 2

1

4

,
2

x x i x x

i
x x F x







             

          
  (32) 
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2 ,

x i x x x

S x x

F x i F x





 




          

           

      

   (33) 
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   

   

2 2

2 2

2 2 2

1

2
1

.
4

F x x i x

x F x

i F x F x







          

     

        

       (34) 

Please note that this presentation does not involve the 

usual rescaling    2x x    of the spinor compo-

nent of the chiral superfield, which is required for ca-
nonically normalized kinetic terms in supersymmetric 
Lagrangians. 
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6. Conclusions 
 
The supertranslation properties of the component fields of 
a general linear supermultiplet and of a chiral multiplet 
were reported to all orders in the translation parameters 

  and   in (21-29) and (32-34), respectively. On the 

one hand, one can think of these results as explicit pa-
rametrizations of orbits of supertranslations in the space 
of component fields of a supersymmetric theory. On the 
other hand, one can consider the transformed fields as 

superfields in the variables  , ,x   , because e.g. 

   
  

     

0,
0

, ,

, ,

, , , , ,

x x

V x i

i V x iD V x
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
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 

     

                 

 
          




 

and higher order derivatives with respect to the   and 

  variables at 0  , 0   can also be expressed as 

supercovariant derivatives with respect to   and  . 

For example, the transformed vector field is 
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We have 
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 
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 
 

 
 

  
 

 
             


    

           

  
     

  
          











 

and therefore 

       1
, , , , .

2
A x D D V x 
          

  

From this point of view, (21-29) and (32-34) tell us 
explicitly how supertranslation of the components of V  
induces corresponding superfields. 
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Appendix 
 
A.1. Translation of Our Results Into the  

Conventions of Wessand Bagger 
 
Our superspace realizations (18) and (30) are related to 
the realizations in Wess and Bagger [15] according to 

   , ,WB WBQ iQ Q iQ         

   , .WB WBD iD D iD         

With these conventions the component field expan-
sions for chiral superfields agree and the generators for 
supertranslations are also the same (cf. (4.11,4.12) in 
[15]), 

      ,WB WBi Q Q Q Q            

i.e. our results for supertranslations to all orders also di-
rectly apply as generalizations of the first order trans-
formation laws reported in [15]. 

Note that Wess and Bagger use an operator represen-
tation of the super-Poincaré algebra with the same sig-

nature of the Minkowski metric but  WBp i p      . 

This comes from the familiar sign difference between 
field theoretic and quantum mechanical operator realiza-

tions of Noether charges. If  x x    is a field op-

erator, the momentum operators 

 
3 0

0

P d x  

 
         


L
L  

satisfy 

   ,P x i x        

and generate translations according to 

         
    

exp exp

exp exp .WB

x i P x i P x

x x i p x i p

           

            
 

Similar relations hold for Lorentz and gauge charges. 
Another way to look at the sign difference is through 
Jacobi identities. If the generators aX  satisfy the Lie 

algebra, 

 , ,c
a b ab cX X iC X  

then the adjoint matrix representation is given by 

  .
c c

a abb
X iC   

 
A.2. Spinor Identities 
 
There are several useful identities for products of spinors 
which are used in the determination of the general linear 
multiplet and its transformation laws.  

The following identities are a direct consequence of 
the anti-commutation properties of spinors and the defi-
nitions (9) and (10) of spinor products, 

 1 2 1 2
1 2

2

1

2
1 1

,
2 2

   

  


            

        
      (35) 

1 2 21
,

2
           

                 (36) 

2 21 1
, .

2 2
     

                     
  

    

Please note that 2  in the first line in Equation (35) 

denotes the 2  component of the spinor  , but in the 

second line it is 2    . In every equation in super-

symmetry it is clear from the context what 2  means. 

In all equations in previous sections of this paper 2  

always refers to 2    . 
The following relations also use the properties (3-7) of 

the Pauli matrices, 

,                     (37) 

,                      (38) 

1
,

2
   

                     (39) 

2 21
.

2
                       (40) 
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Abstract 

Tilted Bianchi type VI0 cosmological model is investigated in a new scalar tensor theory of gravitation pro-
posed by Saez and Ballester (Physics Letters A 113:467, 1986). Exact solutions to the field equations are 
derived when the metric potentials are functions of cosmic time only. Some physical and geometrical proper-
ties of the solutions are also discussed. 
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1. Introduction 

In recent years, there has been a considerable interest in 
the investigation of cosmological models in which the 
matter does not move orthogonally to the hyper surface of 
homogeneity. These are called tilted cosmological models. 
The general behaviors of tilted cosmological models have 
been studied by King and Ellis [1], Ellis and King [2], 
Collins and Ellis [3], Bali and Sharma [4,5], Bali and 
Meena [6].  

Bradely and Sviestins [7] investigated that heat flow is 
expected for cosmological models. Following the devel-
opment of inflationary models, the importance of scalar 
fields (mesons) has become well known. Saez and Ball-
ester [8] have developed a new scalar tensor theory of 
gravitation in which the metric is coupled with a dimen-
sionless scalar field in a simple manner. This coupling 
gives satisfactory description of the weak fields. In spite 
of the dimensionless character of the scalar field, an an-
ti-gravity regime appears. This theory suggests a possible 
way to solve the missing matter problem in non-flat 
FRW cosmologies. Sing and Agrawal [9], Reddy and 
Rao [10], Reddy et al. [11], Mohanty and Sahu [12,13], 
Adhav et al. [14], Tripathy et al. [15] are some of the 
authors who have studied the various aspects of Saez and 
Ballester [8] scalar tensor theory. 

We derived the field equations for Bianchi type VI0 
metric in Section 2. We solved the field equations in Sec-
tion 3. We mentioned some physical and geometrical 
properties of the solutions in Section 4 and also men-
tioned the concluding remark in Section 5. 

2. Field Equations 

Here we consider the Bianchi type VI0 metric in the form  

2222222222 dzeCdyeBdxAdtds qxqx     (1) 

where A, B and C are functions of cosmic time t only 
and q is a non-zero constant. 

The field equations given by Saez and Ballester [8] for 
the combined scalar and tensor fields are  

j
i

a
a

j
i

j
i

nj
i TVVgVVVG 






  ,

,
,

, 2

1       (2) 

and the scalar field satisfies the equation      

02 ,
,

1
;   a

a
ni

i
n VVnVVV           (3) 

where RgRG j
i

j
i

j
i 2

1
  is the Einstein tensor; n, an 

arbitrary exponent; and , a dimensionless coupling 

constant; j
iT is the stress tensor of the matter. The en-

ergy momentum tensor for a perfect fluid distribution 
with heat conduction given by Ellis [2] as 

  j
i

j
i

j
i

j
i

j
i quuqpguupT        (4) 

together with  

1ji
ij uug                  (5) 

0i
iqq                   (6) 

and 
0i

iuq ,                 (7) 

where p is the pressure,   is the energy density, iq  is 

the heat conduction vector orthogonal to iu . The fluid 

vector iu has the components  
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





 

cosh,0,0,
sinh

A
 satisfying Equation (5) and   is 

the tilt angle. Here comma and semicolon denote ordi-
nary and co-variant differentiation respectively.  

With the help of Equations (3-7), the field Equation (2) 
for the metric (1) in the commoving co-ordinate system 
take the following explicit forms: 

  



 



A
qpp

VV
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q
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C
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B n
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sinh
2sinh

2

1
2

2
4

2

2
444444

        (8) 

p
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AC

A

A

C

C n
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2

2
4

2

2
444444 

      (9) 

p
VV

A

q

AB

BA

B

B

A

A n


2

2
4

2

2
444444        (10) 

 
A

qpp

VV

A

q

CA

AC

BC

CB
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BA n





sinh
2cosh

2

1
2

2
4

2

2
444444




     (11) 

 

C

C

B

B
q

qAp

44
2

1

1

cosh

sinh

coshcoshsinh









       (12) 

0
2

2
4

4
444

44 





 

V

Vn
V

C

C

B

B

A

A
V          (13) 

Hereafterwards the suffix 4 after a field variable 
represents ordinary differentiation with respect to time. 
 
3. Solutions 
 
Equations (8-13) are six equations with eight unknowns 
A, B, C, p,  , V,   and 1q , therefore, we require two 

more conditions. 
First we assume that the model is filled with stiff fluid 

which leads to 
p                    (14) 

We also assume that  
nBA                     (15) 

In order to derive exact solutions of the field Equa-
tions (8-13) easily, we use the following scale transfor-
mations: 

neA  , eB  , eC  , dt = ABCdT   (16) 

The field Equations (8-13) reduce to  
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2'
'' 

V

Vn
V                 (22) 

In view of Equation (14), Equation (17) and Equation 
(21), Equations (18,19), yield  

  21 KTK                (23) 

and 

 nKTK 21                 (24) 

where  01 K , 2K are arbitrary constants. 

Thus the corresponding metric of our solution can be 
written as 

 2222222222 dZedYeTdXTdTTds qxqxnn    

(25) 
 
4. Some Physical and Geometrical  

Properties of the Solutions 
 
On integration Equation (22) yields 

2

2

432

2 






 




n
KTK

n
V            (26) 

where  03 K , 4K  are arbitrary constants. 

Using Equations (23,24) and Equation (26) in Equa-
tions (19, 20), we get 

       2121 42422
5

KTKnKTK eeqKp       (27) 
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



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










2
12

2
32

15
K

KnK


 is a constant. 

Substituting Equations (23),(26) and (27) in Equation 
(17) we get 
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Further substituting Equations (23), (27) and (28) in 
Equation (21), we get 

   

     

     

1 2 1 2

1 2 1 2

1 2 1 2

42 2
1 5

1
1 216 2 42 4

5

2 4 162 4
5

1
1

2

n K T K K T K

K T K n K T K

n K T K K T K

q e K q e

K q e e

e K q e

 

   

   

     
 
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   

 

(29) 

The spatial volume for the model (25) is given by  

Vol. =   1
21

 nKTK            (30) 

From Equations (27-29) we find that the pressure, en-
ergy density, tilt angle, heat conduction vector of the 
fluid distribution are constants at time T=0 and gradually 
decreases in the course of evolution. Equation (26) 
shows that the scalar field V changes with time and at 
time T=0, the scalar filed is found to be a constant. Equ-
ation (30) implies the anisotropic expansion of the uni-
verse with time. It is interesting to note that the model 
does not admit singularity throughout evolution.  
 
5. Conclusions 
 
In this paper we have solved Saez and Ballester field 
equations for the tilted Bianchi VI0 cosmological model. 
It is observed that the pressure, energy density, tilt angle, 
heat conduction vector of the fluid distribution are con-
stants at time T=0 and gradually decrease with the in-
crease of the age of the universe. It is interesting to note 
that the models we have constructed here is free from 
singularity at time T=0 and for 0  the Saez and 
Ballester [8] theory approaches general relativity. This 
supports the analysis that the introduction of scalar field 
avoids initial singularity. 
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Abstract 
 
In response to Wheeler’s challenge to find an element that is: “something that itself has no localization in 
space and time…pure knowledge … an atom of information” we suggest to account for Information as a di-
mension. Its degrees of freedom are arithmetical (+-) and logical (if-then) forward and backward steps. 
While Space refers to gaps in distance, Time refers to change in instances, Information refers to a sequence 
of notions measured by the number of steps made (or bytes used) by a computer in order to perform (de-
scribe or solve) a certain logical sentence or a sequence of logical sentences. In the attempt to quantifiably 
formulate the incorporation of Information into physical laws, we refer to Hamiltonian extended stationary 
principle in terms of Space, Time and an additional degree of freedom, suggested as an information state. 
The obtained Euler equation is demonstrated for the case of a thin rod under longitudinal vibrations, investi-
gated by dimensionless analysis. It is shown that depending on the value of information and its rate, one may 
obtain dominant forms conforming to Poison’s equation in Space vs Information, wave equation in Time vs 
Information and the expected wave equation in Time vs Space. 
 
Keywords: Information, Hamiltonian, Dimensionless-Analysis 

1. The New Dimension Wheeler Foresaw:  
Information 

 
“If we’re ever going to find an element of nature that 
explains space and time, we surely have to find some- 
thing that is deeper than space and time—something that 
itself has no localization in space and time. The amazing 
feature of the elementary quantum phenomenon—the 
Great Smoky Dragon—is exactly this. It is indeed some- 
thing of a pure knowledge-theoretical character, an atom 
of information, which has no localization in between the 
point of entry and the point of registration. This is the 
significance of the delayed-choice experiment.” [1]. 

Following Wheeler’s call [1] we maintain that Infor- 
mation should be (along which intelligence is measured 
as well as instinctive knowledge) added, independently, 
to space and time. At first it was thought by Issar to call 
this dimension1 either thinking or ‘intelligence’, but after 
investigating these options it was found that thinking is 

the description of moving and ‘intelligence’ are structures 
along degrees of freedom along a more substantial di- 
mension. The introduction of a new basic dimension will 
enable to describe intelligence as a feature or even a 
structure constructed from the addition of fundamental 
steps of observation and logical conclusion. These, are in 
fact the basic steps of arithmetic addition (and subtraction) 
and the basic logical conclusion of ‘if-then’, forward and 
backwards. Generalizing this suggestion will say that the 
adding one to another of a few basic conclusions, which 
brings to the arriving of a more general structure, is actually 
a construction along a dimension, which constitutes 4 
degrees of freedom. The more intelligent is the living 
being, the more will be its ability to increase the building 
composed of elaborate structures of knowledge added one 
to another and put together by logical steps, to form wider 
and higher structures of intelligent thinking and behavior. 

This conclusion brought to search for an altogether 
new dimension along which the movement while taking 
these fundamental steps can be described and quantified. 
After investigating various options the conclusion was 
that the most appropriate term will be: ‘Information’. 
Thus, change in location on space is quantified by steps 

1An intrinsic independent property, representing the minimum number 
of directions needed to specify either a point on space, an instant on 
time and a notion when considering Information. 
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of the foot or by a meter, duration of time is quantified by 
the movement of shade on the sun-dial or by a clock, 
while progress on the Dimension of Information is quan-
tified by the length of mathematical or logical sentences 
needed to describe a certain idea or number of bytes used 
by a computer to perform a certain logical sentence. 

Space has six degrees of freedom namely along or 
spins around three coordinates, in two directions i.e. for-
ward and backwards, Time one degree of freedom from 
present to future (the perspective from present to past 
actually refers to knowledge and thus is regarded as the 
Dimension of Information), while the additional dimen-
sion of Information has four degrees of freedom [2], 
which are: addition and subtraction and induction and 
deduction (i.e. ‘if-then’ and ‘when-then’). Altogether the 
evolution of the universe is along a three dimensional 
continuum of Space-Time-Information, having 11 de-
grees of freedom.  

The introduction of this new dimension enables to an-
swer a question that many outstanding physicists came up 
with and which Albert Einstein [3] brought up in his 
lecture before the Prussian Academy of Sciences, namely: 
“How can it be that mathematics, being after all a product 
of human thought which is independent of experience, is 
so admirably appropriate to the objects of reality? His 
answer to this enigma was by accepting as a fact that 
Mathematics is intrinsic both in Nature and in the human 
mind. Yet while the human mind can build wonderful 
logical structures with the aid of this mysterious tool, 
these structures are not factual if not cross-checked by 
empirical observations. In Einstein’s words: “In my 
opinion the answer to this question is, briefly, this: as far 
as the propositions of mathematics refer to reality, they 
are not certain; and as far as they are certain, they do not 
refer to reality [3].  

In his Herbert Spencer lecture at Oxford, Einstein [4] 
manifested his faith in mathematics as the skeleton of the 
edifice of nature, and thus the power of abstract mathe- 
matical thought to reveal the secrets of the laws inter- 
connecting our observation of natural phenomena. He 
stressed the role of mathematics as a bridge between 
mind and nature. In his words: “Our experience hitherto 
justifies us in believing that nature is the realization of 
the simplest conceivable mathematical ideas. I am con- 
vinced that we can discover by means of purely ma- 
thematical constructions the concepts and the laws 
connecting them with each other, which furnish the key 
to the understanding of natural phenomena. Useful ma- 
thematical concepts may well be suggested by ex- 
perience, but in no way can they be derived from it. 
Experience naturally remains the sole criterion of the 
usefulness of a mathematical construction for physics. 
But the actual creative principle lies in mathematics. 
Thus, in a certain sense, I take it to be true that pure 
thought can grasp the real, as the ancients had dreamed 

[4].  
He did not touch, however, upon the basic question: 

How comes that mathematics is on one hand the brain-
child of the human being and on the other hand is intrin-
sic in the framework of the universe? When he did refer 
to this question he admitted failure from the start “One 
may say “the eternal mystery of the world is its compre-
hensibility” [5]. 

It can be concluded, thus, that for Einstein, this ques-
tion was solved once he accepted the philosophical world 
view and thus the “God” of Baruch-Benedictus Espinoza, 
who argued for the uniformity of the terms of “God’’ and 
“Nature”2. Espinoza and thus Einstein, took it as granted 
that being a Supreme Mathematician is one of the infinite 
attributes of “God” i.e. Nature. 

Eugene Wigner [6], not being a Spinozist, brought this 
enigma to the level of an absurd in the title in his paper 
“The Unreasonable Effectiveness of Mathematics in the 
Physical Science”, in which he restated the problem by 
touching on the super-natural. His claim was that “The 
miracle of the appropriateness of the language of 
mathematics to the formulation of the laws of physics is 
a wonderful gift which we neither understand nor de-
serve.” [6].  

Indeed the achievements of the theories of Einstein, 
which were applauded by the world of science on the 
occasion of the hundred anniversary of Annum Mirabelis, 
had confirmed his trust in the power of mathematical 
thinking to unveil the many faces of nature.  

One of the famous cases of forecasting, which was 
confirmed by many observations, is Einstein’s General 
Theory of Relativity. In 1922 by developing the equa-
tions of this theory the Russian physicists Alexander 
Friedman [7] showed that these equations demand either 
a contracting or an expanding universe along space-time 
dimensions, which Einstein tried to stabilize by intro-
ducing his ‘cosmological constant’ [7]. Hubble’s obser-
vations showed that this constant is redundant. Running 
back the “motion picture”, namely turning expansion to 
contraction on space-time dimensions brought cosmolo-
gists to conclude that all started with a singular event, 
namely the Big Bang, after which the cosmos expands 
continuously to this day and into the future.  
 
2. The 5th Dimension along Which Our  

Universe Expands 
 
All the computerized models used by the physicists to 
contract the universe to reach the pre-Big Bang singular 
point and expand it to its present dimensions and beyond 
were dictated by mathematical procedures, demanding 
2Einstein’s response the telegrammed question of New York’s Rabbi 
Herbert S. Goldstein in (24 April 1929): “Do you believe in God? I 
believe in Spinoza’s God, Who reveals Himself in the lawful harmony 
of the world, not in a God Who concerns Himself with the fate and the 
doings of mankind. 
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various assumptions at various stages. The basic assump-
tion, following Einstein’s basic conceptual model is that 
our universe is four-dimensional, (three orthogonal spa-
tial coordinate system and time which has only one de-
gree of freedom from past to future). This continuum is 
measurable by an observer using a meter and a clock. 

Yet, Einstein’s, Friedman’s and their colleagues, in-
vestigating the implication of the General Theory of 
Relativity, like the Dutch Willem de Sitter [8], and the 
French Georges Lemaitre [9], were all following the 
same laws of mathematics, which they assumed that the 
universe is following. However, it never occurred to 
these physicists to ask the following questions:  

1) Along which dimension evolve the mathematical- 
logical structures they have constructed and were run-
ning in their brains and later on their computers.  

2) Is it not possible that this sequence of ideas in their 
brain while thinking and trying to understand these theo-
ries is running along a dimension addition to space-time?  

One will not be surprised, however, that any physicist 
adherent to the mandate of his profession i.e. investigat-
ing the physical world along the physical spatial-temporal 
dimensions, using a meter and a clock will revoke these 
questions, claiming that they belong to the field of ‘me-
ta-physics’ and endangers the objective approach to sci-
ence. In other words, once the subjective individual sit-
ting in front of his computer becomes involved in the 
program being run on this objective machine, the results 
may be biased. This approach makes further questions 
redundant, like: The knowledge gained allowing the exe-
cution of a program by a computer every few years be-
coming faster than its previous ancestor, is it not due to 
progress in information (hardware and software)?  

It goes without saying that we suggest that once such 
advancement is noticeable, it should be measured along a 
dimension of information.  

Speaking about this additional dimension one comes 
to the ‘fifth dimension’ (i.e. the three spatial directions 
and the direction of time) introduced in by Kaluza in 
1919 [10]. Although Kaluza was able to show that by 
introducing a fifth dimension then both gravity and elec-
tromagnetism can be described from the same underlying 
framework, and albeit Einstein’s interest and preliminary 
acceptance [10], this 5th dimension was not acceptable 
among physicists. The main reason, to the present au-
thors’ opinion, being that the 5th dimension was a 
mathematical innovation and the physicists could not 
‘see it’ ‘measure it with their rulers’ and clocks. No 
physicist, including Einstein, who pondered about the 
mystery of mathematics, dared to ask, how is it that a 
mathematical 5th dimension is capable of unifying the 
electro-magnetic and the gravity fields. Is it not possible 
that the 5th dimension is along the dimension of mathe-
matics? Klein [10], a theoretical-physicist, proposed a 
solution to the physical deficiency in Kaluza’s (1919) 
suggestion by attributing to the mathematical 5th dimen-

sion a spatial character of curling it up into a small 
enough space to escape ordinary detection. 

Curling up dimensions and thus making them “physi-
cal”, is a plausible solution from the point of view of the 
physicist, who configures with “four dimensional” uni-
verse. Yet his brain is free to roam multi-dimensional 
universes. In other words what Kaluza showed the phy-
sicists is that mathematics is a vehicle enabling to add 
dimensions and thus expanding beyond Space-Time.  

The curling up of space, was also criticized by Hawk-
ing [11], in the case of discussing the multi dimensional 
(ten or twenty-six) space-time universe, suggested by the 
string theory [12,13]. His question is: Why should some, 
but not all, of the dimensions be curled up into a small 
ball? It is beyond the scope of the present article to dis-
cuss the answers that Hawking [11] suggests, the com-
mon factor of which is that these are all physical 
space-time dimensions. On the other hand the need to 
invent the conceptual model of the ‘string theory’ [12,13] 
and add a non-observable dimension to the space-time 
continuum, may be regarded as a hint, what sort of a di-
mension it should be. More-overformulations accounting 
for Information as an additional dimension will also 
address the 11-dimensional M-theory [13] that requires 
space-time to have eleven dimensions.  
 
3. The Dimension not Accounted by Darwin  
 
While investigating the geology of the Quaternary, i.e. the 
layers deposited during the last two million years, of the 
Coastal Plain of Israel, the first author of the present arti-
cle got acquainted with the evolution of the stone tools. 
These tools show evolution from primitive pebble tools, 
which were just pebbles etched at one end to become 
sharp and pointed, to the evolved flint arrow heads. In 
other words: a body showing a rise of spatial-complexity 
along the dimension of time. The evolution of this com-
plexity expressed, as we know, also progress in the intel-
ligence of its manufacturers. The question then arises 
whether this trend of evolution could be explained in the 
framework of the conventional Darwinian to Neo- 
Darwinian paradigms, i.e. evolution through the process 
of random mutations filtered by the constraints of the 
hostile environment, which condemned to disappearance 
form the stage of existence the less fitted. 

Thus, while success in the process of Darwinian selec-
tion, i.e. survival of the fittest, can be measured according 
to the number of similar forms of life and their distribu-
tion in space-time. The question which bothered the first 
author was: What about the ability of these forms of life 
who were able to change the hostile environment. As the 
ability to change the environment, in the case of the 
hominids, was a function of the evolution of their intelli-
gence, the following question was: How should the sur-
vival of the more intelligent forms be measured? In other 
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words, who are more successful from the point of view of 
the Darwinian paradigm, the hominids or the beetles?  

The general question which follows is: By which units 
of measurements the evolution of intelligence can be 
quantified (when IQ tests are not feasible) and on what 
dimension can evolution of intelligence be measured? 

Generalizing these questions, it can be said that the 
Darwinian paradigm explained beautifully the evolution 
of forms, i.e. spatial changes and the spread out of the 
forms along the space dimension as time passed, i.e. the 
time dimension. Now, at a certain point on the dimension 
of time the hominids branched off from the primates and 
started to produce tools. These tools became more and 
more sophisticated as time progressed and as the homi-
nids multiplied and spread over the globe. The dimen-
sions on which this progress on the tree of evolution is 
described, by conventional measures, are either temporal, 
i.e. the time passed since the first pebble-tools were pro-
duced, or spatial, i.e. the spatial features of the hominids 
and their tools, as well as their geographical range. All 
these data are along space-time dimensions and the ques-
tion is: Once progress of intelligence became dominant in 
the evolutionary process should not an additional dimen-
sion be added to properly address this progress and eva-
luate it?  

While the questions started with relation to hominids, 
in due time this question was generalized for the entire 
bio-world. This happened after coming upon the results of 
the research carried out by the psychologist Morton E. 
Bitterman [14], who found that the evolution of intelli-
gent behavior in the bio-world correlates with the place of 
the species on the evolutionary tree. This meant that the 
increase of intelligence is parallel with the appearance of 
new forms of life on the geological timetable. Thus ver-
tebrates are more intelligent than invertebrates, saurians 
than fishes, mammals than saurians, etc. Bitterman [14] 
investigated the level of intelligence by “the ability to 
develop a new way of reaction when an entirely new situ-
ation comes up.” The question, which came up after 
reading this conclusion was whether there exists a dimen-
sion on which intelligence can be measured, except by the 
time needed to learn to push a button or find food in a 
maze? Moreover, once experience is gained and turned 
into instinctive behavior or abstract knowledge on what 
dimension can this be presented and evaluated, in addi-
tion to the spatial-temporal scales? 

The answer to these questions is: The Dimension of 
Information”. Yet this dimension is not necessary just to 
describe the evolution of intelligence in the bio-world in 
general and that of the Homo sapiens-sapience in par-
ticular, but is also essential to describe the rise in the 
complexity of the physical world [15], namely the 
growth of the complexity of the structures composed of 
information bits, which means on one hand more infor-
mation bits, as well as higher levels of organization of 
algebraic-logical sentences.  

The above definition of Information actually describes 
the coordinates along which the intelligibility of a mes-
sages sent through any system of tele-communication 
can be measured either by telephone, telegraph, e-mail or 
internet. In this context it is generalizing the term of ‘in-
formation’ as defined in the theory developed by Shan-
non and Weaver [16]. In their theory they suggested that 
the loss in the intelligibility of a messages sent through 
any system of communication, namely its increasing 
distortion by ‘noise’, can be described in a similar for-
mulation to Boltzman-Maxwell’s formulation of the 
physical Second Law of Thermodynamics. Thus, one 
cannot avoid the general conclusion that the loss of 
meaning (decrease in the number of ordered sets of bits 
of information) of a certain message is through a process 
similar to that which determines the increase of entropy 
in a thermodynamic system. The addition of the Dimen-
sion of Information measured along the - informa-
tion/time/space - dimensions, enables this loss of mean-
ing to be expressed in physical-mathematical terms. 

Physically-mathematically speaking, an increase in 
order is equated with increase in complexity and with 
organization, and is defined as negative entropy. Thus 
the Boltzman and Planck expression for the entropy of a 
system lnBPS K W  (where BPS  denotes the statisti-

cal entropy of a closed system, K  denotes Boltzman’s 
constant and W  denotes the number of independent 
quantum states) can be regarded as strictly a thermo- 
dynamic statement.  

On the other hand when the same expression is pre-

sented as 
1

ln
i n

BP i i
i

S K P P




    (where P denotes the 

probability that the system exists in the microstate i ) it 
becomes a measure of the probability of the system, i.e. 
the measure of our ignorance of the actual quantum state 
of the system. Such a measurement is also along the di-
mension of information, or more correctly, the exponen-
tial value on the dimension of information. This is pro-
portional to the level of organization of the system. In 
other words, the more information and the higher is its 
exponential value so is the system of lower probability, 
and thus lowers entropy.  

Instead of the expression for BPS , a more general 

form [16] can be 
1

ln
i n

n i i
i

I K P P




    where nI denotes 

the total information derived from a system where ln iP  

expresses the total contributions of each subset of which 
the system is composed of, weighted by its probability. 

In conclusion, the adding of the Dimension of Infor-
mation enables to understand better the physical obser-
vation made by Shannon that the noise (reciprocal to the 
quantity of Information) in a communication system be-
comes greater the longer are the dimensions of space- 
time. 
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4. A Few Words of Encouragement from 
Physicists  

Although we foresee the difficulties facing the undertak-
ing of building a bridge between the space-time measur-
able world of the physicists and the one containing also 
the dimension of Information, still a blink of hope exists. 
This emerges from the fact that quantum physicists are 
becoming aware of the need to introduce the observer 
and an additional dimension, similar to that of Informa-
tion, to their conceptual model in order to explain “bi-
zarre” phenomena, in the micro-world. This can be seen 
in the following citations, which we believe can also be 
regarded as a support to the space-time-Information 
conceptual model: 

1) “We have already considered with disfavour the 
possibility of the universe having been planned by a bi-
ologist or an engineer; from the intrinsic evidence of his 
creation, the Great Architect of the Universe now begins 
to appear as a pure mathematician.” [17]. 

2) “No, it’s a new kind of wave which I call ‘active 
information’. The notion of active information is already 
familiar to us from computers. Also, if I tell you some-
thing and you do something, that’s obviously active in-
formation. If `I shouted ‘fire’, everybody would move, so 
we know that in living intelligent systems, and in com-
puters, active information is a useful concept. Now what 
I am proposing is that matter in general is not so differ-
ent.” [1]. 
 
5. Formulation 
 
As already mentioned physicists and mathematicians 
strive to formulate the multi-dimensional continuum in 
the framework of the conceptual model of the multi di-
mensional string theory. The following formulation is 
more modest and is exercised in the framework of the 
Hamiltonian extended stationary principle in terms of 
Space, Time and an additional degree of freedom, all as 
independent stationary variables. It is suggested that this 
degree of freedom may be regarded as an information 
state. 

Thus, let us denote the information state by I , we 
postulate that similar to Hamilton’s extended stationary 
principle, there exists a functional ( )f being a func-

tion of its integrant f  between an initial information 

level 0I  and that of a final one fI , in the form 

 
0 0

, , , , , ,
f fI t

I tI t
f I t dIdtd    

        (1) 

Note that in (1) we consider time  0 , ft t t     and 

space  , to be independent of information. Accord-
ingly,  , ,I t   denotes the dependent function with 

its: information derivative  I I    , time derivative 

 t t     and spatial derivative       .  

The spatial domain is assumed to be fixed. The neces-
sary and sufficient condition to obtain minimum for  , 

is that the dependent function  , ,I t  satisfy Euler’s 

equation, namely 

0
I t

f f f f

I t   

      
   

      
       (2) 

In what follows, we will investigate the implementa-
tion of the theory to a 1D problem. 

6. Example 

Let us consider a thin rod under vibrations along 

  0,x   the longitudinal direction with U   

 , ,U I t x  as its wave amplitude.  

For this proposed example, we relate U  with  , 

and choose f  in the form 
2 2 2

2 2 2
t xI U U U

f FU
I t x

                      

 
    (3) 

where  , ,F F I t x  denotes the specific external 

driving force over a unit area, ,I t   and x denote 

coefficients associated with the second partial derivative 
of U . 

For example, let 

2

2

1

1

1I

t

x V







 
 







                (4) 

where   denotes the travelling speed of the informa-

tion wave in the I -vs- t  plan and V
C

  
 

 accounts 

for the ratio   and C  the speed of a traveling wave in 
the x -vs- t  plan. In view of (1), (3) and (4) the func-
tional   to be varied, will be in the form 

   

  
 

0 0

0

2 2

0 2

2

2

2
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2 2

2
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[f f

f

I t
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U I U x

V
U t

FUdI dt dx

QU ZU dt dx





   
   

 
 

  





     (5) 

where Q  and Z  denote, respectively, generalized 

source and conductance terms on the boundary envelope 
in space and time. 

Upon varying  , we describe an extremum process 
to define the U  function in , ,I t x  terms that will 

minimize the   functional. Assuming that the bound-
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ary conditions in (5) are fulfilled, we follow (2), Euler’s 
equation, and obtain a modified wave equation in the 
form, 

2 2 2

2 2 2 2 2

1 1
0

U U U
F

I V x t
  

   
  

        (6) 

In what follows, we will consider different dominant 
forms that may be obtained from (6). To do this we will 
refer to nondimensional analysis.   

 
6.1. Dimensionless Analysis 
 
Let us denote the characteristic value of a property by 
( )C . We choose the characteristic value so as to allow 

the dimensionless terms, *[ ] , be of a unit order. This 

will allow the comparison between the scalar factors 
multiplying the dimensionless terms. 

The dimensionless form of (6) reads 

 

* * *2 2 2

2 2 2

2
*

0

C C

C C

C C

C

I C IU U U

L tI x t
I F

F
U

 
       

             

 
     (7) 

where CL  denotes a characteristic spatial increment and 

Ct  denotes a characteristic time step. In view of (7) 

and the relative order of magnitude of its scalar numbers, 
we may obtain different dominant forms. To investigate 
these, let us also define: 

C

C

L
q

t



                  (8) 

as a characteristic velocity, 

c

C

U

t
 


                   (9) 

as the characteristic amplitude rate, 

C
I

C

I

L
                    (10) 

as the information density, 

C
C

C

I

t
 


                  (11) 

as the characteristic traveling velocity of information, 
and 

C
C

C

U

L
                    (12) 

as the characteristic aspect ratio. 
 
6.2. Traveling Wave in Space and Time 
 
Consider the possibility that, 
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                (13) 

In view of (13), the approximate form of (6) conforms 
to a traveling wave in the form, 

2 2
2

2 2 2

1
0

U U
V F

x C t

 
  

 
          (14) 

Note that the driving force is amplified by the square 
of the ratio between traveling velocity of information and 
the velocity of the aforementioned traveling wave. 
 
6.2.1. Traveling wave in information and time 
Consider the possibility that, 

1

1c
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
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≪

≪

                   (15) 

In view of (13), the approximate form of (6) conforms 
to a traveling wave equation in the I -vs- t  plane 

2 2

2 2 2

1
0

U U
F

I t
 

  
 

            (16) 

It is worthy to stress that (16) occurs when the charac-
teristic velocity is of greater magnitude than that of the 
traveling wave velocity and the ratio between the ampli-
tude rate and the driving force be also of greater magni-
tude than the traveling velocity of the considered wave. 

 
6.2.2. Stagnation in Space and Information 

Consider the possibility that, 

1

1c
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               (17) 

By virtue of (17) the dominant form of (6) will be-
come, 

2 2

2 2 2

1
0

U U
F

I V x

 
  

 
          (18) 

The amplitude surface which is obtained by the solu-
tion of (18), may exhibit craters and/or peaks, depending 
on the driving force which, as a function also of informa-
tion, acts as a sink/source term. 

7. Questions and Conclusions 

The mathematician Kaluza in 1919 suggested that if the 
world was five dimensional (3 spatial + time + 5th) then 
electromagnetism and gravitation can be described by a 5 
dimensional geometry. The physicist Klein [10] ex-
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plained the invisibility of this extra dimension, by adding 
to this geometric description, the principle of “perspec-
tive” namely that this dimension which we do not ob-
serve is because it is rolled up to a tiny size. Klein [10] 
computed the circumference of this tiny corpuscle to be 
about twenty powers of ten smaller than an atomic nu-
cleus. The revolution of adding dimensions continued 
when the nuclear forces were discovered and the ques-
tion rose whether to achieve a general theory these forces 
should not be incorporated into a Kaluza-Klein’s [10] 
theory by this reducing all the forces of nature to pure 
geometry? This brought to the multi-dimensional string 
theory [12,13] which brought to the formulation of the 
11-dimensional M-theory [13]. Yet in the various articles 
discussing the physics of a multi-dimensional continuum, 
one can not find any suggestion of a dimension which is 
not spatial-temporal.  

Focusing just on the period from Newton to Einstein 
to Kaluza-Klein [10] theories, every physicist will 
probably agree that there was evolution in the complex-
ity of the physical conceptual model. Yet, the question, 
which should be asked, is: What about the evolution of 
human thinking, which became more complex since it 
had to address additional concepts. On what dimension 
did human thought evolve? Was it just on space-time? 

The evolution of the biological sciences and especially 
that of the processes of heredity and genetics has even 
made these questions more relevant. Does the informa-
tion contained in the DNA molecule described just by its 
space-time structure? Or just by its chemical configura-
tion? Moreover, even if these descriptions are sufficient 
to pin-point a certain congenital trait, do they describe 
the past history of the evolution of these traits? These 
questions are now hotly debated, between the proponents 
of intelligent design, creationism, and Darwinism [18].  

Generalizing these questions will be: Isn’t it possible 
that there exists a non spatial-temporal dimension, which 
the physicists and biologists ignore because it is not ob-
served, yet science on the whole is built and is continu-
ously progressing along it? Our suggestion is: Indeed this 
is the Dimension of Information. 
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Abstract 
 
The gravitational instability of a thermally conducting self-gravitating system permeated by a uniform and 
oblique magnetic field has been analyzed in the framework of Tsallis’ nonextensive theory for possible mod-
ifications in the Jeans’ instability criterion. It is concluded that the instability criterion is indeed modified 
into one that depends explicitly on the nonextensive parameter. The influence of thermal conductivity on the 
system stability is also examined. 
 
Keywords: Jeans’ Criterion, Nonextensivity, Thermally Conducting, Self-Gravitating 

1. Introduction 
 
In any subject of astrophysics and cosmology, many- 
body gravitating systems play an essential role. Globular 
clusters and elliptical galaxies, which are recognized as 
self-gravitating stellar systems, are typical examples. 
Hence, the study of stability of self-gravitating systems 
becomes very essential. 

The condition of gravitational instability of self- gra-
vitating systems is determined by the Jeans’ criterion put 
forward by James Jeans [1] in 1902. In terms of wave-
number, the criterion reads: “An infinite homogenous 
self-gravitating atmosphere is unstable for all wavenum-
bers k  less than the Jeans’ wavenumber Jk   

04 SG v  , where 0  is the density, G  is the gravita-

tional constant, BSv k T m  is the speed of sound, Bk  

is the Boltzmann’s constant, T is the physical tempera-
ture and m is the mass of the particle.” 

The Jeans’ problem has been extensively studied 
under varying assumptions. A comprehensive account 
of these studies has been given by Chandrasekhar [2] 
in his monograph on hydrodynamic and hydromagnetic 
stability. The Hall Effect on plasma stability has been 
analyzed by several researchers (Ariel [3], Bhowmik [4] 
and Ali & Bhatia [5]) leading to the conclusion that 
Hall Currents are destabilizing in nature. Vyas & 
Chhajlani [6], Sharma & Chand [7], Khan & Bhatia [8] 
have investigated the influence of permeability of po-
rous medium on plasma instability due of the impor-

tance of such studies in geology and heavy oil recovery. 
In view of the role played by thermally conducting 
fluids in various astrophysical and geophysical phe-
nomena as well as industrial and engineering processes, 
the stability of such fluids has been the center of nu-
merous analyses (Kumar [9],Chhajlani and Vaghela 
[10], Mehta and Bhatia [11]). 

In all these investigations, the Boltzmann-Gibbs statis-
tical mechanics have been employed to study the ther-
modynamics of the system. However, the physical re-
strictions of this formalism have been recently pointed 
out in different literatures based on various studies in-
volving long-range interacting systems (Padmanabhan 
[12], Taruya & Sakagami [13]). As an alternative, the 
nonextensive theory proposed by Tsallis [14] is gaining 
considerable attention. 

The new framework for thermodynamics based on 
Tsallis’ nonextensive theory has been applied exten-
sively to deal with a variety of interesting problems to 
which the standard B-G statistical mechanics cannot be 
applied. Examples include the study of waves and insta-
bility phenomena, such as the plasma oscillations [15,16], 
the relativistic Langmuir waves [17], the linear or nonli-
near Landau damping in plasmas [18] and dark matter 
and gas density profiles observed in galaxies and clusters 
[19]. The study of self-gravitating stellar systems has 
been one of the most interesting applications of Tsallis’ 
nonextensive thermodynamics [20-24]. 

In this paper, we analyze the stability of a thermally 
conducting self-gravitating system embedded by a uni-
form and oblique magnetic field for possible modification 
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in the Jeans’ instability criterion due to the presence of 
nonextensive effects. The influence of thermal conductiv-
ity on the growth rate of the system is also examined. 
 
2. Nonextensive Theory 
 
The physical restrictions of the Boltzmann-Gibbs statis-
tical mechanics have stressed the need for a possible ge-
neralization of this formalism. Such a generalization was 
proposed by Tsallis in 1988 (known as “Tsallis’ Statis-
tics”) by constructing a new form of entropy written as 

 1 / 1q
q iB i

S k p q 
 
 

               (1) 

where ip  is the probability of the i th microstate and q 
is a parameter quantifying the degree of nonextensivity 
of the system. In the limit 1q , the celebrated B-G 
extensive formula, namely 

lni iB i
S k p p                  (2) 

is recovered. 
Various literatures involving the thermo-statistical 

analysis of many astrophysical systems and processes 
(Plastino & Plastino [25], Abe [26]) make it clear that 
Tsallis’ statistics may be the appropriate theory for de-
scription of astrophysical systems with long-range inter-
action of gravitation. 

The nonextensivity in the Jeans’ problem is introduced 
through the equation of state of an ideal gas. In the frame-
work of nonextensive theory, the q-nonextensive velocity 
distribution function for free particles is given by 

   
1

2 1
1 1

2

q
q

B

mvf v B q
k T

 
 
  

               (3) 

where qB  is a normalization constant and the other va-
riables have their usual meanings. 

If N denotes the particle number density, pressure is 

defined by 21
3

P Nm v    with 2v   the mean square 

velocity of the particle defined in Tsallis’ statistics by 

 
 

2 3
2

3

q

q
v f v d v

v
f v d v

  
  

 


             (4)
 

In 2003, Silva & Alcaniz [27] calculated the q expec-
tation value for the square velocity of the particle as 

 2 6 , 0 5/3
5 3

B
q

k T
v q

q m
    


           (5) 

Clearly, the standard mean square velocity 
2 3 /Bv k T m   is perfectly recovered when 1q . 

Thus, the equation of state of an ideal gas in the nonex-
tensive kinetic theory is obtained as 

21 2
3 5 3

B
q q

k T
P Nm v

q m


   
           (6)

 

where we have written /N m . Note that the standard 
equation of state is correctly recovered in the limit 

1q . The above equation can also be written in the 
form q qBP Nk T , with the physical temperature qT , a 

variable that depends on the nonextensive parameter q as 
2

5 3q
TT

q



. Consequently, the speed of sound can be 

written as 

2
5 3

qB
q

k T
S S

m q
 

               (7) 

significantly different from the one in B-G statistics (q 
=1, T Tq  ). We shall use this modified form while 

writing the perturbation equations of the self-gravitating 
system considered in this paper. 
 
3. Perturbation Equations 
 
Following standard lines, we write the linearized pertur-
bation equations characterizing the flow of a thermally 
conducting self-gravitating fluid embedded by a uniform 
and oblique magnetic field denoted by  ,0,x zH H H


. 

1 . 0u
t
 
  




                 (8) 

 1 1 1
1u p h H

t


      


  
         (9) 

 1h
u H

t


 





               (10) 

2
1 1G                    (11) 

   2 2 2
1 1 1 1q qp S p S

t
   

   
          (12) 

where    1 1 1, , , , , , ,u u v w h h h h px y z 
 

 and 1  are respec-

tively the perturbations in velocity u


, magnetic field H


, 

density  , pressure   and gravitational potential  , 
G  is the gravitational constant,   denotes an adiabatic 
exponent and x is the coefficient of thermal conductivity. 

We seek the solutions of the Equations (8)-(12) whose 
dependence on the space coordinates (x,y,z) and time t is 
of the form 

 exp sin . cos . .ik x ik z i t              (13) 

where  sin ,0, cosk k k 


 is the wavenumber of per-

turbation making angle   with the x-axis and   is 
the frequency of perturbation. Eliminating 1 1 1, & p   
from the above equations, we get six equations govern-
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ing the perturbation of velocity and magnetic field which 
can be written in the matrix form 

0A B                        (14) 

where [A] is a sixth order square matrix and [B] is a sin-
gle column matrix in which the elements are 

 , , , , ,
T

x y zu v w h h h . The elements of [A] are 

2
11 sin ,A i iD    

 
12 13

0, sin cos ,A A iD    
 

14 15 16
cos , 0, sin ,z z

H H
A ik A A ik 

 
  

 

21 22 230, , 0,A A i A    

24 25 260, ( sin cos ), 0,x z
ik

A A H H A 


   
 

  2
31 32 33sin cos , 0, cos ,A iD A A i iD       

 

34 35 36

41 42 43

cos , 0, sin ,

cos , 0, cos ,

x x

z x

H H
A ik A A ik

A H ik A A H ik

 
 

 

   

     

44 45 46, 0, 0,A i A A  
 

51 52 530, ( sin cos ), 0,x zA A ik H H A       

54 55 560, , 0,A A i A    

61 62 63sin , 0, sin ,z xA H ik A A H ik     

64 0,A  65 660,A A i             (15) 
where we have written 

   
 

2 2 2 2

2

qS k i k G i k
D

i k

     

  

  



      (16)

 

4. Dispersion Relation 

The vanishing of A  gives the dispersion relation as the 

product of three factors: 

          
 2 2

2 22 2 2 2 2. .
x zH H

i i k V i i iD i k iDk V    


      
   

                                (17) 
By writing in   and using the value of D  in the 
third factor of Equation (17), we obtain the resulting 
dispersion relation, which is an equation of degree five in 
n  of the form 

5 4 3 2
4 3 2 1 0 0n c n c n c n c n c              (18) 

with the coefficients 4c  to 0c  given by 

2
4c k  

 2 2
2 2 2

3
x z

q

H H
c S k G k 




  

 

 2 2
2 2 2 2

2

x z

q

H H
c k S k G k 



 
   
 
   

 2 2 2 2
1 qc k V S k G  

 
 4 2 2 2

0 qc k V S k G             (19)
 

where we have taken 

 2
2 sin cosx zH H

V
 




 

5. Analysis of Dispersion Relation 

In the study of Jeans’ instability, the boundary between 
stable and unstable solutions is achieved by setting 

0n   in the dispersion relation (Equation (17)). The 
result is a family of q -parameterized critical wave-
numbers qk  given by 

5 3

2q J
q

G q
k k

S

 
 

            

(20)

 
Note that the standard values as obtained from fluid the-

ory are recovered only if 1q  . We have, thus, obtained a 
modified form of Jeans’ Criterion which shall now be ana-
lyzed for different values of q. As we know, the value of 
nonextensive parameter q lies between 0 and 5/3. Hence, 
we will analyze the Jeans’ criterion for different values of q 
in this range. Let us calculate the critical wave numbers for 
q = 1, q = 0.3, i.e. 0 < q < 1 and q = 1.6, i.e. 1 < q < 5/3. For 
these calculations, we take numerical values for conditions 
prevailing in magnetic collapsing clouds: 

21 31.7 10 ,kgm     

  111 3 2

2 8 2 2

2 8 2 2

6.658 10 ,

2.5 10 ,

5 10 .

G kg m s

S m s

V m s

 





 

 

         (21) 
The following critical wave numbers are obtained 
through numerical calculations 

20 1
1.0 2.12 10qk m 
                 (22) 

20 1
0.3 3.04 10qk m 

                 (23) 
20 1

1.6 0.67 10qk m 
                 (24) 
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Let us discuss the Jeans’ Criterion in light of the above. 
a) When 1q  , the Jeans’ Criterion as obtained 

through fluid theory is recovered perfectly. The system is 

unstable for wavenumbers 1.0qk k   and stable for 

wavenumbers 1.0qk k  . 

b) When 0.3q   i.e. 0 1q  , the system is unsta-

ble for 0.3qk k   and stable for wave numbers 

0.3qk k  . Hence, the Jeans’ Criterion is modified as 

0.3qk k   and 1.0qk k   i.e. the system may now be 

unstable even for the wave numbers greater than 1.0qk   

provided that they are less than 0.3qk  . 

c) When 1.6q   i.e. 1 5/3q  , the system is un-

stable for 1.6qk k   and stable for wave numbers 

1.6qk k  . Hence, the Jeans’ Criterion is modified as  

1.6 1.0q qk k k    i.e. the system which was believed 

to be unstable for wave numbers less than 1.0qk   ac-

cording to fluid theory, may now be stable for wave 
numbers less than 1.0qk   but greater than 1.6qk  . 

We have demonstrated the effect of nonextensive pa-
rameter q on the system stability by plotting wavenum-
ber against growth rate for the values of q mentioned 
above. The result is as shown in Figure 1. The same con-
clusions, as outlined in a)-c), are drawn by studying the 
plot. 

In order to gauge the influence of thermal conductivity 
on the growth rate of the system, we have plotted 
wavenumber against growth rate for varying values of 
thermal conductivity in Figure 2 for a fixed value of 
nonextensive parameter q = 1. We notice that as the value 

of   (taken as X in the figure) increases, the value of 
growth rate initially increases in the unstable region. 
However, as the system moves from unstable to stable 
region, the growth rate decreases with increase in ther-
mal conductivity for a fixed wave number. Hence, we 
conclude that thermal conductivity has a mixed, but pre-
dominantly stabilizing, influence on the system stability. 

6. Results 

The Jeans’ gravitational instability of a thermally con-
ducting self-gravitating fluid permeated by a uniform and 
oblique magnetic field has been analyzed in the frame-
work of nonextensive theory. It is concluded that thermal 
conductivity has a predominantly stabilizing influence on 
the growth rate of the system. The presence of nonexten-
sive effects modifies the standard Jeans’ Criterion into one 
that depends explicitly on the nonextensive parameter q. 
However, in spite of this modification, the basic instability 
criterion is maintained: perturbations with qk k  do not 

grow while instability takes place for qk k . 

7. Concluding Remarks 

We have studied the stability of a large-scale self- gravi-
tating system in the framework of Tsallis’ Nonextensive 
Statistical Mechanics (NSM). Our approach differs from 
the kinetic theoretical approach based on the Vlasov eq-
uation, where the evolution of the system is described by 
perturbing the equilibrium Max-wellian velocity distri-
bution function. We have, instead, considered the 
non-Maxwellian (power-law) equilibrium distribution 
function (Equation (3)) which is a nonextensive generali-
zation of the standard distribution function. Considerable 
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Figure 1. Graph of wavenumber vs. growth rate of a thermally conducting fluid for varying values of nonextensive parame-
ter. 
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Figure 2. Graph of wavenumber vs. growth rate of a thermally conducting fluid for varying values of coefficient of thermal 
conductivity. 
 
amount of experimental evidence supports the employ-
ment of such a distribution (e.g. Liu et al. [28]), clearly 
indicating that the standarsd Maxwellian velocity distri-
bution might provide only a very crude description of the 
velocity distribution for a self-gravitating gas, or gener-
ally for any system endowed with long range interactions. 
Infact, a well determined criterion for gravitational insta-
bility is not a privilege of the exponential velocity dis-
tribution function, but is shared by an entire family of 
power-law functions (named q-exponentials) which in-
cludes the standard Jeans’ result for the Maxwellian dis-
tribution as a limiting case (q = 1). This being said, it 
must also be stressed that all nonextensive systems need 
not require the Tsallis’ statistics to understand their be-
haviors (Cohen [29]). In the light of present understand-
ing, it is still unclear which class of nonextensive sys-
tems requires Tsallis’ statistics for its statistical descrip-
tion, mainly due to the fact that the physical meaning of 
the nonextensive parameter q is yet to be settled. Al-
though some progress in this regard is being made (Du 
[22,23]), the Nonextensive Statistical Mechanics remains 
open to further verification and deeper understanding. 

Further Reading: Interested readers may refer to simi-
lar works by the authors [30,31,32] on the instability of 
thermally conducting self-gravitating systems in the 
framework of nonextensive statistics. 
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Abstract 
 
Relative metastable level population of metal plasma having low-lying metastable states departs from equi-
librium value. It needs to be experimentally investigated. This paper reports the use of hollow cathode lamp 
based Laser Induced Fluorescence (LIF) spectroscopy technique to measure Relative metastable level popu-
lation of metal in a plasma produced by a hollow cathode lamp. The relative population of ground state and 
533 cm-1 levels of Gd atoms in hollow cathode lamp is measured with LIF method. 
 
Keywords: Gadolinium, Fluorescence, Population 

1. Introduction 
 
Gd metal has widespread applications in medical, as-
tronomy and nuclear industries. Work on various pa-
rameters of this metal has drawn the attention of many 
researchers [1,2]. Hollow cathode lamps are mainly used 
for investigating various parameters of Gd Metals [3]. 
The scattered atoms of the Gd metal in the lamp have 
metastable levels, with low energy and high life time. 
These levels will be populated due to number of colli-
sions such as the collisions of atoms with each other, col-
lision of atoms with electrons, and collision of atoms with 
lamp's wall. The population's measurements at these lev-
els are of a significant importance, especially in those 
experiments related to laser and material interactions 
where atoms from metastable levels are excited to other 
levels which have higher energies. Therefore the knowl-
edge of knowing when the states are fully populated is 
essential in analyzing these types of activities. There are 
different methods for the measurement of level's popula-
tions, like absorption spectrum measurement which is the 
most current method. However one of the main problems 
with this method is its high optical noise [4]. In this paper, 
the use of inductive fluorescence method is proposed for 
the calculation of the relative population of the Gd me-
tastable levels. 
 
2. Laser Induced fluorescence (LIF) in lamp 
 
The Gd metal in a hallow cathode lamp is scattered from 
the cathode by buffer gas atoms and is vaporized in the 

lamp. The energetic electrons, ions, excited neutral at-
oms of the buffer gas collide with Gd vapor and cause 
the population and depopulation Gd levels. These proc-
esses create a new distribution of levels population in Gd 
atoms [5]. If there were no electrons in the lamp, Boltz-
mann distribution could be used for the estimation of the 
population distribution. However the existence of elec-
trons in the lamp makes the Boltzmann distribution to be 
a void distribution for the population. This suggests that 
a different method should be used for obtaining the dis-
tribution. 

The LIF method is one of the best methods for obtain-
ing the population distribution in such cases with low 
atomic density and high disorderly. LIF is a process 
where atoms are excited to higher electronic energy 
states via laser absorption and induces fluorescence ra-
diation. 
 

 

Figure 1. Some possible transitions in LIF. 
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The intensity of this fluorescence is dependent on the 
absorption density. Typically fluorescence occurs at 
wavelengths grater than or equal to laser wavelength. 
Metastable levels (Figure 1) can be excited to higher 
levels by a visible laser lines and then the fluorescence 
(Figure 1) can be detected by a monochromator. Fluo-
rescence intensity is [6]: 

 mnmmnmn hNAI                 (1) 

where Nm is the Upper level population, Amn is transition 
probability from m to n, hmn is the energy of this transi-
tion and η is the correction coefficient related to detec-
tion systems like photon multiplier (PMT) and the grat-
ing in monochromator. 

gratingPMT                     (2) 

where PMT and grating are the correction coefficients. Nn 
can be obtained by rate equations, 

nmmmm
m BNRN

dt

dN
             (3) 

n

n
mnmnmmnmm

n N
ANBNBN

dt

dN


   

where, B is the Einstein coefficient of the transitions, 
is the density of the photons that react with atoms, n 
is the life time of the low level, and Rm is the rate of ra-
diation and non radiation fall downs from upper level m 
(Figure 1). 

collisionmmnm RnfAAR           (4) 

By considering the fact that the lower level n, is metasta-
ble level, so 1//n goes to zero and the relative population 
of levels will be calculated from the numerical solutions 
of (3). 
 
3. Experimental Method 
 
Figure 2 shows the experimental arrangement for the 
measuring the relative population. a Ring dye laser beam 
which is capable of scanning 30 GHz around a wave-
length is focused into hollow cathode lamp with Gd met-
als as its cathode. The buffer gas inside this lamp is Ne 
with the pressure 3torr and the maximum current that can 
pass through this lamp is 15 mA. With the gas pressure 
of 3torr and 10mA electrical current the Rcollision

-1 in (4) is 
about 50 ns [6]. 

By sweeping a range of wavelengths and setting the 
system wavelength to a desirable value, the Gd atoms are 
excited to upper levels and then transit to lower levels 
(Figure 1). Fluorescence induced by these transitions are 
focused into entrance window of monochromotor by a 
short focal length lens. The focused beam will exit the 
monochromotor after hitting the holographic grating 

(1200 1/mil). The angel of grating relative to the en-
trance light must be arranged in a way that the desired 
Florescence line is selected. This beam will enter PMT 
and will be amplified electrically. This will allow the 
observation of the beam on oscilloscope. The measure-
ments of the relative population of the ground state and 
the 533 cm-1 level are required. These levels have wave-
lengths of 5618 A° and 5791 A° respectively and will be 
excited to 17795 cm-1 level and then the radiation from 
the atomic transition to level 215 cm-1 can be observed 
on the PMT (Figure 3). 

By observing the number of fluorescence photon at the 
excited wavelengths of levels 0 and 533Cm-1 and by put-
ting these numbers into (3) and solving these equations 
simultaneously in the steady state conditions, the relative 
population of the two levels is obtained. 
 
4. Conclusions 
 
HCL based LIF has been implemented to measure relative 
level population of Gadolinium. the ground and 533Cm-1 
metastable states. in a HCL. Utilizing the emission of 
HCL provides for relative atom density measurement. 
This becomes particularly useful when there is a low 
fluorescence signal in the atomic data. It is a good tech-
nique using the LIF emission from a hollow cathode that 
can be utilized to measure the relative atom density. By 
using the experimental results and standard tables [7] a 
value around 2, i.e. N533/N0 = 2 ± 15% for relative popu-
lation of the levels 533Cm-1 and 0Cm-1, was obtained, 
which means due to existence of electrons and their col-
lisions with Gd atoms the population distribution pattern 
of level’s does not follow the Boltzmann law any more. 
 

 

Figure 2. Experimental arrangement for measuring LIF 
signal. 
 

 

Figure 3. Engaged levels in experiment. 
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The LIF method with its simple experimental ar-
rangement has a significantly high signal to noise ratio 
compared to similar methods like optogalvanic or ab-
sorption methods. In this experiment the measurements 
have been conducted using Gd hollow cathode lamp for 
the first time and it is suggested that this measurements 
can be obtained for other states by using lasers with dif-
ferent wavelength. 
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Abstract 
 
The correspondence principle and the condition of supplementation were introduced by N. Bohr for the sub-
mission of light phenomena, taking into account the wave nature of electromagnetic radiation on one hand, 
and its quantum structures on the other. In this paper, correspondence principle combines two models of 
matter, namely, the classical point of view of environment can be considered as an ensemble no 
equally-frequencies oscillators, i.e. electrons in the surrounding various atoms (molecules) of the matter and 
characterized by its own set of frequencies (but not hesitant in the absence of an energy source) and the 
quantum - environment could be presented as a set (ensemble) two-level systems, a wide range of Bohr fre-
quencies. According to the correspondence principle Bohr jump-frequencies of atoms (molecules or nano 
particles) and natural frequencies oscillations of electrons of the same environment - oscillators are equal to 
each other. The dispersion characteristics of the environment in the every study range of optical frequencies 
correspond to the model of the classical harmonic oscillator of Lorenz, capable oscillates with Bohr fre-
quency. Using the laws of classical mechanics to describe the environment and its dispersion properties, and 
the simultaneous presentation of light radiation in the form of a beam interacting with the environment of 
photons (quanta, corpuscles) helps explain peculiarities of the spectral composition Raleigh light scattered. 
 
Keywords: Correspondence Principle, Complementarily Condition, Raleigh Light Scattering, Classical  
Harmonic Oscillator of Lorenz, Bohr Jump-Frequencies 

1. Experimental Research RLS in Organic  
Liquids by Fabelinskiy I. L. (1957) 

The purpose of this message—the description of mul-
tiphoton model of Raleigh light scattering (RLS), using 
the correspondence principle of N. Bohr. 

Before turning to interpret RLS through multiphoton 
model, we should remember the results of early experi-
ments, performed by I. L. Fabelinskiy (1957) [1], in 
which it was found, that the fine structure of the spec-
trum of monochromatic light, scattered in pure organic 
liquids, as a rule, consists of three spectral components. 
Recall that to observe RLS in these experiments as a 
source of radiation is used commonly available for such 
studies mercury low pressure spectral lamp (line λ = 
4358 A°). Through prolonged exposure photo plates 
could benefit from economies of accumulation, which 
even in the case of a weak signal was guaranteed for 
black photo recording. In the article was presented an 
overview of theories of molecular scattering of light in 

pure liquids as well as a list of experimental works on 
this subject (before 1957). 

Typically, the structure of the spectrum RLS of pure or-
ganic liquid contains three spectral components. The spec-
tral shifts Stocks and anti-Stocks components concerning of 
the central, unbiased, the most glaring components usually 
are not equal to one another. In toluene, benzene and CS2 
shifts Stocks and anti-Stocks components of the triplet in 
different series of experiments for each substance do not 
coincide with each other. This asymmetry was noted by I. L. 
Fabelinskiy, and also attention was drawn to the fact that 
anti-Stocks line less intense than Stocks. According to I. L. 
Fabelinskiy, is the real reason for asymmetry shifts Stokes 
and anti-Stocks components remained unknown while 
writing the work? Disagreement Stocks and anti-Stocks 
components on the frequency of the incident radiation may 
indicate that the emergence of the spread of radiation com-
ponents are not connected to each other and are independent 
of each other. 

This difference is due to excitation of independent os-
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cillators in the environment, some oscillator’s environ-
ment is responsible for Stocks frequency components, 
while others—for anti-Stocks; detection of natural fre-
quencies of these oscillators and their search—is our 
goal. 

The only simultaneous recognition dispersion charac-
teristics of refractive indexes in this spectral field of dif-
ferent numerous (equal and unequal frequencies) oscil-
lators [2,3], uniformly filling the entire volume of the 
environment can provide an answer to the question of 
different intensity Stocks, anti-Stocks components of the 
fine structure of RLS.  

2. Correspondence Principle of N. Bohr [4]; 
Bohr Jump-Frequencies [5,6]. 

 
In the article, in the future statement considerable atten-
tion will be given to the simple oscillators of the medium. 
It is their presence in the environment can be attributed 
to our attention to the correspondence principle and to 
the complementarily condition N. Bohr. The correspon-
dence principle and the complementarily condition has 
been proposed by N. Bohr (1932) in order to remain as 
long as possible in terms of the concepts of classical 
physics, and as long as possible to explain physical re-
gularities with simple graphic models. Recall that the 
correspondence principle (principle of supplementary, 
complementarily, subsidiary) has been used Bohr to ex-
plain the relationship between the electromagnetic field 
and light quanta [4]. 

In such system we have in accordance with the princi-
ple of correspondence (supplementary, complementarily, 
subsidiary) different oscillators of environment associ-
ated with the electrons among the various two-level for-
mations (with atomic skeletons, fragments of molecules, 
nanoparticles), the distance between the levels which can 
be uniquely represented through the Bohr jump-fre-
quency ν0i (see Fermi E. 1965) [5]:  

ν0i = (Ei – E0)/h              (1). 

here Ei, E0—energy of excited and ground levels of me-
dium; h—Planck constant. 

Important is the fact that the electrons in atomic (mo-
lecular ) environment can be represented in the form of 
classic oscillators, each depending on the position in the 
atom (molecule, nanoparticle) situation characterized by 
some intrinsic of frequency vibrations. The frequency ν 0 

i can be determined from the relationship between mass 
of the electron m and the coefficient of elasticity G j, de-
scribing stiffness connection of electrons with the skele-
ton atom or molecule (Garbuny M. 1965) [7]. 

These frequencies (indices i and j denotes multiple 
frequencies and communications within the molecule or 
nanoparticle: i = 1,2,3 ... ∞; j = 1,2,3 ... ∞) easy to detect 
and identify if we have the absorption or radiation spec-
tra of the investigated substance [6]. The degree of ab-
sorption (no transparency) of weak radiation by envi-

ronment in different parts of the spectrum and there are 
ultimately a set of characteristic frequencies ν0i for the 
given medium. 

Narrow-lines nature of atomic spectra and stripe-ines 
of molecular evidence that in the case of atoms electron 
interaction with atomic skeleton (for the hydrogen - ker-
nel) is more simple than in the case of molecules or dif-
ferent-sized nanoparticles consisting of the ensemble of 
molecules or atoms connected to one another. 

At the same time, note that in the absence of a source 
of excitation (that is, spectral lamps, arc, solar radiation 
or laser) of investigated environment, its own character-
istics (Bohr jump-frequencies) do not appear explicitly, 
and their detection is difficult.  

As our research on scattering almost resonance radia-
tion in atomic vapor metals [8,9] or photoluminescence 
phenomenon of Si-powder in the ethanol [10,11] in these 
cases, direct observation characteristic Bohr jump-fre-
quencies ν0i environment with help of one-frequency ν 
laser is made difficult and it is necessary additional 
measurements spectrum. Their location can be calculated 
only on the basis of processing of spectrograms, using 
the ratio, follows from the conservation energy law, that 
takes into account the spectral characteristics of envi-
ronment and has a kind of:  

ν0i = 2ν – νт                 (2). 
here ν is the frequency of the radiation, that affects the 
medium (environment); ν0i-frequencies oscillators envi-
ronment, they are Bohr jump-frequencies; h - Planck 
constant is omitted; 

index m is replaced by s (stoks), if ν < ν0i ,  
index m is replaced by as (anti-stokes), if ν > ν0i .  

Indexes s and as suited to the observed in the experi-
ment Stocks and anti-Stocks components radiation, scat-
tered by atomic medium [8,9], and can be applied to 
photoluminescence [10,11]. 

If environment has continuous spectrum of absorption, 
then using harmonics Fourier decomposition, we can 
give all set of lines, each being determined her proper 
Bohr jump-frequency. 

A few words about the relationship (2): 

νт = 2ν – ν0i                (3). 

According to the theory [12] the probability of such 
processes is low. However, all may be significantly sim-
plified, if one recalls the principle of correspondence and 
classic dispersion theory, which describes the behavior 
of the refractive index medium n (ν) near natural fre-
quencies ν0i classic Lorenz harmonic oscillators. Since in 
this case the refractive index medium or less than unit, if 
ν > ν0i, or many more units, if ν < ν0i, the processes, de-
scribed by relationship (3), are playing a decisive role in 
these areas spectra, and, consequently; in this time the 
the lower-order processes are ineffective. It is from this 
perspective, we try to understand the nature RLS and its 
complex spectral correct structure [1].  



                                        V. E. OGLUZDIN 
 

Copyright © 2010 SciRes.                                                                               JMP 

88 

3. Dispersion of the Refractive Index N (v) of 
Environment, Consisting of a Classical 
Harmonic Oscillators Lorenz [2,3];  
Multiphoton Nature RLS.  

The purpose of this work is to explain the nature RLS, 
based on attracting mechanisms suited to the role of cha-
racteristic frequency oscillators ν0i environment, as well 
as contribute to the scattering processes multiphoton in-
terraction. Note that these characteristic frequencies os-
cillators ν0i we can compare (or equate them) Bohr fre-
quencies and use the condition of complementarity of 
Bohr. The correspondence principle and condition of 
complementarity of Bohr in this case connect the conclu-
sions follow from the model of classical harmonic oscil-
lator of Lorenz, on the one hand, and, on the other hand, 
allow considering a two-level environments model and 
the consequences arising from this model. We are in this 
regard, in particular, would be interested in the corre-
spondence between the states of the classical harmonic 
oscillator Lorenz and the electronic levels of atoms (mo-
lecules) of a two-level environment (in quantum model). 

It should be noted, that in the classical model oscilla-
tor can be hesitate - after receiving a portion of energy, 
or be able to stop; and one quarter period vibration oscil-
lators corresponds to a single act of converting kinetic 
energy into potential, or vice versa. Such a portion of 
energy in the quantum model of a two-level atomic sys-
tem corresponds to the transition of electron from the 
level to level. This portion energy can either be absorbed 
or be emitted. Once again, we remind you that if power 
to the system is not introduced, the identification of fre-
quencies ν 0i , characterizing environment, difficult.  

But in this case, we must remember that all frequencies 
ν 0i environment, their full “virtual” spectrum is the call-
ing card of this media. And all frequencies ν0i—unique 
and independent performances of the environment.  

Due to the introduction of classical oscillators natu-
rally becomes our approach to the classical theory of 
dispersion of the refractive index n (ν) of environment, 
consisting of an ensemble of classical harmonic oscilla-
tors Lorenz. According to the theory of dispersion Lo-
renz [2,3] for the frequency of the incident radiation is 
less than the natural frequency oscillators ν0i, the refrac-
tive index of environment more unit and with the reduc-
tion of the difference between frequency of the incident 
radiation ν and frequency oscillators ν0i the refractive 
index n (ν) can grow indefinitely: n (ν) ›› 1 [2]. 

Experiments on slow light, performed most recently 
perfectly illustrate this, and the effect of slowing light 
can be used to explain the long persistence of photolu-
minescence radiation [10,11]. Let us mark, that in these 
same areas of the spectrum it is possible to create the 
conditions for the spread of photons with “above light” 
speed and they form a cone of Vavilov-Tcherenkov ra-
diation [8,9]. 

If the frequency of the radiation ν higher than the nat-
ural frequency oscillators ν0i, we face a situation, where 
the refractive index of the environment becomes less 
than unit: n (ν) < 1. The difference in the refractive index 
of the unit serves as a natural barrier to the spread of 
photons of light radiation, affects on the environment.  

That obstacle can be overcome, assuming, that only 
part of photons incident on environment almost reso-
nance radiation (ν ≠ ν0i) will be utilize on dynamic com-
pensation dispersion of the refractive index depending on 
the frequency for protect: n (ν) → 1. Populations lower 
and upper levels in the atoms of a two-level environment 
through the process (3) will be equalized and then we 
will be n (ν) → 1, which corresponds to enlightenment 
environment, while another portion of the photons of the 
same beam will be distributed through the medium 
without signs of slowing down, which tends to be hap-
pening in physical experiments.  

Multiphoton mechanism of dynamic compensation of 
dispersion is well examplified by V. E. Ogluzdin [9] for 
the near-resonant propagation of light through atomic 
vapours potassium, as well as in the case application by 
V. E. Ogluzdin [10,11] of this model to explain the phe-
nomenon of photoluminescence.  

Before turning directly to the interpretation RLS based 
on multiphoton model, we once again remind, that the 
spectral structure RLS radiation is usually three spectral 
component, and shifts Stockes and anti-Stockes compo-
nents relative to the central, unbiased frequency compo-
nent ν01 is not equal to each other. Typically, the inten-
sity Stockes components RLS, according I. L. Fa-
belinskiy, exceeds intensity anti-Stockes components and 
in the spectrum of scattered radiation can abundant a 
continuum that extends to 100-150 cm-1 in both sides of 
the frequency of line of exciting radiation. 

If the proposed model (see Equations (2) and (3)) is 
true, then this scenario suggests, that the emergence of 
Stokes and anti-Stockes components of RLS is associ-
ated with the excitement of independent sets of oscillator 
environment and its opening on the frequency ν = ν01.  

According to (3) Stokes and anti-Stockes components νs, 
νas of RLS and their corresponding Bohr jump-frequencies 
ν01, ν02… ν0i are on different sides on the frequency of the 
exciting radiation ν. Naturally, the emergence of Stokes 
and anti-Stockes components can only appear in an area 
occupied by light beam. Where excited radiation is lacking, 
properties of environment do not change. 

Under the experiment, this will not preclude the dis-
tribution of new frequency components νs, νas across im-
perturbable environment and registering them at photo-
plate. Generally speaking, this radiation is dispersed into 
a 4 π steradian. Recall, that in the paper (I. L. Fabelinskiy 
1957), the registration spectrum RLS realize in the 
transverse direction concerning direction of the incident 
radiation. 

The frequency ν of incident radiation may by accident 
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coincide with the frequency of the oscillator of environ-
ment (ν = ν0i). Since the refractive index [2] in this case 
n (ν) = 1, the portion of the incident radiation at a fre-
quency ν can easily pass through medium. But we must 
remember about of oscillators environment, Bohr jump- 
frequencies of which are shifted to the frequency of the 
incident radiation ν in the blue and red regions of the 
spectrum. Ultimately, their presence, the dispersion 
characteristics of the refraction indexes therefore: n (ν) > 
1 or n (ν) < 1 determine process RLS, according to the 
ratio of (3). 

It is commonly supposed that RLS process is due mi-
crofluctuations density of the environment and the ori-
entation of its species. But the self influence of the radia-
tion to alter the optical properties and, in particular, the 
emergence of these fluctuations is not considered. 

However, microfluctuations of the refractive index of 
the environment may arise from the fact, that the same 
radiation is acted on by the environment, could be a 
source of such microfluctuations and thus cause devia-
tions (or diffraction), as the radiation and its of Stokes 
and anti-Stockes components, which is generally ob-
served in such experiments. 

Incidentally, it is understandable situation, which oc-
curs in the case of the Stimulated (Mandelshtam-) Bril-
louin scattering (SBS), when the Stokes components of 
radiation can be traced in the opposite direction; they are 
reflected [13]. Really, in the moment of the generation of 
the inversion of oscillators of medium for frequencies ν 
< ν 0i at the front pulse of light can creat conditions, pro-
tecting to a change in the refractive index of the envi-
ronment: n (ν) < 1.  

The inversion of a two-level environment produce in 
the region Stocks of frequencies (νs < ν0i ) reduction in 
the refractive index n (ν) of medium [14]. If will be real-
ized condition n (νs) < 1, then for SBS component take 
place high reflectivity and this condition determine the 
opposite direction of its spread. 
 
4. Conclusions 
 
A agreement between own frequencies different oscilla-
tors of environment and Bohr jump-frequencies of this 
environment has brought to the interpretation of the fine 
structure RLS mechanism, on the one hand, based on the 
classical theory of dispersion, and on the other, based on 
the concept of quantum, the corpuscular nature of light.  

The possibility of observing RLS a wide body angle 
(4π steradian) testifies to the absence of significant bar-
riers to its spread. 

The intensity of anti-Stokes components observed in the 
discussed experiment is smaller, than Stokes items and de-
pend from the refractive index of oscillators of environment, 
whose frequencies correspond to a frequency of the incident 
radiation. Reverse direction of the reflected Stokes SBS due 

to a modified dispersion dependence of oscillators of envi-
ronment brought pumping radiation. 
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Abstract 
 
The double-slit experiment demonstrates the quantum physics particle-wave duality problem. Over the last 
decades many interpretations were introduced to the quantum theory perception problem. In most cases there 
was use of unclear terms, or obscure processes in these interpretations, such as particle splitting. In this paper 
we propose a novel concept to explain the experiment based on two postulates: The Equivalence of Form 
(EoF), and the particles connection to other particles, effectively functioning as a group. These two condi-
tions are necessary to maintain wave qualities in the collective relations, and therefore cannot exist in a sin-
gle particle. De Broglie introduced the mathematical relation of particle to wave; however, he did not specify 
the conditions for that. The proposed interpretation is a new way of looking at particles as a united group, the 
Kevutsa, which has a higher order level of matter. A series of identical particles maintain additional qualities 
to show a large united, correlated motion that we observe as waves transport through systems. 
 
Keywords: Particle-Wave Duality; Interference; Quantum Theory; Electrons Diffraction 

1. Introduction 
 
1.1. The Huygens-Fresnel principle 
 
Wave propagation can be well explained by the Huy-
gens-Fresnel principle, as a whole space filled with a 
plane wave (at distance for example) advancing into a 
certain slit. The space is governed by the wave in a tight 
causality since a wave phenomenon can be described 
only if it is occupying a group of points or a geometrical 
place. According to this principle, each point along the 
wave-front can act as a source of secondary waves.  

The Huygens-Fresnel principle is the very method to 
explain the formation of wave diffraction or interference 
behind single or double slits. 
 
1.2. Quantum Interpretations 
 
The problematic view of the quantum reality compared 
to the observed macroscopic reality lays on three princi-
ples: 

1) The quantization of electron energy or levels in the 
atomic structure. 

2) The particle-wave duality. 

3) The Heisenberg uncertainty principle. 
Although each of these principles is observed, quan-

tum reality is still considered strange, and the interpreta-
tions usually define unique terminologies, not in use in 
other fields of physics. In this paper, we introduce a new 
interpretation for the main experiment that impresses the 
particle-wave duality; the double slit electron interfer-
ence experiment.  

The particle-wave duality was first introduced by L. de 
Broglie: A particle has a wavelength or a frequency due 
to its momentum (p) or its energy (E), respectively. 

h

p
  ; E

f
h

                (1) 

where, h is the Planck’s constant. 
De Broglie wave’s expression was proved in obser-

vations of a wave’s formation, such as diffraction of   
particles. 

Since the late 1920s, many interpretations of the quan- 
tum reality have been suggested, the most famous among 
them is The Copenhagen interpretation [1] introduced 
by Niels Bohr and Werner Heisenberg. The Copenhagen 
interpretation is relaying on the Max Born explanation of 
the wave functions having an abstract mathematical 
meaning, enabling us to reveal some statistical quantities 
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regarding the particles and their states. In the Copenha-
gen interpretation, as the “standard” quantum methodol-
ogy, the particle has various probabilities to be measured 
in different states, and eventually the measurement is 
randomly obtained. This point of view opened the possi-
bility of freedom since it holds the meaning of ‘unknown 
intermediate states’ which are all real until a measure-
ment “chooses” one of these states to stay real.  

Several quantum interpretations proposed that the ob-
server is involved in the experimental results in case of 
quantum systems: Consciousness causes collapse [2], 
Participatory Anthropic Principle (PAP) [3], and the 
Many minds interpretation [4]. In this reality there is no 
way to separate between the experiment and the observer, 
which gives an air of “You see what you decide to see” 
to the whole physical reality. Therefore, there is no 
physical reality but a psychological reality (or we are 
asked to stop ‘doing physics’ from this point forth). 

This paper aims to propose a new quantum interpreta-
tion by means of a new approach to look at electrons. In 
the following explanations, time is to be interpreted in 
terms of a series of changes in a given system, similar to 
a stationary state where there is no need to assume 
time-dependent variables. 
 
2. Electron Double Slits Experiments 
 
The first electron diffraction phenomenon was observed 
in an experiment performed by Davisson and Germer on 
nickel crystals in 1927 [5]. Slits system for the electron 
double slits experiment was developed later, and Jönsson 
published his experimental results on 1961 in Zeitschrift 
für Physik [161, 454 (1961)] (translation was published 
in 1974 in AJP [6]). R. P. Crease published this experi-
ment under the title “The most beautiful experiment” in 
Physics World 2002 (Sep. 1) [7]. These physical experi-
ments, which were repeated after the technology im-
provements show how interesting phenomenon is the 
double slits experiment. 

 
2.1. “Gedanken Experiment” 
 
In quantum physics textbooks, electron beams are de-
scribed as though they are running in a “Gedanken Ex-
periment”. The best description of that appears in Rich-
ard P. Feynman’s, The Feynman Lectures on Physics – 
Volume 3 Quantum Mechanics, (Chapter 1) [8]. The de-
scription starts with a double-slit wall and an electron 
gun shooting electrons toward the wall. Behind that wall 
is a screen that shows the intensity at each point. Instead 
of a typical distribution of balls on the screen behind, an 
interference pattern appeared on the screen, similar to 
waves interference. Analyzing the electrons making this 
pattern in a “Gedanken Experiment” is done by checking 
through which slit each electron traveled, assuming that 

an electron can only travel through one slit at a time. 
However, if one keeps track by a flashlight where 
through each electron goes, the interference pattern is not 
observed anymore. Instead, a simple distribution similar 
to the case of the balls appears. Shooting electrons one at 
a time or as a whole fluency does not have any impact on 
the interference pattern.  

The apparent problem of destroying the interference 
pattern by viewing the electrons through slit that they 
pass is explained by either of the followings: 

1) The Heisenberg uncertainty principle. 
2) ‘Hidden’ variables – inner properties of electron. 
Einstein suspected that quantum theory is incomplete, 

which means that there had to be ‘hidden’ variables in 
quantum theory. The EPR (Einstein–Podolsky–Rosen) 
experiment was carried out in 1937 in order to inspect if 
quantum theory is a complete physical theory or not [9]. 
In contrast, John Bell, in his 1964 paper [10], very clear-
ly showed that quantum mechanics and Einstein’s as-
sumptions lead to different results; hence the ‘hidden’ 
variables assumption was neglected. 

The special assumptions of the Copenhagen interpre-
tation contained the following expressions: 

• Single electron interferes with itself; 
• Single electron goes through both slits; 
• Superposition of possibilities with each other. 
• The observer made the wave function collapse. 
Physics, therefore, limited itself to computing prob-

abilities, and omitted the ability to give common-sense 
explanations and a natural understanding of the nature of 
electrons. 
 
3. The Group (Kevutsa) Interpretation 
 
Group of electrons and their act as a whole group is the 
interpretation proposed in this paper. As in the case of a 
stationary system, a series of actions of electrons of the 
same group are not separate by a time interval, due to the 
system keeping its unity connection. The electrons sys-
tem can assumed to be united, due to the Equivalence of 
Form (EoF) of elementary particles in the group. It is 
known that the electrons are completely identical in the 
double slits experiments, even their energy must be equal 
in order to produce a fair interference pattern on the 
screen. The identity of electrons is so high that it was 
noted by R. Feyman’s Nobel lecture in 1965 as “there is 
a single electron needed in order to describe the whole 
universe, since it can propagate through space and time 
in such a way as to appear in many places simultane-
ously”. 

In macroscopic subjects, such as marbles or bullets, 
the Equivalence of Form (EoF) condition is not satisfied, 
and therefore they cannot act as a group. These bullets 
are always different from one another. The bullets are 
not having EoF among their bundle, and therefore will 



                                       I. ORION  ET  AL. 
 

Copyright © 2010 SciRes.                                                                               JMP 

92 

not possess the Kevutsa (group) properties. 
The Kevutsa interpretation introduces here a new 

property or properties that must be held by a complete 
group of particles, connected by EoF, to perform wave 
actions. The group of particles must be considered a 
united system that has all the variables at the same time 
to make a connected motion like a wave-form of light. 
The wave quality of the connected group leads it to obey 
the Huygens-Fresnel principle, which belongs only to 
waves. In the Kevutsa interpretation there are no ‘hid-
den’ variables in each electron of the experiment. Instead, 
the connection between electrons gives more degrees of 
freedom by which additional variables can be related. 

The mathematical meaning of the connection between 
electrons can be illustrated if one defines three dimen-
sional coordinates as the state values of a separated elec-
tron defined in a 3 electrons system: 

a1(x1,y1,z1); a2(x2,y2,z2); a3(x3,y3,z3)       (2) 

However adjoined 3 electrons will be defined by: 
a1((x3-x1),(y3-y1),(z3-z1),(x2-x1),(y2-y1),(z2-z1)); 

a2((x1-x2),(y1-y2),(z1-z2),(x3-x2),(y3-y2),(z3-z2)); 

a3((x1-x3),(y1-y3),(z1-z3),(x2-x3),(y2-y3),(z2-z3)).   (3) 

Therefore, the grouping of electrons highly increases 
the numbers of variables, and each state can hold enough 
information needed to satisfy the ‘hidden’ variables prob-
lem. The ‘hidden variables’ in Einstein’s assumption 
were located in each single particle, while here these 
variables can be occupied in the connection of group of 
particles.  

Measuring each separate electron track using a flash-
light is actually an act of separation of electrons out of 
their united group. A single electron aims to absorb a 
photon for itself alone, differing it from the group, leads 
to a lack of the united group description. 

The Kevutsa group interpretation point-of-view is dif-
ferent from the Copenhagen interpretation that always 
strives to predict a single electron destiny, instead of 
looking at the whole group of non-separated particle 
system and their results. 

De Broglie introduced the mathematical relation be-
tween particle properties and its wave properties. How-

ever, he did not introduce the conditions by which parti-
cles act as a wave. We recognize the EoF principle as a 
condition for wave formation of particles. 
 
4. Conclusions 
 
The Kevutsa interpretation is a new way of looking at 
particles as a whole, united group, which has a higher 
level of order of matter. A series of identical particles 
(with EoF) have more qualities to show a large united 
(even infinite) correlated motion that we observe as 
waves transport through systems. 
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