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ABSTRACT 

The radiation characteristics of waveguide antennas located on the surface of a circular cylinder are investigated 
theoretically and numerically. A reactive impedance structure is used to provide reduced coupling between two anten-
nas on the surface of a cylinder. Using the moment method, a solution to the problem of the radiation of a single and 
two parallel-plate waveguides located on the surface of a reactive impedance cylinder is derived. The influence of the 
reactive impedance structure on the coefficient of standing waves, the radiation patterns, and the decoupling between 
antennas is studied. 
 
Keywords: Decoupling, Radiation, Reactive Impedance Structure 

1. Introduction 

In radio engineering, a group of near-omnidirectional 
antenna radiators having a common flange, such as an 
open end of the waveguide (or aperture), are widely used. 
In practice it is often required to limit the coupling be-
tween the receiving and transmitting antennas located on 
the same surface at a small distance from each other.  

The known methods of decreasing interaction between 
antennas utilize the alteration of amplitude and phase 
distribution on some surfaces. Among accepted measures 
to decrease coupling between antennas are mutual shiel- 
ding of antennas and deposition of additional screens (or 
shields) across the line of connection. In the case with 
near-omnidirectional antennas, two groups of additional 
measures are applied: radio-absorbing materials and sur-
face decoupling devices. 

As the review of a number of articles [1-8] shows, the 
most widespread and successful way of solving the 
problem of coupling antenna devices is the use of reac-
tive impedance structures, specifically corrugated struc-
tures. The most widespread type of decoupling structure 
is a metallic structure with a rectangular cut of corruga-
tions. It has been shown that the value of decoupling 
generally depends on electrical and geometrical parame-
ters of the reactive impedance structures [9-12]. However, 

solving the problem of optimum placement of the de-
coupling device using this approach is impossible [9]. In 
[9,11], the authors used corrugated structures with dif-
ferent depths of corrugations. The waveguide antennas 
discussed in [9] are on the surface of a cylinder, and in 
[11] they are located on a plane. For each case, it has 
been shown that the coupling coefficient was reduced in 
the presence of a corrugated structure. The planar struc-
ture, however, more seriously influences the radiation 
pattern of the antenna which is near to the structure. [10] 
reviews different structures for reducing the coupling 
between antennas. Through the method of integral equa-
tions it is shown that the decoupling properties of the 
structure are determined only by the structure’s length 
and in fact do not depend on the periodicity of the struc-
ture. In addition, it is shown that the weakening of cou-
pling between antennas in a wide range of frequencies 
can be obtained to a larger extent on convex surfaces 
than on flat ones [10]. The change of the coupling value 
is sufficiently influenced by areas located near the an-
tennas and by the degree of the decoupling, which is de-
fined by the maximum rate of change of surface reactive 
impedance 11. The authors of [12] consider engineer-
ing techniques of evaluating reduced coupling between 
near-omnidirectional slot antennas located on the surface 
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of a model object, which consists of a circular cylinder 
and a rectangular plate. The calculations showed an ef-
fective means of obtaining the required reduction in spa-
tial coupling is the correct choice of mutual placement 
and orientation of the antennas, which should be taken 
into account when designing the system. 

This paper explores in detail the problem of mutual 
coupling between two antennas located on the surface of 
a circular cylinder separated by a corrugated structure 
with constant depth of corrugation. We will present a 
strict solution to the problem of the analysis of the radia-
tion characteristics of a single antenna in the shape of the 
open end of a parallel-plate waveguide. Unique to our 
work is that we solve the problem in the presence of a 
second waveguide antenna. First, we study the radiation 
pattern and the dependence of the coefficients of stand-
ing waves on the value of the constant reactive imped-
ance of a single waveguide located on the surface of a 
circular cylinder. We also present the decoupling coeffi-
cient in the presence and in the absence of the reactive 
surface impedance. These are novel contributions of this 
study. Second, we consider reduced coupling between 
two waveguide antennas where the presence of two an-
tennas leads to distortion of their radiation patterns. In 
this system, we show that the presence of capacitive im-
pedance almost completely eliminates distortions in their 
radiation patterns made by the receiving antenna. Hence, 
the radiation pattern of both antennas coincides with that 
of a single antenna with a reactive impedance flange. The 
presentation of radiation patterns for single and double 
antennas with and without impedance flanges for the 
cylindrical configuration with a corrugated decoupling 
structure is original to our work. We show that the pres-
ence of capacitive impedance nearly eliminates distor-
tions caused by the proximity of the receiving antenna. 
While independent verification of the validity of our spe-
cific numerical results is not available, as this is original 
work, references cited earlier show similar results for 
similar waveguide systems which support our conclu-
sions. 

The paper is organized as follows: In Section 2, a so-
lution to the problem of the radiation of a parallel-plate 
waveguide located on the surface of a reactive imped-
ance cylinder is derived. Next, Section 3 considers a so-
lution to the problem of the reduction in coupling be-
tween two waveguide antennas located on the surface of 
a reactive impedance cylinder and presents the formula 
of some key parameters of antennas. In Section 4, the 
numerical results for the decoupling coefficients and ra-
diation patterns for both single and double waveguide 
antennas on the surface of a circular cylinder are pre-
sented. Finally, Section 5 is devoted to conclusions.  

2. Radiation of a Cylindrical Waveguide  

2.1 Statement of the Problem  

First of all, we try to find a solution to the two- dimen-
sional problem of electromagnetic field (EMF) radiation 
from the open end of a parallel-plate waveguide located 
on the surface of a reactive impedance cylinder (r=R) 
shown in Figure 1. The waveguide has width, a, and 
spans between angles 1  and 2  on the curved sur-

face of the conductor. We will calculate the EMF as a 
function of radius, r, and azimuthal angle,  . To solve 

for the EMF in the waveguide, its aperture, and in the 
free space outside of the cylindrical surface, we assume a 
certain excitation wave within the waveguide, and im-
pedance boundary conditions on the surface of the cylin-
der between the openings of the transmitting and receiv-
ing waveguides. Then we make use of the Lorentz 
lemma and assume subsidiary field sources in each space. 
We then obtain integral correlations for the fields in each 
space. A system of integral equations results, which can 
be transformed into a system of linear algebraic equa-
tions that are solved for the field components by ad-
vanced numerical techniques, as explained in detail be-
low. 

Let the parallel-plate waveguide be excited by a wave 

characterized by iE


 and iH


: 

ikri
z eHH  0 and      (1)  ikri eWHE  0 )( Rr 

where  120W

oH

 is the characteristic resistance of 

free space,  is the amplitude of the incident wave, 

 

 

Figure 1. The open end of a single waveguide antenna lo-
cated on the surface of a circular cylinder  
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and  is the radius of the cylinder. On the surface R

1S  ]2,[&],0[ 21    the following reactive impe- 

dance boundary conditions are fulfilled: 

)( HnnEn


 Z and     (2) zZHE 

where rin


  is the unit normal to the surface of the 

cylinder ( Rr  ), Z  is the surface reactive impedance, 

and E


 and H


 are the electric and magnetic fields, re-
spectively. 

Next, we determine the EMF in the regions both out-
side of the cylinder (space ) and inside the radiating 

waveguide (space ). Then, we calculate the coeffi-

cient of standing waves (CSW) of the transmitting an-
tenna and the radiation pattern of such an antenna (see 
Section 3). 

1V

2V

2.2 Solution of the Problem  

In order to solve for the EMF’s, it is necessary to use the 
Lorentz lemma in integral form [13], where constant 
pre-factors are omitted:  

 

   








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sexmsexesesm

S

s

dVdV

dS

,

)()(

........

s

HJEJEJHJ

nHEHE

 



(3) 

where and are vectors of the intensity of the elec-

tric and magnetic fields of subsidiary sources in volumes; 

sE sH

..seJ


and ..smJ


are complex amplitudes of current densi-
ties of the subsidiary electric and magnetic sources in 

volumes; ..exmJ


and ..exeJ


are amplitudes of linear current 
densities of adjacent source threads. In accordance with 
the stated polarization of the radiated field, Equation (2), 
as subsidiary sources in spaces V1 and V2, we choose a 
current thread in phase with the magnetic current parallel 
to the z-axis: 

0e.ex. j


 and ),(m
0

m.ex. qpI zij


     (4) 

where  qp,   is a two-dimensional delta-function, p is 

the point of observation, q is the point of integration, and 

 is the current amplitude. To simplify the solution of 

the problem in the integral correlation, we impose bound- 
ary conditions on the subsidiary fields which arise from 
the subsidiary sources: 

mI0

0),( Rr
m qpE             (5) 

This standard boundary condition states that the tan-
gential component of the subsidiary electric field on the 
curved cylindrical surface is zero. 

2.3 Integral Correlations for Space V1  

We now consider integral correlations for each of the 

spaces shown in Figure 1. By placing a subsidiary 
source at the point ),( Rrp   and taking into account 

boundary conditions in the Lorentz lemma of Equation 
(3), we obtain 

      


 
2

0

111 , dRHEH m
zz       (6) 

where 





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in

n

nm
z e

kRH

kRH

RW

i
H )(

)2(

)2(

1
)(

)(

2
),( 


  is the 

subsidiary magnetic field on the surface of an ideal con-
ducting cylinder. Here, i  is the imaginary operator, 

 2
nH  is the -order Hankel function of the second kind, 

and  is its derivative. In Equation (6), there are two 

unknown values: Eφ1 and Hz1 are the fields of the threads 
of the electric and magnetic currents in free space, re-
spectively. In order to eventually solve for them, two 
more equations are required. These come from the Lor-
entz lemma in the space V2 and the subsequent coupling 
between the waveguides (Section 3). 

thn

)2( 
nH

2.4 Lorentz Lemma for Space V2  

The subsidiary magnetic field in the space V2 that is pro-
duced on an aperture of a cylindrical waveguide is ob-
tained from the Lorentz lemma of Equation (3). By im-
posing boundary conditions on the tangential component 
of the subsidiary electric field vector at the walls of the 

parallel-plate waveguide and on its aperture  02  mEn


, 

we obtain an integral correlation for the EMF inside the 
waveguide V2: 

 








1

1

.),()(
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i
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m
222

A

z

A

z
i
zz

RdHE

RdHEHH









  (7) 

The field in the aperture of the waveguide is then 
written as the following correlation: 

   
2

1

m
2202 ),()(2




  RdHEHH zz  (8) 

where the field of the subsidiary source can be written as  









n

in

n

nm
z e

kRH
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)2(

2
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2
),( 


  (9) 

3. Reduced Coupling of Two Cylindrical 
Waveguides  

Let us now consider the problem of reducing the cou-
pling between two parallel-plate waveguide antennas 
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located on the surface of the reactive impedance cylinder. 
In Figure 2, we show two aperture antennas with open-
ing sizes of a and b which are located on the surface of a 
reactive impedance cylinder (r = R). These two antennas 
(transmitting and receiving ones), which have the shape 
of the open end of parallel-plate waveguides, are sepa-
rated by distance L from each other  )( 23   RL . 

The boundary conditions, stated in Equation (2), exist on 
the surface  (1S  32,    and  4 1, ) which sepa-

rates two antennas. Because another waveguide with an 
opening of size b is added, one more equation (relative to 
the field in the opening of the receiving waveguide) is 
included in the system of integral equations. In addition, 
we need to determine the field in the receiving wave- 
guide (space V3), the radiation patterns, and the decoup-
ling coefficient. 

3.1 Integral Correlations for Space V3 

To solve this problem, we use the same integral form of 
the Lorentz lemma. In this space, V3, the lemma is dif-
ferent from Equation (8) only in the absence of additional 
sources and by the size of the opening of V3: 

  





bLa

La

m
zz RdHEH   ),()( 333      (10) 

where  is the subsidiary magnetic field in the 

space V3. 

),(3  m
zH

3.2 System of Integral Equations  

By taking into account the boundary conditions of Equation 
 

 

Figure 2. Geometry of the structure with two parallel-plate 
waveguide antennas located on the surface of the reactive 
impedance cylinder  

 

Figure 3. The open end of a waveguide located on the sur-
face of a circular cylinder for space

 
V3 

 
(2) on the surface of the reactive impedance flange and 
the equality of the tangential components of the EMF in 
the openings of the waveguides ( ,21 zz HH  21  EE   

when  21 ,p and , when3z 1E 1z HH  3E

 43,p ), we obtain a system of integral equations 

relative to the unknown tangential component of the 
electric field )(E  on the surface of the cylinder 

 Rr   (see Figure 3): 

 

   

     

 

   





















 

 



 

 

 

























],,[            0,

)]',()',([

]2,[&],[

0,)(

],[2,

            )]',()',([

43

2
m
1

m
2

m
1

1432

2

0

m
1

210

2
m
1

m
21

3

4

4

3

1

2

2

1

RdHE

RdHHE

RdHEZE

HRdHE

RdHHE

z

zz

z

z

z
m
z

 (11) 

where the subsidiary magnetic fields , 

 and 

)',(1 m
zH

)',(2 m
zH   ,3

m
zH  are solutions to the 

non-uniform Helmholtz equations for the complex am-
plitudes of the field vectors for regions V1, V2, and V3, 
respectively. 

In calculating the subsidiary fields in the spaces V2 
and V3, it is assumed that they have a rectangular shape, 
short-circuited in the openings of the ideally flat con-
ducting wall. The apertures of the antennas coincide with 
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these walls. In this case, the subsidiary fields in Equation 
(11) are defined by the following correlations: 

  )(cos)(cos
2

, 1
0

1
m
2 
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where R
a

n
n

  , R
b

n
n

  , 2k  is the wave 

number, and λ is the wavelength. Also,  

2
2

2 k
a

n
ik n 
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, and the 

dielectric permittivity of the  layer is given by  thn









02

01

n

n
n . 

The required solution has a specific feature at the 
edges of the structure ,,,( 321    and )4 . It is 

taken into account by inserting a new unknown weight-
ing parameter, )(Y , which has the same specific fea-

ture as the function required in the system of integral 
equations in Equation (11): 

)()()( 
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By solving the integral equations using the Krylov- 
Bogolyubov method [14] and calculating the coefficients 
of the matrix in a system of linear algebraic equations, 
the subsidiary field given in Equation (9) can be rewrit-
ten as (see Appendix A) 

,
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where we take into account the decomposition of the 
Hankel function into the Bessel series (addition theorem 
of cylindrical functions). Here, Jn is the Bessel function 

of order n and  2
0H  is the second kind of the zero-order 

Hankel function. Therefore, the fields in the opening of 
antennas and on the reactive impedance part of the flange 
are found. In the following section, formulas for key pa-
rameters of the antennas are given in terms integral cor-
relations involving the field components which have all 
been obtained.  

3.3 Key Parameters of Antennas 

The expressions for the coefficient of standing waves in 
the transmitting antenna, the EMF power directed into 
the receiving antenna, and the coefficient of coupling 

 between antennas are defined by the same correla-

tions as in [15] with only a substitution of the compo-
nents of the Cartesian coordinate system for those of the 
cylindrical coordinate system. 

сK

 The amplitude of the reflected wave of main type 

 in the active waveguide  is defined by the fol-

lowing correlation: 

rH0 2V

  
2

1

200
1




  RdE

Wa
HH r       (16) 

 The expression for the coefficient of standing waves 
is 

R

R
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where   
2
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aWH
R  is the coefficient of 

reflection. 
 The power of the field acquired by the antenna 3V  is 
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 The coefficient of coupling between antennas is de-
fined by  

  .
1
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3
0

2

4

3

 



  dE

H

R

abW
Kc      (19) 

The decoupling coefficient K, which is the inverse 
value of , is defined as . cK  cKK log10

 The radiation pattern of antenna  can be found 

from the integral correlation of Equation (6), where 
 is already obtained from the solution of SLAE in 

Equation (A-1). In this process, it is required to move 
the point of observation P to infinity and to use the  

1A

1E

asymptote of the Hankel function with a significant 
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argument [ ]. As a result, we ob-

tain 

)()( )2(
0

)2( krHikrH n
n 

   krFkrHpH z   ,)()()2(
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where  is the radiation pattern of an-

tenna ,and  
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efficients of the decomposition of the radiation pattern 
into a complex Fourier series. We notice here that the 
radiation patterns of both antennas can be calculated at 
once in the mode of reception by solving the problem of 
cylinder excitation by a flat wave. 

4. Numerical Results and Discussion  

4.1 Radiation of a Single Parallel-Plate Wave-
guide  

The surface impedance  has an inductive 

character when  and a capacitive character when 
. For the systems of interest, the reactive imped-

ance is purely reactive  . Figure 4 shows the de-

pendences of the CSW on the value of the constant reac-
tive impedance  of the waveguide located on the 
surface of a circular cylinder with radius 

 iXRZ 

iXZ   


0X

iXZ 

0X

387.2R  
. The sizes of the openings of waveguides are 

(a) 

 15kR 
2.1a  and (b) 2.0

 4.1  ) Z

a

Im(

, respectively. When the 
size of opening decreases, the magnitude of CSW in-
creases by a factor of 4.5 (from Figure 4(b) to Figure 
4(a)). The least value of CSW for all sizes of antennas on 
cylinders is found with purely reactive impedance of 
inductive character . We notice that use of 

the reactive impedance distribution on the surface of a 
cylinder (on a curved flange) leads to a significant in-
crease of CSW. Furthermore, in the case of a cylinder 
with all circumstances equal, the influence of reactive 
impedance turns out to be less than in the plane case.  

We present the radiation pattern of a single waveguide 
antenna on a circular cylinder of radius 387.2R  

with ideal conducting flange (Z=0: dotted line) and ca-
pacitive flange ( : solid line) in Figure 5. The 
size of the aperture is 

iZ 10
4.0a  (  201  and 

 302 ). The dash-dotted line shows the impact of the 

reactive impedance part of the flange on the radiation 
pattern. As we can see, the capacitive impedance really 
distorts (or wrings out) the wave, increasing the directiv-
ity of the antenna. The dashed line represents the geome- 

 

Figure 4. (Color online) The CSW as a function of the con-
stant reactive impedance of the waveguide located 
on the surface of a circular cylinder with radius 

)Im(Z

387.2R  15kR  for (a) 2.1a and (b) 2.0a . 
An increase in the size of opening leads to a decrease of 
CSW.  

 

 

Figure 5. (Color online) Radiation pattern of a single wa-
veguide antenna on a circular cylinder 387.2R  with an 

ideal conducting flange ( 0Z : dotted line) and capacitive 
flange ( iZ 10 : solid line), where the size of the aperture 
is equal to 4.0a  ( 201  and  302 ). The 

dash-dotted line shows the impact of the reactive impedance 
part of the flange on the radiation pattern. The dashed line 
represents the geometry of the problem 
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Figure 6. (Color online) Decoupling coefficient K  as a 
function of reactivity,  (solid line) with parameters iXZ 

  Lba  ,4.0 ,8.0 , and . The dashed line 

corresponds to the decoupling of the antennas on the sur-
face of an ideal conducting cylinder 

15kR

 
try of the problem (location and relative sizes of the 
opening of the radiating antenna). 

4.2 Radiation of Two Waveguide Antennas 

Now, we study the decoupling coefficients and radiation 
patterns in the two waveguide antennas on the surface of 
a circular cylinder. Figure 6 shows the dependence of 
the decoupling coefficient K on the value of the reactivity 
of the normalized reactive impedance of the cylindrical 
flange  (solid line) with parameters iXZ  8.0a  

 ,4.0  ,  Lb

dB52

and . The dashed line corre-

sponds to the decoupling of antennas on the surface of an 
ideal conducting cylinder. Numerical studies show that 
the behavior of the decoupling coefficient for the cylin-
drical construction is almost the same as the plane case 
(see Figure 8 in [15]). The only exception is that for the 
cylindrical medium the decoupling of the antennas is 
higher by 10 dB because of additional screening by the 
convex surface. In addition, the maximum value 
( ) of the decoupling level is reached with a large 

value of capacitive impedance ( ). 

15kR

5X
In order to examine the variation of the decoupling 

level, we consider a corrugated structure in vacuum with 
a constant depth of corrugation d on the cylindrical sur-
face shown in the inset of Figure 7. The decoupling co-
efficient K as a function of the normalized depth /d  
in this structure is plotted in Figure 7 as a solid line. The 
maximum level of decoupling ( when dBK 52

25.0/ d ) is increased by 10 dB more in comparison 
with the plane case [15]. The reason is that with the cy- 

 

Figure 7. (Color online) Decoupling coefficient K  versus 
the normalized depth /d  for a corrugated structure in 
vacuum (solid line). The dotted line corresponds to the de-
coupling of antennas on the surface of an ideal conducting 
cylinder 

 
lindrical surface, increasing the distance between the 
antennas also increases the screening by means of a sur-
face shadowing. The constant decoupling level K for an 
ideal conducting cylindrical surface is shown as a dotted 
line.  

Next, we investigate a modulation of the separation 
between two antennas on the surface of a circular cylin-
der in order to see how the decoupling level of antennas 
changes. In Figure 8, we show the dependence of the 
decoupling coefficient K on the surface reactive imped-
ance  for the same antennas as in Figures 6 and 

7 (

)Im(Z

 ,8.0 ,4.0   ba  and ), but located at the 

two different distances of (a) 

15kR

L  and (b) RL  . 
When the distance between two antennas is  , which 
corresponds to an angular distance of  between the 
centers of their openings, constant reactance causes an 
additional increase of the decoupling up to 84 dB (solid 
line) in Figure 8(a). The decoupling of antennas on the 
surface of an ideal conducting cylinder (dotted line) is 
also large (K= 46 dB) in comparison with the plane case.  
It is evident from Figure 8(b) that the maximum decoup-
ling corresponds with a diametrical arrangement of an-
tennas at 

75

RL   (i.e., the angle between the centers of 
their openings is approximately equal to 180o). It is 
noteworthy to mention that independent of the location 
of antennas, negative reactance leads to an increase of 
decoupling. In addition, the greater the distance between 
antennas, the higher the decoupling level. As for the cyl-
inder, due to the finite nature of this distance (diametri-
cally placed antennas are located at the maximum dis-
tance), the decoupling level is always limited. 
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Figure 8. (Color online) (a) Decoupling coefficient K  as a 
function of the surface reactive impedance  for the 
same antennas as in Figures 6 and 7, but located at the two 
different distances of (a) 

)Im(Z

L  (an angular distance of 
 between the centers of their openings) and (b) 75 RL   

(the angle between the centers of their openings is ap-
proximately equal to ). The decoupling of antennas on 
the surface of an ideal conducting cylinder is shown as a 
dotted line 

180

 
The radiation patterns of a system which has both the 

transmitting antenna A1 and the receiving antenna A2 are 
presented in Figure 9, where the parameters of the sys-
tem are defined as 4.0a ,  for 

, 

 30 ,20 21 

1A 4.0b ,  for , the radius 

of a circular cylinder is 

70 2A  ,60 43

15kR ,, and the distance be-
tween the antennas is 25.1L . The geometry of the 
structure is depicted as a dashed line. It is clearly seen in 
Figure 9 that the radiation pattern for an ideal conduct-
ing cylinder (dotted line) is distorted due to the presence 
of an additional antenna. (Compare to the dotted line in 
Figure 5). On the other hand, the radiation pattern for the 
capacitive impedance (solid line) is not affected by the 

 

Figure 9. (Color online) Radiation patterns of the structure 
with the transmitting antenna  (1A 4.0a ,   ,201 

 302 ) and the receiving antenna  (2A 4.0b , 

 70 4,603  ) located on an ideal conducting cylinder 

(dotted line) and on the reactive impedance Z  cylinder 
(solid line), where the radius is 387.2R  ( 15kR ) and 

the distance between the antennas is 25.1L . The dashed 
line represents the geometry of the system 
 
presence of a receiving antenna. Hence, the radiation 
pattern of both antennas coincides with that of a single 
antenna with a reactive impedance flange. We note that 
the obtained result here is in the case of frequency- inde-
pendent impedance. The undistorted radiation pattern 
will be modified when frequency-dependent surface im-
pedance is used. The impact of the reactive impedance 
part of the flange on the radiation patterns is indicated as 
the dash-dotted line. 

5. Conclusions  

On the basis of the theoretical and numerical research 
conducted in this paper, we obtained several significant 
results. First, we calculated a strict solution to the prob-
lem of the analysis of the radiation characteristics of a 
single antenna in the shape of the open end of a paral-
lel-plate waveguide located on the surface of a circular 
cylinder. Included in this configuration were a reactive 
impedance flange and a receiving antenna of the same 
construction; specific boundary conditions of an electric 
field on the edge were taken into account. Additionally, 
correlations for the key parameters of the antennas (CSW, 
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radiation patterns of antennas, and the decoupling coeffi-
cient) were obtained. 

We have also studied the influence of a constant, pure- 
ly reactive impedance (as a mathematical model of cor-
rugated structures) on the radiation pattern, CSW, and 
the decoupling level of antennas. These results were ob-
tained with the help of numerical modeling, and coincide 
well with standard results [16]. A comparative evaluation 
of the decoupling level on a plane and on the surface of a 
circular cylinder was performed. A specific difference 
between a cylindrical surface and a flat one is that for the 
cylindrical case, increasing the distance between the an-
tennas also increases their screening by means of a sur-
face shadowing.  

A study of the radiation pattern for an ideal conducting 
cylinder showed that the presence of two antennas leads 
to distortion of their radiation patterns. However, the 
presence of capacitive impedance almost completely 
eliminates distortions made by the receiving antenna. 
The radiation pattern of both antennas coincides with that 
of a single antenna with a reactive impedance flange. 

In conclusion, to reach the required levels of decoup-
ling between antennas, it is necessary to use structures 
with a complicated reactive impedance corrugation on 
the flange of the antennas, just as in the case of a plane. 
For this purpose, in future work we need to study further 
how to set up and solve the problem of the synthesis of 
such structures.  
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APPENDIX A: Calculation of Subsidiary 
Fields Using Integral Equation  

)( nn ZZ 
The solution of the integral equations in Equation (11) 
can numerically be solved by the Krylov-Bogolyubov 
method [14]. As a result, the integral equation is reduced 
to a system of linear algebraic equations (SLAE) relative 
to: 
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When calculating the solutions of the integral expres-
sions and the coefficients of the matrix of SLAE in Equa-
tion (A-1), we have to consider the difficulty of their 
calculation near the coincidence of the points of integra-
tion and collocation    , where the subsidiary 

fields of Equations (9) and (12) have logarithmic singu-
larities. We observe an opportunity for improving the 
conformity of the rows in Equations (9) and (12). Differ-
ent points (   ) in a row in Equation (9), which is 

shown below as Equation (A-2), 
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conform in an unsuitable way, because the coefficients 
have an asymptote 
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In order to improve the conformity of the row in Equa-
tion (9), we multiply the Hankel functions in Equation (9) 
by the Bessel function. Then, we can get asymptotes as a 
closed form:  
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which is different from Equation (A-3) by the constant.  
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ABSTRACT 

Within the frames of semiclassical approach, intra-atomic electric field potentials are parameterized in form of radial 
step-like functions. Corresponding parameters for 80 chemical elements are tabulated by fitting of the semiclassical 
energy levels of atomic electrons to their first principle values. In substance binding energy and electronic structure 
calculations, superposition of the semiclassically parameterized constituent-atomic potentials can serve as a good ini-
tial approximation of its inner potential: the estimated errors of the determined structural and energy parameters make 
up a few percent. 
 
Keywords: Electric Field Potential, Atoms, Step-Like Radial Functions 

1. Introduction 

Because the electron mass is negligible in comparison 
with masses of atomic nuclei, substances, i.e. atoms and 
polyatomic bound systems – molecules or condensed 
matters – can be considered as one-electron systems in 
almost stationary self-consistent electric field generated 
by nuclei fixed at their equilibrium positions and space- 
averaged electron charge density. For this reason, elec-
tronic structure, which includes both electron energy 
spectrum and electron density space distribution, deter-
mines practically all principal physical properties of a 
substance. From its part, theoretical prediction of the 
substance electronic structure should be primarily based 
on the inner electric field potential, so that appropriate 
choice of the initial potential for such kind calculations 
greatly increases their accuracy. 

When isolated atoms associate forming molecular or 
condensed forms of substance only part of electrons 
(called as valence electrons) redistributes. And what is 
more, corresponding changes in the electron density dis-
tribution are so weak that usually a simple superposition 
of the free atom’s radial potentials centered at the corre-
sponding sites of the atomic structure serves as a good 
initial approximation of the inner potential in any polya-
tomic system. At the worst, initial inner electric field 
potentials can be presented by superposition of the atom-
ic-like radial potentials with different centers. Thus, in 
this line the key problem consists in construction of the 
effective atomic potentials in relevant functional form. 

Relatively recently, with that end in view we have 
proposed piece-wise analytical and, in particular, step- 
like radial atomic potentials obtained within initial quasi- 
classical, i.e., semiclassical approximation. They have 
been successfully used in binding energy and electronic 
structure calculations carried out for some polyatomic 
systems like the sodium diatomic molecule and crystals 
[1], boron-containing diatomic molecules [2,3], and 
mainly for boron nitride molecular, crystalline, and nano- 
structures [3-16]. In addition, semiclassical interatomic 
boron-boron pair potentials have explained some ground- 
state parameters of the boron nanotubes [17-19], as well 
as main features of the isotopic effects in boron-rich sol-
ids [20-23]. 

But, above cited studies exploited semiclassical poten-
tials only of certain, namely, some light atoms, whereas 
full-scale calculations performed for any wide class of 
materials need a quantity of appropriate effective atomic 
potentials. Present work aims to build up semiclassical 
atomic potentials for the stable chemical elements in 
most convenient form of radial step-like functions. 

The paper is organized as follows. At first, sense of the 
semiclassicality for the substance-electron-system is cla-
rified. Then, a semiclassical parameterization scheme is 
introduced for charge distributions in atoms and atomic 
potentials as well. Next section presents results and brief 
discussion of the performed numerical calculations based 
on fitting of the semiclassical electron-energy spectra 
with these obtained from first principles. And finally, 
accuracies of the constructed step-like radial atomic po-
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tentials are estimated for energy and expansion parame-
ters of a material. 

2. Substance as a Semiclassical Electron 
System 

Beginning from Bohr’s fundamental work [24] semi-
classically describing electronic spectrum of the one- 
electron hydrogen-like atom with Coulomb potential up 
to nowadays, similar analysis is widely used for light 
atoms. Due to exact quantum-mechanical solvability of 
the Coulomb potential, exact wave functions of electron- 
states in a hydrogen-like atom can be obtained directly 
from the corresponding classical orbits [25]. And there-
fore, quantum dynamics of the electron in a hydro-
gen-like atom is wholly expressed by its classical dy-
namics. 

Classically a two-electron helium-like atom can be 
represented as a pair of electrons placed at the opposite 
ends of the straight line with nucleus at the midpoint (see 
e.g. [26]). This classical model added with quantization 
condition for electron orbital moment leads to the almost 
hydrogen-like electron energy spectra, where atomic 
number Z is substituted for the reduced value Z–1/4 (it 
means that another electron effectively screens nuclear 
electric charge). Ground state energies calculated from 
the obtained relation for some helium-like systems differ 
from the experimental ones only by 3-6% [27]. Even 
entirely classical model of helium atom can be success-
fully explored numerically to obtain its possible configu-
rations [28]: most of the orbits are found to cause auto- 
ionization via chaotic transients. As for the modern se-
miclassical approach based on the conception of periodic 
classical orbits, it allow visually interpret physical 
meaning of special quantum numbers inherent to this 
three-particle system between ground and fragmented 
states [29]. 

For many-electron atoms, a reasonable accuracy can 
be achieved in terms of the self-consistent-field ap-
proximation, within which a minimum of the total energy 
is sought in the class of quasi-classical wave functions 
[30]. As is well known, many-electron systems such as 
heavy atoms are characterized by some quantum proper-
ties like the electron-shell effects, fluctuations in pa-
rameters’ values, discrete electron energy spectrum etc, 
which are averaged and, therefore, invisible in semi-
classical atomic models. However, it was demonstrated 
that semiclassical treatment of the atomic many-electron 
system, when it is combined with information-theory- 
method, reveals resources to describe such kind effects as 
well [31]. 

It was demonstrated how based on purely classical no-
tions it is possible to reproduce general trends in inelastic 
scattering atomic form-factors dependences upon quan-
tum numbers [32]. Besides, starting from classical rela-
tions together with energy conservation law and classi-

cal-quantum correspondence principle, it was found ex-
pressions of intensity-distribution and line-width of the 
electron–ion recombination X-ray spectrum, which is in 
unexpectedly good agreement with these resulted from 
the accurate quantum-mechanical calculations [33]. 

Semiclassical quantization rule leading to the exact 
electron energies in a hydrogen-like atom with Coulomb 
potential at the same time provides good accuracy of the 
valence electron energy value in a many-electron atom 
with model potential in form of sum of the nucleus Cou-
lomb potential and a screening term [34]. Substitutions of 
the electron quantum numbers for their analogues in 
Thomas–Fermi semiclassical statistical model of atom 
can be applied for investigation of the excited and ion-
ized electron states [35]. Semiclassical electron energy 
spectrum of Thomas–Fermi atom, which was described 
in terms of an effective kinetic energy obtained from the 
corresponding quantization rule formulated in momen-
tum space, was found to agree essentially with that in the 
standard formalism employing an effective potential en-
ergy [36]. 

Semiclassical evaluation of sums over quantum num-
bers of electron states in many-electron atoms is known 
to be an effective tool of obtaining of the integrated 
atomic characteristics (see e.g. [37]) like the shell and 
subshell electron densities [38] or averaged electron 
momentum density [39] in atoms etc. Introducing of the 
semiclassical self-consistent intra-atomic electric field 

yields the relative error not more than 22/1~ n  in de-
termining of the electronic energies, where n is the prin-
cipal quantum number of the highest occupied electron 
state [40]. Then, accuracy of the semiclassical approxi-
mation should quite satisfactory even for light atoms. 

Effectiveness of the Bohr-type analytical models to the 
description of the periodic motion of electrons in small- 
sized molecules also was demonstrated [41]. For a long 
time, semiclassical asymptotic form was known to pro-
vide a fundamental device for studying quantum systems 
in which non-perturbative effects play an essential role. 
But, the crucial step was advanced for the bound-state 
quantization of fermions few-body systems such as mo-
lecules. Semiclassical quantization rules were success-
fully applied to describe elastic interatomic scattering [42] 
in spectroscopy of diatomic molecules [43]. Using path 
integration as a relevant mathematical tool for semi-
classical asymptotic form it was obtained semiclassical 
quantization rule for the periodic mean-field solutions 
[44]. Therm energies of diatomic K2 molecule calculated 
by the semiclassical method showed absolute deviations 
of only ~ 0.05 cm−1 from the quantum-mechanical results 
[45]. Same approach was found to be a strong method for 
generating the interatomic potential energy curve for 
diatomic molecules. It was provided a semiclassical de-
scription of the shell-structure in fermions-system: level 
densities and shell-corrections were obtained from the 
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periodic orbit theory [46]. The semiclassical quantifica-
tion method has raised increasing interest in relation to 
approximated method in various physical systems such 
as not only atoms, but molecules etc. It would serve as a 
general device for evaluating the bound-state spectra, 
once the exact or approximate solutions for the mean- 
field equation are known. Usually, different methods all 
use only periodic and/or non-closed quasi-periodic clas-
sical orbitals as basis for the quantization. Contrary to 
them, in [47] it was introduced an adapted version of the 
semiclassical quantization method applied to molecular 
orbitals into path integrals formalism, and it also gives an 
alternative procedure for the calculation of the electronic 
correlation energy of a molecular system. 

Primitive semiclassical treatment even reveals exis-
tence of a classical contribution to the chemical bond in 
small molecules: ground state electron is found to be 
exchanged classically between two nuclei [48]. Proceed-
ing classical limit for a one-electron orbital model of 
such many-electron systems with electron periodic mo-
tion leads to visualization of its quantum description [49]. 
Quantum description also can be introduced starting from 
the formal correspondence between classical harmonics 
of an electron periodic motion and its quantum jumps, i.e. 
Fourier-analysis added by the simple quantization condi-
tion directly yields steady-state electron energies [50]. 
Even formation of the electron spin, which is considered 
as essentially quantum characteristic, can be explained 
within a classical model [51]. 

In case of multidimensional systems, the globally uni-
form semiclassical approximation for energy eigenstates 
can be derived explicitly [52]. This is a true semiclassical 
approximation producing almost accurate wave functions 
providing with considerable degree of overlap (more than 
0.98) between semiclassical and exact quantum eigen-
states. Semiclassical method of calculation was used to 
describe electronic super-shells in metallic clusters [53]. 
Later, it was supposed a general method of the quasi- 
classical spectral analysis useful for central potentials 
with Coulomb singularity or finite value at the center 
which are characteristic for isolated atoms and spherical 
clusters, respectively [54]. Atomic clusters and con-
densed phases can be calculated in framework of the 
density-functional theory (DFT) using a quasi-classical 
expansion of the energy functional [55]. 

However, as substance is considered as a non-relativ-
istic electron system affected by the external field of nu-
clei fixed at their sites in structure, its inner potential do 
not satisfy the standard Wentzel-Kramers-Brillouin 
(WKB) quasi-classical condition on spatial smoothness 
due to singularities at nuclear sites and electron shell 
effects. The success of the above approaches can be ex-
plained on the basis of the quasi-classical expressions 
obtained by Maslov [56] for the energies of bound elec-
tronic states. It follows from these expressions that the 
exact and quasi-classical spectra are similar to each other 

irrespective of the potential smoothness at 12 2
00  R , 

where 0  and 0R  are the characteristic values of the 

potential and its effective range, respectively (hereafter, 
all relationships will be given in the atomic system of 
units (a.u.)). 

3. Semiclassical Parameterization of the 
Electric Charge Density and Electric Field 
Potential Distributions in an Atom 

The semiclassical parameterization of the atomic electric 
charge density and electric field potential distributions 
(see e.g. [57]) can be performed in analytical form if the 
effective fields acting on any i th electron in a neutral 
atom (i.e., Zi ,...,3,2,1  with Z as the nucleus charge) 
are represented by Coulomb-like potentials 

r

Z
r i
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where 

||2 iii EnZ               (2) 

is the effective charge of the nucleus screened by other 
electrons’ cloud dependent on the electron-state principal 
quantum number in  and its energy 0iE . 

Electron charge equals to 1 . Therefore, classical 
turning points radii ir  and ir   ( ii rr  ) of the i th 

electron with orbital quantum number il  can be found 

as the roots of the equation 

22

)1(
)(

r

ll
rE ii

ii


           (3) 

As a result, we obtain 

||2

)1(2

i

iiii
i

E

llnn
r


          (4) 

||2

)1(2

i

iiii
i

E

llnn
r


          (5) 

Let )(
~

ri  be the potential of the effective electric 

field induced by the i th electron. Then, potential )(
~

r  

of the electric field induced by the whole electron cloud 

can be written as the sum of the potentials )(
~

ri : 
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           (6) 

Potential of the electric field acting on an arbitrary i th 
electron of the atom is equal to the sum of the potentials 
of the nucleus Coulomb field and the field induced by all 
the electrons, except for the potential of the electron un-
der consideration: 
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Now, we sum up such potentials over electrons. As a 
result, the terms independent of the electron number on 
the right-hand sides are multiplied by the total number Z 
of electrons in the atom and the sum of the potentials 

)(
~

ri  gives )(
~

r . The solution of the obtained equa-

tion with respect to )(
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r  has the form 
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i.e. in this case, effective field of the interaction between 
nucleus and electron cloud also turns out to be a Cou-
lomb-like field. 

Nucleus charge equals to Z  and in the ground state 
its relative (to the electron cloud) motion corresponds to 
a zero orbital quantum number. Therefore, the radius of 
one classical turning point for nucleus is equal to 0 and 
the radius r~  of another turning point is a root of the 
equation 

)(
~~

rZE                  (9) 

where E
~

 is the eigenvalue of the energy associated 
with the relative motion electron cloud and nucleus. Un-
der the assumption that the nucleus has an infinite mass 
the reduced mass of the system nucleus – electron cloud 
with Z electrons equals to the cloud total mass Z. There-
fore, energy and, consequently, turning point radius for 
the nucleus motion with respect to the electron cloud are 
given by the formulas 
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The semiclassical, i.e., initial quasi-classical approxi-
mation implies that exponentially decaying partial elec-
tron densities are disregarded in the classically forbidden 
regions and that oscillations of these densities are ig-
nored in classically allowed regions. As a result, the ra-
dial dependence of the direction-averaged partial charge 
density of the i th electron state in atom is represented 
by a piecewise constant function: 
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A similar averaging for the nucleus motion with re-

spect to the electron cloud nucleus is equivalent to aver-
aging the nuclear charge over a sphere of radius r~ : 
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Summation of similar contributions gives the distribu-
tion of the total density of the electric charge in the atom 
in the form of a step radial function 

k
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where ρk are constants determined from the radii of the 
classical turning points and Rk coincide with these radii. 
Here,  12100 qq RRRRR  and Zq 2  

is the number of layers with uniform charge densities. 
Parameter qR  plays the role of the quasi-classical atomi- 

ic radius (the charge density is equal to zero at qRr  ). 

Mathematically, this representation is equivalent to the 
volume averaging in layers kk RrR 1 .  

Next, we calculate the fields induced by the charged 
layers with densities k  on the basis of the Gauss 

theorem and sum these fields. Then, the atomic potential 
can be written in the form of the continuously differenti-
able piecewise analytical function 
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However, since the energy of the electronic system is a 
single-valued functional of the electron density, it is ex-
pedient to approximate the above potential by a step 
function too. Averaging over the volume can adequately 
perform this: 
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4. Tables 

The numerical values of parameters kR , k , and k  

can be found by fitting quasi-classical energetic levels 

iE  to the Hartree–Fock (HF) ab initio ones [58]. Results 

of calculation are presented in Table 1 below for each 
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chemical element taken separately. Origin of a radial 
layer radius is identified in parenthesis after the layer 
number: is it a classical turning point radius of nucleus or 
an electron-state? Note that inner turning points of nu-
cleus and s-electron states coincide with effective atomic elec-
tric field center, i.e. corresponding radii equal to 0. Radii of 
inner and outer classical turning points for rest electron-states 
are distinguished by single and double priming. 

Values are shown with seven significant digits in ac-
cordance with the input data (HF energies) accuracy. 
Such high accuracy is useful in interim calculations. As 
for the final results, they should be expressed in round 
numbers to the three or four significant digits because the 
relative errors of the semiclassical calculations aiming to 
found structural and energy parameters for polyatomic 
systems usually make up a few percent. 

 
Table 1. Calculated semiclassical parameters of the atoms 

 

k  1 (1 H) 1 (1s) 

kR  1.000000 E + 00 2.000000 E + 00 

k  2.088909 E + 01 −2.984155 E – 02 

k  4.875000 E − 01 5.892857 E − 02 

 
k  1 (2 He) 2 (1s) 

kR  3.875716 E − 01 1.476061 E + 00 

k  8.052884 E + 00 −1.484666 E − 01 

k  4.187991 E + 00 3.082284 E − 01 

 
 

k  1 (3 Li) 2 (1s) 3 (2s) 

kR  1.349014 E − 01 8.984357 E − 01 6.383510 E + 00 

k  2.910724 E + 02 −6.593034 E − 01 − 9.177675 E − 04 

k  2.312713 E + 01 2.009273 E + 00 4.311415 E − 02 

 
k  1 (4 Be) 2 (1s) 3 (2s) 

kR  5.596220 E − 02 6.500727 E − 01 5.086001 E  +  00 

k  5.446885 E  +  03 −1.741653 E  +  00 3.629210 E − 03 

k  8.057431 E  +  01 4.887950 E  +  00 1.097914 E − 01 

 
 

k  1 (5 B) 2 (1s) 3 (2p') 4 (2s) 5 (2p'') 

kR  2.758476 E − 02 5.098016 E − 01 7.441219 E − 01 4.021346 E + 00 4.337060 E + 00 

k  5.686514 E + 04 − 3.610951 E + 00 − 7.342212 E − 03 − 1.028341 E − 02 − 2.941197 E − 03 

k  2.105468 E + 02 8.882329 E + 00 3.652920 E + 00 2.060720 E − 01 6.135348 E − 04 

 
k  1 (6 C) 2 (1s) 3 (2p') 4 (2s) 5 (2p'') 

kR  1.542721 E − 02 4.202289 E − 01 6.292303 E − 01 3.367110 E + 00 3.667423 E + 00 

k  3.901153 E + 05 −6.446545 E + 00 − 1.250747 E − 02 − 2.223623 E − 02 − 9.728757 E − 03 

k  578818 E + 02 1.399183 E + 01 5.842260 E + 00 3.410756 E − 01 1.835877 E−03 

 
 

k  1 (7 N) 2 (1s) 3 (2p') 4 (2s) 5 (2p'') 

kR  9.446222 E − 03 3.577244 E − 01 5.498034 E − 01 2.909074 E + 00 3.204489 E + 00 

k  1.982589 E + 06 − 1.044967 E + 01 − 1.939444 E − 02 − 4.126981 E − 02 − 2.187537 E − 02 

k  8.784581 E + 02 2.022523 E + 01 8.464698 E + 00 5.096684 E − 01 3.993358 E − 03 
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k  1 (8 O) 2 (1s) 3 (2p') 4 (2s) 5 (2p'') 

kR  6.103946 E − 03 3.110705 E −01 5.210723 E − 01 2.535595 E + 00 3.037032 E + 00 

k  8.397857 E + 06 − 1.589154 E + 01 − 2.928881 E − 02 − 6.355156 E − 02 − 3.426275 E − 02 

k  1.559999 E + 03 2.773984 E + 01 1.102222 E + 01 7.898878 E − 01 1.796550 E − 02 

 
k  1 (9 F) 2 (1s) 3 (2p') 4 (2s) 5 (2p'') 

kR  4.176561 E − 03 2.753309 E − 01 4.847945 E − 01 2.255511 E + 00 2.825589 E + 00 

k  2.949151 E + 07 − 2.291743 E + 01 − 4.161086 E − 02 − 9.479146 E − 02 − 5.318060 E − 02 

k  2.571045 E + 03 3.638866 E + 01 1.405815 E + 01 1.114922 E + 00 3.595575 E − 02 

 
 

k  1 (10 Ne) 2 (1s) 3 (2p') 4 (2s) 5 (2p'') 

kR  2.985142 E − 03 2.470362 E − 01 4.491695 E − 01 2.035740 E + 00 2.617951 E + 00 

k  8.974622 E + 07 − 3.172744 E + 01 − 5.659451 E − 02 − 1.368319 E − 01 − 8.023741 E − 02 

k  4.002938 E + 03 4.617305 E + 01 1.754276 E + 01 1.481199 E + 00 5.649046 E − 02 

 
k  1 (11 Na) 2 (1s) 3 (2p') 

kR  2.333813 E − 03 2.222812 E − 01 3.361773 E − 01 

k  2.065883 E + 08 − 4.357330 E + 01 − 9.895069 E − 02 

k  5.636078 E + 03 5.702576 E + 01 2.540262 E + 01 

 
4 (2s) 5 (2p'') 6 (3s) 

1.691207 E + 00 1.959385 E + 00 9.942100 E + 00 

− 2.903333 E − 01 − 1.916255 E − 01 − 2.429277 E − 04 

2.264005 E + 00 4.264542 E − 01 2.565704 E − 02 

 
k  1 (12 Mg) 2 (1s) 3 (2p') 

kR  1.833883 E − 03 2.019651 E − 01 2.741860 E − 01 

k  4.644914 E + 08 − 5.811295 E + 01 − 1.551165 E − 01 

k  7.829429 E + 03 6.933347 E + 01 3.379468 E + 01 

 
4 (2s) 5 (2p'') 6 (3s) 

1.457155 E + 00 1.598073 E + 00 8.433944 E + 00 

− 5.078705 E − 01 − 3.535498 E − 01 − 7.958830 E − 04 

3.315594 E + 00 9.711561 E − 01 6.118891 E − 02 

 
k  1 (13 Al) 2 (1s) 3 (2p') 4 (3p') 

kR  1.462229 E − 03 1.848984 E − 01 2.308930 E − 01 5.466816 E − 01 

k  9.926781 E  +  08 − 7.576501 E  +  01 − 2.311670 E − 01 − 8.218780 E − 01 

k  1.064293 E  +  04 8.299728 E  +  01 4.322824 E  +  01 1.753508 E +  01 

 
5 (2s) 6 (2p'') 7 (3s) 8 (3p'') 

1.276364 E + 00 1.345743 E + 00 6.764067 E + 00 8.712604 E + 00 

− 8.222391 E − 01 − 5.926148 E − 01 − 1.903885 E − 03 − 3.610562 E − 04 

3.600567 E + 00 1.684978 E + 00 1.386415 E − 01 2.846971 E − 03 
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k  1 (14 Si) 2 (1s) 3 (2p') 4 (3p') 

kR  1.177767 E − 03 1.704832 E − 01 2.007802 E − 01 4.595484 E − 01 

k  2.045794 E + 09  − 9.668486 E + 01  − 3.248175 E − 01  − 1.223166 E + 00 

k  1.423563 E + 04 9.804605 E + 01 5.346299 E + 01 2.372269 E + 01 

 
5 (2s) 6 (2p'') 7 (3s) 8 (3p'') 

1.139926 E + 00 1.170233 E + 00 5.774354 E + 00 7.323940 E + 00 

 − 1.224381 E + 00  − 9.020437 E − 01  − 3.695549 E − 03  − 1.215666 E − 03 

5.013770 E + 00 2.545996 E + 00 2.317236 E − 01 6.068273 E − 03 

 
k  1 (15 P) 2 (1s) 3 (2p') 4 (3p') 

kR  9.593563 E − 04 1.581438 E − 01 1.782334 E − 01 4.002321 E − 01 

k  4.055672 E + 09  − 1.211595 E + 02  − 4.380049 E − 01  − 1.722228 E + 00 

k  1.873096 E + 04 1.144569 E + 02 6.457731 E + 01 3.040964 E + 01 

 
5 (2s) 6 (2p'') 7 (3s) 8 (3p'') 

1.032033 E + 00 1.038820 E + 00 5.083961 E + 00 6.378601 E + 00 

 − 1.724988 E + 00  − 1.290617 E + 00  − 6.393927 E − 03  − 2.760347 E − 03 

6.608240 E + 00 3.548359 E + 00 3.396463 E − 01 9.624267 E − 03 

 
k  1 (16 S) 2 (1s) 3 (2p') 4 (3p') 

kR  7.873147 E − 04 1.474384 E − 01 1.602340 E − 01 3.787647 E − 01 

k  7.826836 E + 09  − 1.495490 E + 02  − 5.752957 E − 01  − 2.342732 E + 00 

k  2.435211 E + 04 1.322761 E + 02 7.674520 E + 01 3.528555 E + 01 

 
5 (2p'') 6 (2s) 7 (3s) 8 (3p'') 

9.339120 E − 01 9.425845 E − 01 4.523887 E + 00 6.036469 E + 00 

 − 2.347074 E + 00  − 5.796381 E − 01  − 9.499509 E − 03  − 4.342400 E − 03 

8.375741 E + 00 4.756158 E + 00 5.098488 E − 01 2.058169 E − 02 

 
 

k  1 (17 Cl) 2 (1s) 3 (2p') 4 (3p') 

kR  6.532226 E − 04 1.380891 E − 01 1.457901 E − 01 3.520031 E − 01 

k  1.456052 E + 10  − 1.820631 E + 02  − 7.359436 E − 01  − 3.082461 E + 00 

k  3.119221 E + 04 1.514459 E + 02 8.983302 E + 01 4.146700 E + 01 

 
5 (2p'') 6 (2s) 7 (3s) 8 (3p'') 

8.497267 E − 01 8.684381 E − 01 4.095949 E + 00 5.609963 E + 00 

 − 3.089224 E + 00  − 7.427061 E − 01  − 1.371081 E − 02  − 6.762524 E − 03 

1.047479 E + 01 6.101408 E + 00 6.943084 E − 01 3.204793 E − 02 

 
k  1 (18 Ar) 2 (1s) 3 (2p') 4 (3p') 

kR  5.474781 E − 04 1.298535 E − 01 1.338860 E − 01 3.258315 E − 01 

k  2.618688 E + 10  − 2.189839 E + 02  − 9.217434 E − 01  − 3.951462 E + 00 

k  3.941303 E + 04 1.719603 E + 02 1.038562 E + 02 4.862917 E + 01 
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5 (2p'') 6 (2s) 7 (3s) 8 (3p'') 

7.803446 E − 01 8.057526 E − 01 3.753883 E + 00 5.192860 E + 00 

 − 3.961694 E + 00  − 9.319752 E − 01  − 1.925783 E − 02  − 1.023175 E − 02 

1.282209 E + 01 7.582522 E + 00 8.919572 E − 01 4.376578 E − 02 

 
 

k  1 (19 K) 2 (2p') 3 (1s) 4 (3p') 5 (2p'') 

kR  4.727958 E − 04 1.220427 E − 01 1.223829 E − 01 2.564030 E − 01 7.113169 E − 01 

k  4.291847 E + 10  − 2.616615 E + 
02

 − 2.656616 E + 
02

 − 5.178522 E + 
00

 − 5.199519 E + 
00

k  4.817966 E + 04 1.942944 E + 02 1.195273 E + 02 6.680192 E + 01 1.623827 E + 01 

 
6 (2s) 7 (3s) 8 (3p'') 9 (4s) 

7.430389 E − 01 3.208255 E + 00 4.086360 E + 00 1.473043 E + 01 

 − 1.199407 E + 00  − 3.553070 E − 02  − 2.107182 E − 02  − 7.469050 E − 05 

9.178612 E + 00 1.258072 E + 00 2.068058 E − 01 1.499003 E − 02 

 
k  1 (20 Ca) 2 (2p') 3 (1s) 4 (3p') 5 (2p'') 

kR  4.088020 E − 04 1.121988 E − 01 1.157157 E − 01 2.163349 E − 01 6.539423 E − 01 

k  6.988798 E + 10  − 3.096286 E + 
02

 − 3.147766 E + 
02

 − 6.625287 E + 
00

 − 6.660246 E + 
00

k  5.866054 E + 04 2.246811 E + 02 1.363192 E + 02 8.373755 E + 01 1.982931 E + 01 

 
6 (2s) 7 (3s) 8 (3p'') 9 (4s) 

6.895990 E − 01 2.831339 E + 00 3.447784 E + 00 1.279289 E + 01 

 − 1.512189 E + 00  − 5.622245 E − 02  − 3.518632 E − 02  − 2.280529 E − 04 

1.103673 E + 01 1.726474 E + 00 4.329498 E − 01 3.507845 E − 02 

 
k  1 (21 Sc) 2 (2p') 3 (1s) 4 (3p') 

kR  3.495658 E − 04 1.046439 E − 01 1.097974 E − 01 1.996252 E − 01 

k  1.173664 E + 11  − 3.625008 E + 02  − 3.688463 E + 02  − 8.130180 E + 00 

k  7.203863 E + 04 2.552117 E + 02 1.537630 E + 02 9.620138 E + 01 

 
5 (2p'') 6 (2s) 7 (3d') 8 (3s) 

6.099095 E − 01 6.475133 E − 01 1.529288 E + 00 2.647865 E + 00 

 − 8.174672 E + 00  − 1.829179 E + 00  − 7.046518 E − 02  − 7.177448 E − 02 

2.333772 E + 01 1.310249 E + 01 5.350410 E + 00 1.412970 E + 00 

 
9 (3p'') 10 (4s) 11 (3d'') 

3.181477 E + 00 5.707379 E + 00 1.234108 E + 01 

 − 4.605550 E − 02  − 1.563323 E − 03  − 2.540280 E − 04 

5.766749 E − 01 2.237779 E − 01 2.179856 E − 02 

 
k  1 (22 Ti) 2 (2p') 3 (1s) 4 (3p') 

kR  3.013518 E − 04 9.820236 E − 02 1.044639 E − 01 1.869609 E − 01 

k  1.919167 E + 11  − 4.209588 E + 02  − 4.286367 E + 02  − 9.801412 E + 00 

k  8.755133 E + 04 2.872142 E + 02 1.721800 E + 02 1.087104 E + 02 
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5 (2p'') 6 (2s) 7 (3d') 8 (3s) 

5.723653 E − 01 6.110909 E − 01 1.908091 E + 00 2.502871 E + 00 

 − 9.855572 E + 00  − 2.177684 E + 00  − 8.538408 E − 02  − 8.673223 E − 02 

2.709414 E + 01 1.537353 E + 01 4.186494 E + 00 1.335356 E + 00 

 
9 (3p'') 10 (3d'') 11 (4s) 

2.979643 E + 00 7.121092 E + 00 8.521671 E + 00 

 − 5.627954 E − 02  − 2.119704 E − 03  − 7.715554 E − 04 

7.476607 E − 01 1.196428 E − 01 3.156347 E − 03 

 
k  1 (23 V) 2 (2p') 3 (1s) 4 (3p') 

kR  2.601095 E − 04 9.256893 E − 02 9.962640 E − 02 1.762791 E − 01 

k  3.120117 E + 11  − 4.853546 E + 02  − 4.945213 E + 02  − 1.166471 E + 01 

k  1.060522 E + 05 3.209083 E + 02 1.916313 E + 02 1.217554 E + 02 

 
5 (2p'') 6 (2s) 7 (3d') 8 (3s) 

5.395313 E − 01 5.788639 E − 01 1.867140 E + 00 2.377964 E + 00 

 − 1.172932 E + 01  − 2.562651 E + 00  − 1.010817 E − 01  − 1.032399 E − 01 

3.114340 E + 01 1.785930 E + 01 4.730460 E + 00 1.618205 E + 00 

 
9 (3p'') 10 (3d'') 11 (4s) 

2.809404 E + 00 6.968261 E + 00 7.924130 E + 00 

 − 6.773191 E − 02  − 3.117812 E − 03  − 9.595919 E − 04 

9.784493 E − 01 1.402956 E − 01 1.832263 E − 03 

 
k  1 (24 Cr) 2 (2p') 3 (1s) 4 (3p') 

kR  2.257520 E − 04 8.758647 E − 02 9.521818 E − 02 1.670378 E − 01 

k  4.979986 E + 11  − 5.559828 E + 02  − 5.668046 E + 02  − 1.373243 E + 01 

k  1.275136 E + 05 3.562990E + 02 2.121004E + 02 1.353698E + 02 

 
5 (2p'') 6 (2s) 7 (3d') 8 (3s) 

5.104914 E − 01 5.500740 E − 01 1.831115 E + 00 2.268075 E + 00 

 − 1.380838 E + 01  − 2.986651 E + 00  − 1.179983 E − 01  − 1.210491 E − 01 

3.546478 E + 01 2.053528 E + 01 5.299796 E + 00 1.929230 E + 00 

 
9 (3p'') 10 (3d'') 11 (4s) 

2.662124 E + 00 6.833814 E + 00 7.498190 E + 00 

 − 8.012597 E − 02  − 4.183420 E − 03  − 1.132588 E − 03 

1.243684 E + 00 1.661301 E − 01 1.045829 E − 03 

 
k  1 (25 Mn) 2 (2p') 3 (1s) 4 (3p') 

kR  1.970173 E − 04 8.315498 E − 02 9.118571 E − 02 1.590773 E − 01 

k  7.804374 E + 11  − 6.331017 E + 02  − 6.457474 E + 02  − 1.600771 E + 01 

k  1.522077 E + 05 3.933287 E + 02 2.335698 E + 02 1.494468 E + 02 
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5 (2p'') 6 (2s) 7 (3d') 8 (3s) 

4.846627 E − 01 5.242371 E − 01 1.800835 E + 00 2.171677 E + 00 

 − 1.609563 E + 01  − 3.449931 E + 00  − 1.358885 E − 01  − 1.398977 E − 01 

4.004232 E + 01 2.339427 E + 01 5.880152 E + 00 2.258767 E + 00 

 
9 (3p'') 10 (3d'') 11 (4s) 

2.535256 E + 00 6.720807 E + 00 7.077436 E + 00 

 − 9.327942 E − 02  − 5.355993 E − 03  − 1.346833 E − 03 

1.535328 E + 00 1.929413 E − 01 3.586332 E − 04 

 
k  1 (26 Fe) 2 (2p') 3 (1s) 4 (3p') 

kR  1.728400 E − 04 7.911165 E − 02 8.747507 E − 02 1.512669 E − 01 

k  1.202131 E + 12  − 7.171896 E + 02  − 7.318750 E + 02  − 1.854820 E + 01 

k  1.804475 E + 05 4.323994 E + 02 2.561417 E + 02 1.647530 E + 02 

 
5 (2p'') 6 (2s) 7 (3d') 8 (3s) 

4.610965 E − 01 5.005045 E − 01 1.764513 E + 00 2.077770 E + 00 

 − 1.865046 E + 01  − 3.965039 E + 00  − 1.568596 E − 01  − 1.619738 E − 01 

4.495410 E + 01 2.645283 E + 01 6.529329 E + 00 2.639717 E + 00 

 
9 (3p'') 10 (3d'') 11 (4s) 

2.410779 E + 00 6.585254 E + 00 7.033322 E + 00 

 − 1.087447 E − 01  − 6.486578 E − 03  − 1.372334 E − 03 

1.883139 E + 00 2.331049 E − 01 5.767085 E − 04 

 
k  1 (27 Co) 2 (2p') 3 (1s) 4 (3p') 

kR  1.524057 E − 04 7.547369 E − 02 8.405654 E − 02 1.444711 E − 01 

k  1.820837 E + 12  − 8.083521 E + 02  − 8.252652 E + 02  − 2.131927 E + 01 

k  2.125211 E + 05 4.731134 E + 02 2.797123 E + 02 1.805247 E + 02 

 
5 (2p'') 6 (2s) 7 (3d') 8 (3s) 

4.398929 E − 01 4.789933 E − 01 1.733761 E + 00 1.994624 E + 00 

 − 2.143665 E + 01  − 4.523643 E + 00  − 1.790090 E − 01  − 1.852988 E − 01 

5.011827 E + 01 2.969002 E + 01 7.183303 E + 00 3.034107 E + 00 

 
9 (3p'') 10 (3d'') 11 (4s) 

2.302473 E + 00 6.470483 E + 00 6.883165 E + 00 

 − 1.251318 E − 01  − 7.753902 E − 03  − 1.464120 E − 03 

2.253930 E + 00 2.716290 E − 01 5.219691 E − 04 

 
 

k  1 (28 Ni) 2 (2p') 3 (1s) 4 (3p') 

kR  1.350222 E − 04 7.216906 E − 02 8.089558 E − 02 1.383599 E − 01 

k  2.715524 E + 12  − 9.069139 E + 02  − 9.262582 E + 02  − 2.434036 E + 01 

k  2.487756 E + 05 5.155529 E + 02 3.043036 E + 02 1.969151 E + 02 
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5 (2p'') 6 (2s) 7 (3d') 8 (3s) 

4.206321 E − 01 4.593284 E − 01 1.705828 E + 00 1.919013 E + 00 

 − 2.447399 E + 01  − 5.129635 E + 00  − 2.027591 E − 01  − 2.103064 E − 01 

5.555121 E + 01 3.311022 E + 01 7.853485 E + 00 3.448915 E + 00 

 
9 (3p'') 10 (3d'') 11 (4s) 

2.205076 E + 00 6.366238 E + 00 6.728001 E + 00 

 − 1.427436 E − 01  − 9.115030 E − 03  − 1.567773 E − 03 

2.654621 E + 00 3.114798 E − 01 4.295498 E − 04 

 
k  1 (29 Cu) 2 (2p') 3 (1s) 4 (3p') 

kR  1.220837 E − 04 6.915185 E − 02 7.796404 E − 02 1.328183 E − 01 

k  3.804836 E + 12  − 1.013164 E + 03  − 1.035152 E + 03  − 2.762119 E + 01 

k  2.849738 E + 05 5.586503 E + 02 3.288432 E + 02 2.128615 E + 02 

 
5 (2p'') 6 (2s) 7 (3d') 8 (3s) 

4.030465 E − 01 4.412704 E − 01 1.042111 E + 00 1.849776 E + 00 

 − 2.777226 E + 01  − 5.783729 E + 00  − 2.269000 E − 01  − 2.641396 E − 01 

6.017921 E + 01 3.563878 E + 01 1.517850 E + 01 4.534901 E + 00 

 
9 (3p'') 10 (3d'') 11 (4s) 

2.116759 E + 00 3.889212 E + 00 1.060109 E + 01 

 − 1.887026 E − 01  − 3.764039 E − 02  − 4.007654 E − 04 

2.139620 E + 00 6.068395 E − 01 3.377457 E − 02 

 
 

k  1 (30 Zn) 2 (2p') 3 (1s) 4 (3p') 

kR  1.093014 E − 04 6.639125 E − 02 7.523854 E − 02 1.278388 E − 01 

k  5.484732 E + 12  − 1.127357 E + 03  − 1.152204 E + 03  − 3.116592 E + 01 

k  3.292847 E + 05 6.042967 E + 02 3.552648 E + 02 2.302047 E + 02 

 
5 (2p'') 6 (2s) 7 (3d') 8 (3s) 

3.869566 E − 01 4.246594 E − 01 1.013522 E + 00 1.786819 E + 00 

 − 3.133533 E + 01  − 6.488273 E + 00  − 2.535231 E − 01  − 2.985017 E − 01 

6.593855 E + 01 3.922154 E + 01 1.655417 E + 01 5.018828 E + 00 

 
9 (3p'') 10 (3d'') 11 (4s) 

2.037400 E + 00 3.782514 E + 00 1.045940 E + 01 

 − 2.148067 E − 01  − 4.539589 E − 02  − 4.172736 E − 04 

2.411364 E + 00 6.624929 E − 01 3.470547 E − 02 

 
k  1 (31 Ga) 2 (2p') 3 (1s) 4 (3p') 5 (2p'') 

kR  9.999056 E − 05 6.354192 E − 02 7.266068 E − 02 1.183149 E − 01 3.703495 E − 01 

k  7.402800 E + 12  − 1.251794 E + 03  − 1.280136 E + 03  − 3.549781 E + 01  − 3.571151 E + 01 

k  3.719511 E + 05 6.541462 E + 02 3.827763 E + 02 2.556463 E + 02 7.203164 E + 01 
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6 (4p') 7 (2s) 8 (3d') 9 (3s) 

4.000629 E − 01 4.075339 E − 01 8.207280 E − 01 1.677752 E + 00 

 − 7.369772 E + 00  − 7.369910 E + 00  − 3.156732 E − 01  − 4.003778 E − 01 

4.294966 E + 01 4.044939 E + 01 2.158163 E + 01 5.860955 E + 00 

 
10 (3p'') 11 (3d'') 12 (4s) 13 (4p'') 

1.885615 E + 00 3.062999 E + 00 8.681390 E + 00 1.198854 E + 01 

 − 2.992761 E − 01  − 8.557296 E − 02  − 8.683064 E − 04  − 1.385572 E − 04 

2.525737 E + 00 9.701396 E − 01 8.953004 E − 02 3.130941 E − 03 

 
k  1 (32 Ge) 2 (2p') 3 (1s) 4 (3p') 5 (4p') 

kR  9.152975 E − 05 6.091629 E − 02 7.025164 E − 02 1.102557 E − 01 3.407788 E − 01 

k  9.962644 E + 12 − 1.385189 E + 03 − 1.417356 E + 03 − 4.023520 E + 01 − 4.049928 E + 01 

k  4.194475 E + 05 7.062215 E + 02 4.114887 E + 02 2.818673 E + 02 8.232897 E + 01 

 
6 (2p'') 7 (2s) 8 (3d') 9 (3s) 

3.550461 E − 01 3.916665 E − 01 7.011994 E − 01 1.582128 E + 00 

 − 4.049972 E + 01  − 8.332968 E + 00  − 3.861721 E − 01  − 5.219974 E − 01 

5.031343 E + 01 4.588502 E + 01 2.635623 E + 01 6.739995 E + 00 

 
10 (3p'') 11 (3d'') 12 (4s) 13 (4p'') 

1.757173 E + 00 2.616912 E + 00 7.604480 E + 00 1.021199 E + 01 

 − 4.014337 E − 01  − 1.373594 E − 01  − 1.534117 E − 03  − 4.483593 E − 04 

2.784645 E + 00 1.339787 E + 00 1.525060 E − 01 6.312235 E − 03 

 
 

k  1 (33 As) 2 (2p') 3 (1s) 4 (3p') 5 (4p') 

kR  8.390709 E − 05 5.848880 E − 02 6.799527 E − 02 1.032950 E − 01 3.005274 E − 01 

k  1.333612 E + 13 − 1.527877 E + 03 − 1.564217 E + 03 − 4.540040 E + 01 − 4.572154 E + 01 

k  4.718582 E + 05 7.604931 E + 02 4.413606 E + 02 3.089537 E + 02 9.868202 E + 01 

 
6 (2p'') 7 (2s) 8 (3d') 9 (3s) 

3.408977 E − 01 3.769232 E − 01 6.168400 E − 01 1.497231 E + 00 

 − 4.572252 E + 01  − 9.382132 E + 00  − 4.658747 E − 01  − 6.653952 E − 01 

5.747501 E + 01 4.960630 E + 01 3.109604 E + 01 7.683508 E + 00 

 
10 (3p'') 11 (3d'') 12 (4s) 13 (4p'') 

1.646238 E + 00 2.302078 E + 00 6.830392 E + 00 9.005793 E + 00 

 − 5.231378 E − 01  − 2.019994 E − 01  − 2.478899 E − 03  − 9.805796 E − 04 

3.142610 E + 00 1.769067 E + 00 2.236234 E − 01 9.621769 E − 03 

 
k  1 (34 Se) 2 (2p') 3 (1s) 4 (3p') 5 (4p') 

kR  7.701127 E − 05 5.622750 E − 02 6.587597 E − 02 9.705244 E − 02 2.878107 E − 01 

k  1.777164 E + 13 − 1.680309 E + 03 − 1.721213 E + 03 − 5.104387 E + 01 − 5.143105 E + 01 

k  5.296960 E + 05 8.171156 E + 02 4.724217 E + 02 3.373356 E + 02 1.075189 E + 02 

 



Intra-Atomic Electric Field Radial Potentials in Step-Like Presentation 

Copyright © 2010 SciRes.                                                                               JEMAA 

217

6 (2p'') 7 (2s) 8 (3d') 9 (3s) 

3.277179 E − 01 3.631299 E − 01 5.508007 E − 01 1.419578 E + 00 

 − 5.143254 E + 01  − 1.052897 E + 01  − 5.575898 E − 01  − 8.378243 E − 01 

6.232486 E + 01 5.356944 E + 01 3.603637 E + 01 8.745636 E + 00 

 
10 (3p'') 11 (3d'') 12 (4s) 13 (4p'') 

1.546749 E + 00 2.055616 E + 00 6.181776 E + 00 8.624716 E + 00 

 − 6.709217 E − 01  − 2.837442 E − 01  − 3.509678 E − 03  − 1.488515 E − 03 

3.616572 E + 00 2.303229 E + 00 3.376347 E − 01 1.833763 E − 02 

 
 

k  1 (35 Br) 2 (2p') 3 (1s) 4 (3p') 5 (4p') 

kR  7.079964 E − 05 5.413089 E − 02 6.388372 E − 02 9.159978 E − 02 2.701979 E − 01 

k  2.354433 E + 13 − 1.842653 E + 03 − 1.888496 E + 03 − 5.714848 E + 01 − 5.760900 E + 01 

k  5.931226 E + 05 8.758716 E + 02 5.046158 E + 02 3.665159 E + 02 1.196651 E + 02 

 
6 (2p'') 7 (2s) 8 (3d') 9 (3s) 

3.154980 E − 01 3.502848 E − 01 4.996283 E − 01 1.350318 E + 00 

 − 5.761125 E + 01  − 1.176836 E + 01  − 6.593011 E − 01  − 1.034761 E + 00 

6.833061 E + 01 5.776175 E + 01 4.103985 E + 01 9.882824 E + 00 

 
10 (3p'') 11 (3d'') 12 (4s) 13 (4p'') 

1.459849 E + 00 1.864638 E + 00 5.676813 E + 00 8.096922 E + 00 

 − 8.408365 E − 01  − 3.803189 E − 01  − 4.858655 E − 03  − 2.248732 E − 03 

4.163553 E + 00 2.892445 E + 00 4.591730 E − 01 2.713501 E − 02 

 
k  1 (36 Kr) 2 (2p') 3 (1s) 4 (3p') 5 (4p') 

kR  6.520398 E − 05 5.218195 E − 02 6.200750 E − 02 8.678239 E − 02 2.523121 E − 01 

k  3.100213 E + 13 − 2.015226 E + 03 − 2.066399 E + 03 − 6.373287 E + 01 − 6.427441 E + 01 

k  6.624313 E + 05 9.367502 E + 02 5.379329 E + 02 3.965350 E + 02 1.337821 E + 02 

 
6 (2p'') 7 (2s) 8 (3d') 9 (3s) 

3.041387 E − 01 3.382960 E − 01 4.584139 E − 01 1.288048 E + 00 

 − 6.427773 E + 01  − 1.310405 E + 01  − 7.715564 E − 01  − 1.257663 E + 00 

7.503190 E + 01 6.217318 E + 01 4.615233 E + 01 1.109493 E + 01 

 
10 (3p'') 11 (3d'') 12 (4s) 13 (4p'') 

1.383073 E + 00 1.710824 E + 00 5.268325 E + 00 7.560943 E + 00 

 − 1.034231 E + 00  − 4.926861 E − 01  − 6.579293 E − 03  − 3.313988 E − 03 

4.773982 E + 00 3.534833 E + 00 5.868131 E − 01 3.586672 E − 02 

 
 

k  1 (37 Rb) 2 (2p') 3 (1s) 4 (3p') 5 (4p') 

kR  6.070802 E − 05 5.026544 E − 02 6.022254 E − 02 8.132292 E − 02 2.029644 E − 01 

k  3.947980 E + 13 − 2.200059 E + 03 − 2.257313 E + 03 − 7.124147 E + 01 − 7.189957 E + 01 

k  7.312598 E + 05 1.001329 E + 03 5.724190 E + 02 4.312196 E + 02 1.753015 E + 02 
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6 (2p'') 7 (2s) 8 (3d') 9 (3s) 10 (3p'') 

2.929685E − 01 3.264912 E − 01 4.121461 E − 01 1.218004 E + 00 1.296064 E + 00 

 − 7.190594E + 01  − 1.465283 E + 01 − 9.336976 E − 01  − 1.602583 E + 00  − 1.338345 E + 00 

8.859241E + 01 6.646259 E + 01 5.220725 E + 01 1.238409 E + 01 5.373080 E + 00 

 
11 (3d'') 12 (4s) 13 (4p'') 14 (5s) 

1.538150 E + 00 4.582967 E + 00 6.082158 E + 00 1.904387 E + 01 

 − 6.802465 E − 01  − 1.136136 E − 02  − 6.401139 E − 03  − 3.456575 E − 05 

4.252708 E + 00 8.138172 E − 01 1.393163 E − 01 1.057707 E − 02 

 
k  1 (38 Sr) 2 (2p') 3 (1s) 4 (3p') 5 (4p') 

kR  5.649045 E − 05 4.848135 E − 02 5.853622 E − 02 7.657762 E − 02 1.743202 E − 01 

k  5.032339 E + 13 − 2.396022 E + 03 − 2.459831 E + 03 − 7.933502 E + 01 − 8.012319 E + 01 

k  8.071016 E + 05 1.068257 E + 03 6.081450 E + 02 4.667447 E + 02 2.124328 E + 02 

 
6 (2p'') 7 (2s) 8 (3d') 9 (3s) 10 (3p'') 

2.825700 E − 01 3.154582 E − 01 3.757189 E − 01 1.155770 E + 00 1.220437 E + 00 

− 8.013324 E + 01 − 1.632401 E + 01 − 1.114481 E + 00 − 1.997390 E + 00 − 1.688127 E + 00 

1.001483 E + 02 7.106794 E + 01 5.837499 E + 01 1.384092 E + 01 6.125594 E + 00 

 
11 (3d'') 12 (4s) 13 (4p'') 14 (5s) 

1.402202 E + 00 4.107361 E + 00 5.223789 E + 00 1.673859 E + 01 

 − 8.999501 E − 01  − 1.704132 E − 02  − 1.015079 E − 02  − 1.018086 E − 04 

5.104113 E + 00 1.102047 E + 00 2.781945 E − 01 2.447504 E − 02 

 
 

k  1 (39 Y) 2 (2p') 3 (1s) 4 (3p') 

kR  5.236921 E − 05 4.685108 E − 02 5.694566 E − 02 7.275406 E − 02 

k  6.482580 E + 13  − 2.602725 E + 03  − 2.673430 E + 03  − 8.784124 E + 01 

k  8.935358 E + 05 1.136812 E + 03 6.450321 E + 02 5.017009 E + 02 

 
5 (4p') 6 (2p'') 7 (2s) 8 (3d') 

1.601441 E − 01 2.730681 E − 01 3.053329 E − 01 3.490053 E − 01 

 − 8.876033 E + 01  − 8.877329 E + 01  − 1.806852 E + 01  − 1.295142 E + 00 

2.395223 E + 02 1.095471 E + 02 7.606533 E + 01 6.442781 E + 01 

 
9 (3s) 10 (3p'') 11 (3d'') 12 (4d') 

1.104356 E + 00 1.159500 E + 00 1.302505 E + 00 1.337515 E + 00 

 − 2.396705 E + 00  − 2.042206 E + 00  − 1.123117 E + 00  − 2.155444 E − 02 

1.542110 E + 01 7.004576 E + 00 6.043694 E + 00 5.413486 E + 00 

 
13 (4s) 14 (4p'') 15 (4d'') 16 (5s) 

3.841116 E + 00 4.798980 E + 00 1.143536 E + 01 1.414640 E + 01 

 − 2.171434 E − 02  − 1.328936 E − 02  − 3.285598 E − 04  − 1.686566 E − 04 

1.360085 E + 00 3.863704 E − 01 6.436441 E − 02 2.580686 E − 03 
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k  1 (40 Zr) 2 (2p') 3 (1s) 4 (3p') 

kR  4.854586 E − 05 4.533534 E − 02 5.543996 E − 02 6.942112 E − 02 

k  8.346702 E + 13  − 2.820873 E + 03  − 2.898909 E + 03  − 9.688049 E + 01 

k  9.886325 E + 05 1.207368 E + 03 6.830739 E + 02 5.371539 E + 02 

 
5 (4p') 6 (2p'') 7 (2s) 8 (3d') 

1.497748 E − 01 2.642337 E − 01 2.958863 E − 01 3.270379 E − 01 

 − 9.793841 E + 01  − 9.795425 E + 01  − 1.991792 E + 01  − 1.486163 E + 00 

2.648215 E + 02 1.187383 E + 02 8.135216 E + 01 7.060441 E + 01 

 
9 (3s) 10 (3p'') 11 (3d'') 12 (4d') 

1.058841 E + 00 1.106382 E + 00 1.220522 E + 00 1.301045 E + 00 

 − 2.824948 E + 00  − 2.422741 E + 00  − 1.364817 E + 00  − 2.603216 E − 02 

1.711908 E + 01 7.983580 E + 00 7.073825 E + 00 6.258831 E + 00 

 
13 (4s) 14 (4p'') 15 (4d'') 16 (5s) 

3.636969 E + 00 4.488245 E + 00 1.112355 E + 01 1.218499 E + 01 

 − 2.637962 E − 02  − 1.645480 E − 02  − 6.113773 E − 04  − 2.639161 E − 04 

1.634497 E + 00 5.108769 E − 01 6.803978 E − 02 6.220605 E − 04 

 
 

k  1 (41 Nb) 2 (2p') 3 (1s) 4 (3p') 

kR  4.501991 E − 05 4.391736 E − 02 5.401178 E − 02 6.643865 E − 02 

k  1.072707 E + 14  − 3.050890 E + 03  − 3.136732 E + 03  − 1.064995 E + 02 

k  1.092722 E + 06 1.280030 E + 03 7.222732 E + 02 5.733900 E + 02 

 
5 (4p') 6 (2p'') 7 (2s) 8 (3d') 

1.412630 E − 01 2.559691 E − 01 2.870219 E − 01 3.082248 E − 01 

 − 1.077064 E + 02  − 1.077253 E + 02  − 2.188346 E + 01  − 1.690672 E + 00 

2.899560 E + 02 1.280690 E + 02 8.690561 E + 01 7.697269 E + 01 

 
9 (3s) 10 (3p'') 11 (3d'') 12 (4d') 

1.017632 E + 00 1.058850 E + 00 1.150311 E + 00 1.272790 E + 00 

 − 3.289871 E + 00  − 2.836797 E + 00  − 1.629909 E + 00  − 3.070995 E − 02 

1.893695 E + 01 9.059018 E + 00 8.198586 E + 00 7.145154 E + 00 

 
13 (4s) 14 (4p'') 15 (4d'') 16 (5s) 

3.464973 E + 00 4.233175 E + 00 1.088198 E + 01 1.109917 E + 01 

 − 3.126663 E − 02  − 1.978928 E − 02  − 9.058751 E − 04  − 3.491964 E − 04 

1.940829 E + 00 6.632702 E − 01 7.957632 E − 02 3.449854 E − 05 

 
k  1 (42 Mo) 2 (2p') 3 (1s) 4 (3p') 

kR  4.178552 E − 05 4.258720 E − 02 5.265520 E − 02 6.374337 E − 02 

k  1.374305 E + 14  − 3.293107 E + 03  − 3.387246 E + 03  − 1.167202 E + 02 

k  1.206027 E + 06 1.354802 E + 03 7.626188 E + 02 6.104650 E + 02 



Intra-Atomic Electric Field Radial Potentials in Step-Like Presentation 

Copyright © 2010 SciRes.                                                                               JEMAA 

220 

 
5 (4p') 6 (2p'') 7 (2s) 8 (3d') 

1.340394 E − 01 2.482164 E − 01 2.786829 E − 01 2.918330 E − 01 

 − 1.180867 E + 02  − 1.181088 E + 02  − 2.396970 E + 01  − 1.909450 E + 00 

3.152121 E + 02 1.376027 E + 02 9.271058 E + 01 8.354308 E + 01 

  
9 (3s) 10 (3p'') 11 (3d'') 12 (4d') 

9.800179 E − 01 1.015894 E + 00 1.089135 E + 00 1.249745 E + 00 

 − 3.793542 E + 00  − 3.286271 E + 00  − 1.919725 E + 00  − 3.563374 E − 02 

2.086513 E + 01 1.021983 E + 01 9.409282 E + 00 8.064772 E + 00 

 
13 (4s) 14 (4p'') 15 (5s) 16 (4d'') 

3.316004 E + 00 4.016708 E + 00 1.031409 E + 01 1.068495 E + 01 

 − 3.641780 E − 02  − 2.332308 E − 02  − 1.219220 E − 03  − 7.840598 E − 04 

2.272332 E + 00 8.374436 E − 01 1.059247 E − 01 2.258214 E − 04 

 
k  1 (43 Tc) 2 (2p') 3 (1s) 4 (3p') 

kR  3.882324 E − 05 4.133751 E − 02 5.136509 E − 02 6.129718 E − 02 

k  1.754303 E + 14  − 3.547815 E + 03  − 3.650753 E + 03  − 1.275539 E + 02 

k  1.328965 E + 06 1.431661 E + 03 8.041074 E + 02 6.483741 E + 02 

 
 

5 (4p') 6 (2p'') 7 (2s) 8 (3d') 

1.278604 E − 01 2.409326 E − 01 2.708275 E − 01 2.774215 E − 01 

 − 1.290906 E + 02  − 1.291161 E + 02  − 2.617834 E + 01  − 2.142288 E + 00 

3.405277 E + 02 1.473462 E + 02 9.876592 E + 01 9.031936 E + 01 

 
9 (3s) 10 (3p'') 11 (3d'') 12 (4d') 

9.455719 E − 01 9.769087 E − 01 1.035351 E + 00 1.231746 E + 00 

 − 4.335521 E + 00  − 3.770769 E + 00  − 2.234002 E + 00  − 4.076921 E − 02 

2.289872 E + 01 1.146057 E + 01 1.070110 E + 01 9.005113 E + 00 

 
13 (4s) 14 (4p'') 15 (5s) 16 (4d'') 

3.186168 E + 00 3.831546 E + 00 9.587477 E + 00 1.053106 E + 01 

 − 4.179288 E − 02  − 2.703122 E − 02  − 1.565457 E − 03  − 1.023670 E − 03 

2.622872 E + 00 1.028803 E + 00 1.492681 E − 01 2.032708 E − 03 

 
k  1 (44 Ru) 2 (2p') 3 (1s) 4 (3p') 

kR  3.611369 E − 05 4.015578 E − 02 5.013584 E − 02 5.902079 E − 02 

k  2.230224 E + 14  − 3.815532 E + 03  − 3.927828 E + 03  − 1.390723 E + 02 

k  1.461909 E + 06 1.510763 E + 03 8.467422 E + 02 6.874083 E + 02 

 
5 (4p') 6 (2p'') 7 (2s) 8 (3d') 

1.220143 E − 01 2.340450 E − 01 2.633820 E − 01 2.643215 E − 01 

 − 1.407939 E + 02  − 1.408232 E + 02  − 2.852738 E + 01  − 2.394761 E + 00 

3.673248 E + 02 1.575063 E + 02 1.050439 E + 02 9.734860 E + 01 
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9 (3s) 10 (3p'') 11 (3d'') 12 (4d') 

9.133153 E − 01 9.406294 E − 01 9.864613 E − 01 1.209399 E + 00 

 − 4.930517 E + 00  − 4.303789 E + 00  − 2.582260 E + 00  − 4.650346 E − 02 

2.504522 E + 01 1.278456 E + 01 1.208312 E + 01 1.002162 E + 01 

  
13 (4s) 14 (4p'') 15 (5s) 16 (4d'') 

3.062729 E + 00 3.656358 E + 00 9.373947 E + 00 1.034000 E + 01 

 − 4.780123 E − 02  − 3.118181 E − 02  − 1.877428 E − 03  − 1.297767 E − 03 

3.014346 E + 00 1.252608 E + 00 1.818008 E − 01 2.533380 E − 03 

 
k  1 (45 Rh) 2 (2p') 3 (1s) 4 (3p') 

kR  3.363296 E − 05 3.904164 E − 02 4.896407 E − 02 5.693585 E − 02 

k  2.823766 E + 14  − 4.096380 E + 03  − 4.218567 E + 03  − 1.512420 E + 02 

k  1.605423 E + 06 1.591948 E + 03 8.905132 E + 02 7.273057 E + 02 

 
5 (4p') 6 (2p'') 7 (3d') 8 (2s) 

1.169241 E − 01 2.275514 E − 01 2.526218 E − 01 2.563458 E − 01 

 − 1.531597 E + 02  − 1.531930 E + 02  − 3.100646 E + 01  − 3.391110 E + 01 

3.942567 E + 02 1.678941 E + 02 1.127274 E + 02 1.045915 E + 02 

 
9 (3s) 10 (3p'') 11 (3d'') 12 (4d') 

8.835513 E − 01 9.074011 E − 01 9.427974 E − 01 1.191622 E + 00 

 − 5.567006 E + 00  − 4.874783 E + 00  − 2.957121 E + 00  − 5.247938 E − 02 

2.720889 E + 01 1.418261 E + 01 1.354179 E + 01 1.105142 E + 01 

 
13 (4s) 14 (4p'') 15 (5s) 16 (4d'') 

2.953454 E + 00 3.503823 E + 00 9.043605 E + 00 1.018801 E + 01 

 − 5.406222 E − 02  − 3.552900 E − 02  − 2.228368 E − 03  − 1.582837 E − 03 

3.420811 E + 00 1.490568 E + 00 2.257527 E − 01 4.333491 E − 03 

 
 

k  1 (46 Pd) 2 (2p') 3 (1s) 4 (3p') 

kR  3.135993 E − 05 3.798848 E − 02 4.784571 E − 02 5.501025 E − 02 

k  3.560771 E + 14  − 4.390715 E + 03  − 4.523348 E + 03  − 1.640911 E + 02 

k  1.760059 E + 06 1.675240 E + 03 9.354178 E + 02 7.681297 E + 02 

 
5 (4p') 6 (2p'') 7 (3d') 8 (2s) 

1.123683 E − 01 2.214131 E − 01 2.420456 E − 01 2.496803 E − 01 

 − 1.662173 E + 02  − 1.662548 E + 02  − 3.362176 E + 01  − 3.692404 E + 01 

4.216182 E + 02 1.785547 E + 02 1.209265 E + 02 1.120601 E + 02 

 
9 (3s) 10 (3p'') 11 (3d'') 12 (4d') 

8.558870 E − 01 8.767124 E − 01 9.033265 E − 01 1.176168 E + 00 

 − 6.248755 E + 00  − 5.487216 E + 00  − 3.361044 E + 00  − 5.876710 E − 02 

2.945320 E + 01 1.565481 E + 01 1.507872 E + 01 1.210346 E + 01 
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13 (4s) 14 (4p'') 15 (5s) 16 (4d'') 

2.854421 E + 00 3.367301 E + 00 8.721407 E + 00 1.005589 E + 01 

 − 6.064830 E − 02  − 4.011839 E − 02  − 2.600952 E − 03  − 1.881202 E − 03 

3.846500 E + 00 1.746075 E + 00 2.771911 E − 01 6.997619 E − 03 

 
k  1 (47 Ag) 2 (2p') 3 (1s) 4 (3p') 

kR  2.952782 E − 05 3.699131 E − 02 4.677718 E − 02 5.322435 E − 02 

k  4.358279 E + 14  − 4.698854 E + 03  − 4.842505 E + 03  − 1.776379 E + 02 

k  1.909909 E + 06 1.759912 E + 03 9.807244 E + 02 8.091657 E + 02 

 
5 (4p') 6 (2p'') 7 (3d') 8 (2s) 

1.082510 E − 01 2.156012 E − 01 2.324222 E − 01 2.433561 E − 01 

 − 1.799854 E + 02  − 1.800274 E + 02  − 3.637649 E + 01  − 4.010617 E + 01 

4.487302 E + 02 1.887680 E + 02 1.286466 E + 02 1.190270 E + 02 

 
9 (4d') 10 (3s) 11 (3p'') 12 (3d'') 

7.049601 E − 01 8.300820 E − 01 8.482500 E − 01 8.674116 E − 01 

 − 6.976692 E + 00  − 6.986521 E + 00  − 6.151728 E + 00  − 3.804267 E + 00 

3.908188 E + 01 1.891337 E + 01 1.646990 E + 01 1.596332 E + 01 

 
13 (4s) 14 (4p'') 15 (4d'') 16 (5s) 

2.763928 E + 00 3.243917 E + 00 6.027200 E + 00 1.387693 E + 01 

 − 7.458398 E − 02  − 5.197082 E − 02  − 1.000752 E − 02  − 1.786739 E − 04 

4.016741 E + 00 1.410594 E + 00 3.639316 E − 01 2.123996 E − 02 

 
 

k  1 (48 Cd) 2 (2p') 3 (1s) 4 (3p') 

kR  2.764401 E − 05 3.604624 E − 02 4.575532 E − 02 5.156591 E − 02 

k  5.424374 E + 14  − 5.022756 E + 03  − 5.176336 E + 03  − 1.918938 E + 02 

k  2.083482 E + 06 1.853729 E + 03 1.034221 E + 03 8.581836 E + 02 

 
5 (4p') 6 (2p'') 7 (3d') 8 (2s) 

1.045398 E − 01 2.100929 E − 01 2.236414 E − 01 2.373506 E − 01 

 − 1.944751 E + 02  − 1.945217 E + 02  − 3.927316 E + 01  − 4.345964 E + 01 

4.832583 E + 02 2.063170 E + 02 1.436819 E + 02 1.332878 E + 02 

 
9 (4d') 10 (3s) 11 (3p'') 12 (3d'') 

6.778536 E − 01 8.059884 E − 01 8.218190 E − 01 8.346412 E − 01 

 − 5.182215 E + 00  − 7.763532 E + 00  − 6.851616 E + 00  − 4.270299 E + 00 

4.795679 E + 01 2.494971 E + 01 2.186001 E + 01 2.135897 E + 01 

 
13 (4s) 14 (4p'') 15 (4d'') 16 (5s) 

2.681445 E + 00 3.132706 E + 00 5.795447 E + 00 1.373979 E + 01 

 − 8.382595 E − 02  − 5.906115 E − 02  − 1.246825 E − 02  − 1.840775 E − 04 

6.073621 E + 00 2.658194 E + 00 1.097410 E + 00 3.335212 E − 01 
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k  1 (49 In) 2 (2p') 3 (1s) 4 (3p') 5 (4p') 

kR  2.611485 E − 05 3.511143 E − 02 4.477062 E − 02 4.972748 E − 02 9.754386 E − 02 

k  6.568177 E + 14 − 5.360185 E + 03 − 5.528167 E + 03 − 2.075506 E + 02 − 2.104289 E + 02 

k  2.251429 E + 06 1.938178 E + 03 1.075775 E + 03 8.976829 E + 02 5.220315 E + 02 

 
6 (2p'') 7 (3d') 8 (2s) 9 (5p') 10 (4d') 

2.046444 E − 01 2.137762 E − 01 2.314069 E − 01 3.250338 E − 01 5.745003 E − 01 

− 2.104863 E + 02 − 4.250458 E + 01 − 4.729780 E + 01 − 8.766608 E + 00 − 8.766671 E + 00 

2.130830 E + 02 1.462519 E + 02 1.349310 E + 02 9.904672 E + 01 4.714387 E + 01 

 
11 (3s) 12 (3p'') 13 (3d'') 14 (4s) 

7.794883 E − 01 7.925194 E − 01 7.978237 E − 01 2.535737 E + 00 

 − 8.786849 E + 00  − 7.778728 E + 00  − 4.900401 E + 00  − 1.071865 E − 01 

2.418580 E + 01 1.920578 E + 01 1.889586 E + 01 4.776507 E + 00 

 
15 (4p'') 16 (4d'') 17 (5s) 18 (5p'') 

2.923061 E + 00 4.911808 E + 00 1.158315 E + 01 1.559485 E + 01 

 − 7.790259 E − 02  − 2.054839 E − 02  − 3.701749 E − 04  − 6.294652 E − 05 

1.688160 E + 00 5.692079 E − 01 5.639479 E − 02 2.097238 E − 03 

 
 

k  1 (50 Sn) 2 (2p') 3 (1s) 4 (3p') 5 (4p') 

kR  2.467213 E − 05 3.422326 E − 02 4.382713 E − 02 4.802160 E − 02 9.169330 E − 02 

k  7.948065 E + 14  − 5.714333 E + 03  − 5.895736 E + 03  − 2.240491 E + 02  − 2.272451 E + 02

k  2.431725 E + 06 2.031427 E + 03 1.125036 E + 03 9.447684 E + 02 5.671729 E + 02 

 
6 (2p'') 7 (3d') 8 (2s) 9 (5p') 10 (4d') 

1.994678 E − 01 2.048100 E − 01 2.257492 E − 01 2.804256 E − 01 5.062632 E − 01 

− 2.273142 E + 02 − 4.591169 E + 01 − 5.136238 E + 01 − 9.860977 E + 00 − 9.861173 E + 00 

2.264465 E + 02 1.556454 E + 02 1.433694 E + 02 1.153567 E + 02 5.888310 E + 01 

 
11 (3s) 12 (3d'') 13 (3p'') 14 (4s) 

7.547442 E − 01 7.643613 E − 01 7.653325 E − 01 2.409355 E + 00 

− 9.890659 E + 00 − 8.780099 E + 00 − 3.329406 E + 00 − 1.333130 E − 01 

2.747505 E + 01 2.064088 E + 01 2.044099 E + 01 5.225673 E + 00 

 
15 (4p'') 16 (4d'') 17 (5s) 18 (5p'') 

2.747739 E + 00 4.328401 E + 00 1.024433 E + 01 1.345458 E + 01 

 − 9.917492 E − 02  − 3.012673 E − 02  − 6.401462 E − 04  − 1.960355 E − 04 

1.880047 E + 00 7.646722 E − 01 9.464658 E − 02 4.190133 E − 03 

 
k  1 (51 Sb) 2 (2p') 3 (1s) 4 (3p') 5 (4p') 

kR  2.332088 E − 05 3.337787 E − 02 4.292223 E − 02 4.643023 E − 02 8.664807 E − 02 

k  9.599455 E + 14  − 6.083905 E + 03  − 6.279443 E + 03  − 2.414227 E + 02  − 2.449588 E + 02

k  2.624084 E + 06 2.126981 E + 03 1.175481 E + 03 9.929617 E + 02 6.127320 E + 02 
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6 (2p'') 7 (3d') 8 (2s) 9 (5p') 10 (4d') 

1.945405 E − 01 1.965963 E − 01 2.203544 E − 01 2.495391 E − 01 4.559489 E − 01 

− 2.450406 E + 02 − 4.950237 E + 01 − 5.566519 E + 01 − 1.104041 E + 01 − 1.104083 E + 01 

2.399941 E + 02 1.653418 E + 02 1.520799 E + 02 1.300246 E + 02 7.044826 E + 01 

 
11 (3s) 12 (3d'') 13 (3p'') 14 (4s) 

7.315308 E − 01 7.337072 E − 01 7.399704 E − 01 2.297336 E + 00 

 − 1.108120 E + 01  − 9.861523 E + 00  − 3.698705 E + 00  − 1.625863 E − 01 

3.066017 E + 01 2.227480 E + 01 2.209584 E + 01 5.720609 E + 00 

 
15 (4p'') 16 (4d'') 17 (5s) 18 (5p'') 

2.596551 E + 00 3.898228 E + 00 9.270607 E + 00 1.197267 E + 01 

 − 1.232070 E − 01  − 4.138160 E − 02  − 1.016576 E − 03  − 4.173142 E − 04 

2.112967 E + 00 9.840578 E − 01 1.370464 E − 01 6.326601 E − 03 

 
k  1 (52 Te) 2 (2p') 3 (1s) 4 (3p') 5 (4p') 

kR  2.205345 E − 05 3.257040 E − 02 4.205326 E − 02 4.492876 E − 02 8.208538 E − 02 

k  1.157405 E + 15  − 6.469406 E + 03  − 6.679851 E + 03  − 2.597405 E + 02  − 2.636431 E + 02

k  2.829311 E + 06 2.224939 E + 03 1.227111 E + 03 1.042414 E + 03 6.598953 E + 02 

 
 

6 (3d') 7 (2p'') 8 (2s) 9 (5p') 10 (4d') 

1.889628 E − 01 1.898342 E − 01 2.151935 E − 01 2.406710 E − 01 4.149085 E − 01 

− 2.637394 E + 02 − 2.776199 E + 02 − 6.023488 E + 01 − 1.232182 E + 01 − 1.232244 E + 01 

2.550619 E + 02 1.753634 E + 02 1.606489 E + 02 1.377109 E + 02 8.029383 E + 01 

 
11 (3d'') 12 (3s) 13 (3p'') 14 (4s) 

7.052189 E − 01 7.095263 E − 01 7.160411 E − 01 2.194126 E + 00 

 − 1.237601 E + 01  − 5.435748 E + 00  − 4.099042 E + 00  − 1.964236 E − 01 

3.412204 E + 01 2.401900 E + 01 2.376272 E + 01 6.286788 E + 00 

 
15 (4p'') 16 (4d'') 17 (5s) 18 (5p'') 

2.459822 E + 00 3.547345 E + 00 8.448161 E + 00 1.154719 E + 01 

 − 1.512217 E − 01  − 5.497902 E − 02  − 1.412092 E − 03  − 6.202203 E − 04 

2.405228 E + 00 1.258944 E + 00 2.074935 E − 01 1.204640 E − 02 

 
k  1 (53 I) 2 (2p') 3 (1s) 4 (3p') 5 (4p') 

kR  2.086803 E − 05 3.180051 E − 02 4.121852 E − 02 4.352442 E − 02 7.808259 E − 02 

k  1.392332 E + 15  − 6.870988 E + 03  − 7.097090 E + 03  − 2.789775 E + 02  − 2.832702 E + 02

k  3.047541 E + 06 2.325207 E + 03 1.279941 E + 03 1.092975 E + 03 7.075875 E + 02 

 
6 (3d') 7 (2p'') 8 (2s) 9 (5p') 10 (4d') 

1.819331 E − 01 1.853470 E − 01 2.102648 E − 01 2.273653 E − 01 3.822704 E − 01 

− 2.833820 E + 02 − 2.911583 E + 02 − 6.505592 E + 01 − 1.369398 E + 01 − 1.369489 E + 01 

2.731331 E + 02 1.857106 E + 02 1.685551 E + 02 1.479557 E + 02 9.094124 E + 01 
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11 (3d'') 12 (3s) 13 (3p'') 14 (4s) 

6.789834 E − 01 6.888415 E − 01 6.936597 E − 01 2.101721 E + 00 

 − 1.376339 E + 01  − 5.987138 E + 00  − 4.526363 E + 00  − 2.336622 E − 01 

3.772690 E + 01 2.586681 E + 01 2.548103 E + 01 6.899952 E + 00 

 

15 (4p'') 16 (4d'') 17 (5s) 18 (5p'') 

2.339872 E + 00 3.268298 E + 00 7.803381 E + 00 1.090880 E + 01 

 − 1.822322 E − 01  − 7.041664 E − 02  − 1.924337 E − 03  − 9.195065 E − 04 

2.730047 E + 00 1.556790 E + 00 2.824270 E − 01 1.830144 E − 02 

 

k  1 (54 Xe) 2 (2p') 3 (1s) 4 (3p') 5 (4p') 

kR  1.976032 E − 05 3.106561 E − 02 4.041604 E − 02 4.220737 E − 02 7.452533 E − 02 

k  1.670796 E + 15  − 7.288990 E + 03  − 7.531521 E + 03  − 2.991585 E + 02  − 3.038657 E + 02

k  3.279111 E + 06 2.427739 E + 03 1.333923 E + 03 1.144606 E + 03 7.559227 E + 02 

 
 

6 (3d') 7 (2p'') 8 (2s) 9 (5p') 10 (4d') 

1.754323 E − 01 1.810636 E − 01 2.055529 E − 01 2.134902 E − 01 3.554090 E − 01 

− 3.039943 E + 02 − 3.126674 E + 02 − 7.013605 E + 01 − 1.516040 E + 01 − 1.516174 E + 01 

2.916489 E + 02 1.963378 E + 02 1.766887 E + 02 1.594076 E + 02 1.021463 E + 02 

 
 

11 (3d'') 12 (3s) 13 (3p'') 14 (4s) 

6.547224 E − 01 6.693523 E − 01 6.726696 E − 01 2.018208 E + 00 

 − 1.524696 E + 01  − 6.573828 E + 00  − 4.981703 E + 00  − 2.744835 E − 01 

4.139147 E + 01 2.780050 E + 01 2.727882 E + 01 7.550129 E + 00 

 

15 (4p'') 16 (4d'') 17 (5s) 18 (5p'') 

2.233273 E + 00 3.038641 E + 00 7.276186 E + 00 1.024308 E + 01 

 − 2.164013 E − 01  − 8.779759 E − 02  − 2.572283 E − 03  − 1.332830 E − 03 

3.079605 E + 00 1.873818 E + 00 3.598366 E − 01 2.419956 E − 02 

 
 

k  1 (55 Cs) 2 (2p') 3 (1s) 4 (3p') 5 (4p') 

kR  1.882567 E − 05 3.034583 E − 02 3.964060 E − 02 4.085289 E − 02 7.021561 E − 02 

k  1.967990 E + 15  − 7.725818 E + 03  − 7.986020 E + 03  − 3.208696 E + 02  − 3.260607 E + 02

k  3.505658 E + 06 2.533596 E + 03 1.388984 E + 03 1.198794 E + 03 8.156654 E + 02 

 
 

6 (3d') 7 (5p') 8 (2p'') 9 (2s) 10 (4d') 

1.687565 E − 01 1.746273 E − 01 1.768685 E − 01 2.009346 E − 01 3.222227 E − 01 

− 3.262145 E + 02 − 3.359582 E + 02 − 3.359606 E + 02 − 7.575875 E + 01 − 1.690460 E + 01 

3.125647 E + 02 2.091124 E + 02 2.029666 E + 02 1.847288 E + 02 1.168266 E + 02 

 

11 (3d'') 12 (3s) 13 (3p'') 14 (4s) 15 (4p'') 

6.298078 E − 01 6.493185 E − 01 6.510829 E − 01 1.918350 E + 00 2.104125 E + 00 

− 1.701896 E + 01 − 7.275268 E + 00 − 5.531181 E + 00 − 3.400614 E − 01 − 2.724285 E − 01 

4.560922 E + 01 2.963468 E + 01 2.894976 E + 01 8.178919 E + 00 3.407417 E + 00 
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16 (4d'') 17 (5s) 18 (5p'') 19 (6s) 

2.754908 E + 00 6.371605 E + 00 8.378469 E + 00 2.412889 E + 01 

 − 1.186612 E − 01  − 4.298250 E − 03  − 2.452407 E − 03  − 1.699414 E − 05 

2.230443 E + 00 5.019411 E − 01 9.493183 E − 02 7.804349 E − 03 

 
 

k  1 (56 Ba) 2 (2p') 3 (1s) 4 (3p') 5 (4p') 

kR  1.792580 E − 05 2.965819 E − 02 3.889412 E − 02 3.958653 E − 02 6.648555 E − 02 

k  2.320937 E + 15  − 8.179920 E + 03  − 8.458643 E + 03  − 3.436230 E + 02  − 3.493284 E + 02

k  3.748586 E + 06 2.641857 E + 03 1.445293 E + 03 1.254123 E + 03 8.757556 E + 02 

 
 

6 (5p') 7 (3d') 8 (2p'') 9 (2s) 10 (4d') 

1.518527 E − 01 1.626049 E − 01 1.728606 E − 01 1.965160 E − 01 2.961243 E − 01 

− 3.495095 E + 02 − 3.495132 E + 02 − 3.604051 E + 02 − 8.168176 E + 01 − 1.876769 E + 01 

3.578978 E + 02 2.377281 E + 02 2.187389 E + 02 1.930848 E + 02 1.294398 E + 02 

 

11 (3d'') 12 (3s) 13 (3p'') 14 (4s) 15 (4p'') 

6.068497 E − 01 6.304911 E − 01 6.309005 E − 01 1.829902 E + 00 1.992348 E + 00 

− 1.891503 E + 01 − 8.023115 E + 00 − 6.118073 E + 00 − 4.126575 E − 01 − 3.347359 E − 01 

4.988457 E + 01 3.163095 E + 01 3.077654 E + 01 8.913591 E + 00 3.824103 E + 00 

 

16 (4d'') 17 (5s) 18 (5p'') 19 (6s) 

2.531775 E + 00 5.749176 E + 00 7.285766 E + 00 2.137902 E + 01 

− 1.536089 E − 01  − 6.265215 E − 03  − 3.752607 E − 03  − 4.886279 E − 05 

2.660332 E + 00 6.818691 E − 01 1.877558 E − 01 1.790125 E − 02 

 
 

k  1 (57 La) 2 (2p') 3 (1s) 4 (3p') 5 (4p') 

kR  1.692451 E − 05 2.902829 E − 02 3.818004 E − 02 3.859718 E − 02 6.475144 E − 02 

k  2.806973 E + 15  − 8.648024 E + 03  − 8.945288 E + 03  − 3.663737 E + 02  − 3.725292 E + 02

k  4.041273 E + 06 2.750477 E + 03 1.502852 E + 03 1.307546 E + 03 9.178818 E + 02 

  
 

6 (5p') 7 (3d') 8 (2p'') 9 (2s) 

1.492569 E − 01 1.579506 E − 01 1.691893 E − 01 1.924604 E − 01 

 − 3.727252 E + 02  − 3.727291 E + 02  − 3.846125 E + 02  − 8.734805 E + 01 

3.729340 E + 02 2.494777 E + 02 2.300989 E + 02 2.021814 E + 02 

 

10 (4d') 11 (3d'') 12 (3p'') 13 (3s) 

2.863917 E − 01 5.894798 E − 01 6.151331 E − 01 6.155785 E − 01 

 − 2.037232 E + 01  − 2.053520 E + 01  − 8.651790 E + 00  − 2.496299 E + 00 

1.372805 E + 02 5.348854 E + 01 3.393667 E + 01 3.292557 E + 01 

 

14 (4s) 15 (4p'') 16 (4f') 17 (4d'') 

1.785570 E + 00 1.940382 E + 00 2.298301 E + 00 2.448564 E + 00 

 − 4.494250 E − 01  − 3.655542 E − 01  − 1.694816 E − 01  − 1.702380 E − 01 

9.680064 E + 00 4.253781 E + 00 3.240094 E + 00 2.588716 E + 00 
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18 (5s) 19 (4f'') 20 (5p'') 21 (6s) 

5.648357 E + 00 6.894903 E + 00 7.161220 E + 00 2.121609 E + 01 

 − 7.356273 E − 03  − 4.706705 E − 03  − 3.950365 E − 03  − 4.999715 E − 05 

7.526164 E − 01 2.064493 E − 01 1.488919 E − 01 1.818341 E − 02 

 
 

k  1 (58 Ce) 2 (2p') 3 (1s) 4 (3p') 5 (4p') 

kR  1.599118 E − 05 2.842692 E − 02 3.749201 E − 02 3.767547 E − 02 6.322577 E − 02 

k  3.386083 E + 15  − 9.133412 E + 03  − 9.449945 E + 03  − 3.900092 E + 02  − 3.966276 E + 02

k  4.352190 E + 06 2.861066 E + 03 1.561513 E + 03 1.361690 E + 03 9.593886 E + 02 

 
 

6 (5p') 7 (3d') 8 (2p'') 9 (2s) 

1.472617 E − 01 1.536583 E − 01 1.656842 E − 01 1.885836 E − 01 

 − 3.968383 E + 02  − 3.968423 E + 02  − 4.097497 E + 02  − 9.321721 E + 01 

3.867739 E + 02 2.608374 E + 02 2.416580 E + 02 2.115025 E + 02 

 

10 (4d') 11 (3d'') 12 (3p'') 13 (3s) 

2.781337 E − 01 5.734605 E − 01 6.004435 E − 01 6.016325 E − 01 

 − 2.202548 E + 01  − 2.220331 E + 01  − 9.295950 E + 00  − 2.677542 E + 00 

1.449479 E + 02 5.710741 E + 01 3.630382 E + 01 3.511709 E + 01 

 

14 (4s) 15 (4p'') 16 (4f') 17 (4d'') 

1.746119 E + 00 1.894663 E + 00 2.055460 E + 00 2.377961 E + 00 

 − 4.850018 E − 01  − 3.953169 E − 01  − 1.847051 E − 01  − 1.868198 E − 01 

1.043088 E + 01 4.660491 E + 00 3.931914 E + 00 3.110304 E + 00 

 

18 (5s) 19 (4f'') 20 (5p'') 21 (6s) 

5.566603 E + 00 6.166379 E + 00 7.065490 E + 00 2.108081 E + 01 

 − 8.994719 E − 03  − 6.226691 E − 03  − 4.112028 E − 03  − 5.096590 E − 05 

7.995669 E − 01 2.456582 E − 01 1.710934 E − 01 1.840633 E − 02 

 
 

k  1 (59 Pr) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  1.512190 E − 05 2.785126 E − 02 3.680808 E − 02 3.682849 E − 02 6.183397 E − 02 

k  4.073279 E + 15  − 9.636514 E + 03  − 9.973082 E + 03  − 9.980179 E + 03  − 4.216776 E + 02

k  4.681737 E + 06 2.973704 E + 03 1.621891 E + 03 1.416684 E + 03 1.000719 E + 03 

. 
 

6 (5p') 7 (3d') 8 (2p'') 9 (2s) 

1.455508 E − 01 1.496529 E − 01 1.623291 E − 01 1.848684 E − 01 

 − 4.219028 E + 02  − 4.219070 E + 02  − 4.358787 E + 02  − 9.931069 E + 01 

4.001429 E + 02 2.720948 E + 02 2.534467 E + 02 2.210478 E + 02 

 

10 (4d') 11 (3p'') 12 (3d'') 13 (3s) 

2.707756 E − 01 5.585121 E − 01 5.866197 E − 01 5.884677 E − 01 

 − 2.373995 E + 01  − 2.393267 E + 01  − 9.960942 E + 00  − 2.863529 E + 00 

1.526084 E + 02 6.078199 E + 01 3.872898 E + 01 3.736104 E + 01 
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14 (4s) 15 (4p'') 16 (4f') 17 (4d'') 

1.709870 E + 00 1.852956 E + 00 1.908274 E + 00 2.315051 E + 00 

 − 5.205225 E − 01  − 4.250118 E − 01  − 1.998558 E − 01  − 2.038198 E − 01 

1.118484 E + 01 5.061475 E + 00 4.525381 E + 00 3.569309 E + 00 

 

18 (5s) 19 (4f'') 20 (5p'') 21 (6s) 

5.494347 E + 00 5.724821 E + 00 6.983402 E + 00 2.095775 E + 01 

 − 1.110054 E − 02  − 8.221864 E − 03  − 4.257831 E − 03  − 5.186893 E − 05 

8.379122 E − 01 2.752646 E − 01 1.889244 E − 01 1.860202 E − 02 

 
 

k  1 (60 Nd) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  1.429845 E − 05 2.729903 E − 02 3.598534 E − 02 3.618805 E − 02 6.052815 E − 02 

k  4.899993 E + 15  − 1.015774 E + 04  − 1.051515 E + 04  − 1.052275 E + 04  − 4.477293 E + 02

k  5.035292 E + 06 3.088887 E + 03 1.688947 E + 03 1.473064 E + 03 1.041376 E + 03 

 

6 (5p') 7 (3d') 8 (2p'') 9 (2s) 

1.439487 E − 01 1.458807 E − 01 1.591104 E − 01 1.813003 E − 01 

 − 4.479693 E + 02  − 4.479737 E + 02  − 4.630575 E + 02  − 1.056481 E + 02 

4.139305 E + 02 2.838705 E + 02 2.659183 E + 02 2.312467 E + 02 

 

10 (4d') 11 (3d'') 12 (3p'') 13 (3s) 

2.639634 E − 01 5.444343 E − 01 5.735075 E − 01 5.759484 E − 01 

 − 2.552730 E + 01  − 2.573532 E + 01  − 1.065151 E + 01  − 3.056072 E + 00 

1.608111 E + 02 6.497240 E + 01 4.165075 E + 01 4.009460 E + 01 

 
 

14 (4s) 15 (4p'') 16 (4d'') 17 (4f') 

1.675726 E + 00 1.813825 E + 00 1.832209 E + 00 2.256809 E + 00 

 − 5.569315 E − 01  − 3.168863 E − 01  − 2.154176 E − 01  − 2.213890 E − 01 

1.238404 E + 01 5.893310 E + 00 5.410196 E + 00 4.318720 E + 00 

 

18 (5s) 19 (5p'') 20 (4f'') 21 (6s) 

5.426173 E + 00 5.496626 E + 00 6.906539 E + 00 2.083995 E + 01 

 − 1.336062 E − 02  − 1.037207 E − 02  − 4.400710 E − 03  − 5.275352 E − 05 

1.059656 E + 00 4.268438 E − 01 3.170839 E − 01 6.749257 E − 02 

 
 

k  1 (61 Pm) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  1.355498 E − 05 2.676874 E − 02 3.520315 E − 02 3.556952 E − 02 5.929694 E − 02 

k  5.847159 E + 15  − 1.069743 E + 04  − 1.107650 E + 04  − 1.108461 E + 04  − 4.748046 E + 02

k  5.400008 E + 06 3.205363 E + 03 1.756347 E + 03 1.529583 E + 03 1.081710 E + 03 

 

6 (3d') 7 (5p') 8 (2p'') 9 (2s) 

1.423181 E − 01 1.424408 E − 01 1.560196 E − 01 1.778704 E − 01 

 − 4.750599 E + 02  − 4.913051 E + 02  − 4.913096 E + 02  − 1.122356 E + 02 

4.272666 E + 02 2.949123 E + 02 2.776764 E + 02 2.408401 E + 02 
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10 (4d') 11 (3d'') 12 (3p'') 13 (3s) 

2.576158 E − 01 5.311385 E − 01 5.610415 E − 01 5.640176 E − 01 

 − 2.738987 E + 01  − 2.761365 E + 01  − 1.136849 E + 01  − 3.255421 E + 00 

1.683087 E + 02 6.842279 E + 01 4.381140 E + 01 4.205992 E + 01 

 

14 (4s) 15 (4p'') 16 (4f') 17 (4d'') 

1.643422 E + 00 1.776930 E + 00 1.784150 E + 00 2.202538 E + 00 

 − 5.943078 E − 01  − 4.867371 E − 01  − 2.314269 E − 01  − 2.395107 E − 01 

1.277106 E + 01 5.915201 E + 00 5.450483 E + 00 4.332152 E + 00 

 

18 (4f'') 19 (5s) 20 (5p'') 21 (6s) 

5.352450 E + 00 5.361529 E + 00 6.834191 E + 00 2.072706 E + 01 

 − 1.572286 E − 02  − 7.639086 E − 03  − 4.541128 E − 03  − 5.362020 E − 05 

9.264694 E − 01 3.046666 E − 01 2.061615 E − 01 1.896759 E − 02 

 
 

k  1 (62 Sm) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  1.284936 E − 05 2.625936 E − 02 3.446021 E − 02 3.497183 E − 02 5.814608 E − 02 

k  6.976837 E + 15  − 1.125583 E + 04  − 1.165740 E + 04  − 1.166605 E + 04  − 5.029050 E + 02

k  5.789945 E + 06 3.324344 E + 03 1.825273 E + 03 1.587449 E + 03 1.122785 E + 03 

 
 

6 (3d') 7 (5p') 8 (2p'') 9 (2s) 

1.389563 E − 01 1.410812 E − 01 1.530507 E − 01 1.745725 E − 01 

 − 5.031758 E + 02  − 5.206288 E + 02  − 5.206335 E + 02  − 1.190690 E + 02 

4.468028 E + 02 3.063691 E + 02 2.878084 E + 02 2.510747 E + 02 

 

10 (4d') 11 (3d'') 12 (3p'') 13 (3s) 

2.517731 E − 01 5.185918 E − 01 5.492012 E − 01 5.526584 E − 01 

 − 2.932322 E + 01  − 2.956295 E + 01  − 1.210992 E + 01  − 3.460731 E + 00 

1.762967 E + 02 7.236629 E + 01 4.645429 E + 01 4.450105 E + 01 

 
 

14 (4s) 15 (4f') 16 (4p'') 17 (4d'') 

1.613085 E + 00 1.732378 E + 00 1.742442 E + 00 2.152586 E + 00 

 − 6.321350 E − 01  − 5.183802 E − 01  − 5.289767 E − 01  − 2.582047 E − 01 

1.358776 E + 01 6.391937 E + 00 5.920541 E + 00 4.697597 E + 00 

  

18 (4f'') 19 (5s) 20 (5p'') 21 (6s) 

5.197135 E + 00 5.301955 E + 00 6.768956 E + 00 2.062113 E + 01 

 − 1.847299 E - 02  − 7.876521 E − 03  − 4.672957 E − 03  − 5.445075 E − 05 

1.005250 E + 00 3.186345 E − 01 2.091799 E − 01 1.913206 E − 02 

 
 

k  1 (63 Eu) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  1.219082 E − 05 2.576970 E − 02 3.375364 E − 02 3.439396 E − 02 5.706899 E − 02 

k  8.301428 E + 15  − 1.183327 E + 04  − 1.225816 E + 04  − 1.226736 E + 04  − 5.320452 E + 02

k  6.201154 E + 06 3.445400E + 03 1.895290 E + 03 1.646235 E + 03 1.164159 E + 03 
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6 (3d') 7 (5p') 8 (2p'') 9 (2s) 

1.357784 E − 01 1.398620 E − 01 1.501968 E − 01 1.713991 E − 01 

 − 5.323316 E + 02  − 5.510390 E + 02  − 5.510438 E + 02  − 1.261507 E + 02 

4.666162 E + 02 3.178006 E + 02 2.979675 E + 02 2.615256 E + 02 

 

10 (4d') 11 (3d'') 12 (3p'') 13 (3s) 

2.463879 E − 01 5.067318 E − 01 5.379403 E − 01 5.418307 E − 01 

 − 3.132728 E + 01  − 3.158308 E + 01  − 1.287570 E + 01  − 3.671886 E + 00 

1.843447 E + 02 7.637629 E + 01 4.915445 E + 01 4.699317 E + 01 

 

14 (4s) 15 (4f') 16 (4p'') 17 (4d'') 

1.584561 E + 00 1.676329 E + 00 1.710165 E + 00 2.106543 E + 00 

 − 6.703014 E − 01  − 5.502921 E − 01  − 5.639366 E − 01  − 2.775422 E − 01 

1.440904 E + 01 6.931056 E + 00 6.421800 E + 00 5.042089 E + 00 

 

18 (4f'') 19 (5s) 20 (5p'') 21 (6s) 

5.028988 E + 00 5.247153 E + 00 6.710462 E + 00 2.052170 E + 01 

 − 2.174508 E − 02  − 8.100574 E − 03  − 4.795583 E − 03  − 5.524607 E − 05 

1.093016 E + 00 3.350770 E − 01 2.119955 E − 01 1.928248 E − 02 

 
 

k  1 (64 Gd) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  1.157214 E − 05 2.529679 E − 02 3.306830 E − 02 3.383459 E − 02 5.597565 E − 02 

k  9.859391 E + 15  − 1.243045 E + 04  − 1.287962 E + 04  − 1.288941 E + 04  − 5.623746 E + 02

k  6.636392 E + 06 3.568843 E + 03 1.966987 E + 03 1.706333 E + 03 1.207276 E + 03 

 
 

6 (3d') 7 (5p') 8 (2p'') 9 (2s) 

1.327075 E − 01 1.383863 E − 01 1.474405 E − 01 1.683315 E − 01 

 − 5.626781 E + 02  − 5.827144 E + 02  − 5.827193 E + 02  − 1.335489 E + 02 

4.871441 E + 02 3.299331 E + 02 3.087194 E + 02 2.722655 E + 02 

 

10 (4d') 11 (3d'') 12 (3p'') 13 (3s) 

2.408313 E − 01 4.952712 E − 01 5.270179 E − 01 5.313159 E − 01 

 − 3.344636 E + 01  − 3.372027 E + 01  − 1.368393 E + 01  − 3.895931 E + 00 

1.929045 E + 02 8.062657 E + 01 5.201204 E + 01 4.963145 E + 01 

 
 

14 (4s) 15 (4p'') 16 (4f') 17 (4d'') 

1.555765 E + 00 1.677401 E + 00 1.696154 E + 00 2.059036 E + 00 

 − 7.125924 E − 01  − 5.857953 E − 01  − 2.822890 E − 01  − 2.973424 E − 01 

1.534610 E + 01 7.325831 E + 00 6.736773 E + 00 5.441206 E + 00 

 

18 (4f'') 19 (5s) 20 (5p'') 21 (6s) 

5.088462 E + 00 5.185206 E + 00 6.639659 E + 00 2.041409 E + 01 

 − 2.342792 E − 02  − 8.374598 E − 03  − 4.949733 E − 03  − 5.612436 E − 05 

1.110918 E + 00 3.285374 E − 01 2.153353 E − 01 1.946442 E − 02 
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k  1 (65 Tb) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  1.099388 E − 05 2.484157 E − 02 3.241524 E − 02 3.329320 E − 02 5.495105 E − 02 

k  1.167810 E + 16  − 1.304731 E + 04  − 1.352163 E + 04  − 1.353202 E + 04  − 5.937848 E + 02

k  7.094619 E + 06 3.694361 E + 03 2.039781 E + 03 1.767355 E + 03 1.250692 E + 03 

 
 

6 (3d') 7 (5p') 8 (2p'') 9 (2s) 

1.297977 E − 01 1.370587 E − 01 1.447873 E − 01 1.653759 E − 01 

 − 5.941056 E + 02  − 6.155199 E + 02  − 6.155250 E + 02  − 1.412059 E + 02 

5.079517 E + 02 3.420359 E + 02 3.194925 E + 02 2.832223 E + 02 

  

10 (4d') 11 (3d'') 12 (3p'') 13 (3s) 

2.357027 E − 01 4.844117 E − 01 5.166100 E − 01 5.212751 E − 01 

 − 3.563983 E + 01  − 3.593202 E + 01  − 1.451773 E + 01  − 4.126144 E + 00 

2.015240 E + 02 8.494418 E + 01 5.492782 E + 01 5.232165 E + 01 

 
 

14 (4s) 15 (4p'') 16 (4f') 17 (4d'') 

1.528655 E + 00 1.646698 E + 00 1.695881 E + 00 2.015188 E + 00 

 − 7.552868 E − 01  − 6.216232 E − 01  − 3.008211 E − 01  − 3.177642 E − 01 

1.628864 E + 01 7.862463 E + 00 7.114606 E + 00 5.792547 E + 00 

 

18 (4f'') 19 (5s) 20 (5p'') 21 (6s) 

5.087643 E + 00 5.128200 E + 00 6.575961 E + 00 2.031322 E + 01 

 − 2.557768 E − 02  − 8.634514 E − 03  − 5.094160 E − 03  − 5.696462 E − 05 

1.149220 E + 00 3.282643 E − 01 2.184604 E − 01 1.963136 E − 02 

 
 

k  1 (66 Dy) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  1.045269 E − 05 2.440289 E − 02 3.179110 E − 02 3.276889 E − 02 5.398232 E − 02 

k  1.379658 E + 16  − 1.368419 E + 04  − 1.418455 E + 04  − 1.419557 E + 04  − 6.263047 E + 02

k  7.576753 E + 06 3.821960 E + 03 2.113703 E + 03 1.829316 E + 03 1.294514 E + 03 

 

6 (3d') 7 (5p') 8 (2p'') 9 (2s) 

1.270311 E − 01 1.358371 E − 01 1.422305 E − 01 1.625253 E − 01 

 − 6.266431 E + 02  − 6.494872 E + 02  − 6.494924 E + 02  − 1.491312 E + 02 

5.290553 E + 02 3.541427 E + 02 3.303080 E + 02 2.943813 E + 02 

 

10 (4d') 11 (3d'') 12 (3p'') 13 (3s) 

2.309114 E − 01 4.740864 E − 01 5.066629 E − 01 5.116604 E − 01 

 − 3.791227 E + 01  − 3.822303 E + 01  − 1.537886 E + 01  − 4.363147 E + 00 

2.102216 E + 02 8.932320 E + 01 5.788990 E + 01 5.505145 E + 01 

 

14 (4s) 15 (4p'') 16 (4f') 17 (4d'') 

1.502929 E + 00 1.617668 E + 00 1.686402 E + 00 1.974224 E + 00 

 − 7.986697 E − 01  − 6.580243 E − 01  − 3.196398 E − 01  − 3.387848 E − 01 

1.722567 E + 01 8.385086 E + 00 7.508497 E + 00 6.148345 E + 00 
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18 (4f'') 19 (5s) 20 (5p'') 21 (6s) 

5.059205 E + 00 5.074819 E + 00 6.517351 E + 00 2.021750 E + 01 

 − 2.803033 E − 02  − 8.885350 E − 03  − 5.232098 E − 03  − 5.777754 E − 05 

1.178608 E + 00 3.118441 E − 01 2.048830 E − 01 1.315337 E − 02 

 
 

k  1 (67 Ho) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  9.945252 E − 06 2.397961 E − 02 3.119218 E − 02 3.226082 E − 02 5.305342 E − 02 

k  1.626068 E + 16  − 1.434149 E + 04  − 1.486882 E + 04  − 1.488048 E + 04  − 6.599750 E + 02

k  8.084010 E + 06 3.951747 E + 03 2.188906 E + 03 1.892339 E + 03 1.339029 E + 03 

 
 

6 (3d') 7 (5p') 8 (2p'') 9 (2s) 

1.243882 E − 01 1.346577 E − 01 1.397634 E − 01 1.597724 E − 01 

 − 6.603314 E + 02  − 6.846629 E + 02  − 6.846682 E + 02  − 1.573397 E + 02 

5.505829 E + 02 3.664274 E + 02 3.413134 E + 02 3.058120 E + 02 

 

10 (4d') 11 (3d'') 12 (3p'') 13 (3s) 

2.263474 E − 01 4.642232 E − 01 4.971177 E − 01 5.024187 E − 01 

 − 4.027217 E + 01  − 4.060211 E + 01  − 1.627070 E + 01  − 4.608181 E + 00 

2.191267 E + 02 9.384923 E + 01 6.097224 E + 01 5.789403 E + 01 

 

14 (4s) 15 (4p'') 16 (4f') 17 (4d'') 

1.478214 E + 00 1.589832 E + 00 1.680044 E + 00 1.935203 E + 00 

 − 8.433617 E − 01  − 6.955431 E − 01  − 3.390715 E − 01  − 3.603710 E − 01 

1.823287 E + 01 8.969195 E + 00 7.941848 E + 00 6.547806 E + 00 

 

18 (5s) 19 (4f'') 20 (5p'') 21 (6s) 

5.023137 E + 00 5.040132 E + 00 6.460761 E + 00 2.012445 E + 01 

 − 3.043672 E − 02  − 2.666954 E − 02  − 5.370063 E − 03  − 5.858267 E − 05 

1.254156 E + 00 3.325995 E − 01 2.233961 E − 01 1.994078 E − 02 

 
 

k  1 (68 Er) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  9.469073 E − 06 2.357091 E − 02 3.061683 E − 02 3.176825 E − 02 5.216126 E − 02 

k  1.912044 E + 16  − 1.501953 E + 04  − 1.557477 E + 04  − 1.558710 E + 04  − 6.948161 E + 02

k  8.617273 E + 06 4.083653 E + 03 2.265324 E + 03 1.956354 E + 03 1.384176 E + 03 

 

6 (3d') 7 (5p') 8 (2p'') 9 (2s) 

1.218603 E − 01 1.335162 E − 01 1.373813 E − 01 1.571122 E − 01 

 − 6.951912 E + 02  − 7.210684 E + 02  − 7.210739 E + 02  − 1.658366 E + 02 

5.724670 E + 02 3.788218 E + 02 3.524393 E + 02 3.174441 E + 02 

 

10 (4d') 11 (3d'') 12 (3p'') 13 (3s) 

2.219906 E − 01 4.547890 E − 01 4.879482 E − 01 4.935263 E − 01 

 − 4.272134 E + 01  − 4.307108 E + 01  − 1.719384 E + 01  − 4.861411 E + 00 

2.281714 E + 02 9.845260 E + 01 6.410479 E + 01 6.077933 E + 01 

  



Intra-Atomic Electric Field Radial Potentials in Step-Like Presentation 

Copyright © 2010 SciRes.                                                                               JEMAA 

233

14 (4s) 15 (4p'') 16 (4f') 17 (4d'') 

1.454434 E + 00 1.563097 E + 00 1.676339 E + 00 1.897953 E + 00 

 − 8.894001 E − 01  − 7.342118 E − 01  − 3.591345 E − 01  − 3.825247 E − 01 

1.924028 E + 01 9.544839 E + 00 8.344504 E + 00 6.920616 E + 00 

 

18 (5s) 19 (4f'') 20 (5p'') 21 (6s) 

4.973004 E + 00 5.029016 E + 00 6.405994 E + 00 2.003387 E + 01 

 − 3.278073 E − 02  − 3.272135 E − 02  − 5.508257 E − 03  − 5.938094 E − 05 

1.310607 E + 00 3.202432 E − 01 2.122952 E − 01 1.541445 E − 02 

 
 

k  1 (69 Tm) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  9.022326 E − 06 2.317622 E − 02 3.006476 E − 02 3.129052 E − 02 5.131126 E − 02 

k  2.242874 E + 16  − 1.571857 E + 04  − 1.630266 E + 04  − 1.631569 E + 04  − 7.308296 E + 02

k  9.176975 E + 06 4.217696 E + 03 2.342943 E + 03 2.021375 E + 03 1.429839 E + 03 

 

6 (3d') 7 (5p') 8 (2p'') 9 (2s) 

1.194452 E − 01 1.324514 E − 01 1.350809 E − 01 1.545411 E − 01 

 − 7.312236 E + 02  − 7.587025 E + 02  − 7.587081 E + 02  − 1.746181 E + 02 

5.947097 E + 02 3.912844 E + 02 3.636650 E + 02 3.293243 E + 02 

 

10 (4d') 11 (3d'') 12 (3p'') 13 (3s) 

2.178790 E − 01 4.457756 E − 01 4.791497 E − 01 4.849797 E − 01 

 − 4.525532 E + 01  − 4.562524 E + 01  − 1.814636 E + 01  − 5.122005 E + 00 

2.373568 E + 02 1.031677 E + 02 6.733126 E + 01 6.375168 E + 01 

 
 

14 (4s) 15 (4p'') 16 (4f') 17 (4d'') 

1.431713 E + 00 1.537626 E + 00 1.667520 E + 00 1.862801 E + 00 

 − 9.362794 E − 01  − 7.735846 E − 01  − 3.795567 E − 01  − 4.053003 E − 01 

2.029026 E + 01 1.015463 E + 01 8.798674 E + 00 7.337621 E + 00 

 

18 (5s) 19 (4f'') 20 (5p'') 21 (6s) 

4.925525 E + 00 5.002560 E + 00 6.354907 E + 00 1.994718 E + 01 

 − 3.538065 E − 02  − 3.138504 E − 02  − 5.641505 E − 03  − 6.015851 E − 05 

1.391601 E + 00 3.364342 E − 01 2.255136 E − 01 2.023324 E − 02 

 
 

k  1 (70 Yb) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  8.533454 E − 06 2.279488 E − 02 2.953483 E − 02 3.082698 E − 02 5.050267 E − 02 

k  2.689273 E + 16  − 1.643892 E + 04  − 1.705282 E + 04  − 1.706656 E + 04  − 7.680314 E + 02 

k  9.843350 E + 06 4.356263 E + 03 2.424143 E + 03 2.089788 E + 03 1.478365 E + 03 

 
 

6 (3d') 7 (5p') 8 (2p'') 9 (2s) 

1.171367 E − 01 1.314809 E − 01 1.328583 E − 01 1.520552 E − 01 

 − 7.684410 E + 02  − 7.975768 E + 02  − 7.975825 E + 02  − 1.836854 E + 02 

6.196960 E + 02 4.061612 E + 02 3.773473 E + 02 3.438525 E + 02 
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10 (4d') 11 (3d'') 12 (3p'') 13 (3s) 

2.140080 E − 01 4.371600 E − 01 4.707041 E − 01 4.767629 E − 01 

 − 4.787355 E + 01  − 4.826391 E + 01  − 1.912814 E + 01  − 5.390067 E + 00 

2.490679 E + 02 1.103905 E + 02 7.305095 E + 01 6.921061 E + 01 

 

14 (4s) 15 (4p'') 16 (4d'') 17 (4f') 

1.410030 E + 00 1.513395 E + 00 1.652496 E + 00 1.829705 E + 00 

 − 9.841722 E − 01  − 8.138557 E − 01  − 4.005970 E − 01  − 4.046665 E − 01 

2.378244 E + 01 1.319903 E + 01 1.171609 E + 01 1.020663 E + 01 

 

18 (5s) 19 (5p'') 20 (6s) 21 (4f'') 

4.880889 E + 00 4.957488 E + 00 6.308344 E + 00 1.986459 E + 01 

 − 1.430803 E − 02  − 1.020179 E − 02  − 6.132236 E − 03  − 4.263839 E − 04 

3.435089 E + 00 1.892657 E + 00 1.467032 E + 00 1.425577 E − 01 

 
 

k  1 (71 Lu) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  8.266763 E − 06 2.241482 E − 02 2.895126 E − 02 3.037472 E − 02 4.909457 E − 02 

k  3.000290 E + 16  − 1.718498 E + 04  − 1.783064 E + 04  − 1.784522 E + 04  − 8.077731 E + 02 

k  1.030606 E + 07 4.493213 E + 03 2.505109 E + 03 2.156018 E + 03 1.536383 E + 03 

 
 

6 (3d') 7 (5p') 8 (2p'') 9 (2s) 10 (4d') 

1.145729 E − 01 1.230806 E − 01 1.306431 E − 01 1.495764 E − 01 2.060470 E − 01 

 − 8.082229 E + 02  − 8.393586 E + 02  − 8.393656 E + 02  − 1.937087 E + 02  − 5.103228 E + 01 

6.427891 E + 02 4.323445 E + 02 3.989907 E + 02 3.527581 E + 02 2.592397 E + 02 

 

11 (3d'') 12 (3p'') 13 (3s) 14 (5d') 15 (4f') 

4.275920 E − 01 4.614035 E − 01 4.677554 E − 01 9.189539 E − 01 1.362795 E + 00 

 − 5.146966 E + 01  − 2.033393 E + 01  − 5.748237 E + 00  − 1.082878 E + 00  − 1.082977 E + 00 

1.129170 E + 02 7.322243 E + 01 6.907144 E + 01 3.719560 E + 01 1.636277 E + 01 

 
 

16 (4s) 17 (4p'') 18 (4d'') 19 (4f'') 

1.374502 E + 00 1.471199 E + 00 1.761641 E + 00 4.088386 E + 00 

 − 1.133767 E + 00  − 9.498991 E − 01  − 5.000522 E − 01  − 6.267649 E − 02 

1.166921 E + 01 1.081014 E + 01 8.408322 E + 00 1.930121 E + 00 

 

20 (5s) 21 (5p'') 22 (5d'') 23 (6s) 

4.645356 E + 00 5.905303 E + 00 1.341504 E + 01 1.902817 E + 01 

 − 1.188695 E − 02  − 7.123908 E − 03  − 1.682207 E − 04  − 6.930276 E − 05 

5.542266 E − 01 3.295314 E − 01 6.708647 E − 02 4.500897 E − 03 

 
 

k  1 (72 Hf) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  7.942153 E − 06 2.204711 E − 02 2.838944 E − 02 2.993548 E − 02 4.777245 E − 02 

k  3.431067 E + 16  − 1.795337 E + 04  − 1.863188 E + 04  − 1.864735 E + 04  − 8.488828 E + 02 

k  1.087839 E + 07 4.634963 E + 03 2.590096 E + 03 2.225943 E + 03 1.597709 E + 03 
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6 (3d') 7 (5p') 8 (2p'') 9 (2s) 10 (4d') 

1.121167 E − 01 1.166256 E − 01 1.285000 E − 01 1.471763 E − 01 1.987707 E − 01 

 − 8.493792 E + 02  − 8.825983 E + 02  − 8.826065 E + 02  − 2.041024 E + 02  − 5.433133 E + 01 

6.689327 E + 02 4.589846 E + 02 4.212568 E + 02 3.644445 E + 02 2.720719 E + 02 

 

11 (3d'') 12 (3p'') 13 (3s) 14 (5d') 15 (4f') 

4.184252 E − 01 4.524498 E − 01 4.590678 E − 01 7.958842 E − 01 1.182512 E + 00 

 − 5.481852 E + 01  − 2.159127 E + 01  − 6.122393 E + 00  − 1.187123 E + 00  − 1.187427 E + 00 

1.181039 E + 02 7.603467 E + 01 7.156347 E + 01 4.406821 E + 01 2.099441 E + 01 

 
 

16 (4s) 17 (4p'') 18 (4d'') 19 (4f'') 

1.340888 E + 00 1.431579 E + 00 1.699431 E + 00 3.547535 E + 00 

 − 1.265168 E + 00  − 1.067123 E + 00  − 5.788844 E − 01  − 9.169640 E − 02 

1.329924 E + 01 1.101342 E + 01 8.611454 E + 00 2.453383 E + 00 

 

20 (5s) 21 (5p'') 22 (5d'') 23 (6s) 

4.454872 E + 00 5.595599 E + 00 1.161845 E + 01 1.856056 E + 01 

 − 1.395547 E − 02  − 8.554943 E − 03  − 3.792083 E − 04  − 7.467376 E − 05 

7.626280 E − 01 4.153868 E − 01 9.719603 E − 02 7.325306 E − 03 

 
 

k  1 (73 Ta) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  7.631713 E − 06 2.169085 E − 02 2.784660 E − 02 2.950866 E − 02 4.651300 E − 02 

k  3.920741 E + 16  − 1.874457 E + 04  − 1.945706 E + 04  − 1.947345 E + 04  − 8.914216 E + 02 

k  1.147814 E + 07 4.779089 E + 03 2.676727 E + 03 2.297139 E + 03 1.660270 E + 03 

 
 

6 (3d') 7 (5p') 8 (2p'') 9 (2s) 10 (4d') 

1.097535 E − 01 1.111061 E − 01 1.264236 E − 01 1.448492 E − 01 1.919797 E − 01 

 − 8.919505 E + 02  − 9.273707 E + 02  − 9.273802 E + 02  − 2.148920 E + 02  − 5.778574 E + 01 

6.957360 E + 02 4.852762 E + 02 4.430852 E + 02 3.764243 E + 02 2.852119 E + 02 

 

11 (3d'') 12 (3p'') 13 (3s) 14 (5d') 15 (4f') 

4.096055 E − 01 4.437983 E − 01 4.506598 E − 01 7.279785 E − 01 1.052722 E + 00 

 − 5.832648 E + 01  − 2.280348 E + 01  − 6.515035 E + 00  − 1.298346 E + 00  − 1.298943 E + 00 

1.234953 E + 02 7.900383 E + 01 7.420106 E + 01 4.903137 E + 01 2.527371 E + 01 

 
 

16 (4s) 17 (4p'') 18 (4d'') 19 (4f'') 

1.308684 E + 00 1.393838 E + 00 1.641369 E + 00 3.158166 E + 00 

 − 1.409128 E + 00  − 1.196100 E + 00  − 6.671165 E − 01  − 1.263770 E − 01 

1.484975 E + 01 1.131803 E + 01 8.915607 E + 00 3.000450 E + 00 

 

20 (5s) 21 (5p'') 22 (5d'') 23 (6s) 

4.287157 E + 00 5.330777 E + 00 1.062715 E + 01 1.819478 E + 01 

 − 1.619138 E − 02  − 1.013193 E − 02  − 6.761963 E − 04  − 7.926851 E − 05 

9.792991 E − 01 5.038921 E − 01 1.234208 E − 01 9.712115 E − 03 
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k  1 (74 W) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  7.335294 E − 06 2.134557 E − 02 2.732218 E − 02 2.909372 E − 02 4.531461 E − 02 

k  4.476005 E + 16  − 1.955890 E + 04  − 2.030652 E + 04  − 2.032387 E + 04  − 9.354103 E + 02 

k  1.210557 E + 07 4.925515 E + 03 2.764911 E + 03 2.369521 E + 03 1.723925 E + 03 

 
 

6 (5p') 7 (3d') 8 (2p'') 9 (2s) 10 (4d') 

1.062835 E − 01 1.074799 E − 01 1.244111 E − 01 1.425921 E − 01 1.856389 E − 01 

 − 9.359824 E + 02  − 9.359932 E + 02  − 9.737090 E + 02  − 2.260828 E + 02  − 6.139738 E + 01 

7.309494 E + 02 5.113910 E + 02 4.618265 E + 02 3.886275 E + 02 2.985765 E + 02 

 

11 (3d'') 12 (3p'') 13 (3s) 14 (5d') 15 (4f') 

4.011205 E − 01 4.354405 E − 01 4.425243 E − 01 6.785347 E − 01 9.535360 E − 01 

 − 6.199545 E + 01  − 2.427965 E + 01  − 6.926302 E + 00  − 1.416575 E + 00  − 1.417558 E + 00 

1.290182 E + 02 8.205992 E + 01 7.691620 E + 01 5.342073 E + 01 2.945134 E + 01 

 
 

16 (4s) 17 (4p'') 18 (4d'') 19 (4f'') 

1.277873 E + 00 1.357926 E + 00 1.587157 E + 00 2.860608 E + 00 

 − 1.565828 E + 00  − 1.337016 E + 00  − 7.649445 E − 01  − 1.668816 E − 01 

1.633277 E + 01 1.168801 E + 01 9.286319 E + 00 3.565638 E + 00 

 

20 (5s) 21 (5p'') 22 (5d'') 23 (6s) 

4.137164 E + 00 5.099395 E + 00 9.905362 E + 00 1.789615 E + 01 

 − 1.861103 E − 02  − 1.186834 E − 02  − 1.066182 E − 03  − 8.330332 E − 05 

1.197595 E + 00 5.905312 E − 01 1.466285 E − 01 1.066271 E − 02 

 
 

k  1 (75 Re) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  7.052590 E − 06 2.101090 E − 02 2.681617 E − 02 2.869023 E − 02 4.417950 E − 02 

k  5.104189 E + 16  − 2.039662 E + 04  − 2.118055 E + 04  − 2.119890 E + 04  − 9.808544 E + 02 

k  1.276098 E + 07 5.074261 E + 03 2.854636 E + 03 2.443103 E + 03 1.788532 E + 03 

 
 

6 (5p') 7 (3d') 8 (2p'') 9 (2s) 10 (4d') 

1.020708 E − 01 1.052952 E − 01 1.224605 E − 01 1.404029 E − 01 1.797421 E − 01 

 − 9.814717 E + 02  − 9.814839 E + 02  − 1.021596 E + 03  − 2.376730 E + 02  − 6.516340 E + 01 

7.738094 E + 02 5.373127 E + 02 4.779253 E + 02 4.011031 E + 02 3.121685 E + 02 

 

11 (3d'') 12 (3p'') 13 (3s) 14 (5d') 15 (4f') 

3.929669 E − 01 4.273761 E − 01 4.346616 E − 01 6.321120 E − 01 8.751885 E − 01 

 − 6.582227 E + 01  − 2.570976 E + 01  − 7.355407 E + 00  − 1.541238 E + 00  − 1.542757 E + 00 

1.347099 E + 02 8.524797 E + 01 7.975271 E + 01 5.819505 E + 01 3.383441 E + 01 

 

16 (4s) 17 (4p'') 18 (4d'') 19 (4f'') 

1.248527 E + 00 1.323911 E + 00 1.536742 E + 00 2.625565 E + 00 

 − 1.734519 E + 00  − 1.489190 E + 00  − 8.718813 E − 01  − 2.130049 E − 01 

1.778149 E + 01 1.212521 E + 01 9.722206 E + 00 4.151119 E + 00 
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20 (5s) 21 (5p'') 22 (5d'') 23 (6s) 

4.003368 E + 00 4.897269 E + 00 9.227675 E + 00 1.766722 E + 01 

 − 2.124345 E − 02  − 1.380188 E − 02  − 1.606236 E − 03  − 8.658389 E − 05 

1.415530 E + 00 6.732158 E − 01 1.719958 E − 01 1.225940 E − 02 

 
 

k  1 (76 W) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  6.782561 E − 06 2.068583 E − 02 2.632472 E − 02 2.829760 E − 02 4.307877 E − 02 

k  5.814921 E + 16  − 2.125837 E + 04  − 2.207983 E + 04  − 2.209924 E + 04  − 1.027866 E + 03 

k  1.344595 E + 07 5.225432 E + 03 2.946108 E + 03 2.517994 E + 03 1.854817 E + 03 

 

6 (5p') 7 (3d') 8 (2p'') 9 (2s) 10 (4d') 

9.799526 E − 02 1.031804 E − 01 1.205659 E − 01 1.382751 E − 01 1.740920 E − 01 

 − 1.028532 E + 03  − 1.028545 E + 03  − 1.071175 E + 03  − 2.497110 E + 02  − 6.911444 E + 01 

8.191251 E + 02 5.643502 E + 02 4.943785 E + 02 4.138285 E + 02 3.261744 E + 02 

 

11 (3d'') 12 (3p'') 13 (3s) 14 (5d') 15 (4f') 

3.850746 E − 01 4.195437 E − 01 4.270153 E − 01 6.193245 E − 01 8.085513 E − 01 

 − 6.983957 E + 01  − 2.720979 E + 01  − 7.808158 E + 00  − 1.676031 E + 00  − 1.677970 E + 00 

1.405995 E + 02 8.855556 E + 01 8.269640 E + 01 6.040299 E + 01 3.733654 E + 01 

 
 

16 (4s) 17 (4p'') 18 (4d'') 19 (4f'') 

1.219978 E + 00 1.290925 E + 00 1.488435 E + 00 2.425654 E + 00 

 − 1.921159 E + 00  − 1.658201 E + 00  − 9.923529 E − 01  − 2.672200 E − 01 

1.927409 E + 01 1.264124 E + 01 1.024084 E + 01 4.810809 E + 00 

 

20 (5s) 21 (5p'') 22 (5d'') 23 (6s) 

3.872806 E + 00 4.701730 E + 00 9.041002 E + 00 1.736408 E + 01 

 − 2.403135 E − 02  − 1.581149 E − 02  − 2.030086 E − 03  − 9.119816 E − 05 

1.678574 E + 00 7.911883 E − 01 1.919439 E − 01 1.255294 E − 02 

 
 

k  1 (77 Ir) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  6.524992 E − 06 2.037057 E − 02 2.585066 E − 02 2.791552 E − 02 4.203832 E − 02 

k  6.617015 E + 16  − 2.214417 E + 04  − 2.300436 E + 04  − 2.302485 E + 04  − 1.076373 E + 03 

k  1.416063 E + 07 5.378885 E + 03 3.039060 E + 03 2.594036 E + 03 1.921907 E + 03 

 

6 (5p') 7 (3d') 8 (2p'') 9 (2s) 10 (4d') 

9.440459 E − 02 1.011485 E − 01 1.187284 E − 01 1.362102 E − 01 1.688400 E − 01 

 − 1.077089 E + 03  − 1.077105 E + 03  − 1.122356 E + 03  − 2.621587 E + 02  − 7.322356 E + 01 

8.638821 E + 02 5.912136 E + 02 5.111503 E + 02 4.268041 E + 02 3.403589 E + 02 

 
 

11 (3d'') 12 (3p'') 13 (3s) 14 (5d') 15 (4f') 

3.774915 E − 01 4.119886 E − 01 4.196280 E − 01 5.983490 E − 01 7.535920 E − 01 

 − 7.401849 E + 01  − 2.876770 E + 01  − 8.279000 E + 00  − 1.817282 E + 00  − 1.819790 E + 00 

1.466288 E + 02 9.197084 E + 01 8.573813 E + 01 6.355893 E + 01 4.117309 E + 01 
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16 (4s) 17 (4p'') 18 (4d'') 19 (4f'') 

1.192849 E + 00 1.259747 E + 00 1.443532 E + 00 2.260776 E + 00 

 − 2.120161 E + 00  − 1.838851 E + 00  − 1.122330 E + 00  − 3.274016 E − 01 

2.075273 E + 01 1.320819 E + 01 1.080825 E + 01 5.489014 E + 00 

 

20 (5s) 21 (5p'') 22 (5d'') 23 (6s) 

3.755672 E + 00 4.529453 E + 00 8.734797 E + 00 1.712980 E + 01 

 − 2.703104 E − 02  − 1.801785 E − 02  − 2.603355 E − 03  − 9.499142 E − 05 

1.938918 E + 00 9.033696 E − 01 2.149277 E − 01 1.326012 E − 02 

 
 

k  1 (78 Pt) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  6.279256 E − 06 2.006461 E − 02 2.539271 E − 02 2.754356 E − 02 4.104965 E − 02 

k  7.521102 E + 16  − 2.305439 E + 04  − 2.395454 E + 04  − 2.397616 E + 04  − 1.126414 E + 03 

k  1.490592 E + 07 5.534636 E + 03 3.133523 E + 03 2.671247 E + 03 1.989927 E + 03 

 

6 (5p') 7 (3d') 8 (2p'') 9 (2s) 10 (4d') 

9.115679 E − 02 9.919285 E − 02 1.169451 E − 01 1.342048 E − 01 1.639215 E − 01 

 − 1.127184 E + 03  − 1.127201 E + 03  − 1.175181 E + 03  − 2.750300 E + 02  − 7.749827 E + 01 

9.087151 E + 02 6.181979 E + 02 5.282418 E + 02 4.400267 E + 02 3.547585 E + 02 

 

11 (3d'') 12 (3p'') 13 (3s) 14 (5d') 15 (4f') 

3.701928 E − 01 4.046900 E − 01 4.124811 E − 01 5.775879 E − 01 7.069320 E − 01 

 − 7.836692 E + 01  − 3.038651 E + 01  − 8.769163 E + 00  − 1.965711 E + 00  − 1.968898 E + 00 

1.528042 E + 02 9.549197 E + 01 8.887572 E + 01 6.694126 E + 01 4.511803 E + 01 

 
 

16 (4s) 17 (4p'') 18 (4d'') 19 (4f'') 

1.166953 E + 00 1.230120 E + 00 1.401480 E + 00 2.120796 E + 00 

 − 2.332757 E + 00  − 2.032301 E + 00  − 1.262751 E + 00  − 3.940994 E − 01 

2.224029 E + 01 1.382535 E + 01 1.142476 E + 01 6.196621 E + 00 

 

20 (5s) 21 (5p'') 22 (5d'') 23 (6s) 

3.648215 E + 00 4.373626 E + 00 8.431724 E + 00 1.692784 E + 01 

 − 3.024032 E − 02  − 2.040700 E − 02  − 3.285504 E − 03  − 9.843213 E − 05 

2.205280 E + 00 1.017173 E + 00 2.390923 E − 01 1.402244 E − 02 

 
 

k  1 (79 Au) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  6.044821 E − 06 1.976755 E − 02 2.495013 E − 02 2.718132 E − 02 4.010913 E − 02 

k  8.538629 E + 16  − 2.398938 E + 04  − 2.493072 E + 04  − 2.495351 E + 04  − 1.178013 E + 03 

k  1.568253 E + 07 5.692682 E + 03 3.229489 E + 03 2.749620 E + 03 2.058871 E + 03 

 

6 (5p') 7 (3d') 8 (2p'') 9 (2s) 10 (4d') 

8.819474 E − 02 9.730951 E − 02 1.152137 E − 01 1.322567 E − 01 1.593048 E − 01 

 − 1.178838 E + 03  − 1.178857 E + 03  − 1.229677 E + 03  − 2.883314 E + 02  − 8.194135 E + 01 

9.537326 E + 02 6.453641 E + 02 5.456497 E + 02 4.534934 E + 02 3.693735 E + 02 
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11 (3d'') 12 (3p'') 13 (3s) 14 (5d') 15 (4f') 

3.631640 E − 01 3.976366 E − 01 4.055643 E − 01 5.576508 E − 01 6.666796 E − 01 

 − 8.288773 E + 01  − 3.206721 E + 01  − 9.278955 E + 00  − 2.121442 E + 00  − 2.125426 E + 00 

1.591232 E + 02 9.911578 E + 01 9.210602 E + 01 7.048931 E + 01 4.916488 E + 01 

 

16 (4s) 17 (4p'') 18 (4d'') 19 (4f'') 

1.142212 E + 00 1.201935 E + 00 1.362009 E + 00 2.000039 E + 00 

 − 2.559251 E + 00  − 2.238845 E + 00  − 1.413880 E + 00  − 4.674971 E − 01 

2.374419 E + 01 1.448861 E + 01 1.208641 E + 01 6.934115 E + 00 

 
20 (5s) 21 (5p'') 22 (5d'') 23 (6s) 

3.548987 E + 00 4.231509 E + 00 8.140679 E + 00 1.675164 E + 01 

 − 3.367208 E − 02  − 2.299068 E − 02  − 4.085500 E − 03  − 1.015709 E − 04 

2.477770 E + 00 1.132656 E + 00 2.642118 E − 01 1.480553 E − 02 

 

k  1 (80 Hg) 2 (2p') 3 (3p') 4 (1s) 5 (4p') 

kR  5.821331 E − 06 1.947908 E − 02 2.452258 E − 02 2.682846 E − 02 3.921587 E − 02 

k  9.681318 E + 16  − 2.494941 E + 04  − 2.593320 E + 04  − 2.595720 E + 04  − 1.231179 E + 03 

k  1.649075 E + 07 5.852996 E + 03 3.326914 E + 03 2.829128 E + 03 2.128635 E + 03 

 
 

6 (5p') 7 (3d') 8 (2p'') 9 (2s) 10 (4d') 

8.550357 E − 02 9.549643 E − 02 1.135324 E − 01 1.303637 E − 01 1.549764 E − 01 

 − 1.232061 E + 03  − 1.232082 E + 03  − 1.285853 E + 03  − 3.020634 E + 02  − 8.655148 E + 01 

9.986890 E + 02 6.726233 E + 02 5.633633 E + 02 4.671986 E + 02 3.841763 E + 02 

 

11 (3d'') 12 (3p'') 13 (3s) 14 (5d') 15 (4f') 

3.563975 E − 01 3.908226 E − 01 3.988730 E − 01 5.364145 E − 01 6.316740 E − 01 

 − 8.757939 E + 01  − 3.380894 E + 01  − 9.807862 E + 00  − 2.284060 E + 00  − 2.289033 E + 00 

1.655741 E + 02 1.028348 E + 02 9.542193 E + 01 7.446016 E + 01 5.345713 E + 01 

 

16 (4s) 17 (4p'') 18 (4d'') 19 (4f'') 

1.118616 E + 00 1.175167 E + 00 1.325003 E + 00 1.895022 E + 00 

 − 2.799053 E + 00  − 2.457940 E + 00  − 1.575308 E + 00  − 5.473941 E − 01 

2.525985 E + 01 1.518807 E + 01 1.278284 E + 01 7.692339 E + 00 

 

20 (5s) 21 (5p'') 22 (5d'') 23 (6s) 

3.457738 E + 00 4.102389 E + 00 7.830668 E + 00 1.660763 E + 01 

 − 3.737423 E − 02  − 2.582468 E − 02  − 5.077650 E − 03  − 1.042362 E − 04 

2.748177 E + 00 1.242705 E + 00 2.904978 E − 01 1.570841 E − 02 

 
From the presented results one can drew following 

conclusions. In accordance with well-known ionization 
potential – atomic number relationship, quasi-classical 
atomic radius Rq reveals a quasi-periodic dependence 
upon the parameter Z with maxima at hydrogen H and 
typical metals (including all alkali elements) Li, Na, Al, 
K, Ga, Rb, Ag, In, Cs, Tl corresponding to the atomic 
ionization potentials’ minima. 

Schematic-plots of the obtained )(r  and )(r  
functions in the step-like form are shown in Figures 1 
and 2, respectively. Electric-charge-density reveals sharp 
and positive main maximum in the vicinity of center, 
which corresponds to the nucleus vibrations’ region, 
broad negative minimum, which corresponds to the elec-
tron-density main maximum located at relatively short 
distance from the center, and a few extremes at relatively  
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Figure 1. Schematic-plot of the electric-charge-density step- 
like radial distribution in atoms 
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Figure 2. Schematic-plot of the electron-potential-energy 
step-like radial distribution in atoms 
 
long distance, which are characteristic for the shell- 
structure of atoms. As for the electron-potential-energy- 
function, anywhere it is negative and monotonously rises. 
Thus, it posses only minimum at the center (an additional 
minimum may be revealed in effective-potential-func- 
tion). Of course, behind the atomic radius both )(r  

and )(r  functions in the step-like presentation are 

identically zero. 

5. Accuracy of Binding-Energy and  
Electronic-Structure Calculations Based on 
Radial Step-Like Atomic Potentials 

It is not out of place to consider accuracy of the binding 
energy and electronic-structure calculations carried out 
within the semiclassical approximation, i.e. on the basis 
of above introduced radial step-like atomic potentials. It 
is most convenient to estimate the method accuracy for 

Thomas-Fermi (TF) statistical semiclassical atomic mod-
el starting from the only analytical solution 

F
r

r 
4

2

8

81
)(

             (17) 

of the TF equation. Here F  is the Fermi-energy for 
intra-atomic electron gas, i.e. higher occupied electron 
level. Corresponding electron charge density is expressed 
by the function 

68

243
)(

r
r

               (18) 

As electron charge equals to 1  its potential energy 

in atom  4/1)()( rrrU   when 0r . 

Then, inner turning point radius 0r  for any electron 
bound in TF “atom”. As for the outer turning point radius 
r   of the electron with energy FE  , it can be found 
as only real positive root of the equation )(rUE eff , 

where 22/)1()()( rllrUrUeff   is the effective po-

tential energy of the electron with orbital quantum num-
ber l , i.e. 

24
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
          (19) 

Because differences between semiclassical electron 
energies are negligible if compared with their depth, one 
can suppose that approximately all of them coincide with 
Fermi-energy, FE  . In that case, the product )1( ll  

also should be substituted for its standard semiclassical 

expression 2)2/1( l . As a result, we get 
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9




l
r


              (20) 

Consequently, averaged partial charge density of a 
l -electron-subshell equals to 

4
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and 0, respectively, inside and outside the r  -sphere. 
As is known, when summation over the principal and 

orbital quantum numbers n  and l  characterizing elec-
tron motion in central-symmetric electric field is substi-
tuted for semiclassical integration the combinations 

2/1 n  and 2/1 l  serve as integration vari-
ables. As 1 nl  the limit of integration over   
should be taken equal to  2/11n . As for the de-
generacy factor, it equals to 4)12(2 l . Note that 

partial electron charge density takes on a nonzero value 
43 243/2   if  2/9 rr . Consequently, 
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r2/9  . But, maxmax    and, then, the ratio 

r2/9  should serve as the limit of integration over   
too. 

Now we can found total electron charge density by 
means of semiclassical integration: 

  
r

calSemiclassi
r

ddr
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0 0
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It yields semiclassical atomic potential in following 
form 

F
r

rcalSemiclassi 
4

3/122

80

)90(81
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
     (23) 

Variable parts of the obtained semiclassical expres-

sions reveal same radial dependences ( 6/1~ r  and 
6/1~ r , respectively, for electron charge density and 

potential) as corresponding exact analytical solutions, but 
differ from them by the multipliers 10/3  and 

3/2)10/3(  . Therefore, semiclassically determined struc-

tural and energy parameters are expected to be dis-
tinguished from their exact values by the multipliers 

of order of magnitude 1~02.1)3/10(~ 3/1   and 

1~96.0)10/3(~ 3/2  , respectively. Thus the estimated 

errors of the semiclassical approach make up a few per-
cent. This conclusion is actually proved by the above 
cited calculations performed for some one-, two-, and 
three-dimensional real polyatomic structures. 

6. Conclusions 

Obtained results, numerically reflected in presented ta-
bles, vividly show that an effective method of parame-
terization of the intra-atomic electric field can by based 
on semiclassical approach. Such possibility follows from 
the Maslov criterion, according to which the exact and 
semiclassical atomic electron-energy spectra should be 
similar to each other irrespective of the atomic poten-
tials’ smoothness properties. Within the semiclassical 
approximation, intra-atomic eclectic charge density and 
electric field potential distributions can be presented by 
the step-like radial functions, where nucleus and elec-
tron-states classical turning point radii play role of the 
steps’ limits, while charge density and potential inside a 
step are substituted for their volume averaged values. 
Superposition of the semiclassical atomic step-like radial 
potentials can serve as an initial approximation for the 
substance inner potential. Binding energy and electronic 
structure calculations based on such potential allow de-
termining of the substance structural and energy parame-
ters with relative accuracy making up a few percent, 
what is quite sufficient for materials science purposes. 
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ABSTRACT 

The impact of power fluctuation caused by renewable sources is highly negative. This article discusses the idea of an 
energy capacitor system (ECS) which regulates the power balance in a distribution system based on Multi-Agent Sys-
tem (MAS). Energy Capacitor system as a storage device plays the main role to control the system’s power quality by 
absorbing the fluctuations. Load Following Operation (LFO) process and coordination control scheme between the 
ECS and diesel generator have been introduced. Results show the efficient utilization of the ECS based on a special 
index defined in this paper to evaluate the power fluctuations in the distribution system. The results also show the useful 
implementation of the control scheme by revealing the capability of keeping the ECS stored energy in the specified 
range. 
 
Keywords: Energy capacitor system, Load following operation, Multi agents, Distributed Generation 

1. Introduction 

Utilization of Distributed Generation to power distribu-
tion system has been rabidly increased. Such a technol-
ogy has been presented strongly in the top of many re-
searches in the field of power system [1,2]. However, 
deregulation of electrical utilities, environmental con-
cerns and globalization could be the main reasons behind 
such phenomena. Using small and clean distributed 
power sources, such as photovoltaic, wind energy, fuel 
cells and energy capacitor devices, became a vital need 
to withstand the burdens of technological race. Providing 
an integrated performance and flexibility of the power 
system, is an urgent need to be implemented especially in 
the presence of uncontrollable and environmentally de-
pendant power sources. 

Previous studies explained the situation when dealing 
with distribution systems in the presence of distributed 
generation [3-5]. Optimum sizing and placement is one 

of the most important aspect regarding to dispersed 
sources [3]. Acharia et al. discussed analytically the al-
location of distributed generation in primary distribution 
network [4], others achieved to find the optimal alloca-
tion for reliability, losses, and voltage improvement [5], 
and others discussed about the distributed generation 
contribution to primary frequency control [6]. It is how-
ever, the impact of distributed generation makes the sys-
tem very sensitive to perturbations. 

In this paper, the ECS as a new technology of energy 
saving is proposed to be utilized in power distribution 
system. Thus, many other applications of the capacitors 
and ultra capacitors have been reviewed in order to make 
the study more comprehensive. Okamura [7] introduced 
the ECS in a basic study; however, overall characteristics 
have been discussed. It has been noticed that ECS appli-
cations are rapidly increased such as [8-11]. 

In this work, the control scheme based on the coordi-
nation between the ECS and the DG, as controllable de-
vices, has been proposed together with multi-agents and 
computer network utilization which is widely used ap-
plication. The influence of the computer network failure 
has been checked and treated in proper way. PI and PID 
controllers have been used to solve the problem of ECS 
size limitation and to complete the coordination process. 

Nomenclature: 
PV: Photovoltaic; DG: Diesel generator; WTG: Wind turbine generator
Va, Vb, and Vc: Nominal line voltages; Ia, Ib, and Ic: Currents injected; 
Pup: Power from the upper system; Pecs: Power from the ECS unit;  
Eecs: ECS Stored energy; Pdg: Power from the diesel unit; Ppv: Total 
output from PV units; Pwt: Total output from wind turbine; DPset: Con-
trol Signal to the diesel generator; Ptarget: Upper system target power; 
Pref.: Monitored power from upper system. 
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A long process of parameters and gains tuning has been 
hold based on trial and error methodology. Yet, further 
studies in the control strategies are ongoing, such as [12], 
where intelligent controllers, namely fuzzy logic switch-
ing have been utilized. 

Medium tension Power distribution system as a very 
important and sensitive part of the total power system, 
which links the transmission and consumers, also sup-
plies many industries and other vital parts and utilities, 
has been discussed. Table 1 shows the 30-bus 12.66 kV 
power distribution system data [13]. Unlike many other 
cases such as in [14-15], the study in this work and the 
related simulations have discussed more details of the 
distributed generation effect via using dynamic models of 
the DG and the WTG. 

2. Model Description 

Figure 1 shows the Single line diagram of the target sys-
tem also the main diagram of the Matlab/Simulink rep-
resentation. In the single line diagram, dotted lines are 
representing tie lines. However, the simulation has been 
made with all tie lines open to represent the base case 
according to [12].  

The dispersed sources added to the system are DG, 
WTG and PV including the ECS as a storage device, 
such a model can be considered as a flexible tool to im-
plement several applications to the distribution system 
such as reconfiguration [16] and distributed generation 
allocation [17]. The mathematical expressions of using 
the components in the distribution system are expressed 
by the concept of connecting any device to the distribu-
tion network. In our case the three phase voltage from the 
distribution system is used as an input and the output will 
be the current injected to the system. That can be ex-
plained as follow: 

 
where, V = [va, vb, vc]

T and I = [ia, ib, ic]
T; 

Table 1. The 33-bus distribution system data 

Load at receiving end 

Line 
no. 

Resistance
(Ω) 

Reactance 
(Ω) 

Real 
power(MW) 

Reactive 
power 

(MVAr) 

1 0.0922 0.0477 0.1 0.6 

2 0.493 0.2411 0.09 0.04 

3 0.366 0.1864 0.12 0.08 

4 0.3811 0.1941 0.06 0.03 

5 0.819 0.707 0.06 0.02 

6 0.1872 0.6188 0.2 0.1 

7 1.7114 1.2351 0.2 0.1 

8 1.03 0.74 0.06 0.02 

9 1.04 0.74 0.06 0.02 

10 0.1966 0.065 0.045 0.03 

11 0.3744 0.1238 0.06 0.035 

12 1.468 1.155 0.06 0.035 

13 0.5416 0.7129 0.12 0.08 

14 0.591 0.526 0.06 0.01 

15 07463 0.545 0.06 0.02 

16 1.289 1.721 0.06 0.02 

17 0.732 0.574 0.09 0.04 

18 0.164 0.1565 0.09 0.04 

19 1.5042 1.3554 0.09 0.04 

20 0.4095 0.4784 0.09 0.04 

21 0.7089 0.9373 0.09 0.04 

22 0.4512 0.3083 0.09 0.05 

23 0.898 0.7091 0.42 0.2 

24 0.896 0.7011 0.42 0.2 

25 0.203 0.1034 0.06 0.025 

26 0.2842 0.1447 0.06 0.025 

27 1.059 0.9337 0.06 0.02 

28 0.8042 0.7006 0.12 0.07 

29 0.5275 0.2585 0.2 0.6 

30 0.9744 0.963 0.15 0.07 

31 0.3105 0.3619 0.21 0.1 

32 0.341 0.5302 0.06 0.04 

Substantion voltage-12.66Kv. 

 

Figure 1. Single line diagram and Matlab/Simulink model representation of the distribution system 
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In case of PV the factor K is always +ve (K > 0). 
In case of variable Load, factor K is always -ve (K < 0). 
In case of ECS, the factor K can be controlled to de-

termine the charging/discharging operation of the ECS as 
If K > 0 represents Discharging operation and if K < 0 
represents Charging operation. 

The elements of the model are further explained as 
follow: 

2.1 DG Model 

Synchronous machine per-unit standard (pu), 5000 kW 
maximum rated power, 60 Hz and 12.66 kV dynamical 
model has been used. The configuration of the mathe-
matical expression used to model the synchronous gen-
erator is shown in Figure 2. 

Where Pto is the mechanical input to the generator, Pe 
is the electrical output of the generator, δ is the phase 
difference angle, H is the inertia constant and D is the 
damping coefficient. The Matlab/Simulink block dia-
gram of the synchronous generator together with the 
governing system is shown in Figure 3. Where Pm is the 
Mechanical power at the machine's shaft and Vf is the 
field voltage. 

2.2. WTG model 

In the literature, several studies have been reported re-
garding wind turbines and wind power driven generators 
[18]. The model proposed in this paper is a squirrel cage 
induction generator based of the wind speed versus wind 
turbine output power characteristics. The power extracted 
from wind is given by the following Equation 

  
3

2

.
windWT V

A
P


            (1) 

 

Figure 2. Mathematical model of the synchronous generator  
 
where; ρ : Air density, kg /m3 A: Turbine swept area, m2 

and Vwind : Wind speed, m/s. 

Mathematical relation for mechanical power extraction 
form the WTG can be expressed as follows [19,20].  

WTpm PCP ).,(          (2) 

where; λ : Tip speed ratio, β : Blade pitch angle, Degree. 
Cp(λ,β): Performance coefficient of the turbine. 

The coefficient of performance is not constant, but 
varies with tip speed ratio; . A generic equation is used 
to model Cp as shown in the following equation: 

4
3

3
2

2
1 )()()(),(  cccCp       (3) 

This equation, based on the wind turbine characteris-
tics and the coefficients c1, c2 and c3 are determined ac-
cording to Simulink model of the wind turbine which has 
been modified as phasor type induction generator. The 
tip speed ratio can be obtained from the following equa-
tion: 

windV

R .
              (4) 

 
Figure 3. Matlab block diagram of the DG connections 
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Figure 4. Matlab/Simulink representation of connecting the wind turbine model (to the left) and power characteristics of the 
WTG (to the right) 
 
where, R is radius of the wind turbine and ω is the wind 
turbine rotation speed. The electrical power generated by 
the WTG was defined as follows 

mgme pP ..             (5) 

where; m: Mechanical efficiency. g: Generator effi-
ciency. 

For this paper, three phase instantaneous dynamical 
model has been constructed. Figure 4 illustrates the 
Simulink block diagram of connecting the wind turbine 
to the system. It also shows the power characteristics of 
the wind turbine generator. The power characteristics 
diagram indicates that the model is an induction fixed 
speed wind generator based on Equations (1) to (5). 

2.3 PV System Model 

To represent the fluctuations caused by PV technology 
and according to the way the network has been con-
structed, a simplified mathematical model based on 
transfer function has been used, also for the sake of sim-
plicity, the PV model has been made considering the AC 
side of the PV model. Meanwhile, random variations to 
model the insolation have been considered with suitable 
gains and time delay, using Matlab/Simulink. Three 
phase voltages taken from the line data transferred to the 
three phase currents injected to the network. Then the 
power is calculated by multiplying voltage and current as 
shown in Figure 5.  

 

Figure 5. Mathmatical expression of PV model 

2.4 ECS Model 

Energy Capacitor System (ECS) consists of capacitors 
and power electronics. It is used as an energy storage 
system. The capacitor part of the ECS is a group of elec-
tric double layer capacitors of increased energy density. 
The AC side of the three-phase instantaneous model is 
considered in this paper. Similar model of the PV system 
has been considered with controlled factor K. Charging 
and discharging operation of the ECS is utilized for LFO 
control. Figure 6 shows the charging and discharging 
operation concept with the limitations of having fully 
charged or fully discharged conditions. Keeping thechar- 
ging/discharging operation in the specified range vitally 
depends on the DG support and using the suitable con-
trollers. The charging and discharging level of the ECS 
was specified from 0.5 kWh to 2.5 kWh in this work. 

2.5 Variable Load Model 

Although the fluctuations in power caused by the PV 
system and by the WTG are enough to cause the pertur-
bations required to check the ECS efficiency, a variable 
load has been considered to make the system more real-
istic. The same model explained earlier in Section 2 has 
been used as simplified model of current injection with 
negative factor K. Ramp changes in the load have been 
considered during the simulation as shown in Figure 7. 
However, random, periodical and step changes in the 
variable load have been also checked giving the same 
result but, ramp changes in the variable load could be 
more realistic according to the time scale used in this 
paper. Also, ramp changes in the load are more severe to 
check the efficiency of the saving device (ECS) and the 
success of the control scheme in coordinating between 
the diesel Generator and the ECS.  

3. Working Criteria 

As the system is connected to infinite bus and because of 
the renewable energy sources that scattered around, the 
big concern is about keeping the power delivered from  
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Figure 6. ECS charging/discharging operation concept 

 

 
Figure 7. Ramp variable load 

 
the upper system as much as regulated as possible. It 
should be regulated, to satisfy the consumer’s demand of 
good quality of power and to overcome the consequences 
of power fluctuations. Thus LFO is considered as follow: 

3.1 Load Following Operation 

With utilizing ECS, multi-agents based LFO of two lev-
els, global and local, are performed to keep the real 
power supplied from the upper system regulated. The 
multi-agents system is a computer network consists of 
several personal computers called agents, are responsible 
about sending and receiving data among each others to 
perform the control strategy and provide the coordination 
scheme between elements of the system, namely the ECS 
and the DG. Those agents are divided into three parts: 
 Monitoring agent has the mission of measuring the 

data required from one part of the system and supply it 
through the computer network to the supervisor agent. 
 Supervisor agent plays the mission of coordination 

among the controllable devices in the system, it is obvi-
ously provided with the suitable algorithm and control 
strategy in order to send the required data to the control 
agent. 
 Control agent has the mission of applying the con-

trol signal via sending it to the desired equipment which 
is the DG in this case. DG will act according to the con-
trol value to support the ECS which is small in size but 

fast in charging and discharging. 
Figure 8 shows the utilization of multi-agents and 

computer network, where the data files X and Y prepared 
at the monitoring agent which is PC1. Hard drives F and 
G of PC2 and PC3 receive data from PC1 respectively 
(PC2 is the supervisor agent and PC3 is the control 
agent). After that, PC2 inputs the data X received from 
PC1 and prepare the data file Z to be sent to PC3. PC3 
reads the data file Z and prepare the control action. 

A small scale computer network (LAN) has been con-
structed at the laboratory to evaluate MAS utilization. In 
addition, analogue simulations have been performed with 
real time simulator which is available at Kyushu Power 
Company-Japan. 

Analogue to digital convertor A/D and digital to ana-
logue converter D/A including Digital signal processing 
board DSP are used to perform the multi-agent based 
control action. Figure 9 shows a part of the analogue si- 
mulation process. 

3.2 Global Control 

Global control or upper level control is performed when 
 

 

Figure 8. Multi-agents and computer network utilization 
 

 

Figure 9. Analogue simulator interfacing process 
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computer network is available and able to communicate 
between the ECS and the DG whom are controllable de-
vices. These two devices can be efficiently coordinate to 
overcome the fluctuations in power caused by the WTG 
and the PV system. In case of the global control the DG 
receives the required signal from the ECS through the 
agents to absorb the fluctuations. The ECS itself has 
unique characteristics and can compensate any lack in 
power or absorb any higher generation, through the fast 
charging and discharging operation. However, the lim-
ited size of the ECS causes a constraint which be avoided 
by getting the support of the DG. As the ECS and the DG 
are not at the same location, MAS has been utilized.  

3.3 Local Control 

This case happens when the computer network fails 
down due to any reason, in other words, the DG and the 
ECS system are not coordinated during this period of 
time. The performance of the energy capacitor system is 
clearly degraded and the DG cannot perform the LFO 
itself. Another technique has been used in this situation 
by modifying the target power to a certain accepted value 
to improve the performance of the ECS. The local infor-
mation in the location of the ECS has been implemented. 
That is called the lower or local control.  

4. Results and Discussion 

Based on trial and error methodology, the parameters of 
the PI controllers have been tuned until the optimum 
values obtained. Table 2 exposes the tuned parameters 
according different strategies. 

Figures 10-12 illustrate the results according to those 
strategies. In a comparison between the three graphs, 
from Figure 10 the ECS is not in service and no control 
action is performed which results in a very fluctuated and 
distorted power delivery from the upper system. Next 
graph, Figure 11 illustrates the global control condition 
where both the DG and the ECS are coordinated with 
each others, which results in a high level of regulated real 
power. The last graph Figure 12 shows the local control 
where the DG is not supporting the ECS due to computer 
network failure. The power from the upper system has 
been modified in this case to maintain the saved energy 
of the ECS in the required specified level. Comparing the  
 

Table 2. Controller tuned parameters for LFO 

Strategy Parameters 
On the 
ECS 

On the 
DG 

Coordina-
tion  

controller 

P 0.25 6 0.0125 
I 100 0.1 0.00005 

Global 
control 

parameters Gain 1 0.001 - 
P 0.25 6 0.0125 
I 1000 0.1 0.00005 

Local 
control 

parameters Gain 0.005 0.001 - 

 

Figure 10. Real power from the ECS and from the system 
without control 
 

 

Figure 11. Real power from the ECS and from the system in 
global control 
 

 

Figure 12. Real power from the ECS and from the system in 
local control 

 
Figures 10 and 11, we can understand the efficiency of 
the ECS. Meanwhile, comparing the Figures 11 and 12, 
we can understand the efficiency of the Multi-agent con-
trol scheme. 

The evaluation index is expressed in Equation (6) 
where the averaged power is calculated to investigate the 
power deviation from the upper system of the described 
distribution network and to evaluate the LFO scheme for 
every strategy [21].  

N

PP
Index

tup∑
             (6)  

where Pup is the power from the upper system, Pt the target 
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power, and N is the number of entered data. The obtained 
indices according to the different control strategy are 
shown in Table 3 (The smaller the index, the better the 
result). 

The coordination scheme between the DG and the 
ECS results in a proper operation of the ECS, in other 
words to keep the stored Energy of the ECS in a certain 
desired level, the support from the DG is required. 
Simulation results shown in Figure 13 show that the tra-
jectory of the DG output is opposite to the ECS stored 
energy trajectory. The verification of this result is simply 
done by checking the index of the upper system power. If 
the saving energy of the ECS is over or under the desired 
limit, the index will be very high and the ECS will stop 
working. As shown in Figure 12, in the period from 3 to 
4.2 seconds the ECS stopped because of the over satura-
tion in the saved energy due to size limitation of the ECS. 
By using the suitable controller and suitable coordination 
scheme, this phenomenon has been eliminated and con-
tentious control action can be achieved. 

The coordination scheme between the DG and the 
 

Table 3. LFO indices for different control strategy 

CONTROL STRATEGY INDEX 
No control 308.438 kW 

Global control 6.511 kW 

Local control 187.091 kW 

 

 

Figure 13. Coordination scheme illustrations 
 

 

Figure 14. Voltage profile at every node of the system 

ECS results in a proper operation of the ECS, in other 
words to keep the stored Energy of the ECS in a certain 
desired level, the support from the DG is required. 
Simulation results shown in Figure 13 show that the tra-
jectory of the DG output is opposite to the ECS stored 
energy trajectory. The verification of this result is simply 
done by checking the index of the upper system power. If 
the saving energy of the ECS is over or under the desired 
limit, the index will be very high and the ECS will stop 
working. As shown in Figure 12, in the period from 3 to 
4.2 seconds the ECS stopped because of the over satura-
tion in the saved energy due to size limitation of the ECS. 
By using the suitable controller and suitable coordination 
scheme, this phenomenon has been eliminated and con-
tentious control action can be achieved. 

5. Conclusions 

Two main objectives have been achieved from this arti-
cle. The first one is to show the efficient utilization of the 
ECS as a new technology in power distribution system. 
The second one is to show the efficiency of the control 
scheme and the utilization of MAS. The ECS can absorb 
all the fluctuations in real power caused by renewable 
energy sources with size limitations. DG cannot absorb 
such fluctuations due to technical limitations. The 
scheme in this article provides coordination between the 
two devices. Results show an efficient usage of the 
scheme, an efficient utilization of MAS and applicable 
implementation of ECS. All of all, with the ECS and the 
suitable control scheme the consequences of fluctuated 
power are highly avoided. 
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ABSTRACT 

Axial flux hysteresis motor (AFHM) is self-starting synchronous motor that uses the hysteresis characteristics of mag-
netic materials. It is known that the magnetic characteristics of hysteresis motor could be easily affected by air gap and 
structure dimensions variation. Air gap length plays an important role in flux distribution in hysteresis ring and influ-
ences the output torque, terminal current, efficiency and even optimal value of other structural parameters of AFHM. 
Regarding this issue, in this study effect of air gap variation on performance characteristics of an axial flux hysteresis 
motor and effect of air gap length on hysteresis ring thickness and stator winding turns is investigated. Effect of air gap 
length on electrical circuit model is perused. Finally, simulation of AFHM in order to extract the output values of motor 
and sensitivity analysis on air gap variation is done using 3D-Finite Element Model. Hysteresis loop in the shape of an 
inclined ellipse is adopted. This study can help designers in design approach of such motors. 
 
Keywords: Hysteresis Loop, Axial Flux Hysteresis Motor, 3D-FEM Model, Complex Permeability, Air Gap Effect 

1. Introduction 

The main features of hysteresis motor are Simple con-
struction with conventional three phase stator windings, 
solid rotor ring and constant self-starting torque during 
the run-up and synchronization period [1]. These advan-
tages make the hysteresis motor especially suitable for 
applications, such as compressors, pumps, timing and 
recording equipment [2]. Hysteresis motors use the hys-
teresis characteristics of magnetic materials. It is known 
the magnetic characteristics of the motor could be easily 
affected by air gap length and structure dimensions vari-
ations [3-5]. Regarding this issue, in this study effect of 
air gap variation on performance characteristics and op-
timal hysteresis ring thickness and stator coil turns of 
axial flux hysteresis motors is investigated. Effect of air- 
gap length on electrical circuit model is perused. Mean-
while, the finite element method (FEM) is implemented 
for accurate simulation. Such simulation is based upon 
Maxwell’s field equations considering the case of a 
circumferential flux type machine at synchronous speed. 
A hysteresis loop in the shape of inclined ellipse is 
adopted. Also, the application of complex permeability 
concept is implemented in order to model the hysteresis 
loop. In this study a 3D finite element model is imple-
mented in order to simulate AFHM. This 3D model has  

high level of accuracy and gives us a better insight of 
motor performance. All in all, the objective of this paper 
is to derive the performance characteristics of axial flux 
hysteresis motor and to perform sensitivity analysis of 
such motors at synchronous speed based on 3D FEM. 
Also, this model can be used in the design approach and 
precise analysis of axial flux hysteresis motors. 

2. Structure and Winding Configuration 

This type of motors do not have slot on their rotors and 
the rotor structure is quite simple. Hysteresis ring is 
made up of semi hard magnetic materials that can con-
duct flux line circumferentially. The schematic structure 
diagram of a two pole axial flux hysteresis motor without 
ring holder is shown in Figure 1. As seen in diagram, the 
upper surface of the stator has tooth and slots. This stator 
has a unique three-phase winding that lead to small re-
sistance and the rotor of such motors is generally de-
signed as a disc type motor. The rotor is made up of two 
parts. Firstly, hysteresis ring which is the basic element 
for the torque providing that is made of semi hard mag-
netic material. Secondly, the hysteresis ring holder; 
which almost is made of the nonmagnetic material such 
as aluminum and its alloys. This part of motor does not 
have any effect on steady state operation mode of motor  
and only is a copulative between the rotor and the motor 
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shaft. These parts of motor are shown separately in Fig-
ure 2. 

The winding diagram and terminal connection mode of 
the 2-pole stator windings is shown in Figure 3. 

 

 

Figure 1. The schematic structure diagram of an axial flux 
hysteresis motor without ring holder 
 

 

(a) 

(b) 

(c)  

Figure 2. Different parts of axial flux hysteresis motor. (1) 
Holder; (2) Hysteresis ring; (3) Stator and winding 

 

 
(a) 

aa b bcc

(b) 

Figure 3. (a) Winding diagram; (b) Stator terminal connec-
tion of 2-pole hysteresis motor 

3. Air Gap Effect on Electrical Circuit 

Figure 4 shows the equivalent electrical circuit of axial 
flux hysteresis motor [4]. 

It is proved that air gap length has effect on stator lea-
kage reactance and magnetizing reactance. Equations that 
show the effect of air-gap on those terms are as bellow 
[4]: 

1-Stator leakage reactance is component of three 
terms:  

endbeltslots XXXX         (1) 

where Xslot  is the slot reactance, and Xend is the ending 
reactance. 

beltX  is the belt or differential leakage reactance and 

its value can be determined by the following equation 
and an iterative method [4]: 

9104646.0  xmbbelt KmKKX     (2) 

In order to specify , firstly the values of Km coef-

ficients should be calculated [4]. 
beltX
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k              (3) 

where, is the air gap area of one pole and  is the 

effective air gap length. 
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2-Magnetizing reactance [4]: 
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In this equation  is air gap inductance that de-

pends on effective air gap length [4]. 
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          (5) 

So, variation of air gap length has effect on two terms 
of equivalent electrical circuit and this effect can influ-
ence output characteristics of motor. In next parts, the 
simulation approach of AFHM is presented in order to 
investigate the air-gap variation effect.   

Figure 4. Equivalent electrical circuit of three phase axial 
flux hysteresis motor 
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4. Hysteresis Loop Approximation 

 to predict In this study, a complex permeability is used
the hysteresis loop in the inclined ellipse shape. There is 
some papers that deal with complex permeability and its 
theory [6-8]. The complex permeability is a useful tool 
for dealing with magnetic effect. In this study, a complex 
permeability is used to predict the hysteresis loop in the 
inclined ellipse. Shape Figure 5 helps us to exploit the 
real and imaginary parts of complex permeability ( '

r  

and ''
r ) as a function of Hmax, HC and Bmax [9]. 

0

max

maxB

0 
 H

r              (6) 






 

max

1sin H
HC             (7) 

   

where γ is hysteresis lag angle betw

  cos.'
rr              (8) 

  sin.''
rr                (9) 

een flux density and 
magnetic field intensity, r  is the relative permeability, 

'
r  and ''

r  are the real and imaginary part of complex 

meability.  
As known, fo

per
r a hysteresis material there is different 

hysteresis loop. In order to choose an accurate loop re-
garding to magnetic circuit that hysteresis material is in, 
an iteration method is used that is illustrated with a flow 
chart in Figure 6. In the first iteration, a random hystere-
sis ring is selected. So, all the hysteresis ring elements 
have the arbitrary permeability. From the FEA, the 
maximum flux density for the circumferential direction 
in the hysteresis ring region can be obtained. Now, the 
maximum flux density obtained from FEA is checked 
with previous value and this procedure continues until 
the convergence criterion is satisfied. If the analysis is 
completed, torque of motor can be evaluated. It is so im-
portant to select an accurate hysteresis loop since the 
output torque of the motor is proportional to the area of 
hysteresis loop [10,11] regarding Equation (5). 

 

 

hr EpVT
2
1

            (10) 

where, p is number of pole pairs, V e hysteresis ring 

d 
hy

r is th
volume and Eh is the area of hysteresis loop.  

It is seen that that this procedure is so effective an
steresis loop modeling with complex permeability has 

close agreement with real motor tests.  
 

 

Figure 6. Flow chart for accurate hysteresis selection 
 

, a 3D finite element model is im-

5. FEM Model 

As mentioned before
plemented in order to simulate of proposed motor [12]. 
This 3D model has high level of accuracy and gives us a 
better insight of motor performance. Finite element me-
thod is based on Maxwell’s equations. The electromag-
netic field inside the machine is given by:  

t
BcurlE               (11) 

t
DJcurlH 
            (12) 

               (13) 0divB  

divD               (14) 

In order to have high level of accuracy the aut
m

omatic 
ash diagram is not used and a mesh diagram is de-

signed manually. In this simulation node congestion is 
higher around the air gap and hysteresis ring. Hexagonal 
element in stator and trigonal prism element is used in 
rotor in order to constitute the mesh diagram. The total 
number of nodes is about 130000 that lead to high level 
of accuracy. Meanwhile, for boundary conditions, the 
homogenous Dirichlet condition is adopted on the infi-Figure 5. Inclined hysteresis loop approximation  
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nite box that encompasses the motor.  
This simulation is based on circuit coupled model that 

th

imulation 

otor is analyzed be-
ca

ugh 
th

e phase voltage is the input quantity. Figure 7 shows 
the circuit coupled model that is used in this study. In 
this model for each phase two coil winding is considered. 
One of this coils send the current in motor and another 
returns current from midpoint of winding in star connec-
tion. Coil winding connection in each phase is exactly as 
the same that is illustrated in Figure 3(b). Meanwhile, in 
this model voltage source is assumed as the input source. 

6. Simulation Results and Discussion 

Based on the above respects, finite element s
for the axial flux hysteresis motor has been done. The 
simulation research has been made for a 2 poles proto-
type AFHM. The parameter of the prototype axial flux 
hysteresis motor and the output quantities of motor for 2 
mm air gap is given in Table 1.  

It must be noted that half of the m
use of the magnetic symmetry of the motor. As seen in 

Figure 8 nodes congestion becomes higher near the air 
gap and hysteresis ring in order to accurate simulation. 

Figure 9 shows the distribution of flux in motor.  
As said before, flux lines are circumferentially thro
e hysteresis ring. 
 

 

Figure 7. Circuit coupled model used in simulation 

Table 1. Motor aracteristics 

Quantity Value Value 

 
 ch

Quantity 

Rated pow

 

Figure 8. Mesh congestion is higher near air gap and hys-
teresis ring  
 

 

Figure 9. Distribution of the circumferential flux 
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Figure 10. Isovalues diagram of flux density of axial flux
hysteresis motor 

he isovalues diagram of flux density 
in

 

 
Figure 10 shows t
 motor.  
Since now based on FEM model the simulation of 

motor for real dimensions is done and the output charac-
teristics of motor is extracted. Now by change the air gap 
from 0.6 mm to 4 mm the variation of output quantities is 
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investigated.  
Figure 11 demonstrates variations of the input current 

of the machine versus air gap length of motor.  

. So, 

im

llustrated in Figure 12. 

f motor.  

effect leads to 
hi

us air gap length of motor.  

by lower 
ai

ength of motor.  

From Equations (3) and (5) it is obvious that air gap 
reduction leads to higher value of X  and belt M

pedance has increased and input current has a less 
value. 

The maximum flux density in rotor ring for various air 
gap is i

X

Figure 13 demonstrates variations of the torque of the 
machine versus air gap length o

As the air gap length reduced, distribution of flux den-
sity in air gap has higher value and this 

gher flux density in hysteresis ring. So, the output 
torque increases.  

Figure 14 demonstrates variations of the power factor 
of the machine vers

From this diagram it is found that the relative of real 
part of impedance to imaginary part is increased 

r gap length. The magnetizing current is decreased by 
lower values of airgap and so the imaginary part of cur-
rent is decreased, too.  

Figure 15 demonstrates variations of efficiency of the 
machine versus air gap l

 

  

Figure 11. Terminal current variation versus air gap length 
 

 

Figure 12. Maximum flux density in rotor versus ai gap length 
 

r 

 

Figure 13. Output torque variation versus air gap length 

By reduce in air gap length input power is reduced by 
lower level of input current and the output torque is in-
creased, so it is obvious that the efficiency will be in-
creased. 

Figure 16 demonstrates variations of the hysteresis 
ring thickness versus air gap length of motor under con-
stant load. 

According to Figure 12 it can be extracted that the 
low ty 
on

load torque the bigger hysteresis loop area lead 
to

too. Though, simulation shows that for air 
ga

er air gap length lead to higher maximum flux densi
 hysteresis ring and higher flux density lead to bigger 

hysteresis loop. So area of hysteresis loop increases with 
lower air gap length. Meantime, Equation (10) shows for 
constant 

 smaller hysteresis ring volume. Thus, when the air gap 
length is decreased, the thickness of hysteresis ring is 
decreased, 

ps bigger than 3.2 mm, thicker hysteresis ring cannot 
produce base torque and the hysteresis ring is in saturated 
zone.  

Figure 17 demonstrates variations of the stator winding 
turns versus air gap length of motor under constant load. 

According to Figure 11 it can be extracted that the 
lower air gap length lead to lower terminal current and 
lower terminal current lead to lower ampere-turn. So, for  

 

 

Figure 14. Power factor variation versus air gap length 
 

 

Figure 15. Efficiency variation versus air gap length 
 

 

Figure 16. Hysteresis ring thickness versus air gap length 
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Furthermore all simulation results show that smaller air 
gap (g) how much increases machine efficiency, Power 
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chanical constrains, the air gap is assumed minimum 
possible value. 

REFERENCES 
[1] M. Azizur Rahman, “Analytical Models for Polyphase 

Hysteresis Motor,” Rotating Machinery Committee of the 
IEEE Power Engineering Society, December 10, 1970. 

[2] M. Azizur Rahman and R. F. Qin, “Starting and Synchro-

 

 

[9] M. Getzlaff, “Fundamental of Magnetism,” Springer- 
Verlag, Berlin, 2008. 

[10] H. K. Kim, S. K. Hong and H. K. Jung, “Analysis of Hys-
teresis Motor Using Finite Element Me
netization-Dependent Model,” IEEE Transactions on 
Magnetic, Vol. 36, No

[11] S. K. Hong, H. K. Kim, H. S. Kim and H. K. Jung, 
“Torque Calculation of Hysteresis Motor Using Vector 
Hysteresis Model,” IEEE Transactions on Magnetic, Vol. 
36, No. 4, July 2000. 

[12] CEDRAT Group, “Flux3D User’s Guide,” Version 10.3, 
France, 2009. 



J. Electromagnetic Analysis & Applications, 2010, 2: 258-263 
doi:10.4236/jemaa.2010.24032 Published Online April 2010 (http://www.SciRP.org/journal/jemaa) 

Copyright © 2010 SciRes.                                                                               JEMAA 

Developing a 3D-FEM Model for Electromagnetic 
Analysis of an Axial Flux Permanent Magnet 
Machine 

Seyyed Mehdi Mirimani, Abolfazl Vahedi 
 

Department of Electrical Engineering, Centre of Excellence for Power Systems Automation and Operation, Iran University of   
Science & Technology, Tehran, Iran. 
Email: mehdimirimani@gmail.com, avahedi@iust.ac.ir 

Received December 13th, 2009; revised January 27th, 2010; accepted February 4th, 2010. 

ABSTRACT 

Recently, many optimal designs for axial flux permanent magnet (AFPM) motors were performed based on finite- ele-
ment (FE) analysis. Most of the models are based on reduction of 3D problem to 2D problem which is not accurate for 
design aspects. This paper describes an accurate electromagnetic analysis of a surface mounted, 28 pole AFPM with 
concentrated stator winding. The AFPM is modeled with three-dimensional finite-element method. This model includes 
all geometrical and physical characteristics of the machine components. Using this accurate modeling makes it possible 
to obtain demanded signals for a very high precision analysis. Magnetic flux density, back-EMF, magnetic axial force 
and cogging torque of the motor are simulated using FLUX-3D V10.3.2. Meanwhile, the model is parametric and can 
be used for design process and sensitivity analysis. 
 
Keywords: Axial Flux Permanent Magnet (AFPM) Motor, Three-Dimensional Finite-Element Method (3D-FEM),  

Cogging Torque 

1. Introduction 

Axial Flux Permanent Magnet Machines (AFPMM) 
firstly appeared in technical literatures in the mid of 
70s and their fields of application spread widely. 
AFPM machines are increasingly used in various ap-
plications due to their high efficiency, compact con-
struction and high torque at low speed [1-3]. AFPM 
unique topologies allow designers to design multi pole 
machines. Thus, it can be directly coupled to the low- 
speed turbines, such as wind and hydro turbines [4]. 
Their robustness and compactness make high-speed 
axial-flux machines suitable for distributed generating 
application [5]. It is also a suitable candidate for elec-
tric vehicle (EV) and traction motors [6]. 

Modeling of electrical machines is very important 
because of its usage in study of machines behavior and 
optimization process. Modeling methods of electrical 
machines can be categorized into analytical modeling 
and numerical modeling. Analytical modeling has the 
profit of rapidity but, the accuracy of this modeling is 
not enough for optimization in design process. Instead, 
Numerical modeling is very accurate method but this 

method is time consuming. Numerical modeling is used 
in applications Such as design and optimization of 
electrical devices that accurate modeling is needed. In 
such applications, accuracy is very important and dura-
tion of simulation has less importance. Numerical 
method is based on discretization of calculation domain 
to finite elements and solving Maxwell equations in 
these elements. Finite-element method can be catego-
rized into two-dimensional (2D) and three-dimensional 
(3D) method. 3D form is more time consuming but it 
has higher accuracy than 2D modeling. Many literates 
have demonstrated that AFPM Machines are intrinsi-
cally 3-D machines and accurately analyzing the be-
havior of these machines needs 3D-FEM modeling [7]. 
Many of the literatures model an AFPM based on re-
duction of the 3D problem to a 2D problem. These 
models are not accurate for design process and sensi-
tivity analysis [1,8,9]. 

In this paper, a surface mounted axial flux permanent 
magnet (AFPM) motor with concentrated coils is mod-
eled using 3-dimensional finite element method. Mag-
netic flux density of airgap, back-EMF, axial forces be-
tween rotor and stator and cogging torque are calculated. 
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This accurate model can be used for design process and 
sensitivity analysis. 

2. Motor Specification 

Figure 1 shows a three-phase, 210-V, 2200-W, 1285- 
rpm, ∆-connected AFPM machine that was modeled. It 
consists of a stator with 24 slots and 12 single layer con-
centrated coils with fractional winding. Fractional slot 
windings allow a large number of poles to be designed 
without increasing the number of slots by putting less 
than one slot per phase under each rotor pole. This pro-
cedure results also into a more compact winding design, 
allowing for less copper losses due to shorter end connec-
tions. The concentrated winding allows a large number of 
pole pairs to be designed even in a small machine [10]. 
Coils with a same color in the model belong to one phase. 
The rotor disc consists of 28 magnets of alternating polar-
ity. The machine parameters are given in Table 1 [7]. 

3. Finite Element Simulation 

Many literates have demonstrated that accurate analysis 
of AFPM behaviors is not an easy task because these 
types of machines are intrinsically 3-D machines [7,8]. 
Three dimensional finite-element method (FEM) allows 
a precise analysis of magnetic devices taking into ac-
count geometric details and magnetic nonlinearity. So, it 
is an appropriate method for analyzing AFPMs. By using 
this accurate modeling it is possible to obtain demanded 
signals for a very high precision analysis. Finite element 
method is based on Maxwell’s equations. The electro- 

 
Figure 1. Twenty-eight pole three-phase AFPM 

magnetic field of the machine is given by:  

t
BcurlE 
  

t
DJcurlH 
              (1) 

0divB  
divD  

The center of the stator is fixed at the origin of the 
global coordinate system. The center of the rotor is located 
at the origin of the local coordinate system, which rotate 
around the center of the global coordinate system, i.e. the 
center of the stator, by a constant step angle. Investigation 
of AFPM model was made with the assumptions of 
nonlinear materials. In order to have high level of preci-
sion, the mesh diagram is designed manually. Figure 2 
shows mesh diagram of the proposed motor and as it 
shows, density of meshes increases near the air-gap in 
order to a precise simulation. Whole nodes number is 
460,000 in this simulation. This amount of nodes is very 
high and will warrant the accuracy of simulation. Figure 3 
demonstrates the flux diagram of motor. It shows that 
maximum flux density in hotspots is 2.147 T. Three-di-
mensional finite-element analysis (3D-FEA) software 
FLUX2D/3D by CEDRAT is used to simulate the motor 
[9]. Figure 2 shows The FEM model that was used in this 
paper. 

 

Table 1. Specifications of the motor 

Quantity Value 

Rated power(kW) 2.2 
No load voltage(V) 210 
Rated phase current(A) 3.5 
Frequency(Hz) 300 
Speed(rpm) 1285 
Phase connection ∆ 
Pole pairs 14 
Air gap length(mm) 1.2 
Rotor diameter(mm) 206 
Remanence of magnets(T) 1.24 
Thickness of magnets(mm) 3 
Outer diameter of stator(mm) 200 
Inner diameter of stator(mm) 116 
Slot width(mm) 13.6 
Slot height(mm) 40 
Number of slots 24 
Width of stator back iron(mm) 10.5 
Width of rotor back iron(mm) 10 
Wire diameter(mm) 1.5 
Number of turns per coil 130 

Phase resistance at 300Hz(Ω) 2.5 
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Figure 2. Three-dimensional mesh model 

 

 
Figure 3. Flux density distribution in the stator 

3.1. Calculation of Airgap Flux Density 

One of the most important characteristics of the motor is 
airgap flux density. So, it was simulated under no-load 
condition to monitor the airgap pattern. Figure 4 shows 
the axial component of the no-load air-gap flux density 
due to permanent magnets in the middle of airgap plane. 
Moreover, the z-component of the no-load air-gap flux 
density was computed over a circumference in the plane. 
Figure 5 reports the waveform. 

3.2. Axial Force between Rotor and Stator 

In axial flux permanent magnet machines, there is an 
axial force between rotor magnets and stator teeth. Fig-
ure 6 represents the schematic of this axial force. Figure 
7 shows that the period of this force fluctuation is equal 
to the angular distance between two identical permanent 
magnets. It means that after this angular displacement, a 
N pole replaces by another coming one and the situation 
of permanent magnets toward the stator teeth becomes 
similar to the previous position. The force fluctuations 
will repeat a same manner in other periods. The period is 
obtained as follows: 

 
360

2
p

φ                 (2) 

where p is number of machine poles. Figure 8 shows the 
total magnetic force fluctuates of the motor in one period. 
This trend will repeat in other periods. Its mean value is 
2152 N. Figure 9 shows frequency spectrum of the axial 
force. 

3.3. Calculation of Back-EMF 

In this case, the back EMF is sinusoidal due to the 
windings layout. Figure 10 shows the Back-EMF of the 
motor at no-load and its RMS value is 209.996 V. The  

 

Figure 4. Axial component of the no-load air-gap flux density 
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Figure 5. Z-component of the no-load air-gap flux density over 
a circumference in the middle of air-gap plane (r = 79 mm) 

 

Figure 6. Schematic representation of axial forces in axial 
flux permanent magnet motor 
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Figure 7. Top view of permanent magnets 
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Figure 8. Axial force between rotor and stator 
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Figure 9. Frequency spectrum of the Axial force between 
rotor and stator 

nominal voltage of motor is 210 V and it can be seen that 
the simulated voltage has a good agreement with the 
nominal one. Figure 11 illustrates frequency spectrum of 
the back-EMF. It shows that the superior harmonics in 
the spectrum is the first harmonic with amplitude of 
289.08 V and then the fifth harmonic with amplitude of 
3.02 V. Existence of harmonics is dependent on non- 
linearity of core and concentration of coils. 

From the amplitude of back-EMF, the permanent mag-
net fundamental flux is calculated: 

Wb
fN

E
PM 0121.0

2

2 0 






       (3) 

N is the number of turns per coil, E0 is the RMS value 
of back-EMF and f is the frequency. 

3.3. Calculation of Cogging Torque 

The vibration and acoustic noise of machines is a very 
important factor. The research for vibration of PM ma-
chines which is a kind of new efficient machines is more 
and more attended. High torque density and efficiency of 
axial flux permanent magnet machines make them an 
ideal choice in many high performance applications. 
However, cogging torque in these machines has undesir-
able effects of torque ripple, noise and vibration. This 
torque is proportional to the PM flux and the reluctance 
variation, and is independent of the load current. In PM 
machines, cogging torque arises from the magnet’s ten-
dency to align itself with the minimum reluctance path 
given by the relative position between rotor and stator. 
This is an inherent characteristic of AFPMs. It was cal-
culated and shown in Figure 12. A closer inspection of 
 

 

Figure 10. Back-EMF of the motor 

289

1.1 0.86 0.19 3.0 0.013 0.38
0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8

B
ac

k-
E

M
F 

ha
rm

on
ic

s 
A

m
pl

itu
de

 (V
ol

t)

Number of harmonic  

Figure 11. Frequency spectrum of the Back-EMF 
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Figure 12 shows a low frequency modulation of the 
torque ripple. As cogging torque is minimized through 
successful optimization, the relative proportion of the 
low-frequency component increases and becomes notice-
able. However, for machines with very low amount of 
cogging torque, the low frequency component can add a 
noticeable ratio of ripple to overall cogging amplitude 
[11]. The number of periods of the cogging torque per 
rotor revolution is: 

),(1 sp NNLCMN              (4) 

where Ns is the number of slots and Np is the number of 
poles. Nl = 168 is the least common multiple of Ns = 24 
and Np = 28. It means that the cogging torque period is 
2.14 degrees. In Figure 12, 14 cycles occur over an an-
gular displacement of about 30 degree, yielding the req-
uisite 168 cycles in 2п radians. The modulation harmonic 
was discussed in [11]. By definition: 

),( spc NNGCFN              (5) 

),( cpm NNLCMN              (6) 

Nm is the number of periods of the modulation fre-
quency per rotor revolution. Nm = 28 and it means that 
we have 28 periods of modulation frequency in 2п radi-
ans. So, the modulation harmonic period is 12.857 degree 
that is six times of the period of main harmonic. 

Figure 13 shows the harmonics of cogging torque com- 
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Figure 12. Cogging torque waveform of the motor 
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Figure 13. Frequency spectrum of the cogging torque 

puted via three-dimensional FEM analysis. It shows that 
there are two superior harmonics in the spectrum. First 
harmonic belongs to modulation frequency and sixth 
belongs to the main frequency of cogging torque that 
repeats 6 times in the period of modulation frequency. 

5. Conclusions  

The paper addresses electromagnetic characteristics of an 
axial flux permanent magnet machine. A three- dimen-
sional finite element analysis model is presented for ac-
curate analysis of the Axial Flux Permanent Magnet mo-
tor. This model is parametric one and can be used for 
design process and sensitivity analysis of AFPM machine. 
Air-gap flux density, back-EMF, axial forces and cog-
ging torque was calculated using this model and it is 
shown that the simulation results have a good agreement 
with the motor’s characteristics and nominal values. 
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ABSTRACT 

A four-layer slab waveguide including left-handed material is investigated numerically in this paper. Considering 
left-handed material dispersion, we find eight TE guided modes as frequency from 4 GHz to 6 GHz. The fundamental 
mode can exist, and its dispersion curves are insensitive to the waveguide thickness. Besides, the total power fluxes of 
TE guided modes are analyzed and corresponding new properties are found, such as: positive and negative total power 
fluxes coexist; at maximum value of frequency, we find zero total power flux, etc. Our results may be of benefit to the 
optical waveguide technology. 
 
Keywords: Slab Waveguide, Left-Handed Material, Dispersive Properties, Total Power Fluxes 

1. Introduction 

Since Smith et al. [1] made firstly the left-handed mate-
rial (LHM) with negative permittivity and negative per-
meability in microwaves, it has attracted much attention 
due to their novel electromagnetic properties. Now, 
negative refraction has been successfully realized in THz 
waves, and optical waves [2,3]. Many scholars [4-6] have 
analyzed symmetric slab waveguide containing LHM. 
Typical properties of these waveguides including the 
absence of the fundamental mode, backward propagating 
waves with negative power flux have been found. The 
LHM asymmetric slab waveguides and the slab 
waveguides with LHM cover or substrate have also been 
investigated [7-9]. Besides, the five-layer slab wave- 
guides with LHM have been investigated and several 
new dispersion properties have been discovered [10-12]. 
J. Zhang etc. [13] have studied a four-layer slab wave- 
guide with LHM core by using a graphical method. We 
know that the graphical method can only determine 
whether or not the mode exists. Furthermore, most above 
researches are neglecting LHM dispersion. This is not the 
practical case. 

In this paper, the four-layer slab waveguide with LHM 
in one layer and right-handed materials (RHMs) in the 
other layers is investigated. The material dispersion of 
LHM has been considered. Through Maxwell’s equations, 
by using a transfer matrix method, two dispersion equa-

tions for the TE guided modes are obtained. Solving 
these equations, we plot some dispersion curves. Com-
pared these curves, some dispersion properties of TE 
guided modes are obtained. Besides, power fluxes of TE 
guided modes are calculated in the waveguide and the 
corresponding curves are plotted, respectively. From 
these curves we find some new power flux properties. 

2. Dispersion Equations and Total Power Flux 

2.1 Dispersion Equations 

A four-layer slab waveguide including LHM is shown in 
Figure 1. Medium 1 is the LHM, i.e. its dielectric permit-
tivity ( 1 ), magnetic permeability ( 1 ) and refractive in-

dex ( ) are all negative. However, the cover (medium 0) 

and the substrates (media 2 and 3) are different conven-
tional materials, thus, their dielectric permittivity (

1n

0 , 2  

and 3 ), magnetic permeability ( 0 , 2  and 3 ) and 

refractive index ( ,  and ) are all positive. The 

thicknesses of media 1, 2 is  and , respectively. 

Besides, we assume that media 0 and 3 extend to infinity. 
For simplicity, the time-and z-factor 

0n 2n 3n

1h 2h

(exp[i )]zt    that 

multiplies all the field components is neglected from all 
equations. Where   and   denote angular frequency 

and longitudinal propagation constant. Usually, a slab 
waveguide can support TE and TM modes. In this paper, 
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Figure 1. The geometry for a four-layer slab waveguide 
including left-handed material 
 
we study TE guided modes. For TM modes, they will be 
investigated in other papers. By using Maxwell’s equa-
tions, the only electric field  for TE modes satisfies 

the following equation: 
yE
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y Enk
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E
         (1) 

where 

2

0 k ,   is the wavelength in vacuum,  

denotes refractive indexes in media i with  = 0, 1, 2 
and 3, respectively. For different 

in

i
 , there exist two 

cases as follows: 
Case 1 2030 nknk    

In this case, guided mode fields decay in media 0 and 
3, and oscillate in media 1 and 2. We call these modes as 

the first guided modes and note them . From Equa-

tion (1), their electric fields in the slab waveguide are as 
follows: 
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With continuous conditions of the transverse electro-
magnetic fields and by using the transfer matrix method, 

a dispersion equation for  mode is obtained as fol-

lows: 
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After some algebraic manipulation, Equation (6) can 
be rewritten as: 
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where m = 0, 1, 2, 3, … , 
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Case 2 1020 nknk    

Under this condition, mode fields are oscillating in 
medium 1 while decay in the other media. We define 
these modes as the second guided modes and note them 

. Let mTEⅡ 2
0

2
2

2
2 kni   = 2i , the transfer matrix 

 is rewritten as: 2M
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Substituting '  into Equation (6), we obtain a dis-

persion equation for  modes  

2M

mTEⅡ
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where 







 22

23

32
2

'
2 )(arctantanh h

p
hq 


 , and m = 0, 

1, 2, 3, … 
Although the forms of two dispersion Equations (7) 

and (8) are similar, they have different physical proper-
ties. For TM modes, their dispersive equations are similar 
with that of the corresponding TE modes. But, their 
magnetic permeability in the equations is replaced by 
dielectric permittivity.  
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2.2 The Total Power Flux (TPF) 

Power fluxes inside the slab waveguide are calculated by 
an integral of Poynting vector. For TE guided modes, 
their power flux ( ) in each layer can be obtained 

through a following equation. 
iP

),,,i(dxEP yi
i

i 3 2 1 0
1 2

  


     (9) 

Substituting Equations (2)-(5) into Equation (9), after 
some algebraic manipulation, we have the power fluxes 
inside the waveguide as follows: 
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where  denote power fluxes of the first TE 

guided modes in media 0, 1, 2 and 3. Similarly, for the 
second TE guided modes, their power fluxes are obtained 

by substituting 

3210  , , , PPPP

2
0

2
2

2
2  kni  = 2i  into Equation 

(4). The exact results can be obtained easily. 
The total power flux (TPF) is defined as follows [8] 

3210

3210

PPPP

PPPP
P




            (14) 

We know that power fluxes propagate forward along 
the conventional media and they are all positive, i.e. P0, 
P2 and P3 > 0. However, in the LHM medium, wave 
vector is opposite with Ponyting vector, thus, the corre-
sponding power flux is negative, namely, P1 < 0. From a 
mathematical point of view, in terms of Equation (14), 
there should exist three cases: 1) P > 0, it means P0 + P2 
+ P3 > |P1| and is a case for the forward wave; 2) P < 0, it 
implies P0 + P2 +P3 < |P1| and is a case for the backward 
wave; 3) P = 0, it means P0 + P2 + P3 = |P1| and electro-
magnetic waves are stopped and all energy is stored in 
the waveguide. 

3. Numerical Results 

3.1 The Dispersive Properties of the TE Guided 
Modes 

Material dispersion should be considered because it is 
one of essential properties of LHM [9]. In this paper, we 
employ an experimental model [8] with dielectric per-

mittivity and magnetic permeability being dependent on 
frequency as: 

2
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1 1)(
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
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where F = 0.56, 


2

0 4 GHz, 


2

P 10 GHz. As fre-

quency increases from 4 GHz to 6 GHz, its dielectric 
permittivity and magnetic permeability become negative 
simultaneously. For simplicity, we assume that wave- 
guide thickness of media 2 is fixed and equals to 1 cm. 
For other media, their permittivity is 10  , 25.23  , 

,0.32  and permeability 0.20  13   , respec-

tively. Using Equations (7) and (8), we plot some disper-
sive curves (the effective-refractive-index verse fre-
quency) and discuss them as follows. 

3.1.1 The  Guided Modes  0TE

As m ＝ 0, two guided modes (  and  modes) 

coexist and their dispersion curves are shown in Figure 2. 
It is a unique property of the waveguides considering 
left-handed material dispersion. If neglecting material 
dispersion, we find the absence of the fundamental mode 

[6]. For  mode, as h1 = h2 = 1 cm, its effective- 

refractive-index decreases as frequency increases from 
4.56 to 4.88 GHz. As h2 fixed and h1 modified (from 0.1 
cm to 10 cm), the curves coexist in two frequency re-
gions from 4.735 to 4.88 GHz and 4.835 to 4.88 GHz, 
respectively. Especially, as frequency is between 4.843 
to 4.88 GHz, their dispersion curves are almost overlap. 

For  mode, as h1 = h2 =1 cm, its effective-refractive- 

index decreases with frequency increasing from 4.14 
GHz to 4.735 GHz. The bandwidth is 0.595 GHz. On the 
contrary, if h2 is fixed, and h1 changes, the curves almost 
overlap with each other. Besides, two types of funda-
mental modes have a common property, that is, their 

group velocity (

0TEⅠ Ⅱ
0TE

0TEⅠ

Ⅱ
0TE

gv



d

d
vg  ) are both negative. Nega-

tive group velocity implies energy propagates backward 
and reveals the special property in the LHM slab 
waveguide. 

3.1.2 The Higher Order TE Guided Modes 

1) As m = 1, both  and  modes coexist and 

their dispersion curves are plotted in Figure 3, respec-

tively. For  mode, its effective-refractive-indexes 

increase as frequency changing from 4.33 GHz to 4.48 

GHz. So, it has positive group velocity.  mode exists 

as frequency from 4.14 GHz to 4.60 GHz. The bandwidth 
is 0.46 GHz. As frequency between 4.49 and 4.60 GHz, 
its effective-refractive-index has two different values 

1TEⅠ Ⅱ
1TE

1TEⅠ

Ⅱ
1TE
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Figure 2. The dispersion curves of the fundamental TE guided modes, the effective-refractive-index is a function of frequency. 

For  mode, the curves 1, 2, 3 correspond to h1 = 0.1 cm, 1 cm, 10 cm. For  mode, only one curve 4 for h1 = 0.1 cm, 1 

cm, 10 cm 
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Figure 3. Dispersion curves for higher order TE guided modes, the effective-refractive-index is a function with frequency. 
The curves are arranged along horizontal-axis with m = 7, 6, 5, 4, 3, 2, 1, respectively. The dashed curves stand for  

modes, and solid curves correspond to  modes 
mTEⅠ

mTEⅡ

 
corresponding to the same frequency i.e. double-mode 
degeneracy. This is because the dispersion equation has 
two different solutions at the same frequency. This prop-
erty can be found in other LHM slab waveguides [4,6]. 
Besides, its positive and negative group velocities coexist.  

2) As m increases from 2 to 7, there exist six TE 
guided modes and their dispersion curves are plotted in 
Figure 3. For the same m, two types of TE guided modes 
exist and their curves keep continuous. As m increases, 
their curves shift to left and their cutoff frequencies be-
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come less. This is different from that of omitting materi-

als dispersion [6]. For the first type  modes, their 

group velocities are positive. However, for the second 

type of  modes, their double-mode degeneracy 

appears and their positive and negative group velocities 
coexist. 

mTEⅠ

mTEⅡ

3.2 The Total Power Flux (TPF) of TE Guided 
Modes 

Employing Equations (10)-(14) and dispersion Equations 
(7) and (8), we choose the same parameters as Subsec-
tion 2.1. The curves of the TPF versus frequency for TE 
guided modes are plotted in Figures 4 and 5, respec-
tively. The results are as follows: 
 

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Frequency

T
ot

al
 P

ow
er

 F
lu

x

'1

'2

'3

 
 
Figure 4. The total power flux of the fundamental TE mode 
for different slab thicknesses. The parameters are the same 

as Figure 2. The dashed curves stand for  modes, the 

solid curves correspond to  modes 
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Figure 5. The total power flux of the higher-order TE 
guided modes. The curves are arranged along horizon-
tal-axis with m = 7, 6, 5, 4, 3, 2, 1, respectively. The dashed 
curves stand for  modes, the solid curves correspond 

3.2 he Prop

mTEⅠ

to modes 

.1 T erties of the TPF of the Guided 

s 

r
s fro

otte
ta

ppo

aveguide with LHM in layer 1 and 
ers has been studied numerically. The 

mTEⅡ  

0TE

Modes 

For 0TEⅠ and Ⅱ modes, their TPF curves are shown 0TE  

, 3
in Figure 4, respectively. As h2 (1 cm) is fixed and, (1, 
1’), ( ’) and (3 ’) curves represent h1 = 0.1 cm, 1 cm 
and 10 cm, respectively. Clearly, they have a common 
property that their TPF becomes small with h1 increased. 
This is because their power fluxes in the LHM medium 
increases with h1, and they are negative. This makes TPF 

small and even negative with the increase of h1. For 0TEⅠ 

mode, as h1 < h2, its TPF changes with frequency in a 
smaller range. However, as h1 = h2 and h1 > h2, its TPF 
changes with frequencies in a bigger range. Furthermore, 
the TPF is positive, negative, and zero at different fre-
quencies. Zero TPF implies that electromagnetic waves 
are stopped in the waveguide. This property may have 
some potential applications in the optical waveguide 

technology. For Ⅱ
0TE  modes, as frequency increases, 

TPF changes in a small region. For both h1 < h2 and h1 = 
h2, TPF is positive; for h1 > h2, TPF is negative, and zero 
TPF doesn’t occur.  

3.2.2 The Properties of the TPF for Higher Order TE 
Guided Mode

2, 2

1) As m = 1, for 1TEⅠ and Ⅱ
1TE  modes, their curves of 

a plotted in Figure 5TPF re .  these curves, we find 
that the TPF of the mer is er than that of the latter 

and they are both positive. For 1TEⅠ mode, its TPF de-

creases with the frequency. But, f Ⅱ
1TE  mode, its TPF 

increases with frequency, then, two diffe ent TPF values 
exist at the same frequency. It result m double-mode 
degeneracy. 

2) For mTEⅠ  and mTEⅡ  modes with m from 2 to 7, 

their TPF cu

From
bigg for

or 

rv
gu

es are d along the anti- horizon-
l-axis in Fi re 5. T rmer is always bigger than the 

latter. For mTEⅠ  modes, their TPF decreases as fre-

quency increases. But, they are all positive. For mTEⅡ  

modes, at the same frequency, positive and negative TPF 
coexist. It means that two modes propagate along o -
site directions. At maximum frequency, zero TPF can be 
found for each mode. 

4. Conclusions 

 pl
he fo

A four-layer slab w
RHMs in other lay
dispersion equations of two types of the TE guided 
modes are obtained and dispersion curves are plotted. 
Compare these curves, we find some dispersion proper-
ties of TE modes, such as: two types of the fundamental 
modes exist, moreover, in some frequency regions, they 
are insensitive to the waveguide thickness. Besides, the 
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ABSTRACT 

This paper studies the propellant and levitation forces of a prototype maglev system where the propellant forces are 
provided by a linear motor system. For this purpose, the mathematical model and method using finite element method 
coupled to external circuit model is developed. The details of the propellant and levitation forces for a prototype maglev 
system under different operating conditions are investigated, and some directions are given for practical engineering 
applications. 
 
Keywords: Maglev System, Propellant Force, Levitation Force, Numerical Computation, Finite Element Method 

1. Introduction 

Due to the exclusive salient advantage of non-contact 
surfaces, an ever-increasing effort has been dedicated to 
the application of the magnetic levitation technology in 
engineering disciplines such as maglev trains [1], maglev 
carriers [2], maglev bearings [3], maglev vibration isola-
tors [4], and so on. One of the key problems in the use of 
maglev technologies is the accurate and efficient deter-
mination of the propellant and levitation forces. Strictly 
speaking, the electromagnetic field of a maglev system is 
a complex three dimensional one involving movement 
components. To predict precisely the transient electro-
magnetic phenomena of this kind of problems, the com-
plications such as the saturation of iron materials and the 
relative movement of the moving components must be 
taken into account properly. Moreover, in a maglev sys-
tem, the electromagnetic phenomena are jointly gener-
ated by the propellant, the levitation and the guiding sys-
tems. Thus, one needs to consider all of these issues in 
the numerical simulations. In addition, the use of power 
electronic devices in the front end of the linear synchro-
nous motor makes the situation even more serious since a 
voltage source must also be modeled. Therefore, one 
needs to resort to the numerical techniques of electro-
magnetic field computations. 

Generally speaking, to address the aforementioned is-
sues of the electromagnetic problem of a maglev system, 
it is essential to use three dimensional finite element 

methods [5]. However, the heavy computational burden 
for the implementation of 3D finite element method is 
numerically unaffordable for most application cases. In 
this point of view, the 2D time stepping finite element 
method [6] is proposed to couple to external circuit 
model to study the transient performances of a maglev 
system with the goal of developing an efficient and ac-
curate numerical tool for the computations of the propel-
lant and levitation forces of a maglev system. 

2. Mathematical Models and Methods 

2.1 Finite Element Model 

The transient electromagnetic fields in the propellant and 
levitation systems are determined using 2D time-stepping 
finite element method. To determine the field distribution 
at each time step in a Maglev system, the 2D transverse 
section spanning one pole pitch of the linear synchronous 
motor is studied. As shown in Figure 1, the solution do-
main is comprised of the stator winding, the stator core, 
of the linear motor; the rotor core, and the winding of the 
levitation magnet/the rotor. With the displacement cur-
rent being neglected, the field is governed by 

0

( , , ) ( , , ) ( , , )
( ) ( )

| | 0
ab gh

A x y t A x y t dA x y t
v v J

x x y y dt
A A A

   
   

   
  


(1) 

where,  is the reluctivity,  is the conductivity, J is the 
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Figure 1. The Schematic diagram of the studied model 
 

source current density, A(x,y,t) is the magnetic vector 
potential. 

For a moving conductor with a velocity v, the induced 
electric density is 

dA A v Btdt
               (2) 

Using the Galerkin approach to discretize (1), one ob-
tains 
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where, a is the number of the parallel branches of the 
winding, N1  is the number of total serial turns in one 
coil, Sb  is the slot area, [N]e is the shape function of the 
finite element method. 

2.2 External Circuit Models 

In general, the source current density in (1) is unknown. 
Thus, the external electric circuit model is coupled to the 
finite element formulation in this paper to consider the 
voltage source. Moreover, the end effect of the propellant 
and levitation systems is also modeled in this circuit 
formulation. Figure 2 depicts schematically the equiva-
lent circuit model of the winding of one phase. Mathe-
matically, the external circuit model, including the elec-
tromotive force e, the leakage inductance Le, and resis-
tance R of the windings, is 

{ } { } [ ]{ } [ ] { }
d

u e R I L I
dt

             (4) 

where, [u] = [-uf  ua  ub  uc  ud]
T, [I] = [if  ia  ib  ic 

id]
T, [R] = diag [rf  ra  rb  rc  rd], [Le] = diag [Lf  La 

Lb  Lc  Ld] is the leakage inductance considering the 
end effect of the machine and levitation magnet, sub-
script f denotes the winding of the levitation system/the 
rotor of the linear motor. 

To express e in terms of A(x,y,t), one has  

][][2 Adt
dCpLe ef          (5) 

where Lef is the effective length of the core of the propel-
lant and levitation systems. 

2.3 Coupling of Finite Element and External  
Circuit Models  

Integrating (3) and (5) as a whole, one reads 
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2.4 Temporal Discretization  

Applying Crank-Nicolson algorithm to (6) with respect 
to the time variable, one obtains the following equation 
set of the time-stepping finite element coupled to exter-
nal circuit model 
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Rearranging (7) into a symmetric form, one has 
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where, 1n nU u u   , h is the size of the time step. 

2.5 Treatment of the Relative Movement of  
Different Components in a Maglev System 

To consider the relative movement of a maglev system, 
the moving boundary is used [7] in this paper. The moving 
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

 

Figure 2. The equivalent circuit of one phase winding 

boundaries are the boundaries connecting the stator and 
rotor meshes of the propellant system, and will vary with 
the movement. The nodes in the stator side and their 
counterparts in the rotor side satisfy either periodic or 
semi-periodic boundary conditions. For example, for a 
specific relative position of the stator and rotor as de-
picted in Figure 1, the moving boundary conditions are 
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2.6 Numerical Computation of the Propellant 
and Levitation Forces 

Once the electromagnetic field is determined in each 
time step, the corresponding propellant and levitation 
forces of the maglev system in that time instant can be 
determined from 
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In the case study, fx is the propellant force, and fz the 
levitation force. 

3. Numerical Results 

To predict the transient performances of a maglev system, 
the computer codes using the proposed models and 
methods are developed by the authors. The codes are 
programmed in Fortran language. 

3.1 Validation 

To validate the proposed mathematical model and method 
as well as the computer codes, they are firstly used to 
compute the no-load propellant and levitation forces of a 

prototype Maglev train in Shanghai commercial Maglev 
Line. The mesh of total 4784 nodes and 9197 elements as 
shown in Figure 3 is used in this case study. The differ-
ences between the computed levitation and propellant 
forces and the exact ones for both forces are less than 5%. 
Obviously, this case study has positively confirmed the 
robustness and feasibility of the proposed model and 
method for solving the electromagnetic fields of a Maglev 
system problem. 

3.2 The Study of Propellant and Levitation 
Forces of a Prototype Maglev System 

After the accuracy and feasibility of the proposed model 
and method are confirmed, the transient performances of 
the propellant and levitation forces of a prototype Maglev 
system under different operating conditions are studied. 
Firstly, the effect of the torque angle of the linear motor 
on the propellant and levitation forces is investigated. As 
shown in Figure 4, the torque angle is defined as the angle 

 

Figure 3. The meshes of one pole pitch region used for vali-
dations 

 
Figure 4. The schematic diagram of the torque angle 
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in electrical degrees between the axes of the magnetic 
fields generated by the stator winding (windings A, Z, B 
in Figure 1) and by the rotor winding. The value of this 
angle will determine the initial relative position of the 
stator and rotor, i.e., the periodic and semi-periodic 
boundary conditions of Equation (9). Figures 5-7 show 
the computed transient propellant and levitation forces in 
cases of different torque angles, and Figure 8 depicts the 
relationship of the averaged propellant and levitation 
forces with torque angles. It is should be pointed out that 
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Figure 5. The transient propellant and levitation forces at  
= 0° 
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Figure 7. The transient propellant and levitation forces at  
= 60° 

the forces as given in these figures are normalized to 
their rated values. From these numerical results, it is ob-
viously that 

1) The torque angle of the linear motor has a signifi-
cant effect on both the propellant and levitation forces; 

2) The averaged propellant and levitation forces will 
change periodically with the torque angle. 

Therefore, the running state of a Maglev system can be 
controlled by changing the torque angle of the linear 
motor. 
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Since the front end of the linear motor is generally a 
steady electronic device, typical a PWM source for high 
precise motion control, the high frequency harmonics are 
unavoidable in engineering applications of a Maglev 
system. In this regard, the effects of harmonics on the 
propellant and levitation forces are then studied using the 
proposed numerical model and method. In the computer 
simulation, the harmonic voltages are formulated as 

0.1 cos[5(2 )]h f fV V f t            (11) 

where Vf and ff are, respectively, the amplitude and fre-
quency of the fundamental voltage of the source. 

In the numerical implementation, the torque angle of 
the linear motor is set to different values. Figures 9 and 
10 depict, respectively for torque angle  = 0° and  = 
10°, the differences of the transient propellant and levita-
tion forces of the prototype maglev system between the 
normal operating condition and the aggregation of har-
monic voltages and currents. From these numerical re-
sults, it is clear that: 

1) The averaged values of the differences of the tran-
sient propellant and levitation forces for one period will 
approach zero, this means that the harmonics of the 
sources have almost no effect on the steady state per-
formances of the Maglev system; 

2) In view of the transient propellant and levitation 
forces, the aggregation of harmonic voltages and currents 
will result in that the forces oscillate around their rated 
values, resulting in degradation in the transient perform-
ances of the Maglev system; 

3) Relatively, the effect of a small harmonics on the 
levitation forces can be neglected compared to that on the  
 

 
Figure 9. The differences of the transient propellant and 
levitation forces between the normal operating condition 
and the aggregation of harmonic voltages and currents at  
= 0° 

 
Figure 10. The differences of the transient propellant and 
levitation forces between the normal operating condition 
and the aggregation of harmonic voltages and currents at 
=10° 

propellant forces. 

4. Conclusions 

A model and method for computing the transient propel-
lant and levitation forces of a Maglev system, with rela-
tive error being smaller than 5%, is proposed based on 
time stepping finite element method coupling to external 
circuit models. In addition to having the advantages to 
consider complications such as the relative movement of 
different components of the linear electrical machines, 
the saturation of iron materials, the proposed model and 
method can also take into account the interaction of an 
external voltage source which is very common with the 
increasing use of power electronics devices in the front 
end of general electromagnetic devices. Based on the 
computer simulation of this case study, for a maglev sys-
tem, it is concluded that: 

1) The torque angle of the linear motor has a signifi-
cant effect on both the propellant and levitation forces; 

2) The averaged propellant and levitation forces will 
change periodically with the torque angle; 

3) The addition of small harmonics in the sources has 
almost no effect on the steady performances; 

4) However, the aggregation of small harmonic volt-
ages and currents in the sources will result in degradation 
in the transient performances. 
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ABSTRACT 

The analytical expressions of electric fields inside and outside a magnetized cold plasma sphere are presented by re-
forming the spherical electromagnetic parameter based on the scales transformation of electromagnetic theory. The 
obtained results are in good agreement with that in literatures. The angle between the direction of inside field and that 
of outside field is derived. In S wave band, numerical calculations of effects induced on the inner field by parameters 
are established. Simulations show that the angle between incident field and the outside magnetic field influences the 
inner field remarkably. The inner field will decrease as the electron density increasing, however, this density has a 
great affect on the inner field’s direction. The magnitude of the inner field is proportional to the incident wave’s fre-
quency. 
 
Keywords: Magnetized Cold Plasma, Scales Transformation, Electric Field 

1. Introduction 

The investigations both for electromagnetic (EM) scat-
tering features and their applications of spherical target 
have been of a great interest. The electric fields inside 
and outside a single isotropic dielectric sphere have been 
researched [1-4]. The scattering features of an isotropic 
dielectric sphere and a conducting sphere, which are ir-
radiated by an EM wave propagating in the z-direction 
and polarizing in the x-direction, have been studied [5,6]. 
By using method of rotating coordinate system, the scat-
tering properties of spherical targets that are irradiated by 
a wave from an arbitrary direction is studied [6]. In 
[7-10], the EM scattering features for an isotropic dielec-
tric ellipsoidal target and the power to seize radiation for 
a coated sphere in the Gaussian beam were separately 
investigated by the well-known Mie theory. In a word, 
the subjects of electromagnetic scattering and their ap-
plications of an isotropic dielectric sphere have been 
discussed in detail. However the scattering features for 
the magnetized cold plasma have not been fully under-
stood in theory. There may be two main reasons for this, 
the first is the lack of analytical expression of electric 
field inside the magnetized cold plasma being irradiated 
by a wave from an arbitrary direction, the second is that 
some wave equations and functions derived in the iso-
tropic space are now invalid in the anisotropic space. 

Many particles are practically anisotropic and much 
smaller than the wave length in size, such as raindrops, 
sand-dust storm particulates, fog droplets, etc. Therefore 
the problems relative to electromagnetic field may be 
approximately considered as an electrostatic one [3]. If 
the inside electric field is known, the absorption cross 
section and the scattering cross section of the anisotropic 
sphere will be obtained accurately [11], so knowing the 
inside field existing the target is of great importance. In 
the present paper, the expression of the electric field in-
side a magnetized cold plasma spherical target is pre-
sented first based on the scale transformation theory of 
the electromagnetic field by reforming the anisotropic 
electromagnetic parameters into an isotropic one. Then 
the angle between the field inside the magnetized plasma 
sphere and that outside the sphere is calculated. Finally 
the influences induced by the fundamental parameters 
such as electric density, outside magnetic filed and the 
azimuth angle on the inner field are simulated. The 
method used has the features of briefness in computation 
and distinctness in physical significance. 

2. Electric Fields inside and outside a   
Magnetized Cold Plasma Sphere 

2.1 Foundation of Potential Differential Equation 

Assume a magnetized cold plasma sphere to have radius 
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R0 and its centre to be located at the origin of the primary 
coordinate system Σ. The outside magnetic field  is 

in z-axis. The dielectric constant tensor of this plasma is 
given as 
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n is electron density and   the frequency of incident 
wave. When the frequency is low, Raleigh criterion 

0R  is valid, it is so approximately think that the 

magnetized cold plasma sphere locates in the electro-
static field [1,3]. The plasma has not electric charge in 
whole. According to ,  and consid-
ering that the differential of potential u is not relative to 
the differential order for x and y, the potential differential 
equation is obtained in the primary coordinate system as 
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Now, a scale coordinate system Σ’ is introduced as a 
new coordinate system. The coordinates of this system 
are indicated with x′, y′ and z′. The relation of coordinates 
between the two systems is written as 
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The differential equation of the potential in the scale 
coordinate system is derived by substituting the above 
expressions into Equation (2) and using the condition u = 
u′ [12,13] at any spatial point, Equation (2) may be ex-
pressed as 
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The condition u = u′ is understandable, for the poten-
tial is defined as the work done by the electric field to 
move a unit charge from one point to the reference point, 
namely W/q, so both the numerator and the denominator 
are scale invariants. Equation (3) shows that a magnet-
ized cold plasma sphere in the primary coordinate system 
is transformed into an isotropic sphere in the scale coor-
dinate system. This manipulation may greatly simplify 
the electromagnetic scattering problems. 

2.2 Expressions of Electric Fields outside and 
inside a Magnetized Cold Plasma Sphere 

The solution of Equation (3) can be obtained by using the 
method of separation of variables as follows: 
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Equation (4) is a general solution in the scale coordi-
nate system. The parameters in the two coordinate sys-
tems are related, their relationships [12,13] are 
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  In Equation (4), the term that may produce a finite 
potential in the sphere centre is considered. It is con-
cluded that the expression of potential in the primary 
coordinate system can be obtained only by substituting 
the relations above into Equation (4). By utilizing the 
relation between D and E and the relation between the 
vectors in right angle system and spherical system, we 
may also obtain the expression of the dielectric constant 
tensor in spherical coordinate system as 
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We suppose that E0 is the magnitude of incident elec-
tric field, and that θ0 and φ0 are its directional parameters 
in the primary coordinate system. As shown in Figure 1, 
since the outside electric potential is not symmetrical, we 
can write the potential as [2] 
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Figure 1. Relation between the observing point and the out-
side electric field E0 
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Comparing the coefficients of the above expression 
with those in Equation (6) yields 
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Equations (4) and (6) are the electric potentials inside 
and outside the magnetized cold plasma sphere respec-
tively. On the surface of the sphere, the electric potential 
inside the sphere is equal to that outside the sphere and 
the electric displacement D0 is continuous in the normal 
direction, namely 
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Inserting Equations (4)-(6) into the above conditions 
yields 
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There are three types of trigonometric functions in the 
above expressions, namely  

 sinsincossincos  

Comparing their coefficients, we may obtain the fol-
lowing matrix equation 

YPX               （8） 
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The solution of Equation (8) is easy derived as 

YPX 1              （9） 

Namely 
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We thus obtain the solution of electric potential inside 
and outside a magnetized cold plasma sphere as 
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2.3 Discussions 

From Equation (6) it follows that when θ0 = φ0 = 0, the 
incident electric field E0 is in the z-direction, B = D = 0，

and A = –E0. If we suppose that 0,
0
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now the problem of the electric field in a magnetized 
cold plasma medium has been changed into a question in 
the isotropic medium. Equations (10) and (11) are trans-
formed, respectively, into the following expressions: 
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From [3,4,14], we obtain the solutions of an isotropic 
dielectric sphere in electric field E0. These solutions may 
be given as 
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It can be seen that the results are consistent entirely 
with those in the literature. The correctness of the ob-
tained results is therefore tested. Let   and   be the 

angles between E0 and the x-axis and between E0 and the 
y-axis, respectively, then it will be easily proved that 

 sinsincos,cossincos  . So the second term 

and the third term in Equation (10) are the potential pro-
duced by the polarizing electrical dipole moment respec-
tively in x-direction and in y-direction. In the scattering 
of small particles, for example, Raleigh scattering, the 
electric field inside the target is of great importance. So 
we must discuss the distribution of the inside electric 

field in detail. The electric field is obtained by making a 
gradient from Equation (10) and utilizing the transforma-
tion between a vector respectively in the spherical coor-
dinate system and the right angle coordinate system as 
follows: 
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  (12) 

Equation (12) demonstrates that the electric field in-
side a magnetized cold plasma sphere is a uniform field 
which is a complex function of the incident azimuth an-
gle, outside magnetic field, the electric density and the 
frequency etc. This field makes an angle with respect to 
the incident field E0. This cosine function for this angle is 
easily derived by taking the scalar product of vectors as 
follows: 
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where 0 0 0 0 0 0 0cos , sin cos , sin sinA E B E D E 0        

It is a function of the azimuth angle. The displacement 
D is easy obtained from Equations (1) and (12), it is not 
presented here in detail. Followings are partial numerical 
results: 

According to the literature [15], the parameters used in 
simulations are f = 3 GHz，n = 4.5 × 1017 m-3. It is con- 
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Figure 2. Electric field changes with outside magnetic field 
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cluded from Figure 2 that the inner field will decrease 
when the outside magnetic field increase. The angle 0  

between the outside electric field and the outside mag-
netic field has a great effect on the field inside the plasma 
and further simulations show that angle 0  has not af-

fect on the inner field. This is because that the anisot-
ropic property in plasma is caused by the outside mag-
netized field, the components of outside electric field are 
relative to the angle 0  and angle 0  has a good sym-

metry to outside magnetic field, so the inner field does 
not varying with angle 0 . In Figure 3, the azimuth 

angles are 3,4
 . It is demonstrated that the inner 

electric field decrease as the electron density increasing. 
This is caused by the reason that when the electron den-
sity increases, the electrical conductivity is also strong, 
so the shield of electric field is enhanced. It is also can be 
seen from Figure 4 that the inner field is proportional to 
the operating frequency. This is due to the reason that the 
variety of electric charges inside plasma not agreement 
with that of outside electric field and the shielding effect 
is thus debased. Figure 5 had conducted the change of 
angle  versus the frequency. The solid line and dotted 
line are nearly superposed in which the density n = 4.5 × 
1017 m-3 and outside magnetic fields B0 are respectively 
0.004T and 0.005T. Another density of n = 8 × 1017 m-3 
is used in the second dotted line. It obviously demon-
strates that the outside magnetic field has not a great in-
fluence on the angle and however the electron density 
has a great effect on it. The angle is proportional to the 
frequency. It is well known that in isotropic medium, the 
angle   is zero, so in the time varying electromagnetic 
field, the electric charges, negative and positive, in the 
cold plasma can not agreement with outside field as the 
frequency being augment which causes the angle’s ac-
cretion. 

3. Conclusions 

In this paper, the electric fields inside and outside a 
magnetized cold plasma sphere are investigated. We use 
the scale transformation theory of the electromagnetic 
field to reconstruct the Laplace equation and then obtain 
two analytical expressions of the electric potentials inside 
and outside the magnetized cold plasma sphere in detail. 
The obtained results are consistent with those in the lit-
erature when the dielectric constant tensor becomes that 
in an isotropic medium. The angle between the total 
fields inside and outside the magnetized cold plasma 
sphere is derived. The effects induced by the incident 
direction, outside magnetic field, frequency etc. on the 
direction and the magnitude of the inside electric field 
are simulated. Due to many particles such as sand-dust 
storm particulates, atomy particles and raindrops are 
generally anisotropic, so the results obtained can provide  
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Figure 3. Electric field changes with electron density 
 

 

Figure 4. Electric field changes with frequency  
 

 

Figure 5. Angle δ changes with frequency 
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a good theoretical foundation for studying the scattering 
features of small particles and magnetized cold plasma. 
How to use the scale transformation theory to study the 
electromagnetic fields inside and outside a magnetized 
cold plasma target irradiated by the time-varying elec-
tromagnetic wave is our next research subject. 
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