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Abstract 
This brief note introduces the conceptual framework of special and general 
relativity isoclocks and isoframes. Isoclocks and isoframes, as defined herein, 
can be used to create geometrical maps of space and time (“space-time”) with 
and without matter embedded. They are useful for having a mental picture of 
space-time relationships without having to picture 4-dimensional manifolds, 
which very few students and scientists are able to do. With the aid of the opt-
ical lensing definition of curvature as inverse radius, a new gravitational force 
equation is derived, which also incorporates Einstein’s mass/energy relation 
in the mx term. Thus, one may see how it is that gravitational force correlates 
with its time-embedded curvature-squared ( 2

xC ) space in a more accurate 
formulation than could be envisioned by Newton. This becomes more ap-
parent in high gamma fields, such as found near a black hole horizon. It is 
hoped that probability theories, such as quantum field theories in curved 
space-time, might be adaptable to the general relativity isoframe concept in-
troduced herein. 
 

Keywords 
Isoframe, Isoclock, General Relativity, Special Relativity, Space-Time, Black 
Holes, Krogdahl, Unification 

 

1. Introduction and Background 

Kip Thorne, who shared the 2017 Nobel Prize in physics for his theoretical work 
on black holes, began his Black Holes & Time Warps book [1] with thought ex-
periments for three black holes of radically-different sizes. As Thorne pointed 
out on page 33 of his book, bizarre things should happen to radio signals re-
ceived by observers as the transmitter approaches very close to the horizon of a 
black hole of any size. The signal frequency plummets rapidly towards zero, and 
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the signal disappears entirely at the horizon (as the wavelength becomes infinite 
and the wave energy becomes zero). For the outside observer at a fixed radius 
from the horizon, it is as if a clock (or radio transmitter of a given frequency) 
becomes frozen in time relative to that observer. For observers falling into a black 
hole, it is an entirely different perspective (i.e., reference frame), but that is not 
the focus of this paper.  

Albert Einstein’s genius had much to do with his ability to find the right 
thought experiment and reference frame in which to simplify and understand a 
complex problem at a fundamental level [2]. With special relativity, his concept 
of the proper time clock of an observer in a chosen reference frame in comparison 
to the time clock of an observer in a different reference frame was of paramount 
importance. It was this clock comparison that mattered most to him, if one were 
to accept the embedded assumption of invariance of speed of light measure-
ments. 

In relativity theory, the proper time clock of a given reference frame (we’ll call 
it To) can be compared to those of different reference frames. In fact, an ordering 
of all other reference frame clocks can be mapped with respect to the chosen 
clock of reference. One can utilize a subscript numbering system of the various 
clocks, such that clocks within the same reference frame can be numbered the 
same, and faster-ticking and slower-ticking clocks within different reference frames 
can be numbered higher or lower, respectively. Clocks keeping the same proper 
time are defined herein as “isoclocks,” and their collective reference frame is de-
fined herein as their “isoframe.” 

2. Results: Isoframe Mappinig in Special and General  
Relativity 

Since a relativity isoframe is defined as one in which variously-positioned ob-
servers all keep the same proper time, their clocks can be considered to be per-
fectly synchronized at all times within their isoframe map. 

2.1. Special Relativity 

One can map out a special relativity Minkowskiian space-time isoframe in the 
following way (see Figure 1).  

This is a 2-dimentional slice of rectilinear space-time (i.e., no curves in the 
latticework). For the purpose of this thought experiment, one can think of every 
point of line intersection as a fixed point with respect to an observer at the 
centrally-located To point. Therefore, all such points of intersection can be con-
sidered to be in the same reference frame (isoframe) with respect to this To 
clock, and to have identical To clocks (isoclocks), one of which is shown. Anyone 
moving inertially in this Minkowskiian plane relative to any To clock moves the 
same with respect to all To clocks, and must have a non-To clock of their own. 
One can readily envision the Minkowskiian space to be filled with many differ-
ent non-To clocks, depending upon their particular reference frame velocity with  
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Figure 1. Special relativity isoframe (Minkowskiian space-time). 

 
respect to the To isoframe. So, the To special relativity isoframe map of Figure 1 
is one of stationary (in a relative sense) imaginary clocks in a field devoid of 
matter and its ever-present gravity.  

2.2. General Relativity 

Einstein’s gravity theory, incorporating thought experiments with light beams 
and accelerating reference frames, necessitates that gravitationally-attractive 
matter positively curves space-time in a very specific way, according to a metric 
tensor (the “metric”). Without immersing oneself for years in this arcane branch 
of mathematics, one can nevertheless have a very good idea of how general rela-
tivity improves somewhat on the Newtonian concept of gravity in flat space and 
absolute time.  

The key to this understanding is, once again, an isoframe mapping of identical 
time clocks, but within the gravity space surrounding a concentration of matter 
and/or energy. One must remember that matter and energy are two sides of the 
same coin, by E = mc2. In contrast to the special relativity isoframe map of To 
clocks fixed in position relative to a specified To observer clock, the general rela-
tivity isoframe map is a curved manifold of different clocks at different distances 
(i.e., radii) within the gravity well surrounding a centralized focus of matter/ 
energy. See Figure 2. 

As well-proven by clocks in satellite orbits around Earth, clocks farther from a 
center of gravity tick faster (hence the higher subscript numbers) than clocks 
deeper in a gravity well. Four such orbital clocks are shown in Figure 2 for 
comparison. Each orbital sphere surface (represented by a circle in the two-di- 
mensional figure) can, therefore, be considered to be a gravity isoframe, as de-
fined by its isoclock. The slowest clocks, in comparison to any of these orbital 
clocks, are those on Earth’s surface, which, assuming continuance of the num-
bering sequence, would be labelled as To in Figure 2.  

For the purposes of a general relativity thought experiment, let us consider a 
perfectly homogeneous and spherical extended body of matter which we will call 
a “planet.” This planet has no angular momentum (i.e., it does not rotate) and all 
of its mass can be effectively treated as if it were concentrated at a point at the  
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Figure 2. General relativity isoframes (TX curved space-time). 

 
geometric center of the sphere. Furthermore, this planet has no atmosphere and 
rests in a vacuum of infinite space with no other matter or energy.  

We know from Newtonian mechanics that perfectly circular orbits centered 
on the planetary center can be achieved at any distance from the planetary center 
which is also beyond the planetary surface. We also know that a centripetal gra-
vitating force of attraction on a body (x) in a given circular orbit closely ap-
proximates  

2
Gx x xF GMm r−=                          (1) 

wherein the usual Newtonian symbolic representation applies. Furthermore, each 
circular orbit (x) can be defined by its curvature Cx according to 1

xr
− . This cur-

vature definition is as useful for gravity in this simplified isoframe approach as it 
has been for the field of lens optics. Figure 3 replicates Figure 2, except that 
each orbital in the gravity well is now designated by its curvature Cx. The only 
important difference to keep in mind here is that a smaller curvature subscript 
(x) in Figure 3 corresponds to a greater degree of curvature.  

3. Discussion 

One of the interesting features about this correlation between an x-orbital’s cur-
vature Cx in space and its own proper time Tx is that the square of its curvature 
( 2

xC ) correlates with gravitational force in proportion to 2
xr
− . Thus,  

2
Gx x xF GMm C=                          (2) 

Furthermore, while the GMmx term is a constant in the Newtonian theory, it 
can now actually be considered a variable according to E = mc2. The rest mass- 
energy of body mx on the planetary surface is fractionally less than the mass-  
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Figure 3. General relativity isoframes (CX curved space-time). 

 
energy of orbiting body mx at a certain height h above the surface, according to 
mγh (gravitational potential energy) added to the rest mass-energy. Herein, we 
are using gravity field symbol γ (acceleration due to gravity) in a generic sense, 
corresponding to a given height above a planet of mass M. The importance of 
now requiring the incorporation of E = mc2 into the mx term of 2

x xGMm C  is to 
show how it is that the centripetal gravitational force calculated by Newton al-
ways very slightly underestimates the general relativity force on orbiting bodies 
in relatively weak gravity fields. However, more importantly, it would be ex-
pected to greatly underestimate the general relativity force (including tidal forces) 
on orbiting bodies in strong (i.e., high energy density) gravity fields, such as 
those bordering black hole event horizons. Thus, Newton’s theory can only be 
considered to be a very good approximation where gravitational energy density 
(and its associated space-time curvature) is relatively weak. 

One of the reasons why 2
Gx x xF GMm C= , when it incorporates E = mc2 into 

the equation, appears to be a significantly better approximation of the true gra-
vitational force than Newton’s approximation is that Krogdahl’s incorporation 
of E = mc2 into his own flat space-time cosmology formulation has already been 
shown to be remarkably accurate with respect to the canonical tests of any grav-
ity theory competing with general relativity [3] [4].  

Just as one can transform a square into a cube by multiplying by a measure of 
the 2-dimentional object (namely, its length), a squaring of the 2-dimensional 
circle curvature according to 2 2

x xC r−=  can be considered to be a 3-dimensional 
representation of a Tx orbital. In this way, a 2-dimensional spatial object with an 
embedded time clock corresponding to its curvature radius becomes a 3-dimen- 
sional spatial object with an embedded time clock corresponding to its curvature 
radius. Thus, the manifold of concentric spheres with different embedded isoc-

https://doi.org/10.4236/jmp.2021.126046


E. T. Tatum 
 

 

DOI: 10.4236/jmp.2021.126046 736 Journal of Modern Physics 
 

locks becomes a conceptually useful model of 4-D space-time.  
With respect to black holes, curved general relativity isoframes, with the third 

spatial dimension withheld for clarity, can be mapped around a perfectly spher-
ical Schwarzschild black hole (see Figure 4). 

In this figure, To represents the frozen time clock of the black hole horizon, as 
perceived by a stationary or orbiting outside observer at any fixed radius outside 
the black hole horizon. It is often said that if one could instantaneously convert 
the sun into a Schwarzschild black hole of identical mass, the curved space-time 
of known planetary orbitals would look identical. The known planets would all 
be at such sufficient distances from the three-kilometer radius solar mass black 
hole horizon that we would not observe any appreciable difference in their or-
bital paths or periods.  

The key difference in the adaptation of general relativity isoframes to black 
holes is what happens in close proximity (i.e., within several Schwarzschild radii) 
to the horizon. Here the gravitational field strength and tidal forces deviate sig-
nificantly from Newtonian theory, and the mγh mass-energy contribution to mx 
becomes of paramount importance. At this point, by not incorporating E = mc2 
into mx, Newtonian theory fails to be a close approximation of the extreme tidal 
forces and other phenomena occurring at orbital radii near a black hole horizon. 
Obviously, the frozen horizon clock To in Figure 4 marks the boundary of the 
black hole isoframe map. Nothing certain or useful can be said about the interior 
of a black hole. And no one wants to be the free-falling observer to pass this ho-
rizon and explore the interior! 

One wonders if the above general relativity isoframe conceptualization could 
be of use in terms of unification with quantum physics. Quantum field theories  
 

 
Figure 4. General relativity isoframes around a black hole. 
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in curved space-time do, in fact, exist. These generally follow the local structure 
(i.e., the geometry) of space-time. Therefore, it is hoped that the conceptual 
framework presented herein may be useful in some way to quantum physicists 
working towards unification.  

4. Summary and Conclusions 

This paper has introduced readers to the definition and mapping of isoclocks 
and isoframes in special and general relativity. Particular attention has been paid 
to general relativity isoframe mapping around an ideal spherical body of mat-
ter/energy, according to the mapping of isoclocks and their isoframe orbitals. 
Application of the 1

x xC r−=  curvature definition, borrowed from optical lens-
ing, allows one to define and represent time-embedded orbital curvature in 
2-dimensional space. Furthermore, squaring of curvature ( 2 2

x xC r−= ) allows one 
to define and represent time-embedded curvature in 3-dimensional space. And 
because of its time-embedded nature, this becomes a useful analogue of 4-di- 
mensional space-time. The mapping of concentric time-embedded spheres of 
this type is conceptually useful for the majority of us who cannot otherwise pic-
ture 4-dimensional manifolds. Furthermore, the introduction of isoframe for-
mula 2

Gx x xF GMm C= , may allow one to see how it is that gravitational force not 
only correlates with 2

xr
− , but also time-embedded curvature space (space-time). 

Finally, the author speculates that probability theories, such as quantum field 
theories in curved space-time, might be adaptable to the general relativity iso-
frame concept introduced herein.  
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Abstract 
This brief note describes a method by which numerous empirically-deter- 
mined quantum constants of nature can be substituted into Einstein’s field 
equation (EFE) for general relativity. This method involves treating the ratio 
G/ћ as an empirical constant of nature in its own right. This ratio is repre- 
sented by a new symbol, NT. It turns out that the value of NT (which is 
6.32891937 × 1023 m·kg−2·s−1) is within 5% of Avogadro’s number NA, al-
though the units are clearly different. Nevertheless, substitutions of NT or NA 
into the EFE, as shown, should yield an absolute value similar in magnitude 
to that calculated by the conventional EFE. The method described allows for 
quantum term EFE substitutions into Einstein’s gravitational constant κ. 
These terms include ћ, α, me, mp, R, kB, F, e, MU, and mU. More importantly, 
perhaps, one or more of the many new expressions given for κ may provide a 
more accurate result than κ incorporating G. If so, this may have important 
implications for additional forward progress towards unification. Whether 
any of these new expressions for Einstein’s field equation can move us closer 
to quantizing gravity remains to be determined. 
 

Keywords 
Unification, General Relativity, Quantum Theory, Einstein’s Gravitational 
Constant, Tatum’s Number, Avogadro’s Number 

 

1. Introduction and Background 

There are a myriad of difficulties in attempting to unite gravity with the other 
fundamental forces of nature. Not the least of these is that our best gravity 
theory, general relativity, has classical deterministic features, whereas quantum 
theory is anti-deterministic, probabilistic, and built upon the foundation of Hei-
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senberg’s uncertainty principle. To unite gravity with the other forces using these 
two theories, without some modifications to one or both theories, is a bit like 
mixing oil and water. It simply won’t work. An “emulsifier” approach, success-
fully combining certain features of both theories, is needed. 

One possible approach towards unification is to work towards quantizing 
gravity (i.e., “quantum gravity”), as we see with the work of string theorists. The 
other possible approach is to work towards gravitizing quantum theory [1], al-
though there seems to be less progress from this direction.  

This brief note points to a potentially useful way of bringing elements of both 
theories together by harmonizing two of their most fundamental constants (G 
and ћ) in the form of a ratio (G/ћ). One can then insert this ratio into Einstein’s 
most fundamental gravity and quantum equations as shown herein. 

2. Results 

The analytic process in this brief note primarily involves substituting various 
constants of nature into previously-established relativity and quantum equations, 
in order to better see their relationships. Only simple algebra is required. No 
figures or tables are necessary to elucidate these relationships. 

The latest available values of G and ћ are [2]: 
11 3 1 26.67430 10 m kg sG − − −= × ⋅ ⋅                      (1) 

34 2 11.054571817 10 m kg s− −= × ⋅ ⋅                     (2) 

Their ratio, which we represent as NT, is: 
23 2 16.32891937 10 m kg sTG ћ N − −= = × ⋅ ⋅                 (3) 

Interestingly, this ratio approximates (within 5%) Avogadro’s number NA: 
23 16.02214076 10 molAN −= ×                       (4) 

We will take advantage of this similarity (“near-equivalence”) below. 
Einstein’s field equation (EFE) of general relativity can be expressed as fol-

lows: 

4

8   GG g T
cµν µν µν
π + Λ =   

                      (5) 

wherein Gµv is the Einstein tensor, gµv is the metric tensor, Λ is the cosmological 
constant, G is Newton’s gravitational constant, c is speed of light, and Τμv is the 
stress-energy tensor. 

Notice that the bracketed coefficient of the stress-energy tensor, sometimes 
referred to as κ or Einstein’s gravitational constant, contains G. Thus, a rear-
rangement of relation (3) can be given as follows: 

236.32891937 10G ћ= ×                       (6) 

And substituted in relation (5) as follows: 

4

8
   TNG g T

cµν µν µν
π + Λ =   

                     (7) 
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wherein NT stands for 6.32891937 × 1023 m·kg−2·s−1 [see relation (3)]. 
Thus, Newton’s gravitational constant G has been removed from the κ term of 

the EFE and substituted by the NTћ factor. This allows Planck’s reduced constant 
to become a part of the EFE, without sacrificing any accuracy of the mathemati-
cal expression. Furthermore, it has been shown by Seshavatharam & Lakshmi-
narayana [3] that the magnitude of G can be expressed as: 

4 14

2 16

16 e

p

m c
G

m
π
α

=


                           (8) 

wherein me is mass of the electron, α is the fine structure constant, and mp is 
mass of the proton. Therefore, one can rearrange this relation as follows: 

4 14

2 16

16 e
T

p

m cG N
m

π
α

= =


                         (9) 

And substitute for NT in relation (7) as follows: 
5 14

2 3 16

128 e

p

m
G g T

c mµν µν µν
π

α

 
+ Λ =  

  

                    (10) 

This should also be an accurate expression of the EFE, but now with additional 
quantum terms integrated to express the magnitude of κ. 

Furthermore, the near-equivalence of the magnitude of NT and NA allows for 
the magnitude of Einstein’s gravitational constant to be expressed (approx-
imately) as: 

4

8 AN
c

π
κ  =   

                           (11) 

Additionally, we know of several equivalent expressions for NA as follows: 

A
B

RN
k

=                             (12) 

wherein R is the molar gas constant and kB is Boltzmann’s constant. 

A
FN
e

=                             (13) 

wherein F is the Faraday constant and e is the elementary charge. 

U
A

U

M
N

m
=                            (14) 

wherein MU is the molar mass constant and mU is the atomic mass constant.  
Relations (12) thru (14) are well-known [4]. These relations are mentioned 

here in order to provide for additional relations (15) thru (17). Thus, Einstein’s 
gravitational constant term κ can also be expressed as follows:    

4

8

B

R
k c
πκ

 
=  
 



                          (15) 

wherein the EFE can now incorporate the molar gas constant, Boltzmann’s con-
stant, and Planck’s reduced constant. 
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πκ  =   



                          (16) 

wherein the EFE can now incorporate the Faraday constant, elementary charge e, 
and Planck’s reduced constant. 
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8 U

U

M
m c
π

κ
 

=  
 



                         (17) 

wherein the EFE can now incorporate the molar mass constant, the atomic mass 
constant, and Planck’s reduced constant.  

Furthermore, if one chooses to insert Newton’s gravitational constant G into 
Einstein’s quantum equation for photon energy, E = hv, one can re-express this 
relation with Planck’s reduced constant, by E = 2πћv, and then substitute G/NT 
for ћ as follows: 

2

T

GE
N
π ν

=                           (18) 

Thus, Newton’s gravitational constant can be worked into Einstein’s most fam-
ous quantum equation. Of course, it is trivial to continue further substitutions 
for NT along similar lines as given above. Unfortunately, nothing would be gained 
by this approach, as this would introduce into Einstein’s (and Planck’s) original 
precise quantum formula the roughly 5% absolute magnitude error of using NA 
as a substitute for NT. This would be an unacceptably large error in many quan-
tum applications. 

3. Discussion 

The approach taken above with respect to substituting various empirically-deter- 
mined quantum terms into the EFE may have some value, given the relative im-
precision in measuring G to more than 3 or 4 decimal places. It is conceivable 
that one or more of the κ substitutions introduced herein [i.e., in relations (10), 
(11), (15), (16) and (17)], when integrated into the EFE κ term of relation (5), 
could potentially improve upon the accuracy of the EFE employing G alone. Of 
course, this remains to be determined. 

4. Summary and Conclusion 

This brief note has described a method by which numerous empirically-deter- 
mined quantum constants of nature can be substituted into Einstein’s field equa-
tion for general relativity. This method involves treating the ratio G/ћ as an em-
pirical constant of nature in its own right. This ratio is represented by a new 
symbol, NT. It turns out that the value of NT (6.32891937 × 1023 m·kg−2·s−1) is 
within 5% of Avogadro’s number NA, although the units are clearly different. 
Nevertheless, substitutions of NA into the EFE, as shown, should yield an abso-
lute value of a similar magnitude to that calculated by the conventional EFE [i.e., 
relation (5)]. More importantly, perhaps, one or more of these new expressions 
given for Einstein’s gravitational constant term κ may provide a more accurate 
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result than κ incorporating G. If so, this may have important implications for 
additional forward progress towards unification. Whether any of these new ex-
pressions for Einstein’s field equations can move us closer to quantizing gravity 
remains to be determined. 
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Abstract 
This study endeavors to explain black holes through their role, essence and 
function. It utilizes a customized hypothetico-deductive methodology as a 
cognitive approach to construct and explain the model. The paper presents 
schematics as illustrations. Black holes are formed through a clash of Univer-
sal energy ripples, or through stellar collapse. Its micro level roles are to: re-
cycle cosmological debris, stabilize the formation of galaxies, define the shape 
of galaxies, and stratify space around them. Their macro role is a subsystem 
in the preservation of the Universal balance, construct and shape. Black holes 
are made of two semi-cores of opposite spins. The cores are heterogeneous 
and made up of structures of dark matter particles. Surrounding the black 
hole are the process horizon, event horizon, and trap horizon. Primitive cores 
cannot survive; black holes which collapse to primitive cores decay and va-
nish. Black holes attract objects via energy fields, where energy tends to ac-
cumulate mass for more complex structure development in which more 
energy colonizes. Photons can either fall on the event horizon or directly 
cross to the process horizon depending on the black hole structure. This pa-
per has transformed black holes from a set of scattered and vague ideas into 
structured objects of defined and necessary universal roles. The paper calls 
for empirical validation or falsification of its model, theoretical model, and 
hypothesis. 
 

Keywords 
Dark Energy, Dark Matter, Energy Ripples, Galaxies, Processing Core 

 

1. Introduction 

This paper belongs to a series that endeavors to perceive and comprehend the 
Universe from a novel perspective. It adopts a customized form of hypotheti-
co-deductive approach [1] [2]. There were different perspectives towards the 
adopted methodology [3] [4]; however, this paper will not venture further into 

How to cite this paper: Daher, W.S. (2021) 
Black Holes in Role, Essence and Function. 
Journal of Modern Physics, 12, 744-760. 
https://doi.org/10.4236/jmp.2021.126048 
 
Received: March 18, 2021 
Accepted: May 7, 2021 
Published: May 10, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2021.126048
https://www.scirp.org/
https://doi.org/10.4236/jmp.2021.126048
http://creativecommons.org/licenses/by/4.0/


W. S. Daher 
 

 

DOI: 10.4236/jmp.2021.126048 745 Journal of Modern Physics 
 

the debate [5] [6]. This study assumes a number of theories that make up a hypo-
thetical model of one part of the Universe, the black hole in this case. After the in-
troduction of the model, the theories that build up the model are introduced. Then 
the hypothesis presents the main ideas on which the whole model relies. 

This cognitive paradigm was introduced and discussed in two previous papers 
[7] [8]. Each paper addresses one aspect of the Universe, as a prerequisite for the 
following paper. Some of the previously proposed theories may be modified or 
developed in the process of cognitive presentation as a means of refining the 
model and not refuting it. The hypothesis is a group of more profound proposi-
tions that may call for a revisit of the model should they be falsified.  

Objects are primarily identified through their role in the Universe. Their es-
sence remains a secondary aspect necessary for the role. The reason for the exis-
tence of any object is its role and contribution to the Universal system. Its exis-
tence in its own right is a function of multiple variables that may be related to 
the local or macro Universal conditions. 

Nature is necessarily, according to the cognitive paradigm, an optimizing ent-
ity that utilizes its resources of mass and energy efficiently [8]; one can assume 
multiple objects with multiple roles necessary to preserve this assumption. If, at 
one location of space, the necessary and essential conditions for the startup of a 
multiple structures entity, such as a galaxy, exist, then one can assume that de-
bris and failing objects are part of the building process. An optimizing nature 
necessitates a recycling mechanism as essential for the scheme. Its role is to ‘re-
cycle’ debris and store or release the constituents, at certain intervals, into space 
as raw materials for the building process itself. These intervals may depend on 
thresholds of fluctuations of energy [7] in the vicinity of the black hole. They 
may also be a function of straying volume of debris, the rate of formation of 
complex matter, and the strength of the initiating ripple [7] among others. As 
such, the recycling plant should have adequate ability to attract debris, break it 
down into primary building materials and release them, ability to release the 
energy that has been stored in the decomposed structures, and relevant interac-
tive controls. 

Another role that is required in the building process is an anchoring structure 
that acts as a reference for the new forming objects. Due to the huge turbulences 
created by the Universal dynamics, star dust and formed objects may stray in 
different directions which may squander the energy and mass involved in the 
galaxy formation. It is anticipated that planets and stars do change their loca-
tions to achieve equilibrium between their buoyancy and other Universal para-
meters. As such, an anchoring object which regulates the spatial formation of the 
galaxy is essential in the building process. Any object that, on the macro level, 
does not have a specific duty, or, on the galactic level, does not fall within the 
interacting subsystems, may eventually be sucked into a black hole and recycled 
into raw material.  

The formation zones are formed when the ripples initiated by the Universal 
expansion clash together in a certain locality [7]. This is also coupled by the 
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energy tendency to attract masses to increase colonization capacity. This is fur-
ther discussed below.  

The ripples are energy waves transmitted through matter structures that fill 
the space. When the ripples collide, the released energy integrates dark matter 
and its structures, in the collision vicinity, into more complex forms of matter 
[7] [8] until they are perceived as star dust. The energy released by the collision 
of the ripples dictates the stage of integration of matter. Matter may be inte-
grated into just star dust, or straying objects, or stars and planets in subsystems, 
or galaxies, or objects and subsystems still undefined to humans. The quantity or 
degree of integration of the produced objects depends on the quantity of energy 
dissipated by the collision of the ripples.  

Energy colonizes matter. Energy tends to accumulate matter in order to form 
more complex structures through different energy forms and thus more capacity 
for energy colonization. For example, matter integration starts with one form of 
energy till nuclear structures are formed, then with sufficient matter available, 
nuclear energy forms atoms, then with sufficient matter, more energy forms 
molecules. So, as energy accumulates matter, energy builds itself complex forms 
and more complex forms for more energy colonization. This energy can be per-
ceived, for instance, as electrical, nuclear, magnetic, chemical or gravitational. In 
space, the more the mass, the more the colonizing energy, the greater the attrac-
tion of other masses in order to build more complex structures.  

In the space vicinity of Earth, the attraction among masses is proportional to 
certain constants and parameters. In other vicinities of space where different 
conditions may exist, energy may form different matter structures that can co-
lonize more or less “quantities” of energy. In these parts of space, the attraction 
forces among masses may be proportional to different constants and parameters.  

As the object formation stage ends, and the pull towards the formation vicini-
ty weakens or the matter gets exhausted, the formed objects may stray in space. 
If there exists no pull towards a center, the formed objects eventually scatter in 
space. The different density zones decompose and the formed objects may even 
crash with each other.  

As the formation energy depletes, nature ends up with objects floating at dif-
ferent density zones, debris, and different mater formations that failed to float 
away from the formation area. A certain “Object” has to form, organize, and pre-
serve the different density zones, recycle debris, and maintain equilibrium in the 
newly formed environment, the galaxy. If this Object does not exist, the galaxy 
disintegrates. This “Object” is referred to as a ‘black hole’.  

2. Literature Review 

A classic definition of a black hole would be: a body with a high gravitational 
force such that the escape velocity exceeds the speed of light. Black hole can be 
defined as a “region where space is falling faster than light” [9].  

Black holes have been mainly depicted in mathematical models rather than real 
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empirical work [10]. Researchers proposed numerous models of black holes. Many 
of these models were based on the general relativity theory. Penrose calculated, 
according to relative relativity, a singularity within a black hole [11]. Schwarzschild 
[12] among others conjectures that non-rotating black holes are perfectly spherical 
[13] [14] and their size depends on their mass only [15]. Others showed that the 
shape and size of rotating black holes at a constant velocity, depends on their mass 
and rate of rotation [16]. Some scientists argue that a black hole has no hair and 
can be classified via mass, electric charge, and angular momentum [17] others as-
sume an additional scalar field [18] or soft quantum hair [19]. 

Some scientists believe that the event horizon has a non-decreasing property 
[10]. Zeldovich and Starobinsky believe that rotating black holes emit particles 
[10]. Hawking believed that emitting radiation, hawking radiation, is a property 
of non-rotating black holes as well, from the area outside the event horizon [10]. 
J. H. Taylor and R. A. Hulse confirmed that moving heavy objects in space, as 
predicted by the general relativity theory, emit gravitational waves, at the speed 
of light, which carry energy away from the emitting object. This will cause stars 
orbiting each other to spiral in towards each other. [20] 

Some researchers presume that black holes form by the collapse of stars due to 
the gravity of their mass [10] [21] where they collapse into a spherical ball of 
uniform density [22]. Mathur proposed a fuzz ball model of the black hole which 
eliminates the singularity model [23]. In a string theory interpretation, black holes 
behave like “ordinary quantum mechanical objects” [24]. Black holes are inter-
preted as D-Brains in the string theory [24] [25].  

3. The Model 

This section presents black holes in role, function, and essence. It starts with a 
discussion of the roles and then continues with an assumption of the essence in 
light of the function.  

3.1. The Role of Black Holes 

Considering the local or micro role of the object, there are three possibilities for 
the intervals of formation of the black hole. Following the assumption of re-
source optimization, the formation time should be dictated by the necessity of 
foundation of the object’s role/s. The first possibility is that the black hole is 
created as the first galactic object. This implies that it is the first object in any 
galaxy; and, it is necessarily the prerequisite for the formation of the galaxy; or it 
can form after the formation of other galactic objects; or, it can never form if the 
energy dissipated in the clash is below a certain threshold.  

In the case the black hole is the first object to be formed, and there are still 
abundant energy and matter, a galaxy follows. The black hole is a concentrated 
center of mass colonized by enormous amounts of energy. Energy tends to at-
tract energy in order to accumulate mass for further energy colonization. This 
makes it the destination of any and all energy colonized structures in its vicinity. 
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The structures attracted by the energy pull tendency have various densities. 
More compacted structures are heavier in density and thus form the first “sea” 
of matter, “sea 1” around the black hole. Less compacted structures, attracted by 
the black hole energy, but have less density than the more compacted structures 
form another sea of matter, sea 2, around sea 1. This continues until the black 
hole stratifies the space around it (Figure 1). The newly formed stars and planets 
float on/in these seas according to their densities. The stars and planets are at-
tracted to the black hole as energy tends to accumulate mass. However, their 
density forbids them from sinking into the sea they are floating on. 

If energy is abundant and matter is not abundant for the formation of other 
stars or planets, then matter can be compensated from two sources. The first 
source is the energy that will integrate simpler mass structures into star dust. 
The second source is the black hole itself through trapping and disintegrating 
passing by matter into simpler matter to be utilized by the abundant energy to 
form stars and planets. Until adequate matter accumulates to form cosmological 
objects, the black hole remains on its own as a trap for straying objects.  

If matter is abundant and energy is not abundant, then the black hole disinte-
grates some of the matter into simpler forms and releases their stored energy. In 
this case, there should be more and greater seas of matter around the black hole. 
The released energy may or may not be enough to form planets or stars. Some 
smaller and lighter structures may be formed, such as rocks or comets, that float 
to the furthest sea due to their light density. At that far distances, their energy 
might not be enough to keep them attracted to the black hole; and thus they may 
stray in space. A time may come when the black hole consumes all matter in its 
vicinity without the formation of any galaxies. In this case, where matter and 
energy are scarce, the black hole remains on its own and may eventually collapse 
into a primitive core as will be discussed hereafter. 

If the black hole is not the first structure to form in a high energy location, 
then the formed planets or stars will scatter around the region of formation and 
move around the turbulences of matter distribution around that area. If no black 
hole forms, the planets may move in irregular orbits forming a temporary galaxy 
and may end up clashing with each other, or straying in space. If a black hole is 
formed in the process, and the only way being due to the collapse of a star, then,  
 

 
Figure 1. The stratified space around the black hole. 
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a galaxy may form and survive. The collapse of a star should be due to a strong 
concentration of energy within its center. This may be due to an energy ripple, 
or an energy lump in space that the star passed through, or maybe due to a 
structure deformation at the time of star formation. The structure of the matter 
comprising the star may have enormous variation in energy content between the 
surface and the center of the star which renders it unstable and collapsible at the 
adequate conditions. 

These formed planets and stars in the temporary galaxy are relatively dis-
persed and gets aligned only after the black hole is created. The black hole strati-
fies the surrounding space, forming seas of matter, that move the formed objects 
into their balanced positions in the new forming galaxy. In the process, some 
objects that are dense enough and fail to float on any of the seas will be sucked in 
and recycled by the black hole. If the black hole is strong enough, and matter is 
abundant, then it will create seas that cover wider space. Dense objects, denser 
than sea 1, may all be sucked in and recycled. Nearby galaxies, falling within the 
seas of the new black hole, may also be sucked in and repositioned or even re-
cycled. In the case a high energy black hole remains on its own, it will stabilize 
and reorganize the spatial location it exists in, playing a macro role that will be 
discussed hereafter. 

So black holes have numerous essential and necessary roles in the Universe. 
Their first role is to recycle spatial debris and reproduce them as valid univer-
sal building material. As the black hole sucks and decomposes debris, it then 
releases the material and excess energy into space. The released material may 
well be the initial universal building particle, the dark matter. It may also release 
larger formation of particles. Particles released from black holes are much smaller 
than atoms. As matter gets decomposed into its simplest forms, energy is re-
leased. The released energy can be dark energy or other more complex forms. 
Tremendous quantities of simple released matter form the densest area, alpha, 
around the black hole. The more complex particles released from the black hole 
area floats on the alpha area to form the betta area, and so on. Each formed 
structure of particles floats on the denser structure of particles. This process goes 
on till the galactic boundary is defined. Planets and planetary systems formed 
float among the different particle levels (alpha, betta…) according to their rela-
tive densities. 

A role other than the creation of galaxies is the definition of galactic shapes. 
The formation of the density zones defines the shape of the galaxy and the scat-
ter of the planets. Galaxies are defined by the intersection of numerous black 
hole seas. A black hole distributes matter among seas that build above each other 
due to various densities of particles. The combination of the black holes dictates 
the shape of the galaxy through the intersection and interaction of different seas 
of matter. Planetary systems and their orbits are also defined by this interaction. 
This logic explains the planar planetary systems such as the solar system, which 
floats on one of the seas. The sun is a simple form of a black hole that creates 
seas of particles around it as well for planets to float on.  
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Figure 2 depicts the intersection of the spaces formed by two black holes. The 
resultant can vary from a disc shaped galaxy, to an ovoid, to other shapes de-
pending on the penetration of the relative seas. If the intersection is among the 
seas of three main black holes then the galactic shapes become more complex. A 
galaxy, may in time, include several smaller internal black holes formed by col-
lapsing stars. These black holes change the internal shape and the distribution of 
planets within the galaxy. The solar system itself, with its flat shape, is either 
floating on one of the seas of a black hole or is formed by the intersection of the 
seas of two internal black holes inside the Milky Way. 

The black hole can exist for its own right if considered from a macro perspec-
tive. There can also be a universal essence for the black hole irrespective of the 
formation of a galaxy. This role is related to the dynamics of the Universe and 
the control of its turbulences. Controlling the universal turbulences and absorb-
ing the energy and matter fluctuations are necessary to preserve the shape of the 
Universe and its balances. The conservation of universal shape [7], the egg 
shape, has to be supported. The universal expansion process has to be controlled 
in a manner that impedes a permanent mutation of the shape. For its own pre-
servation and persisting expansion, the shape of the Universe has to maintain its 
elliptic curvature. This subject is beyond the scope of this paper and will be dis-
cussed in future research. 

3.2. Energy Fields 

Mass, in its own right, is a “dumb” vehicle colonized by energy. Energy has the 
affinity to lump mass together, else any formation of the simplest structure would 
be impossible. Energy can only manifest itself through matter. The attraction 
among matter is therefore the property of the stored energy. Its strength and 
reach are proportional to the volume of the colonizing energy.  

This is referred to as “gravity” and “gravitational field” as exerted by the mass 
itself according to both theories of Newton and relativity. The proportionality to 
mass, according to this paper, is not an accurate approach. The proportionality, 
instead, is to the energy stored within the mass. The difference between the two  
 

 
Figure 2. Disc shaped galaxy as an interaction between the seas of two black holes. 
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paradigms might not stand out in the present “lump sum” approach of modern 
science or in the macro scale individualistic perspective of our solar system or 
even of our galaxy. This, however, may drastically change on micro levels, or in 
systems, galaxies, or even universes other than ours.   

Energy colonizes mass. Energy has the affinity to accumulate. In the process, 
energy pulls mass together. Energy accumulates mass, to build more complex 
structures also. More complex structures imply more energy stored. More stored 
energy implies stronger attraction for more mass; and the cycle goes on.  

Energy manifests itself in different forms. Such manifestations are on the 
nuclear level; others are on the atomic or chemical levels. There are other ma-
nifestations of energy on the “pre-nuclear” level, such as what has been referred 
to in a previous paper [8]. These include the forms of energy on the “dark” level 
which bridge the states of dark matter and nuclear matter. The forms of energy 
manifestation will be dealt with in future publications.  

3.3. Primitive Cores 

A primitive core consists solely of dark matter particles. They resemble the state 
of matter at the end of the compression era [8]. However, a primitive core may 
not survive if it does not find the means to re-energize itself. Dark matter, in 
their simplest form and in their own right, cannot store energy. Dark energy 
builds preliminary structures that encompasses the simplest dark matter par-
ticles. These preliminary structures still belong to the dark matter class. As the 
primitive core consumes its energy, it breaks down these encompassing struc-
tures. Its ability to pull the surrounding horizons depletes. The surrounding ho-
rizons disintegrate into space. As the encompassing structures are consumed, the 
core dies and scatters into space. 

3.4. The Core 

A dark matter particle is the simplest particle in our Universe [8]. It has been 
formed in the compression era of the universe, small “u”, by the integration of 
the simplest particle and energy into dark matter particles and dark energy. The 
compression era has created “Universe” in a vast universe and transformed a de-
finite volume of matter into “Matter”. Dark matter is the simplest form of Mat-
ter in the Universe. Energy conveys itself through Matter. Individual dark matter 
particles cannot store dark energy in excess of the energy stored upon their for-
mation in the compression era. Dark energy requires building up dark matter 
particle structures in order to colonize them. The core of black holes consists of 
dark matter particles in structures that hold weak attraction dark matter par-
ticles together. The energy stored in dark matter particles is not enough to keep 
such particles attracted to each other to form structures or objects. 

The energy carried in by the energy ripple waves builds structures of dark 
matter particles. The amount of energy and matter available in the affected loca-
tion defines the complexity of these structures as conveyed in Figure 3.  
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Figure 3. Dark matter structures. 

 
The composition of the processing core is an identity determinant of a black 

hole. The core consists of a mixture of dark matter particles and simple struc-
tures built by these particles. The identity of a black hole varies with the varia-
tion of the number of the dark matter particles (Dp) compared to the total 
number of structured particles (Ds) in the processing core (Dp/Ds). Another de-
fining character is the percentage of each structure in the core per total number 
of particles (Pt). For alpha particles, for example, it is Dap/Pt. The processing 
core maintains equilibrium as it continuously processes objects trapped and dri-
ven in. The core that consists mainly of alpha particles during equilibrium, will 
be referred to as “alpha core”. As the flow of trapped objects decreases, and the 
energy in the location is consumed, dark matter particles decompose the Al-
pha-particles and Dp/Ds increases. As Dp/Ds increases beyond a threshold, the 
processing core “collapses” into a primitive core, totally consisting of dark mat-
ter particles. The composition of the core of the black hole defines the composi-
tion of the event horizon. The same applies for a betta-core as it collapses to an 
alpha core. 

Dark energy in the core renders it turbulent, agitating, and rotating. Dark 
energy integrates dark matter structures that are crushed and formed again. If 
enough energy is available, the core integrates from primitive to Alpha particle 
core or beyond, in a process to store energy for future consumption. Amounts of 
dark energy escape the core via integrated vehicles of dark matter. If the core is 
not fed with the required amount of energy to maintain its structure, it will col-
lapse from a Betta core to Alpha core or to a primitive core.  

https://doi.org/10.4236/jmp.2021.126048


W. S. Daher 
 

 

DOI: 10.4236/jmp.2021.126048 753 Journal of Modern Physics 
 

Dark matter particles might have different spins around different axes. In 
two-dimensions, the spin is either clockwise or anticlockwise. When two par-
ticles of the same spin are forced by energy to join, they form a larger structure 
that preserves the same spin. Momentum is preserved. Other structures of the 
same spin can join, by energy, to form larger structures with the same spin. Par-
ticles of the same spin can join together or repel each other if not able to join. 
They resemble, more or less, two mechanical gears of the same spin as they ap-
proach each other. 

At the compression era, when the dark matter particles were formed, part of 
them had a clockwise spin and the other part a counterclockwise spin, in a 
two-dimensional perspective. When the expansion era started, and the particles 
scattered in the Universe, the particles with opposite spins were not distributed 
equally in all directions. As such, at any given location, one of the spins will pre-
vail. So, at a certain location where the energy ripples hit, and as energy builds 
dark particles into structures and then objects, the location ends up with two 
objects of different spins, and with enormous energy colonies, attracting each 
other, forming the core of the black hole. 

The core would be split into two semi-cores with a dominant one (Figure 4). 
The domination is for the larger semi-core. The resultant spin of the two 
semi-cores would be the spin of the surrounding material extending beyond the 
event horizon, into the trap horizon. 

As the two semi-cores rotate in opposite directions, around two parallel axes, 
and attracting each other, they suck in material in their direct vicinity (Figure 5) 
from one side, process them, and eject part of them from the other side. The 
broken material structure would be the same as or smaller than the core par-
ticles. If the core is a beta, then the material would be broken into beta, alpha, 
and dark matter particles. Some of the new energy may be sucked into the core 
upgrading it, from alpha to beta, or will be stored inside some of the structures 
by upgrading them into alpha or beta, for example.  

Some of the new energy ejects, in their matter built vehicles, out of the black 
hole and into space (Figure 6). The matter vehicles may be structures built from 
dark matter particles but still smaller than alpha structures in size, for example 
semi-alpha structures.  

 

 
Figure 4. Alpha-core black hole. 

https://doi.org/10.4236/jmp.2021.126048


W. S. Daher 
 

 

DOI: 10.4236/jmp.2021.126048 754 Journal of Modern Physics 
 

 
Figure 5. The core of a black hole. 

 

 
Figure 6. Ejected energy structures from black hole into space. 

 

3.5. The Space of Horizons 

The space around the black hole in which objects are subjected to direct and se-
vere impact will be referred to as “area of severe impact”. This area is composed 
of three main spaces called “horizons” (Figure 5). The first is the “process hori-
zon” which comprises material in the direct vicinity of the processing core and 
rotating around it. These materials are sucked in between the two rotating 
semi-cores to be decomposed and ejected into space or back into the process ho-
rizon for further processing. The material of the processing horizon is what falls 
in through the well-known event horizon.  

The event horizon, in this paper, is the furthest space around the black hole 
that traps photons. Photons are colonized structures that energy uses as vehicles 
of transportation [8]. As the energy tends to accumulate mass for further struc-
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tural development, photons are attracted to black holes. They penetrate the sur-
rounding horizons until they reach a space comprised of denser structures, a sea 
of denser structures, on which photons float. That space is called event horizon. 

Photons remain rotating in that space till they are broken down by the rotat-
ing material into denser structures that can drown further towards the processing 
horizon. In this case, some energy may escape or get ejected into space in less 
dense structures than the photons. The event horizon is the “trap horizon” of the 
photon. The trap horizon is the furthest space around the black hole that traps 
objects. The trap horizon comprises material orbiting around the black hole. 
These materials trap and decay passing objects in a particle-blasting effect. The 
particle-blasted materials sink into the horizons as per their respective densities. 
The trap horizon radius differs with the densities of the trapped objects. Objects 
are trapped at different distances from a black hole depending on their particle 
structures and densities.       

For an object to approach a black hole, the buoyancy of the object should be 
less than force of attraction of the energy. The object, in this case, sinks through 
the seas of particles towards the black hole. Objects may sink towards black holes 
in one of several cases. The object may collapse into a heavier object and thus 
sinks into the sea the object was floating in or on. The object sinks also if the 
density of the sea the object is floating in or on decreases due to a dying black 
hole, for example. Another reason for a sinking object toward a black hole may 
be due to the formation of a new black hole in which a new system of seas is 
formed.  

As the object sinks closer towards the black hole, it reaches a proximity, the 
trap horizon, where the rotating particles around the black hole particle-blast the 
object (Figure 7). The blasted material rotates around the event horizon. The 
particle-blasting process continues until the object is totally decomposed. The 
decomposed material rotates in the trap horizon where parts of it with densities  
 

 
Figure 7. Particle-blasting effect. 
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much lower than the density of the trap horizon material may float away into 
space. Some parts may remain rotating within the trap horizon for long periods 
becoming part of it. Other parts of the material with high densities may sink to 
the event horizon or the process horizon and into the processing cores.   

4. Theoretical Model 

1) Energy colonizes matter. Energy accumulates matter forming higher com-
plexity structures through different energy forms and thus greater capacity for 
energy colonization. 

2) Black holes form, organize, and preserve the different density zones, recycle 
debris, and maintain equilibrium in the newly formed environment, the galaxy. 

3) A black hole stratifies the space around it into seas of matter. Matter of 
similar densities float in the same sea. The seas of matter float over each other as 
a function of their densities. 

4) Black holes are a necessary condition for the formation and survival of ga-
laxies.  

5) They define the galactic shape through the formation of the density zones, 
the seas.  

6) The black hole core is split into two semi-cores that rotate in opposite di-
rections. 

7) The composition of the processing core and the percentage of each struc-
ture in the core per total number of particles (Pt), among others contribute to 
the identity determinant of a black hole.  

8) The area around a black hole is composed of three main spaces called “ho-
rizons”: The first is the “process horizon”, then the “event horizon”, then the 
“trap horizon”.  

9) The rotational speed and orientation of the process horizon is defined by 
the resultant in speed and orientation between the two semi-cores. 

10) Primitive core cannot survive. 
11) Energy fields are created by the affinity of energy to accumulate mass for 

further structure development. These structures are developed and colonized by 
more energy.  

12) Photons are trapped by some event horizons depending on their size, else 
they pass to the process horizon. In the event horizon, photons remain until 
broken down. 

13) Trap horizons differ with different objects. The distance that objects are 
trapped by a black hole varies according to their structures. 

5. Hypothesis 

1) Black holes are a necessary condition for the formation of galaxies. 
2) Black holes stratify the surrounding space into seas of matter. 
3) Black holes have split cores. 
4) The cores consist of structures of black matter. 
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6. Discussion 

This paper presents a complete model that, on one hand, explains numerous 
findings related to black holes, and on the other hand, refutes other related 
adopted ideas. In spite of the elusiveness of the subject, nature can only be per-
ceived and thought of as an integrated logic. As such, black holes, and as part of 
nature, can be depicted through their functions, in a simpler endeavor than to 
comprehend their essence.   

Black holes do not reveal themselves to direct observation but rather through 
their effect on their surrounding [26]. An example is the supermassive black 
holes at the centre of galaxies in Active Galactic Nuclei [26] [27]. Such black 
holes are probably the initial ones created as prerequisites for galaxies, as pro-
posed by this paper. Other smaller black holes are scattered through galaxies [9]; 
as they give the galaxies their shapes through stratification of seas of matter.  

Accepted indications of the presence of black holes are the concentration of 
masses in small spaces; they are assumed to form via collapsing star cores [10] 
[27]. As energy tends to accumulate matter for integration into more complex 
structures; and as the dark matter particles are integrated by energy in the ripple 
clash vicinity into more complex structures; cores of the black holes are formed 
of compacted dark matter structures.  

When a black hole forms after a collapse of two black holes of different sizes, 
it initially looks like a chestnut, “with a cusp on one side and a wider, smoother 
back on the other” [28]. Scientists conjectured that black holes are spherical in 
shape, if they are non-rotating or form due to a gravitational collapse of a 
non-rotating star. If the black hole is rotating, then it bulges outward near its 
equator. [10] The chestnut shape of a black hole is depicted in Figure 5. It in-
cludes the processing cores and the processing horizon.   

The probable merger of two black holes initiated gravitational waves detected 
in 2015 with the Laser Interferometer Gravitational Wave Observatory (LIGO) 
[29]. This occurrence is explained in this paper as the energy tendency to attract 
and accumulate matter.  

Another phenomena explained by this paper are some of the findings of the 
Event Horizon Telescope (EHT), namely, what is referred to as the “photon nut” 
where photons “neither escape to infinity nor fall across the event horizon” [30]. 
These are photons floating on the event horizon until they are broken into dens-
er structures, and thus fall into the process horizon. They can also be trans-
formed into lighter structures that float with the colonizing energy back into 
space. This paper explains also the bright ring of emission around the black hole 
[31], to be the sucked-in and ejected material in the process horizon via the 
semi-cores of the black hole.   

7. Conclusions 

There is a limited comprehension among researchers of black holes, in essence, 
in role and in function. Present tools and instruments of science have not been 
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able to investigate black holes in essence. These illusive objects are only per-
ceived through their assumed effects on their surroundings. 

This paper has invested the power of the mind to explore black holes that, till 
lately, have only been variables in mathematical equations. A detailed model that 
respects laws of nature while refuting generally accepted theories has been pre-
sented. The model satisfies the necessary universal functions required for an op-
timizing nature. Then, the structure of the object required to perform those ne-
cessary functions has been proposed. The conditions and means for the forma-
tion of such objects, namely the black holes, have been presented. 

The model to perform has to be structured by milestones defined by a theo-
retical model that states the main essential ideas for the whole model to work. 
Statements of the theoretical model can be revisited or modified for an enhanced 
understanding of black holes. The hypothesis presents the founding ideas for the 
model. Modification of these statements implies a major modification in the 
model itself. This research philosophy in its own right can be considered as a 
road map for empirical research. 

Most importantly, this paper has transformed black holes from a set of scat-
tered and vague ideas into structured objects of defined and necessary universal 
roles. Their necessary correlation with observed phenomena has been explained. 
Galaxies can only form in the presence of black holes. Multiple black holes de-
fine the shapes of galaxies. They also distribute formed stars and planets among 
the seas of matter the black holes form. Black holes are born and may die and 
decompose. Subtracting black holes from the Universe renders a chaotic and 
non-sustainable reality.    

Scientific capabilities are still too modest to overcome their limitations in the 
near future. Mathematical equations can only reflect the limitations of the mind 
to identify the entailed variables. This paper belongs to a series of research that 
calls for releasing the human mind from materialistic constraints when it comes 
to understanding the Universe.  

The limitations of the study are in the tools to empirically test and verify the 
proposed model. The validity of the proposed model may be obtained from the 
coherence of its ideas. There are some relevant data available; however, the in-
terpretation is still speculative.  

The human mind is the most powerful tool for discovering the Universe. 
Human’s comprehension of such a complex system is complemented by one’s 
understanding of its integrated subsystems. Empirical scientists are encouraged 
to confirm or negate the model building ideas in order to refine it further. 
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Abstract 
Steadily increasing time is involved in most scientific analyses. Like other di-
mensions in spacetime we suggest that there can be a variation rate of time’s 
progress or speed of time in the time dimension. We study speed-of-time 
variation observational data in three processes: muon decay, galaxy rotation 
(related to dark matter) and the separation speed of celestial objects as our 
Universe progresses (related to dark energy). Each of these processes will 
have an “observed value” of their time of completion Po from an observation 
of the process at time t1 and an “expected value” Pe of that time at time t2. 
Their difference is attributed to the variation of the speed of time. We provide 
a possible explanation for the anomalous separation of the observed and the 
expected galactic velocity curves. Our conclusion is that it is unnecessary to 
introduce dark matter or dark energy. 
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1. Introduction 

We believe that although time, as a steadily increasing independent variable, is 
involved in almost all scientific analyses, time’s rate of change (speed of time) 
and the variation of that speed should also be involved. We suggest that time, 
like the motion of objects moving in the three space dimensions, can increase or 
decrease at a variable rate. Similar to the hands of a watch moving fast or slow, 
this change in the speed of time could be almost trivially small or very large. In 
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the standard cosmological model, the early universe was very smooth (homoge-
neous), but we suggest that since the beginning of our Universe entropy’s evolu-
tion should be inhomogeneous, that is the rate of entropy increase cannot be 
uniform. Because the direction of the time arrow depends on the “direction” of 
entropy increase, the speed of time should also depend on the “speed” of entropy 
increase. In this case, if the entropy of the whole Universe has been increasing 
and entropy’s speed is slowing down, then the speed of time is also slowing 
down! Here we apply the speed-of-time concept to observational data concern-
ing three different physical processes: muon decay time, the rotational speed of 
the observable portions of a galaxy (related to dark matter) and the separation 
speed of celestial-objects as our Universe progresses (related to dark energy).  

We also suggest that the detection of High-Frequency Gravitational Waves 
(HFGWs) is an essential observational tool for examining the speed-of-time concept: 

1) Unlike the low-frequency gravitational waves (e.g., the gravitational waves 
generated by the merger of black holes or neutron stars) HFGWs are generated 
less than a nanosecond after the beginning of our Universe. We believe these 
primordial or relic HFGWs were generated by processes occurring when the speed 
of time in our early Universe was extremely fast.  

2) Today almost all mainstream cosmological inflation models expect that the 
upper limit of the frequencies of primordial HFGWs should be GHz or higher. 
This means that the period of the primordial HFGWs is about 10 −9 seconds or 
less. That time may be about the time necessary to complete an oscillation or es-
sentially the time to complete some activity or process in our early Universe. 

3) We contend that primordial or relic HFGWs were propagated before our 
Universe became transparent to electromagnetic radiation. If such primordial 
HFGWs can be detected by the HFGW detector, discussed in connection with 
our analyses of Muon decay, then their observations may not only contain in-
formation on the speed of time, but information, gained by means of the analys-
es of the HFGW frequency spectrum produced by the processes themselves. 

4) In the future detection of primordial high-frequency gravitational waves, it 
seems necessary to distinguish what is the increase of the wavelength of the pri-
mordial gravitational waves due to the possible expansion of the Universe (i.e., the 
decrease of the frequency), and what is the decrease of the frequency due to the 
decrease of the speed of time, as our Universe ages. This determination may not 
only be a challenge, but also an important opportunity in the study of cosmology. 

5) The observed speed of the stars comprising the periphery of nearby galaxies 
can be overestimated. Such an overestimates may be caused by the Doppler obser-
vation of stars beyond in spacetime the galaxy being miss-associated to be an ac-
tual peripheral galactic star. Since a star beyond the nearby galaxy would be further 
from the Earth than the galaxy and closer to the beginning of our Universe, they 
would be in a spacetime region of higher time speed and therefore higher apparent 
star speed relative to the observer on our Earth. Thus we may be fooled into asso-
ciating them with the galactic stars and thereby overestimating the observational 
average speed of the peripheral galactic stars. 
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We will also discuss processes that do not depend internally on the three space 
dimensions and are independent of the time-varying flow of time in our Un-
iverse. We call them Non-Varying-Rate-of-Time (NVRT) processes and suggest 
muon decay as an example of a NVRT process.  

Most processes depend upon various parameters and variables, such as a, b, 
c… and time, but here we single out time as the variable of interest. We propose 
that the best way to determine the speed of time is to compare the same physical 
process at two different times. Each process, P, will have an “observed value” of 
the process’ time of completion, Po, from an observation of the process at time t1 
and an “expected value” of Pe as the process time is expected to be at another 
time t2. Time t2 is usually considered in this discussion to be a time in the past 
when the photons left the process P. Or in the case of muon decay, when the 
process time, P0 was obtained and recorded in the past at a time t1. If time is not 
progressing steadily and uniformly, then we attribute any variation of the ex-
pected Process Pe(t2) time from the Process time we actually observe or actually 
record, Po(t1), to a variation of the speed of time. The fundamental equation re-
lating Po(t1) and Pe(t2) to determine the variation of the speed of time, Vst, is: 

( ) ( ) ( )1 2 1 2st o eV P t P t t t= − −   .                    (1) 

If the observed time for a single cycle or for the completion of a Process, Po is ex-
actly the same as the expected time for such a process, Pe then time running smoo- 
thly with no variation, in which case is the Variation of the Speed of time is zero. 

The Processes of interest and our expectations for them are: 
1) The expected duration of muon decay at t2, Pe(t2), is equal to the last meas-

ured value of muon decay time in picoseconds, at t1. 
2) The inverse of the expected speed of a portion of the visible disk of a galaxy 

at t2, Pe(t2), in seconds as based upon conventional Astrodynamics [1] [2]. 
3) The expected value of the speed of separation of a celestial object at t2, 

Pe(t2), is established by a “proposed” expansion theory of our Universe, here taken 
to be that the separation speed should be the same everywhere in our Universe 
(also that the Hubble “constant” is approximately 70 km/s per Mpc or 2 × 10−18 
[m/s per meter] or approximately 1/5 × 1017 seconds) therefore we express the 
expected cosmic object’s speed in fractions of the Hubble “constant” in seconds, 
to be equal everywhere in our Universe. 

2. Muon Decay Time to Measure the Variation of the Speed  
of Time 

The most accurate time measurements of Process time in a laboratory on Earth 
were found to be the decay time of Muon’s as measured by atomic or nuclear 
clocks. Muons are produced when cosmic rays strike atomic nuclei of molecules 
in the air and quickly decay over a fixed time interval. Muons can also be pro-
duced in a two-step process at large research facilities. High energy protons 
(>500 MeV) generated by a particle accelerator collide into a carbon or beryl-
lium target and generate Muons.  
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The earliest measurement of muon decay time that we found was made in 
1946 of 2,330,000 ps [3]. A more accurate measurement of muon-decay time 
found was 2,202,000 picoseconds (ps) by Eckhause, et al. in 1963 as part of the 
Olive, Particle Data Group [4] findings. The most accurate muon-decay time found 
so far was made by Webber and a group called the MuLan Collaboration in 2011 
of 2,196,980 ps [5]. 

After further search of the literature a mysterious trend appeared: the dura-
tion of muon decay, which should be a constant, appears to shorten gradually, 
perhaps irregularly (including pauses and acceleration or lengthening), from 1946 
to 2017 from very roughly 2.330 microseconds (1946) to very roughly 2.202 mi-
croseconds (1962-1963) by Lindy [6] and could be a basis for the detection and 
determination of the variation of the speed of time effect in laboratories on Earth 
independent of relativistic effects, that is if it is found that the shortening of 
muon decay time continues to be observed. 

All of these observable data are exhibited in Table 1 and graphed in Figure 1. 
The 1946 Conversi, et al. measurement’s estimated error was so large as to be 

eliminated, except as Clive Woods suggested, “… that if outliers were eliminat-
ed, then any possible trend might be masked.” Therefore, if we include the 1946 
Conversi, et al. measurement, we take the decay-time difference between both  

 
Table 1. Review of length of apparent muon decay time versus time. 

Date of 
Measurement 

Apparent Muon 
Decay Time 

(Picoseconds) 

Estimated Error 
(Picoseconds) 

Muons at Rest or in 
high-speed Cosmic-ray 

generated Motion? 
Reference 

1946.0 2,330,000 ±150,000 At Rest 
Conversi, Pancini,  

Piccioni [3] 

1962.0 2,203,000 ±4000 At Rest Lindy [6] 

1963.0 2,202,000 ±3000 At Rest Eckhause, et al. [4] 

1973.0 2,197,300 ±300 At Rest Duclos in Olive. [4] 

1974.0 2,197,110 ±80 At Rest Balandin in Olive. [4] 

1984.0 2,196,950 ±60 At Rest Giovanetti in Olive. [4] 

1984.0 2,197,078 ±73 At Rest Bardin in Olive. [4] 

2007.0 2,197,013 ±21 At Rest Chitwood in Olive. [4] 

2008.0 2,197,083 ±32 At Rest Barczyk in Olive. [4] 

2008.5 2,197,030 ± 40 At Rest Coan & Ye in Olive [4] 

2009.5 2,196,980.3 ±2.2 At Rest Webber/MuLan [5] 

2013.0 2,196,980.3 ±2 
At Rest; a copy of  

2009.5 measurement 
Tischchenko [7] 

2015.02 2,110,000 ±70,000 Fast, Cosmic Ray Barazandeh [8] 

2015.02 2,165,000 ±403,000 Fast, Cosmic Ray Barazandeh [8] 

2016.0 2,078,000 ±11,000 At Rest Physics OpenLab [9] 

2017.0 2,080,000 ± 11,000 At Rest Adams [10] 
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Figure 1. Data from Table 1 and Fig. 1a, page 63 of [1]). 

 
outliers, with Pe = 2,330,000 ps (we expect it to be exactly as measured most re-
cently) and Po = 2,080,000 ps (most recent 2017 measurement) over the time in-
terval of t2 − t1 = 2017 − 1946 = 71 years, then the variation of the speed of time 
from Equation (1) would be  

( )2080000 2330000 71 3521 ps year− = − .            (1a) 

If the outliers are eliminated and only the more accurate MuLan data utilize, 
then Pe = 2,197,013 ps [4] and Po = 2,196,980.3 ps [5] over the time interval of 

2 1 2009.5 2007 2.5t t− = − =  years, then the variation of the speed of time from 
Equation (1) would be  

 ( )2196980.3 2197013 2.5 13 ps year− = − .            (1b) 

In any event, the Table 1 exhibits most of the more accurate muon-decay times 
found and their estimated error. We recognize that the slowdown of clocks in ps 
per year, probably itself decreases or increases as time increases. Therefore, there 
may have been an actual “accelerated or decelerated slowdown” after the begin-
ning of our Universe! However prior to this analysis, there was no a priori ob-
servational data of muon-decay time analyzed to indicate with certainty either a 
constant or a varying slowdown or speedup of the rate of time. 

Under the supposition or working hypothesis that the aforementioned de-
crease in muon-decay time shortens as time increases, an interesting conjecture 
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immerges: that the muon-decay process operates with a different “clock” or 
change in the speed of time, compared with the clock with which the rest of our 
Universe operates! Is there a possibility that muon decay has a clock that runs 
without variation at a fast or slower pace as time progresses? Under this assump-
tion or working hypothesis the rate of slowdown of the time in our Universe is 
computed to be very roughly (not enough data to support a valid estimate of er-
ror) of between very approximately −13 ps per year (or −4.1 × 10−19 s/s) and 
−3500 ps per year (or −1.1 × 10−16 s/s) during the 71 year period between 1946 
and 2017. Since we have no other muon-decay times to analyze, we will make 
the provisional assumption that the muon-decay rate of time change in our Un-
iverse does not remain a constant, but becomes smaller as the time in our Un-
iverse increases! There are 2.2 × 109 seconds in 71 years so the rate of the as-
sumed rate of change is ([3500 − 13] ×10−12 seconds)/2.2 × 109 seconds = −1.6 × 
10−19 s/s. Therefore in this case, with the 71 years centered about 1981, or ap-
proximately 4.32 × 1017 seconds since the beginning of our Universe. These slow-
downs per second over 71 years are very approximate and call for more Muon- 
decay measurements having higher accuracy as well as more data on muon-de- 
cay-time found from other past times.  

Figure 2 is a Notional plot of the change in the speed of time variation as a  
 

 
Figure 2. Notional graph from Fig. 3 of [11] of the change-of-speed-of-time variation 
with today’s time dimension. The Figure is only a schematic and not intended for detailed 
analyses. Notice different slopes (tangents) and irregularities and the current time rate of 
about 10−17 seconds per second between 10−15 and 10−20 seconds per second shown by the 
expanded graduation scale on the ordinate near the “BIG BANG” or “BIG ROLLOUT”.  
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function of the time since the “Big Bang” or “Big Rollout” taken from Fig. 3 of 
[11]. It is only schematic and not intended for detailed analyses. The substantial 
increase in the speed of time value in the Notional and schematic graph of Fig-
ure 2, a nanosecond or less after the beginning of our Universe, is based upon 
our Rollout Theory of the beginning of our Universe and the high speed of time 
near the beginng of our Universe proposed by Baker [12]. The detection of 
High-Frequency Gravitational Waves (HFGWs) generated by processes occur-
ring less than a nanosecond after the beginning of our Universe would provide 
the most important fundamental data for the formulation of a theory on the 
variation of the speed of time! The specific data points on the very approximate 
curve, quite close in time to our Universe’s beginning would be disclosed by a study 
of the HFGWs emanating from the early Universe. Such a study could be ob-
tained through utilization of the effect found by Li [13] and the Li-Baker HFGW 
Detector [14] as well as the analysis of the sensitivity and utilization of that De-
tector [15] [16] [17].  

We assert that the Rollout Theory for our Universe [12] is simpler than some 
portions of the conventional Theory for the Big Bang: such as “...that the nascent 
Universe passed through a phase of exponential expansion soon after the Big 
Bang, driven by a positive vacuum energy density” (see Fig. 1 of [12]). Whereas 
the proposed Rollout Theory depends upon the simple concept that our Un-
iverse is similar to an ordinary clock or wristwatch that is slowing down as it 
ages, therefore by Occam’s razor the Rollout Theory is preferable. 

Although it would not affect the correctness of the theorized Theory of our 
Universe [12], more accurate measurements of muon decay time are needed in 
order to actually calculate an accurate local variation of the speed of time on 
Earth or indicate that muon decay time does not change with time and does not 
have its own “clock.” The speed of time and/or the speed of time’s variation may 
well depend upon “where” one measures the variation on the fabric of spacetime 
and/or the local mass distribution of matter or some other feature of our Un-
iverse! There may be a number of alternatives to this slowing-of-time analysis, 
but since time slowing in our Universe has some bearing on two other processes 
to be considered in this study, we will continue with it.  

3. Rotational Speed of a Portion of the Visible Disk of a  
Galaxy to Measure the Variation of the Speed of Time 

If the rate of time was greater in the past (these observations come from photons 
produced by galaxies millions or billions of years ago), then galaxies would ap-
pear to us today, with our slower clocks, to be rotating faster just as a watch in 
the past, if seen today, would appear to be moving its hands faster than our 
slower clocks as seen today as in Figure 3. 

As discussed on pages 71-72 of [11] the galaxies do not rotate like a solid top. 
Rather the galactic stellar material rotates at different rates depending primarily 
upon their radial distance from the galaxy’s center. In Figure 4 the grey dashed  
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Figure 3. Rotational rate of galaxies. 

 

 
Figure 4. Typical galactic velocity curves. The upper-solid white-line curve is the obser-
vational data from galactic starlight (yellow data points) and radio-astronomy spectral 
analysis (blue data points) of the observed speed of galactic portions at various radial dis-
tances out from the galactic center of a typical galaxy such as Messier 33. The lower 
dashed-grey-line (speed) curves exhibit the expected speed, at the same radial distances, 
utilizing Astrodynamics [1] [2]. 

 
line exhibits the magnitude of the vector velocity in kilometers per second of 
stars in the galactic disk. It is obtained by Astrodynamic analyses [1] [2] of vari-
ous galactic stars as a function of their radial distance in light years. The observed 
speed from the portion of the visible disk of a galaxy as measured from the Dopp-
ler Effect utilizing spectral data is shown by the solid white curve in Figure 4. 

Consider the observational data for the galaxy, Messier 33, about 2.73 million 
light years away from the Earth as shown graphically in Figure 4. We will extract 
approximate values of the pertinent data from measurements of the drawing. 
This nearby galaxy is about the same distance from the beginning of our Un-
iverse as is the Earth. Consider a Doppler speed observation, Po, of the luminous 
matter that shows the observed (by Doppler spectral analyses) tangential speed 
of “rotation” of a portion of the arms of the galaxy to be about 100 km/s at about 
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10,000 light years distant from the center of that galaxy. We will initially consid-
er that distance from the galactic center for calculation since this observable part 
of a galaxy is moving at the maximum speed of galactic material approximately 
shown in Figure 4. The circumference of the assumed circular orbit of a galactic 
star (turns out to be a very poor assumption as will be discussed) at this 10,000 
light year distance or 9.46 × 1016 km radius, is 2π × 9.46 × 1016 km = 5.94 × 1017 
km. Therefore as observed, this requires 5.94 × 1017 km/(100 km/s) = 5.94 × 1015 
seconds to complete one revolution or one orbital period of a star’s circular or-
bit. The calculated and expected tangential speed, derived by applying conven-
tional gravitational or Astrodynamic theory, is  
( ) 15 1565 100 5.94 10 3.86 10× × = ×  seconds to complete one revolution or one 
orbital period. In order to compute Equation (1), we insert the difference be-
tween these two times and divide by the number of years for the photons to 
reach the Earth, 6

1 2 2.73 10t t− = − ×  years. Therefore the speed of time change 
at this position on the galaxy is ( )15 15 6 85.94 10 3.86 10 2.73 10 6.52 10× − × × = ×  
seconds per year! Compared to muon-decay computed speed of time on the 
Earth, this is extremely large. As will be emphasized later, such an enormous 
speed of time is based upon a completely erroneous, although interesting, as-
sumption of a circular galactic orbit and will be discarded. Furthermore, from 
Figure 4, the speed of time would appear to increase in a very anomalistic fa-
shion, even more so out nearer the periphery of the Messier 33 galaxy! As will be 
discussed, due to an increase in the speed of time in the past and miss-associated 
“background” stars measured, there may well be an over estimate of the speed of 
the galactic stars and especially miss association of these distant in spacetime 
apparently fast-moving stars with the galactic stars. Therefore in Figure 4, the 
upper solid line of observed Doppler-Effect observations could in actuality be 
much slower and closer, but might not overlap the lower estimated value of ga-
lactic rotational speed based upon conventional gravitational or Astrodynamic 
theory. The speed of stars beyond the 40,000 light-year radius are no doubt un-
related to Messier 33 and are observed from our Earth as having higher apparent 
speeds as our universe rolls out. In this case, the actual 21-cm spectral-line-shift 
observational data of Figure 4 show those apparent stellar speeds due to the pre-
dicated slowdown of time from very high speeds, on average approach about 150 
km/s in the region of observable spacetime near Messier 33 and supports the new 
Rollout Theory [12]. 

To measure the rotation of a galaxy, observations must take into consideration 
the average shift of the spectrum of the galaxy. This will almost always result in a 
net spectral redshift for galactic stars, since it includes the expansion of the un-
iverse, and also our solar system’s motion around the galaxy we are observing (the 
rotation of our planet, our orbit around the Sun, the Sun’s motion around the ga-
laxy, and the galaxy moving through the universe). The more rapidly the galaxy 
rotates the more the red shift. Distant stars in spacetime, further and older than a 
given galaxy, show a larger red shift the faster time is moving in their spacetime 
region. Therefore, if mistaken for galactic stars then an erroneous higher galactic 
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rotational rate and “velocity curve” is mistakenly observed for the galaxy. 
We must realize however, that the assumption of circular orbits for the ob-

served stars is incorrect! We have no good information about how those orbits 
really are shaped. A far more fundamental concern is that “speed” is a scalar and 
not dependent on the trajectory of the speeding object. An analogy is that a 
4-minute-mile Track Runner’s speed at a given point is not measured by “dis-
tance per mile run per 240 seconds” or for a marathon runner not measured by 
“26.2 miles in so many seconds” or for a galactic star not measured by “single 
orbit distance per orbital period.”! No, it is actually based upon the inverse of the 
time to move a given reference distance. In measuring the speed with which 
stars move in a galaxy it is for example the number of seconds to move a kilo-
meter or a meter. Therefore, the P0 observed process time shown in Figure 4 is 
approximately 1/100 km/second or 0.01 seconds “per kilometer” and the Pe ex-
pected process time also roughly measured from Figure 4 is approximately 1/64 
km/second or 0. 0156 seconds “per kilometer”. The expected process takes about 
2.73 million years to reach the Earth, so t1 – t2 = 2.732.73×106 years and Equa-
tion (1) is 

 
( ) 6

9

0.010 0.0156 2.732.73 10

2.08 10 seconds per year or 2.080  ps per year−

− ×

= − × −
         (1c) 

A big difference from the orbital-period approach, but probably within the 
possible error of the relatively nearby Earth’s muon decay speed–of-time deter-
mination of −13 ps/year to −3521 ps/year. Also this rate of time determined by 
spectral analyses is possibly underestimated because of time dilation plus gravi-
tational potential!  

As already emphasized, the significant departure of the observed speed of ga-
lactic portions from the expected speed in Figure 4 is important and supports 
the Rollout Theory of our Universe. The expected speed is based upon orbital 
analyses. The motion of the stars in a galaxy is considered to be an n-body prob-
lem discussed, for example, in Section 2.1 of (2). There exist no general analyti-
cal solutions for n > 2, therefore General Perturbations do not apply and one 
must utilize Special Perturbations or numerical integration as discussed in 
Chapter 3 and Appendix D of (2). Presumably such techniques, including the 
effects of special and general relativity, GS and GR, were employed in the gener-
ation of the expected curve in Figure 4. The observed curve in Figure 4 involves 
the variation of the speed of time. We consider that curve at about a 40,000 light 
year radial distance. We discussed the rather startling departure of the observed 
speed and the “expected” speed for this very nearby Galaxy. Therefore, the P0 
observed process time shown in Figure 4 for radial distances less than 30,000 
light years is very approximately 1/120 km/second or 0.000,008,3 seconds “per 
meter” and the Pe expected process time also roughly measured from Figure 4 is 
very approximately 1/40 km/second or roughly 0.000, 025 seconds “per meter”. 
Note that in this case we use the standard meter not the kilometer for analysis! 
Therefore, from Equation (1) 
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( ) 6

12

0.000,0083 0.000,025 2.73 10

6.12 10 seconds per year 6.12 ps year−

− ×

= − × = −
.        (1d) 

But, of course, we should not jump to conclusions since the speed of the stars 
at the periphery of the Galaxy may include Doppler observations of those stars at 
a greater distance OBSERVED THROUGH the periphery of the Galaxy and op-
erating in a higher-speed-of-time spacetime region of our Universe! However 
also recall that possibly the variation of the speed of time may also be dependent 
on the density of surrounding matter of the galaxy or other characteristics of the 
nearby features of spacetime. Like calculations based upon other observational 
data, this apparent increase the speed of time or cosmological effect (CE) must 
be taken into account in any comprehensive Theory developed for the change in 
the speed of time in our Universe. As has been pointed out, so far there is no a 
priori means to establish the speed of time. Let the observational data be our guide 
to a Theory of Time!  

4. Separation Speed of Celestial Objects to Measure the  
Speed of Time 

The Hubble Space Telescope (HST) observations of the stellar-object-separation 
speed of very distant supernovae showed that, a long time ago (billions of years 
ago), the universe was actually expanding more slowly than today. So the expan-
sion of the universe apparently has not been slowing due to gravity, as it should! 
The expansion has apparently been accelerating! No one expected this since gravi-
ty should be slowing speeds down. No one knew how to explain the situation ex-
cept to invent some invisible “dark energy” caused acceleration. So far no one has 
been able to detect this dark energy-truly a mystery! But wait! How is the speed of 
these very distant celestial objects’ relative to our Earth measured? Again, like the 
speeds of portions of a galaxy, the speed is measured by the Doppler Effect! 

According to our working hypothesis [12], the speed of time was greater in the 
past. Since we can only see stars as they were in the past, we suggest that speed of 
time was greater in the vicinity of those stars we observe and greater and greater 
the farther away they are (their photons taking longer to reach us). The situation is 
just like viewing a scene with a variable-rate movie projector. In an old movie pro-
jection suppose the film was moving faster through the movie projector than 
usual, like the time moving faster. The situation is that the people on the movie 
scene appeared to be moving fast, but their actual speed was the same, usual speed! 
In order to illustrate this point, let’s consider another situation: From an observa-
tory here, violin strings in a billions of light-year distant place with time running 
fast, would appear to vibrate faster and, if it were possible to hear the violin, then 
the violin’s pitch would appear to be higher (like a spectrum showing a higher 
frequency and being more blue and less red). However, inside that billions of 
light-years away concert hall the violin strings would not appear to vibrate faster 
and violin’s pitch would be unchanged! In fine, as we have just discussed, if time is 
running faster in a receding star’s vicinity, then the reddening of stars will appear 
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to be less since their spectra appears to move toward the bluer, higher frequency 
end and diminishes the observed Doppler-Effect-determined speed (as already 
noted, time dilation and gravitational potential have the opposite, i.e., cause a 
more reddening, effect). The situation would seem to a casual observer that the 
higher speed of time in the past would make the receding speed of celestial objects 
increased or seem faster. This is not the case, the receding speed appears decreased 
as measured with a Doppler-measurement due to increased speed of time! That is, 
due to an increased speed of time, the star’s receding speed is actually larger than 
the spectral, Doppler-determined, receding speed shows! We will now explain in 
more detail this situation by the following story: A scientist sits in a train station 
and requests the station manager to tell him how fast the trains are moving when a 
receding train reaches a mile-away point. Like the recessional speeds of celestial 
objects, the scientist only considers the recessional speed of the trains. The first 
train to pass is going at a 30 mph, recessional speed at the mile-away point down 
the track. The scientist notes in his log book that the receding train’s-whistles fre-
quency drops a little from the whistle’s normal frequency at the one-mile distance 
point. Of course this frequency drop seems reasonable, since the whistle’s sound 
waves are stretched out a little as the train recedes. The second train to pass is 
moving at 60 mph and the receding train’s whistles frequency drops at the mile 
down-track point even more since the sound waves are stretched out even more 
by the rapidly receding train’s whistle. The scientist records the whistle frequen-
cies in his log of train-whistle frequencies for train receding at different speeds. 
He observes that receding train Whistle’s frequencies drop more for faster re-
ceding trains since the sound waves are even more stretched out. The next day 
another train passes and the scientist wants to test out his work. The scientist 
tells the station manager that according to his log he expected that, from the 
frequency of the whistle, the currently receding train is going 30 mph. “No” says 
the station manager “…from my actual observations the train is moving at 60 
mph mile at the down the track point from you.” The scientist exclaims “But the 
sound waves are not stretched out as much and their frequency is not low 
enough for 60 mph”. The station manager states that the actual pitch or fre-
quency of this train’s whistle had been changed by the Mechanics last night to a 
much higher frequency so the sound waves seem STRETCHED OUT like a 30 
mph train! In the case of a receding stellar object, the increase in frequency is 
not accomplished by the Mechanics’ whistle-increase modification, BUT BY 
THE INCREASED SPEED Of TIME INCREASING THE STELLAR OBJECTS 
APPARENT FREQUENCY! Or in the other by the story, like the violin sound’s 
apparent increased frequency when heard from a distance. 

The apparent increase in recessional speed (acceleration) between the Cosmic 
Microwave Background (CMB) very near the beginning of our Universe (at 
about 380,000 “years” after our Universes’ beginning), of 6.75 ± 0.05 × 104 m/s 
per Mpc [18] and [19] to those of the Cepheid Variables (at about 163,000 light 
years distant, of 7.4 ± 1.5 × 104 m/s per Mpc (Table 5 of [18])) is simply due to 
the possibly high speed of time back at the time of the CMB. The Doppler-de- 
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termined speed would be less than the true higher recessional CMB speed (pro-
ducing a deceleration when compared to the Cepheid Variables speed) and agrees 
with a slowing due to gravity! No dark energy need be assumed!  

The Hubble constant, H0, is approximately H0 = 70 [km/sec/Mpc]. But can be 
expressed as the inverse of the time, T, in seconds for a celestial object to move 
an Mpc or (3.09 × 1022 [m/Mpc])/(70,000 [m/sec]) = 4.4 × 1017 [seconds]. 

For calculations of the Process times, T, of celestial objects given their speeds 
of recession, we utilize the equation 

( ) ( )174.4 10 70 secondsT S= × ×                    (2) 

where S is the recessional speed of the celestial object in [km/sec/Mpc]. 
The CMB has a Speed, S of 74 [km/sec/Mpc]. Therefore Time,  

( )17 174.4 10 74 70 4.65 10 secondsT = × × = ×  for celestial objects, such as the CMB 
fairly near the beginning of our Universe, to separate a “given distance” of a 
Megaparsec. Under a “popular” Theory of our Universe (not however, proposed 
in [12]) that the separation speed of objects in our Universe should remain a 
constant, this number of seconds would be expected everywhere in our Un-
iverse, therefore Pe = 4.65 × 1017 seconds.  

Likewise for the more nearby Large Magellanic Cloud Cepheid’s, which have 
an observed speed, S, of 67.5 [km/sec/Mpc] Time,  

( )17 17
04.4 10 67.5 70 4.24 10 secondsT P= × × = × = . Of course, the reference or 

“given distance” is huge as is the time interval between observations of the sepa-
ration speed of these celestial objects in our Universe. An alternative approach 
would be to define the “given distance” as simply the MKS meter as was utilized 
for the galactic measurements. Of course a kilometer could also have been cho-
sen as the “given distance”, so the choice is rather arbitrary. In the case of the 
galactic star’s measurement, a galactic star’s orbital period was not a valid, con-
stant or unique “given distance”, therefore the meter was selected as the refer-
ence or “given distance.” In the case of the separation speed of celestial objects 
the Megaparsec in meters is a definitive unit of distance in MKS units and the 
same for all celestial objects under consideration. Also the assumption of a con-
stant speed of recession is simply a popular concept and not involved in the 
working hypothesis Theory [12]. Therefore these calculations should be consi-
dered to be extremely provisional and needs to be examined very carefully! 

Other “given distances” or “expected times” values for Pe might in future be 
realized better utilizing, Fast Radio Bursts (FRBs), Soft Gamma ray Repeaters 
SGRs, pulsars, double star orbits, etc. If these measurements disclose that their 
frequency or periodicity increase slightly as they or their sources are measured to 
be further and further from our Earth, that is older and older, then their mea-
surements might provide good, more detailed data on our Universes’ variation 
of the speed of time. 

From Equation (1), the variation of the speed of time between the CMB and 
the Large Magellanic Clouds, in which there are about 13 billion or 1.3 × 1010 
years between these observations or 10

1 2 1.3 10t t− = ×  years is: 

https://doi.org/10.4236/jmp.2021.126049


R. M. L. Baker et al. 
 

 

DOI: 10.4236/jmp.2021.126049 774 Journal of Modern Physics 
 

( ) ( ) ( )1 2 1 2

17 17 10

6

4.24 10 seconds 4.65 10 seconds 1.3 10 years

3.15 10 seconds per year

o eP t P t t t− −  
 = × − × × 

= − ×

       (1e) 

= −3.15 × 1018 ps per year or about −0.1 s/s. Therefore over hundred trillion or 
more times larger compared to the muon-decay-time derived variation of the 
speed of time of −13 ps per year to −3500 ps per year values. This CMB value is 
extremely large and subject to considerable scrutiny but is still in keeping with 
our working hypothesis [12] that the speed of time was far greater in the distant 
past near the beginning of our Universe than today! Essentially both time and 
the space-dimension spacetime of our Universe commence expanding at the 
speed of light according to [12].  

The CMB is close to the beginning of our Universe, nevertheless the CMB is not 
close enough to be particularly useful in developing a Theory for the variation of 
the speed of time. For that we require information from the HFGWs created at 
least a nanosecond nearer in time to the beginning of our Universe. What really 
happens at the “point” where time and space commence must await the analysis of 
the HFGW spectrum of the early Universe. But recall that the variation of the 
speed of time after that commencement “point” may well also depend upon 
“where” one measures the variation of time on the fabric of spacetime, the local 
mass distribution of matter or some other feature of our Universe!  

5. Muon-Decay Time Revisited and Non-Varying Rate  
of-Time (NVRT) Processes 

Is there something more fundamental going on concerning muon-decay time? 
Not just “muon decay operates with a different ‘clock’ or time than the clock the 
rest of us and our Universe uses.” As discussed in Section 4 of [20], perhaps 
muon-decay time is a different kind of process. Let us explain the situation with 
another story: We will utilize the fictitious tale of a tribe called the “Muons” who 
originated billions of years ago near the beginning of time and exist even today. 
The Muons all have the unique capability to consistently run a mile in exactly 
four minutes. Recently a Muon runner came to my mile-long track. She asked if 
she could borrow my watch since she had misplaced hers. I agreed and handed 
over my watch with the admonition that my watch only showed the correct 
speed of time in my location at this specific local time. She looked at the watch 
and exclaimed: “…it is absolutely identical to the watch that I and my entire 
Muon tribe had used for billions of years … my watches’ rate of time is exactly 
the same, not too fast and not too slow, as the watch I had always had and lost!” 
If there is one thing these Muons know about, it is time!  

The Muon runner ran my mile-long track and at the track’s end, while looking at 
her “new” watch, she exclaimed “Perfect! My wristwatch shows exactly four mi-
nutes!” She told me that the Muons could not actually “see” the track – as a matter 
of fact, they could not judge or “see” any distance! “We Muons cannot recognize or 
even comprehend the three dimensions of space—we only recognize the time di-
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mension.” Also she stated that I should be careful using the wristwatch that I re-
placed the one I had given her. “Perhaps your replacement wristwatch was not per-
fect!” She said: “After looking at your replacement wristwatch I discovered it is 
flawed in that it seems to slow down with time, whereas the one you gave does not!” 

What else does this story apply to? Let us suppose that, say, Nucleosynthesis is 
similar to muon decay and is a Non-Varying Rate of-Time (NVRT) Process and 
marches to the Nucleosynthesis own drum as it were. We make the very provi-
sional assumption that there is no actual motion of the nuclei in space; that these 
high-energy collisions among nucleons only occur with a certain process-duration 
time just like muon decay! If we were able to observe this Nucleosynthesis 
process in operation today, then the process like muon decay would appear to 
take less and less time to be completed as our Universe’s time slows down as 
measured by a Timer’s stopwatch. Like the 4-minute-mile Muon runner, whose 
inherent “wristwatch time” seems moving faster than the current Universe time 
of a Timer. She stops her mile run before the Timer’s stopwatch of today reaches 
the 4-minute point. Therefore, the Timer believes that she has run for a shorter 
time to complete the mile run (that is, to complete her “process”)! In a sense we 
are observing compressed time from a vantage point of uncompressed time. So 
as we might observe Nucleosynthesis from afar through our telescopes today, the 
process would appear to occur more and more quickly over the years of observa-
tion just like the process of muon decay! If that does not occur, then Nucleosynthe-
sis is not a NVRT process otherwise the process is a NVRT process! 

There may be other transient processes or subsystems that involve one or 
more quantum-mechanical sub-reactions, some well understood and some not 
well understood, that in total comprise a complete, possibly multiple-step process 
having a well-defined beginning and end. This is the proposition: 

Proposition (page 65 of [11]) that some complex processes or sub systems are 
“marching” to their own intrinsic” time” or timeframe that is independent of 
the flow of “time” in our Universe. (We call them Non-Varying Rate of-Time 
(NVRT) Processes.) 

That is, besides muon decay there may be other such process that we define as 
the Non-Varying Rate of-Time (NVRT) Processes. Such processes do not “go 
with flow” of time slowing in our Universe. Such NVRT processes, according to 
our working hypothesis, may include those that generate Big-Bang Nucleosyn-
thesis (BBNs) generation of Oh My God (OMG) very high-speed particles, Fast 
Radio Bursts (FRBs), Soft Gamma ray Repeaters SGRs (the latter two possibly 
from Magnetars) and perhaps weak nuclear reactions of proton-proton chain 
(affecting stellar luminosity but far more likely not to be NVRT processes since 
they probably are “space-coordinate” dependent in their operation). We will con-
centrate the following analyses on muon decay since we have studied that process 
in some detail. By the way, galactic motion, black-hole mergers, Nova and other 
more extensive in motion in the three space coordinates and less quantum-me- 
chanical in operation are not NVRT processes. Unlike the hypothetical Muon 
runners they recognize the three space dimensions. Also their time varies as time 
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mainly does in our Universe—they “go with the flow!”  
It is important to understand that the Non-Varying Rate of-Time (NVRT) 

Processes working hypothesis or concept is not directly related to the Rollout of 
the Universe Theory [12], multiuniverses, special or general relativity, hyperspace, 
parallel universes, etc. the NVRT process is a very new and different concept! 

Let us continue the discussion by using a standard muon-decay illustration as 
shown in Figure 5.  

The very most important property of this standard diagram of muon decay  
 

 
Figure 5. Standard diagram of muon decay. 

 

 
Figure 6. Standard diagram of proton-proton chain reaction. 
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shown in Figure 5, is that there is only one dimension involved: T or time. No 
space dimensions at all! We contrast this with the standard diagram of pro-
ton-proton chain reaction, which generates stellar luminosity, shown in Figure 
6. 

In this case an “alarm clock” that signals the beginning (when the alarm clock 
is set off by an experience e.g., a collision with a cosmic ray) and simply signals 
the end of the muon decay process when the alarm clock “rings”! Hydrogen and 
helium atoms move and physically collide with each other. They actually move 
through the dimensions of space! The idea is that NVRT processes, such as 
muon decay, are in a sense not actually a part of the spacetime continuum! Spe-
cifically, they have their own clock, that alarm clock time interval is completely 
independent of where in space the collision occurs or especially any “space 
change” in the Muon’s decay process during that process! 

Do the Non-Variable Time Rate (NVRT) processes, like muon decay processes, 
relate to processes such as production of new elements and those that are in-
volved in the mysterious core-collapse of supernova [21] happening billions of 
years ago? If such is the case, then we may have another mysteries solved! 

6. Conclusions 

An equation is presented involving the observed time for a process to be com-
pleted and the expected time for the process to be completed. The difference 
between these two times is attributed to a change in the speed of time. For the 
Process of muon decay the speed of time is found to decrease at the rate of be-
tween −13 picoseconds, ps, per year and −3521 ps/year at about the date of 1981 
on Earth. Although it would not affect the correctness of the theorized Theory of 
our Universe [12], more accurate measurements of muon decay time are needed 
in order to actually calculate an accurate local speed of time on Earth or indicate 
that muon decay time does not change with time and is not a NVRT process. For 
a galaxy, such as Messier 33, the variation of the speed of time appears there to 
be −6.12 ps/year to at most −2080 ps/year (at the galaxies’ outskirts) as a very 
provisional determination. However this speed of time for Messier 33 may ac-
tually be caused, at least in part, by the Doppler shift of stars observed beyond 
the Galaxy in spacetime regions of higher speed of time and apparent higher 
speed or some other effect. However, no dark matter need be assumed. From the 
speed of separation of celestial object as our Universe progresses, we find that in 
the time between the observations of the receding speeds of the CMB and the 
Large Magellanic Cloud Cepheid’s of approximately thirteen billion year, there is 
a speed of time change of −3.15 × 1018 ps per year or about −0.1 s/s. This calcula-
tion is in keeping with the theorized very much higher speed of time in the past 
of the CMB near the beginning of our Universe, predicted by [12] and the much 
slower speed of time in our current observations of the relatively nearby (in time 
and distance) Large Magellanic Cloud Cepheid speed. There is no acceleration of 
the speeds of these celestial objects speed of separation. Those separation speeds 
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are decreasing as usually predicted by gravity and by using our speed-of-time 
theory, so that dark energy is not required!  

Other determinations of the variation of the speed of time, and independent 
of special and general relativistic effects, might be by utilizing the Processes in-
volving Fast Radio Bursts (FRBs), Soft Gamma ray Repeaters (SGRs), pulsars, 
double star orbital periods, etc.; of course only if these measurements are precise 
enough to disclose that their frequencies or rates appear to increase slightly as 
they or their sources are measured to be further and further from our Earth. 

Other possible indicators of the variation in the speed of time besides muon 
decay time, quite valuable because they are independent of special and general 
relativity effects, might be found in meteoritic composition change over hun-
dreds of thousands or millions of years. The research by Turner, et al. [22] found 
time differences in meteoritic-composition analyses that might relate to the 
speed of time: They found “... that the fluid-mobile uranium ion U64 moved 
within the past few 100,000 years … This time scale is less than the cosmic-ray 
exposure age… when they were ejected into space. Fluid flow occurred after 
melting of ice” by impact heating (ablation) or solar heating. Or possibly, the ef-
fect was the result of the change in the speed of time right after the Earth was 
formed and today. The process here is the melting of the ice, the time it would 
be expected to occur and the time when it actually occurred.  

With regard to galactic data to be utilized to compute the speed of time; in 
Section 3 we have computed the difference between the velocity curves in Figure 
4 of the nearby Messier 33 galaxy would lead to a speed of time between about 
−2 and −2,000 ps/year. However, galaxies closer to the beginning of our Un-
iverse might also lead to estimates of the speed of time. As summarized by War-
dlow [23] “… key features of a mature galaxy arose more rapidly than has been 
thought.” Lelli, et al. [24] state “We conclude that massive bulges and regularly 
rotating disks can form more rapidly in the early Universe than predicted by of 
galaxy formation.” Therefore the speed of time may be roughly computed by 
differencing the expected time and the observed time that features of galaxy 
formation appear. 

We concluded with a study of Processes like muon decay, which may operate 
with a “different clock,” a clock that does not participate in the variation in the 
speed of time that the rest of our Universe does—we call these Processes Non- 
Varying Rate of Time or NVRT processes.  

The speed of time and/or the speed of time’s variation may well depend upon 
“where” one measures the variation on the fabric of spacetime and/or the local 
mass distribution of matter or some other feature of our Universe. 

In order to establish a Theory for the origin and variation of the speed of time, 
we conclude that HFGW detection is required to understand the activity of 
Processes at a nanosecond or less after the beginning of our Universe [16]. We 
contend that primordial or relic HFGWs were propagated before our Universe 
became transparent to electromagnetic radiation. If such primordial HFGWs 
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can be detected by the Li-Baker HFGW detector, discussed in connection with 
our analyses of Muon decay, then their observations may not only contain in-
formation on the speed of time, but information, gained by means of the analys-
es of their frequency spectrum, concerning the processes themselves. 
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Abstract 
The present paper is devoted to reconstruction and cosmological study in 
modified ( )F G  theory of gravity. Our reconstruction scheme is based on 

Friedmann metric induced equations in modified ( )F G  theory by suppos-
ing a power law form for the scale factor of Friedmann metric. Firstly, we deal 
with the stability study, the obtained model. This survey reveals that for ap-
propriated choice of the reconstructed model parameter, this model is stable 
under two cosmological evolutions namely the de Sitter and the power law 
evolutions symbolized by the appropriated scale factor. Secondly, we investi-
gate the inflationary survey by fitting the model with the inflation obser-
vables. These observables are determined and their comparison with Planck’s 
results leads to a special inflationary ( )F G  model. We prove that this mod-
el especially obtained for radiation domination evolution develops an insta-
bility, so can fall to ordinary matter domination era or dark energy domina-
tion era. This is the key of graceful exit from inflation. 
 

Keywords 
Modified Gravity, Inflation, Stability, Gauss-Bonnet 

 

1. Introduction 

Cosmology aims to study the universe as a whole [1]. It is based on Einstein’s 
theory of gravity, General Relativity which has brilliantly succeeded some expe-
riment tests. But some recent observations such as the Ia type supernova [2] [3] 
and the Cosmic microwave background [4] [5] impose new constraint on the 
current Universe content. These observations allow us to affirm that the Un-
iverse is in a phase of accelerated expansion. Thus, an alternative attempts to 
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provide a plausible explanation to the present of our Universe in accordance 
with these observations, several theoretical approaches have emerged. These ap-
proaches can be classified into two categories [6]. The first brings together those 
which maintain the General Relativity as a gravitational theory and modify the 
content of the Universe by introducing new exotic forms of matter fields either 
as an inflaton field or as dark matter. The second category is made up of ap-
proaches that modify gravity theory by building theories that limit General Rela-
tivity, but with additional degrees of freedom that can lead to accelerated expan-
sion of the Universe. The latter is called the theory of modified gravity which we 
quote among others: ( )F R  theory, ( )F T  theory, ( ),F R   theory,  
( ),F T   theory, ( )F G  theory, ( ),F R G  theory, ( ),F G   theory where  
, ,R T  , denote respectively the scalar curvature, the scalar torsion and the trace 

of the energy-momentum tensor. Note that these modified theories of gravity 
have been the subject of attention of several researchers in recent years. A special 
modified General Relativity has recently been used for several interesting works 
[7] [8] [9]: the ( )F G  theory is a modified theory of Gauss-Bonnet where  
( )F G  is a generic function of the Gauss-Bonnet invariant G which is inspired 

by string theory and takes the form:  

 2 4G R R R R Rµν µνρσ
µν µνρσ= − +                    (1) 

The Gauss-Bonnet term plays an important role because it makes it possible to 
avoid phantom contributions and helps to regulate the action of gravitation [10] 
[11] [12]. This 4-dimensional Gauss-Bonnet term is a topological invariant and 
therefore has no dynamic effect if it is added linearly to the Lagrangian. To in-
troduce an additional dynamic, we can associate the Gauss-Bonnet term with a 
scalar field, as it naturally appears in the effective actions using low energy 
chains [13] [14]. For exponential coupling with a scalar field potential, this mod-
el can produce a period dominated by matter followed by an accelerated period 
[15] [16]. 

Several other interesting works have been done so far in this theory. The Gauss- 
Bonnet scalar and the ( )F G  theory were considered to reconstruct theories 
favorable to the expansion of the universe [11]. In [17], the conditions of exis-
tence and stability of cosmological solutions of the power law, when the Eins-
tein-Hilbert action is modified by inclusion of a Gauss-Bonnet function ( )F G , 
have been established. The cylindrical symmetry in ( )F G  gravity was studied 
and it was shown that only three choices of ( )F G  models are compatible with 
the exact solutions [18]. The same authors obtained in [19] a perfectly symme-
trical and cylindrical solution in modified Gauss-Bonnet theory. A description of 
the deceleration-acceleration cosmological transition has been made in modified 
( )F G  and ( )F R  theory [20] where it has been shown that a solution con-

taining the Big-Bang and Big-Rip singularities can be reconstructed using only 
the auxiliary field formalism. The cosmography in modified ( )F G  gravity theory 
has been studied in [21] and the authors have reconstructed the present values of 
( )F G , of its derivatives as well as those of the cosmographic parameters by 
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considering a homogeneous and isotropic universe on a large scale. A cosmo-
logical study was carried out in modified Gauss-Bonnet theory [22] to account 
for the recent accelerated expansion of the universe. In their work, C. Bömher 
and F. Lobo analyzed the stability of Einstein’s static universe by considering li-
near and homogeneous perturbations in the context of the modified Gauss- 
Bonnet theory [23]; by use of a generic function F(G), they showed that the re-
gion of stability of such a universe is governed by the parameter of equation of 
state ω  and the second derivative of the model ( )F G . 

This success of the ( )F G  theory has motivated us to take an interest in it 
and solving some current riddles in cosmology. The present work constitutes a 
contribution going in the same direction as the points previously mentioned. 
In addition to the benefit of being able to explain the present Universe accele-
ration of the by modifying standard theories of gravity, another major issue 
which will hopefully be explained in the next two decades, is the primordial 
post-quantum gravity era of our Universe. To date there are two candidate de-
scriptions for this primordial era, the inflationary scenario [24]-[32] and the 
bouncing cosmology scenario [33] [34] [35]. Thus, in our present study, we 
will endeavor first to reconstruct a model in modified ( )F G  gravity theory. 
Then, we aim to investigate the stability of the reconstructed model in order to 
check its possibility to render account some Universe evolution phases. No-
wadays, inflation survey reveals as an excellent tool to investigate dynamical 
property of a cosmological model. This justifies the second part of this work 
where the inflationary observables will b addressed with the reconstructed 
model.  

The paper is organized as follow. After providing the basic equations of the 
gravitational ( )F G  theory in Section 2, we deal with the reconstruction pro-
gram through the Section 3. The stability of the reconstructed model is achieved 
in the Section 4. The model is put at the heat of cosmological inflationary survey 
via the Section 5. The final section 6is devoted to the conclusion. 

2. Basic Equations of the Gravitational F(G) Theory 

The action in dimension 4 of ( )F G  gravity theory is given, as in [36] [37], by:  

 ( ) 41 d
2 m
RS g F G x S

k
 = − + +  ∫                      (2) 

where R is the Ricci scalar curvature, ( )F G  is a generic function of the Gauss- 
Bonnet topological invariant G, 2 8k G= π  et mS  is the action of matter. 

By varying this four-dimensional action with respect to the metric, we obtain 
the equation of the field which is written [36] [37]:  

 
( )

( ) ( )( )

18
2

m

G R R g g g g g R R g

R g R g F G GF G F g T

µν µρνσ ρν σµ µν σρ µσ νρ ρσ νµ

ρ σ
µν σρ µσ νρ µν µν

+ + + − −
 ′ ′− + ∇ ∇ + − =


       (3) 
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where Gµν  is Einstein’s tensor, mTµν  the energy-momentum tensor of matter. 
In this work, we consider that 2 8 1k G= π =  and the prime represents the ordi-
nary derivative with respect to G. For the Robertson-Walker flat space metric 
which is written as:  

 ( )
322 2 2d d d i
i

s t a t x= − + ∑                       (4) 

we have:  

 ( ) ( )2 2 26 2 ; 24R H H G H H H= + = +                 (5) 

where H is the Hubble parameter and the dot means () the time derivative.  
Considering that the universe is flat and filled with a perfect fluid, Friedmann 

equations for the modified gravity ( )f G  are written:  

 ( ) ( )2 33 24 mH GF G F H F G ρ′ ′= − − +                (6) 

( ) ( ) ( )3 22 8 16 8 mH H F G HHF G H F G ρ′ ′ ′− = − + + +              (7) 

The continuity equation is given by:  

 ( )3 0H Pρ ρ+ + =                        (8) 

( )3 1 0Hρ ρ ω+ + =                        (9) 

where ω  is the energy parameter. 
The equations which constitute the basis of the theory being established, we 

will now design our model. 

3. Reconstruction of F(G) Model  

In this section, we will reconstruct a ( )F G  model. To do this, we choose a scale 
factor ( )a t  obeying the power law and which is in the form:  

 ( ) *
*

p
ta t a
t

 
=  

 
                         (10) 

where *a  is the value that takes a at the time *t  and p is a constant. In this 
case, the Hubble parameter satisfies the following relations:  

 
2

2
2 2; ;p p pH H H

t t t
= = − =                 (11) 

Then, the GB invariant takes the form:  

 
( )3

4

24 1
,

p p
G

t
−

=                       (12) 

leading to  

 
( )

1
3 424 1p p

t
G

 −
=  
  

                     (13) 

From the continuity Equation (9), we obtain:  
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( ) ( )3 13 4

0

24 1
p

p p
G

ω

ρ ρ

−
+

 −
=  

  
                  (14) 

Taking into account the Equations (11)-(13), the first Friedmann equation be-
comes:  

( ) ( ) ( ) ( ) ( )

( )31 1
42

2
0 3

4 3 0
1 8 1 24 1

p
pG GG F G GF G F G

p p p p

ω

ρ
+

  
′′ ′+ − − + =  

− − −      
(15) 

This equation takes the form:  

 ( ) ( ) ( )
1
2

0 0GCGF G F G F G AG
B

α

ρ
α

′′ ′+ − − + =          (16) 

with: 4
1

C
p

=
−

; 
( )
3

8 1
pA

p
=

−
; ( )324 1B p p= −  et ( )3 1

4
pα ω= + . 

It is a differential equation in term of G which, after solving, gives the solu-
tion: 

( )
( )( )

1
12

0
1 2

4
2 1 1

CGAGF G C G C G
C B C

α

α

ρ
α α

−
= − − + +

+ − + +
      (17) 

that we write more simply:  

 ( )
1
2

1 2F G DG EG C G C Gα β= + + +                (18) 

where: 4
2

AD
C

= −
+

; 
( )( )

0

1 1
E

B Cα

ρ
α α
−

=
− + −

; 
1
C

β = − ; 1C  and 2C  being  

integration constants. The model (18) is a general model. The reason is that for 
appropriate choice of its parameters namely the parameters 0 1, , , ,C p Cω ρ  et 

2C , the viable ( )F G  models investigated in [9] can be recovered. Such models 
have the properties to describe not only cosmological evolutions leading by dark 
matter and the ordinary matter and also the transition between the two evolu-
tions. To verify this expected property of the model, we will deal with its stability 
in the coming section. 

4. Stability of the F(G) Model 

In this section, it is about the study of the stability of the ( )F G  model con-
structed. To achieve this, we use de Sitter solutions and power law solutions 
which are techniques generally used in cosmology as shown by the work [17] 
[38] [39] [40] [41]. We will consider both the perturbation of matter and geo-
metry in the general equations of motion. In the same approach with the work 
[42] [43], the geometric and the matter perturbations will be led respectively by 
the following equations  

 ( ) ( ) ( )( )1 ,bH t H t tδ= +                     (19) 

( ) ( ) ( )( )1b mt t tρ ρ δ= +                     (20) 
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where ( )bH t  and ( )b tρ  correspond respectively to the Hubble parameter and 
to the energy density of basic ordinary matter. By making an analogy with the 
continuity Equation (9), we can write:  

 ( ) ( ) ( )( )3 1 0b b bt H t tρ ρ ω+ + =                 (21) 

whose solution is:  

 ( ) ( ) ( )3 1 d
0e bH t t

b t ωρ ρ − + ∫=                     (22) 

whith 0ρ , an intégration constant. 
In order to study the linear perturbation of ( )H t  and ( )tρ , we carry out 

a development of the model ( )F G  in series of ( )2 224b b bG H H H= +  as fol-
lowing:  

 ( ) ( ) 2b b
G bF G F F G G O= + − +                 (23) 

On the one hand, we substitute the Equations (19), (20) and (23) in Equation 
(6) which is the first Friedmann equation, and we obtain after simplification:  

 

( ) ( ) (
) ( ) ( )(

) ( ) (
)

3 2 4 3 6 2

2 3 2 4 2

4 2 4 3 2 2

3 3 2 2 3

24 24 24 24 576 48

24 96 24 24 72

96 72 96 72 48 24

96 24 48 24 96

b b
b b b b GG b G b b b

b
b b b b GGG b b b b b

b b
b GG b b b G b b b b b

b
b b GG b b b b b b

t H H H H F H F H H H

H H H H F t H H H H H

H F H H H F H H H H H

H H F H H H H H H

δ

δ

 + − −
 + + + + 

+ − + − +

+ − + +

  

   

  

  ( )(
) ( )

2

4 2

72

96 6 0

b b b

b
b GGG b b m

H H H

H F H tρ δ+ − + =

 

 (24) 

On the other hand, the substitution of the Equations (19) et (20) in Equation 
(9) leads to:  

 ( ) ( )
( ) ( )3 1

m

b

t
t

H t
δ

δ
ω

−
=

+



                   (25) 

By eliminating ( )tδ  from combination of Equations (24) and (25), we get 
the differential equation:  

 

( )
( ) ( ) ( )

( ) (
)( ) ( )
( ) (

2 4

4 2 2 3

3 2 4 3

2 2 2 3 2 2

2

d
3 1 24 24 24 24

576 48 24 96 24

24 72 96 72 92

72 48 24 96 24 48

24

m b b
b b b G b b b b b GG

m

b
b b b b b b b GGG b b

b b
b b b b GG b b b G

b
b b b b b b GG b b b

b

t
H H F H H H H H F

t

H H H H H H H H F H H

H H H H F H H H F

H H H H H H H F H H H

H

δ
ω ρ

δ
= + − +

+ + + +

+ + − +

− + + −

+

  

    

 

   

 )( ) 13 2 496 72 96 6 db
b b b b b b GGG bH H H H H H F H t

−
+ + − 

 

(26) 

whose general solution is written in the form:  

 ( ) ( ){ }0 exp 3 1 dm Ht C C tδ ω= + ∫                  (27) 

where 0C  is an intégration constant and HC  has for expression:  

( )
( ) (

2 4

4 2 2 3

24 24 24 24

576 48 24 96 24

b b
H b b b G b b b b b GG

b
b b b b b b b GGG b b

C H H F H H H H H F

H H H H H H H H F H H

ρ = − +

+ + + +

  

    
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)( ) ( )
( ) (

)( )

3 2 4 3

2 2 2 3 2 2

12 3 2 4

24 72 96 72 92

72 48 24 96 24 48

24 96 72 96 6

b b
b b b GG b b b G

b
b b b b b b GG b b b

b
b b b b b b b GGG b

H H H H F H H H F

H H H H H H H F H H H

H H H H H H H F H
−

+ + − +

− + + −

+ + + − 

 

   

  

 (28) 

From the Equations (25) et (27), we obtain: 

( ) ( ){ }0 exp 3 1 dH
H

b

C C
t C t

H
δ ω= − + ∫                 (29) 

In the rest of our work, we will use the stability of de Sitter solutions as well as 
that of power law solutions in order to appreciate the convergence of each of the 
perturbation terms. 

4.1. Stability of de Sitter Solutions 

De Sitter’s solutions are well known in Cosmology because they constitute a 
perfect approximation of the exponential expansion of the Universe during its 
primordial inflation [44]. They are described by a constant Hubble parameter. In 
this context, the Hubble parameter and the associated scale factor correspond to:  

 ( ) ( ) 0
0 0eH t

bH t H a t a= ⇒ =                    (30) 

So the expression (22) becomes:  

 ( ) ( ) 03 1
0e H t

b t ωρ ρ − +=                       (31) 

And HC  takes the form:  

 
( ) ( ) ( )

( ) ( )

1
4 12 0 0

1
4 1 3

1 0 2 0 0

3 24 4 2 24

4 2 24 96 6

H bC D H E H

C H C H H

α α

β β

ρ α α

β β

−

−
−

= − + − +


+ − + − − 



       (32) 

Moreover, from the differentiation of each member of the Equation (31), we ex-
press dt which allows us to write:  

 
( ) 0

1d d
3 1

H
H b

b

CC t
H

ρ
ω ρ

= −
+∫ ∫                 (33) 

which give:  

 
( ) ( ) ( ) ( )

( ) ( )

1
2 42 0 0

1
4 4 2

1 0 2 0 0

d 3 24 4 2 24
3 1

4 2 24 96 6

b
HC t D H E H

C H C H H

α α

β β

ρ
α α

ω

β β
−

= − − + − ++ 


+ − + − − 



∫
    (34) 

By substitution of this previous expression in the relations (27) et (29), we obtain 
respectively:  

 

( ) ( ) ( ) ( )

( ) ( )

1
2 420 0 0

1
4 4 2

1 0 2 0 0

exp 3 24 4 2 24

4 2 24 96 6

m bt C D H E H

C H C H H

α α

β β

δ ρ α α

β β
−

 = − − + − + 
 + − + − − 

 

    (35) 
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and  

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

1
2 420 0 0

1
4 4 2

1 0 2 0 0

1
2 42 0 0

1
4 4 2

1 0 2 0 0

3 24 4 2 24

4 2 24 96 6

exp 3 24 4 2 24

4 2 24 96 6

b

b

t C D H E H

C H C H H

D H E H

C H C H H

α α

β β

α α

β β

δ ρ α α

β β

ρ α α

β β

−

−

= − − + − +


+ − + − − 


 × − − + − + 

 + − + − − 
 

     (36) 

4.2. Stability of Power Law Solutions 

In this study, we are interested in the solutions described by the power law of the 
scale factor. They are also initiated in Cosmology to describe a power law type 
inflation [41]. Thus, the scale factor changes according to a power of time t. And 
we have:  

 ( ) ( )n
b

na t t H t
t

∝ ⇒ =                       (37) 

Note that by posing n p= , the scale factor of (37) corresponds to that of the 
Equation (10). The density of ordinary energy given by the relation (22) and the 
Gauss-Bonnet invariant given by (5) take the respective forms:  

 ( ) ( )3 1
0

n
b t t ωρ ρ − +=                         (38) 

and  

 
( )3

4

24 1
b

n n
G

t
−

=                         (39) 

Then the relation (28) expressing the magnitude HC  becomes here:  

( )

( ) ( )( )

( ) ( )

( ) ( )( ) ( )( )

1 1 1 1
2 1 12 4 4 4

0 1

3 3 1
2 54 2 4

2

1 1
2 24 4

1

5 1 1
3 8 32 4 4

148 2 1
2

12 24 1 2 7
4

1 1

38 24 1 2 1 1 2
8

q q q

H b b b

q q

b b

q q

b b

q q

b b

C n n Dk g Ek g C k g

C g n n n Dk g

Ek g C k g

n n n Dk g Ek g

α βα β

α βα β

αα

ρ α β

α α β β

α α α

+ − −
− + +− −

+ +
−

− −
+ +− −

+ −
− +−

 = − − + + 
 

 
+ + − − − 

 


+ − + − 



+ − − + − −



( )( )
11 1

3 4 4
11 2 6

q q

b bC k g ng
βββ β β

−− +
+−

 + − − − 
 

(40) 

avec ( )3 1q n ω= − + ; ( )324 1k n n= −  et ( ) ( )b
b

G t
g t

k
=  

Taking into account the Equation (39), we deduce: 
5
41d d

4 b bt g g
−

= − . 
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It follows:  

( )

( ) ( )( )

( ) ( )

( ) ( )( ) ( )( )

1 6 4
2 10 2 4 4

4 8 3 6
21 54 4 2 4

1 2

4 4
2 24 4

1

5 6
3 8 32 4

1d 48 2 1
4 2

12 24 1 2 7
4

1 1

38 24 1 2 1 1 2
8

q q

H b b

q q q

b b b

q q

b b

q q

b b

C t n n Dk g Ek g

C k g C g n n n Dk g

Ek g C k g

n n n Dk g Ek g

αα

ββ

α βα β

αα

ρ
α

β

α α β β

α α α

+ +
− +−

+ + +
+ −−

+ +
+ +− −

+
− +−

 = − − − + 
 

 
+ + + − − − 

 


+ − + − 


+ − − + − −

∫ ∫

( )( )

4
4

14 6
3 4 4

11 2 6 d
q q

b b bC k g ng g
βββ β β

+

−+ +
+−





 + − − − 
 

(41) 

Note that we have not found an analytical solution for the integral of the relation 
(41), then a numerical study will be carried out in order to obtain the perturba-
tion functions and to discuss their convergence. 

4.3. Stability Analysis 

In this part of the work, we will deal with the evolution survey of the solutions 
obtained as a time function. We emphasize here that in the case of the study of 
de Sitter’s solutions, an explicit analytical expression of each of the perturbation 
functions ( )m tδ  and ( )tδ  is obtained respectively in (35) and (36) respec-
tively. And we can easily notice that for an appropriate choice of parameters, the 
quantities ( )m tδ  and ( )tδ  converge. Indeed, when t straights forward to in-
finity, the fonction ( ) ( ) 03 1

0e H t
b t ωρ ρ − +=  tends to 0 for positive or zero ω . Then, 

for ( )b tρ  tending to 0, we see that ( )m tδ  tends to 0C  (which is an arbitrary 
constant) and ( )tδ  tends to 0. Hence these two functions converge. In the case 
the power law solutions, the idea was to calculate the integral given by the Equa-
tion (41) then introduce the result in each of the Equations (27) and (29) in or-
der to obtain the respective expressions of ( )m tδ  and ( )tδ . But, it turns out 
that the analytical solution of the Equation (41) is not easy to get, so we pro-
ceeded to a numerical study. Thus, our approach at this level consists to plot the 
perturbation functions ( )m tδ  and ( )tδ  without having obtained their ana-
lytical expressions; which can permit us to appreciate their convergence. These 
curves are those of Figure 1 and Figure 2 below. They show the behaviors of 

( )m tδ  and ( )tδ  respectively for a Universe dominated by ordinary matter 
( 0ω = ) and for a Universe dominated by radiation ( 1 3ω = ). We also note that 
these disturbance functions are convergent.  

The convergence of these quantities for different values of the parameters of 
the reconstructed model, according to the de Sitter approach and the power law 
approach, proves that this model is stable. It is therefore conducive to the re-
production of the stage dominated by matter, radiation and also the phase cha-
racterized by de Sitter inflation [42]. 
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Figure 1. The perturbation functions of matter (green curve) and geometry (red curve), for: 0ω = , 8n = ; 9

0 10ρ −= ; 1 30C =  
and 2 100C = . 

 

 
Figure 2. The perturbation functions of matter (green curve) and geometry (red curve), for: 1 3ω = , 8n = ; 9

0 10ρ −= ; 1 30C =  
and 2 100C = .  

5. Cosmological Inflation 

In this section of our work, we study cosmological inflation. In particular, we 
will determine the values of the observables of the inflation phenomenon within 
the framework of a scale factor obeying the power law. Taking into considera-
tion the Planck’s results, we will deduce a family of models ( )f G  capable of 
describing inflation. 

5.1. Slow-Roll Parameters and Inflationary Observables 

In cosmological inflation survey, several works have always been based on the 
study of the inflationary observables [38]. These are the scalar spectral index of  

the curvature perturbations sn , the running 
d

d ln
s

s
n

k
α ≡  of the spectral index  

sn  where k is the absolute value of the wave number k, the spectral index Tn  
of the tensor and the ratio r. 

From the scalar potential denoted ( )V φ  characterizing inflation and its de-
rivatives, the parameters of the slow-roll are defined as follows [39] [40]:  
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22 1 d

2 d
pM V

V
ε

φ
 

≡  
 

                        (42) 

2 2

2

d
2 d

pM Vη
φ

≡                            (43) 

4 3
2

2 3

d d
d d

pM V V
V

ξ
φ φ

≡                         (44) 

Note that the inflation ends when 1ε = . 
We have the approximate expressions of the inflation observables as a func-

tion of the slow-roll parameters relative to the potential. They are written ac-
cording to [39] [40]:  

 16r ε≈                             (45) 

1 16 2sn ε η≈ − +                         (46) 

2 216 24 2sα εη ε ξ≈ − −                       (47) 

16 2Tn ε≈ −                           (48) 

Let us specify that in modified theory of gravity, it is not possible to exploit 
the conformal transformation of the Einstein theory because one cannot define 
neither a scalar potential, nor the parameters of the solw-rool relating to it. We 
then introduce the Hubble slow-roll parameters nε  which are defined by:  

 1

d ln
d

n
n N

ε
ε + ≡                          (49) 

with 0 iniH Hε ≡  and ( )ln iniN a a≡  the e-folding number and where inia  
is the scale factor at the start of inflation and iniH  is the corresponding Hubble 
parameter. It follows:  

 1 2

H
H

ε ≡


                           (50) 

2 2

2H H
HH H

ε ≡ −
 



                        (51) 

( ) ( ) ( )
2

12 2
3 2

22 2
HHH H H HH HHH H HH H

HH H
ε

−  − +
 ≡ − − −
  

    



   



   (52) 

Thus, we obtain as in [39] [40] the inflation observables which are written:  

 116r ε≈                            (53) 

1 21 2 2sn ε ε≈ − −                        (54) 

2
1 2 32sα ε ε ε ε≈ − −                       (55) 

12Tn ε≈ −                           (56) 

These observables thus expressed can be easily determined. Particularly within 
the framework of our study where we considered a scale factor evolving accord-
ing to the power law.  
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5.2. Inflationary F(G) Model in Agreement with Planck’s Results 

Recall that our model (18) was reconstructed from the first Friedmann equation. 
By ejecting this model into the second Friedmann equation, we get the following 
differential equation  

( ) ( )
( )

( )

( ) ( )

( )
( )

( )

( ) ( )( )

( ) ( ) ( ) ( )

3 1
43

4
2 2

3 42 2 4 12 8
3

1
2 2

22 2 2 2

1 32 1 4608 1 2 1
4

18432 1 1 4 3
1

6144 1 2 2
1

p

p p

p p
H H p

H H H

H H H
p p p

p p

pH H H
p p H H H H H H HH

p

ω

ω

ω ω ω

ω

− +

− + +
−

−

  − +    + + − + − + +   + +     


 + + 
  × − + − + +  − +    


 +    − + + + +  − +    









   

( ) ( ) ( )( )

( )
( )

( ) ( ) (

) ( ) ( ) ( ) ( )

2

4 2 2

3 12 2 2 24
4 3 2 2

3

1
2 2

23 2 2

2 2 4 3 2 1 4 3 1 1

4 6 8 18
11

4 1 1 4 3 0
1

p

p p H p H H p

H H H pH H H
H H H H HHH H H

pp p

pH H H
H P p H H H

p

ω

ω ω ω

ω

+

−

 
 + − + − − + + + − + +       
 




 + + 
  × − − − − +− +    



  +  + + − + + + =     − +  



 

     



 (57) 

The Equation (57) is a differential equation in ( )H t  which admits for solution 

( ) pH t
t

= . Thus, from relations (50)-(52), we obtain:  

 1
1
p

ε =                             (58) 

2 0ε =                             (59) 

3
1
p

ε =                             (60) 

then, the relations (53)-(56) lead to:  

 16r
p

≈                             (61) 

21sn
p

≈ −                           (62) 

0sα ≈                            (63) 

2
Tn

p
≈ −                           (64) 

These are the values of the observables of power law inflation. We will now de-
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termine a ( )F G  model capable of describing such inflation and which is in 
agreement with Planck’s results. 

According to Planck’s results, we have: 0.962 0.974sn≤ ≤  and by virtue of 
equality (62), we obtain: 52.632 76.923p≤ ≤ . 

By posing for example 60p = , we obtain: 0.266r = , 0.966sn = , 0sα =  and 
0.033Tn = −  which are values actually in agreement with Planck’s results. Con-

sidering that just after inflation, the universe is essentially dominated by radia-
tion, we have 1 3ω =  and the model becomes:  

 ( )
59

6004
2 1 511

3 590
61 4.042.10

F G C G G C G G
ρ−

= − + −         (65) 

Note that it is possible to derive a ( )F G  model family describing inflation and 
in perfect agreement with Planck’s results by suitably choosing the values of the 
parameter p of our model. 

The question that is actually to be asked consists in checking if the inflationary 
model (65) extols the exit from inflation.  

5.3. Graceful Exit from Inflation 

Several approaches are used to study the exit from inflation. Based on the dy-
namic of the Hubble parameter, the exit from inflation are succesfully performed 
through the type VI singularity survey [45] and through the dynamic of the 
slow-roll parameters [46] [47]. For the first time, the authors in [48] have per-
formed the exit from inflation by involving quantum effects coming from trace 
anomaly equation and giving a de Sitter solution whose instability scores the 
graceful exit from inflation. In [49], from an autonomous dynamical system re-
constructed from ( )f R  motion equation and assisted by scalar field, they nu-
merically provide a de Sitter attractor which becomes unstable for e.fold number 

60N =  (end of inflation), proof of a graceful exit from the inflationary era. The 
actor of this exit is the scalar field because in their previous analysis [50] without 
scalar field, the obtained de Sitter solution is eternally stable. This last result is 
confirmed in ( )f T  theory by [51]. On can conclude from these last approach 
that the instability in a dynamical evolution is a source of graceful exit.  

Recently, the authors in [9] have analysed an intrinsic dynamic in ( )f G  
theory where some conditions for the cosmological viability of ( )f G  dark energy 
models have been performed. Through an approach based on autonomous dy-
namical system depending from two single parameters m and r, they provide 
natural conditions in the ( )f G  gravity to describe a ordinary matter or radia-
tion epoch, the dark energy epoch and the transition between the both epochs. 
The fundamental required condition is that the ( )m r  curve should pass through 
( )1 2 1; 2− −  in the m-r plane. This means the same point ( )1 2, 1 2− −  cor-
responds to ordinary matter or radiation domination and the dark energy do-
mination. So the critical points manifesting this property must be unstable in 
order to pass from matter or radiation domination epoch to the dark matter 
domination epoch. Such instability is reached when the parametric function  
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Figure 3. Evolution of ( )m r  (green curve at left) and its first derivative ( )m r′  (blue curve at right) for model (65) with 

200
0 10ρ = , 45

1 1.39727 10C = ×  and 138
2 1.14346 10C = × .  

 

( )m r  satisfies the condition ( )1 2 1m′ − > − . The parameter m and r are given 
by  

 ( ) ( )
( ) ( ) ( )

( )
and

Gf G Gf G
m G r G

f G f G
′′ ′

= = −
′

             (66) 

without providing the functional form of ( )m r  and ( )m r′  in the framework 
of the inflationary model (65), their parametric plot leads to the Figure 3. The 
green curve shows clearly the key point ( )1 2, 1 2− −  is reached meaning that 
this model can truly lead the radiation domination era. The condition of transi-
tion from the radiation domination era to ordinary matter domination era or 
dark energy domination era is clearly appreciable via the blue curve in the same 
Figure 3 because it shows ( )1 2 1m′ − > − . Such instability is qualified graceful 
exit from inflation [52].  

6. Conclusion 

During this study, we devoted to the reconstruction of a model in the modified 
theory of gravity ( )F G . From well elucidated processes, we have conducted the 
study of its stability. The results obtained clearly show that the reconstructed 
model is stable for the both de Sitter and the power-law evolutions. Therefore, 
this model is potentially suitable for dealing with cosmological questions such as 
the inflation of the Universe, the explanation of the different phases of the evo-
lution of the Universe, and many others. In this work, the question of the Un-
iverse inflation was also approached. The study made it possible to find the ob-
servables within the framework of a scale factor evolving according to the power 
law. This study also made it possible to determine a model describing the infla-
tion of the universe and which is in agreement with Planck’s results. Our analy-

https://doi.org/10.4236/jmp.2021.126050


C. Aïnamon et al. 
 

 

DOI: 10.4236/jmp.2021.126050 795 Journal of Modern Physics 
 

sis shows that the obtained top model develops clearly the graceful exit from the 
inflation. 
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Abstract 
The purpose of the present paper is to enquire whether General Relativity 
(GR) is necessary for the prediction of gravitational waves. It will be shown 
that in the weak field limit the same predictions come also from the treatment 
of a zero mass, spin 2 gravitational scattering amplitude. This will also justify 
the simpler effective vector approach of the author, only the angular distribu-
tion differing from that of a tensor theory. 
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1. Introduction 

The recent detection of gravitational waves has been indeed a great technological 
achievement. As regards its theoretical interpretation however some clarifying 
remarks are needed. As well known a considerable number of problems arose 
with the treatment of gravitational waves in the non linear formulation of GR 
which led Einstein [1] to deny their existence even in the linearized case. Those 
problems were finally overcome (they were even at the very beginning [2]) but 
the folklore survived of the “non existence of gravitational waves”. This probably 
explains the amount of enthusiasm for their actual detection. In any case their 
existence in the weak field case (binary system 1916 + 13) is out of question and 
justifies the validity of the linearized theory. They do indeed carry energy and 
the radiated power has been accounted in a simple way just from the e.m. analog 
[3]. Actually even in the LIGO/VIRGO experiment a linearized approach has 
been used to describe the detection plus a simulation for the strong emission 
process. 
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2. The Scattering Amplitude 

A very simple and elegant approach for the weak gravitational waves case had been 
put forward by Feynman [4] but seems to have remained rather unnoticed. For 
that reason we want to resume it and underline that the GR results for wave detec-
tion in the weak field limit can be simply obtained from the propagation of a 
massless spin 2 object and Lorentz invariance of the amplitude for the exchange of 
a graviton. This approach reproduces at the same time other features which have 
been so far considered to be a crucial proof of GR, namely the factor of two for 
gravitational light deflection. In addition it backs up the results obtained from the 
“naive” gravitomagnetism approach to gravitation [3]. Let therefore follow Feyn-
man’s approach [4] starting from the electromagnetic vector case. 

In both cases the basic ingredient is the consideration of the scattering ampli-
tude (respectively photon and graviton) instead of the treatment of the vertex via 
the proper Lagrangian. 

As it will be shown this allows a considerable simplification, essentially due 
just to Lorentz invariance and the features of the virtual exchanged photon and 
graviton will be taken over to the on shell case. 

The vector 
The source of e.m. is the vector current jµ  related to the vector potential 

Aµ  by 
21A k jµ µ= −                            (1) 

or in coordinate space 

A jµ µ= −                             (2) 

The interaction between a current and the field i.e. j Aµ
µ  yields the interaction 

between the currents in the scattering amplitude f 

2

1f j j
k

µ
µ

µ

′=                              (3) 

which for the particular choice 

( ),0,0,k kµ ω=                           (4) 

here k k=


, reads 

[ ]4 4 1 1 2 2 3 32 2

1f j j j j j j j j
kω

′ ′ ′ ′= − − −
−

                (5) 

Current conservation 

0k jµ
µ =                             (6) 

i.e. 
3 4j kjω=                            (7) 

allows us to put the amplitude in the form 

( )4 4
1 1 2 22 2 2

1j jf j j j j
k kω
′

′ ′= + +
−

                  (8) 
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The first term represents the (Fourier transform of the) well known instanta-
neous Coulomb potential, whereas the second the two components of plane po-
larized propagating waves. 

Such a “miraculous” separation has been obtained with the ingredients: 
1) Zero mass photon; 
2) Current conservation; 
3) Lorentz invariance of the amplitude. 
From the scattering amplitude, the form of the vertex, taken to be equal at 

production and at absorption, will be inferred. 
The tensor 
Let us then pass over to gravitation which will be treated along the same lines. 

We will assume the source to be given by the energy momentum tensor since 
gravity is determined by energy and not by mass. This will “perturb” the Min-
kovski metric gµν  with the addition of hµν  (for an extension to higher orders, 
which is not our concern here, see e.g. P. Menotti [5]) 

21h k Tµν µν= −                          (9) 

or in coordinate space 
h Tµν µν= −                          (10) 

Current conservation is here replaced by energy momentum conservation 

0k Tµ µν =                           (11) 

with the same choice 

( ),0,0,k kµ ω=  

In the first term of the scattering amplitude 
2 21 1f T k T T k Tµν νν

µν µ µµ µα′ ′= −                (12) 

which contains all possible (i, j = 4, 3, 2, 1) terms, the previous energy momen-
tum conservation condition is used to get rid of the terms with index 3 via 

4 3T kTν νω = −                         (13) 

separating again the instantaneous part from the propagating one. Thus of the 
initial 10 terms six remain, respectively 3 instantaneous and 3 retarded. 

Focusing on the latter ones, this might seem to imply the existence of three 
polarization states. One of them is however eliminated by the trace condition 
which disposes of the spin zero contribution by adjusting the above coefficient 
α  to be equal to 1/2).1 

The final expression for the total amplitude then reads 

( ) ( ) ( )

( )( )

2 2
44 44 44 11 22 11 22 44 41 412

42 42 11 22 11 22 12 122 2

1 1 4

14 4

f T T k T T T T T T T T
k

T T T T T T T T
k

ω

ω

 ′ ′ ′ ′ ′− + + + + −

′ ′ ′ ′− + − − −   −



  (14) 

where the pole terms represent the two degrees of freedom of the propagating 

 

 

1It is easy to see that this term just corresponds to the addition of the term 1 2 Tµνη−  to the vertex of 

the linearized theory. Thus Feynman’s approach elegantly bypasses all of the formal gauge requirements. 
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waves due to the transverse quadrupole components. Exactly the GR result (see 
below). The ingredients used in the derivation of the amplitude are just 

1) Zero mass of the graviton; 
2) Energy momentum conservation; 
3) No spin zero; 
4) Lorentz invariance. 
In this case too the vertex can be inferred only by assuming that also at the 

source we have a weak field production. Its structure is more involved than in 
the vectors case. 

The first term corresponds to the usual Newtonian attraction plus a relativistic 
correction.  

The term 44 11T T′  would lead in the case of the gravitational attraction by a 
fixed source ( 44T ′ ) of a relativistic particle, in particular a photon, to an addition-
al factor of 2 with respect to the Newtonian result 44 44T T′ . This is because 

2 2
11 44T v c T=  so that “the energy of the photon and hence its attraction is doubled.” 

Lorentz invariance is thus enough to produce twice the Newtonian light deflec-
tion by a fixed source.  

This can also be directly read from the form of the scattering amplitude. In-
deed the counter term (spin zero) is manifestly zero for the photon whereas  

2

21 2 m
k

= −  for a N.R. massive particle. Thus the amplitude for the photon is 

twice the latter. 
All of the other terms except the 44 ones are ( )2 2O v c . However only the 

terms 41 42,T T  are linear in the velocities 1 2,v v , thus of a vector-vector form, so 
only they correspond to the usual magnetic terms namely gravitomagnetic ones. 
In the approximate vector description of gravity they are responsible for mag-
netic effects which then lead via the displacement term to radiation. They enter 
with a factor of 4 which means that when rephrased as an effective vector inte-
raction the current for gravitation is 

G m=j v2                            (15) 

This might appear contradictory with the current conservation relation used 
above for the e.m. current but has been explicitly derived from SR arguments in 
an effective vector formulation of gravitation (EVG) in [3], showing that only 
with this factor the propagation velocity is c as explicitly used also in Feynman’s 
formulation. The previous result comes about because once more the Lorentz 
constraint of the scattering amplitude allows to this order, to extract an “effec-
tive” form of the vertex. Notice also, that only for the quadrupole radiation (be-
cause of the absence of dipole) can radiation be accounted for by a true quadru-
pole (T11) in the tensor formulation and by the retardation of the gravitomag-
netic terms (T41) in the vector theory. 

In conclusion the doubling of the attraction of a photon (with respect to the 
Newtonian case) and the doubling of the current obtained naively from the ana-
logous electromagnetic one ( q m→ ) are a simple consequence of the tensor 
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nature of gravity and are not results peculiar to GR. 
In short we can summarize it by saying that the (non Lorentz invariant, to this 

order) gravitational current (in an equivalent vector theory) of a photon can be 
taken to be 

( )2 , mω v 2                          (16) 

where the gravitomagnetic terms are now responsible for radiation along the 
electromagnetic lines. 

3. Quadrupole Radiation = Tidal Effects in Minkovski Space 

Given the remarkable result that a number of supposed GR predictions can be 
reproduced alternatively in a much simpler way, let us now enquire also in this 
case what remains as a peculiar GR feature. As said before in the weak field limit 
just a tensor formulation yields GR results, so in this section we will be con-
cerned only with the comparison with the effective vector approach. 

In the e.m. formulation the angular distribution ( dω ) of the electric qua-
drupole radiation is proportional to 

23 3

3 3

d dd 1ˆ
4 5d d

ij ijQ Q
r

t t
ω
=

π
×∫



                   (17) 

[6] where  

ˆij j ijQ r Q=


 

and ijQ  stands for the usual traceless momentum tensor. Thus the quadrupole 
radiation is transverse, as it should, and is it only its angle average which is ex-
pressed in terms of the true quadrupole moment. 

As regards gravitation, the traceless transverse (TT) gauge expresses the power 
as the time derivative of the strain tensor ijh  

3d ij
ij

x T
h

r
′

∫                        (18) 

where ijT  stands for the transverse spacial components of the energy momen-
tum tensor. 

No explicit expression of ijT  is utilized but, by using conservation of the 
energy momentum tensor, the usual quadrupole expression is derived: 

2
3 3

2 2

1 dd d
dij oo i jx T x T x x

c t
′ ′=∫ ∫                 (19) 

this incorporates all of the dynamics, retardation etc. of Tµν  in the double de-
rivative of the source and yields for the strain tensor ijh   

 
2

4 2

d2
3 d

ij
ij

QGh
rc t

=                       (20) 

Thus the emitted power is given by its time derivative and hence by the third 
derivative of the quadrupole momentum tensor. This can be obtained in terms 
of the e.m one by replacing  
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0

1 , 2
4G elW W G q m
ε

 
= → → 

 π
                 (21) 

where the last substitution actually corresponds to the above mentioned “effec-
tive” gravitomagnetic current. 

23

5 3

d
45 d

ijQGW
c t

=                        (22) 

Thus the transverse e.m field and the transverse graviton enter the rate only as 
a function of the third derivative of the respective quadrupole moment. 

Let us then pass over to consider differential effects so as to ascertain how 
much of the tensor nature of gravitation really comes into play. Let us first of all 
recall that 

( )3 2 2 3 2

3 3 3 3 3

d e
d

i t

P

MlG GMl G Mlg
rc r t c c r T

ωω
             (23) 

where the term k r⋅  in the exponential has already been used for the retarda-
tion necessary to derive the quadrupole, and  

 
22

4 2 2

b G Ml GM l
c cTc r T c r

 
 
 

                     (24) 

is related to the strain tensor by 

ĵ ijr h
c

⋅
b
                           (25) 

where  

d
dt

= −
bg  

b  being the velocity imparted by the wave to the apparatus. It is worth noticing 
the difference with respect to the static radial case. All the effect is governed by 
the transversality of the field. Because of the finite light velocity and its propaga-
tion time between the two extremes of the apparatus (the related laser signal) 

t t L c′ +  

time dependent tidal effects arise, thus correcting the conclusions of [7]. 
In effect consider now two generic points P and P', the extremes of our ap-

paratus of length L. They will be subjected to the gravitational acceleration of a 
gravitational wave which can be analyzed in sinusoidal components, so both 
locally at rest in the respective free fall frames. However the acceleration at the 
time the gravitational wave reaches P and at the time elapsed for the photon to 
reach P' from P, distance covered by light in a first approximation in time 

t L c∆ = , are in general different simply because 

d d 0Pg t ≠  

In other words, considering for simplicity a transverse apparatus arm (to the 
propagation direction and hence collinear with the polarization vector) of length 
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L the time dependent acceleration at one extreme is not the same the other ex-
treme experiences at time t′  even at a wave front. 

Thus by expanding in terms of L cω , one gets for the differential accelera-
tion  

 d d
d d

P P
P P

g g Lg g t
t t c′

 − ∆ 
 

                      (26) 

In the (sub) Newtonian regime proper to interaction with matter, one can di-
rectly use ma F=  

2 2

2 2

dd d
dd d

PgL L Lb
t c ct t

 ∆  = −  
   

                   (27) 

so that  

 
L b

L c
∆

= −                            (28) 

In the general case a factor 1 cosθ−  if L forms such an angle with respect to r 
intervenes. 

Thus the equivalence principle in the case of radiation replaces the space tidal 
effects of the static case by the time dependent ones for waves 

r r t T L cT∆ ⇒ ∆   

i.e. the relative variation of the radiation acceleration in the time of detection 
over the signal period. Notice that in this semi quantitative derivation (which is 
in any case totally consistent with the approximations of the standard GR treat-
ment) nothing more than the time dependence of the acceleration and the finite 
velocity of light has entered. 

In conclusion a time dependent tidal effect for gravitational waves is repro-
duced also by an effective vector theory and is again not a feature of GR, al-
though only the (hardly measurable) angular distribution and the effects of the 
transverse polarizations are different in the two approaches. 

4. Conclusion 

It has been recalled that just a tensor approach to gravitation can account for 
gravitational waves in the weak field limit with the same GR results. The same 
outcome can also be obtained in an effective vector theory of gravitation. Only 
the angular distribution and the effects of the polarization are different and 
might thus provide in principle a test of the tensor approach to gravitation. In 
conclusion in addition to the effects (light deflection, red shift, perihelion pre-
cession) which have been regarded as peculiar to GR also the main features of 
radiation can be obtained with alternative simpler formulations. 
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Abstract 
The black hole (b.h.) model based on the strong field treatment of the New-
ton potential is presented. The essential role of self energy both at the Planck 
level and for matter and radiation at later stages supports the picture of an 
expanding Universe necessarily accompanied by particle creation if energy 
conservation applies at every scale. This process is shown to provide a gravi-
tational repulsive force which can counterbalance gravitational attraction 
thus allowing the possibility of a steady expansion. This black hole treatment 
of our Universe evolution, questions the necessity of inflation. The role of the 
critical density to dictate the fate of the Universe is replaced by the black hole 
condition which entails a different relation between Hubble parameter and 
density thus disposing of dark energy. Since its predictions provide a different 
time development of the Universe also the evidence for its acceleration is 
disputed. That seems to provide a coherent scheme for our picture of the 
Universe evolution, based on Hubble’s law and backed up by the considera-
tion of inertial forces. Newtonian angular momentum is also not conserved at 
cosmological scales. Finally we consider two coordinates systems. The con-
formally flat coordinates are shown to disprove inflation and the relevance of 
the Painleve-Gullstrand metric in providing global coordinates is underlined. 
The combined effect of Hubble expansion and of proper time also questions 
the existence of missing mass. 
 

Keywords 
Cosmogony, Black Hole , Particle Creation, Inflation, Dark Energy, Missing 
Mass 

 

1. Introduction: The Origin of the Big Bang and Its Evolution 

The present cosmological description is, to say the least, unsatisfactory. Essential 
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ingredients appear to be ad hoc recipes: inflation, missing mass and dark energy. 
The main ingredient is General Relativity (GR) [1] which however was founded 
before Hubble’s [2] discovery, so that a theory essentially meant to describe a 
static Universe was forced to incorporate this revolutionary effect via the noto-
rious cosmological constant. This artifact, of no physical origin, then entails in 
the first Friedman [3] equation (see below) the appearance of the even more 
mysterious dark energy, which has rightly eluded till now any experimental evi-
dence. In addition great part of the dynamics, up to superclusters, has been de-
scribed in Newtonian terms, which have thus legitimated the existence of miss-
ing mass. Let us also recall that two essential hypotheses are at the foundations 
of our theoretical framework: isotropy and homogeneity. Whereas the first is 
backed up by evidence, the second is a reasonable but disputable ingredient al-
though it has the great advantage of allowing simpler calculations. It is more in 
the line of a Copernican line of thought. However this implies the absence of 
pressure gradients and this seems to represent another formidable problem. As a 
matter of fact whereas in Newtonian mechanics the repulsive role of pressure is 
paramount in the description of stellar formation, no such a role is played in GR. 
Quite on the opposite pressure adds up to ordinary matter density and increases 
attraction. But in the end fits demand it to be negative and hence curiously re-
miniscent of the “old” (Newtonian) repulsive pressure! 

For our purposes the most relevant thing is the connection between the self 
energy and the mass which implies (following Feynman’s conjecture [4]) that 
the energy to assemble from infinity many masses ( )iM m i= ∑  is zero when 
their self energy provides a deep enough potential well, 

2
2 0GMMc

R
− =                         (1) 

and the corresponding strong field parameter 

2 1GM
c R

ε = =  

The above requirement is easily understood. A bound gravitational system of 
whichever form (photons or matter) increases its energy when the interaction 
distance increases. Since energy must be conserved this can happen only by al-
lowing for matter (energy) creation to restore the energy balance, as it is actually 
the case. And this reflects in the strong field parameter. Of course this approach 
is highly speculative but “we must remember that here we are not dealing with 
an ordinary problem but with a cosmological problem” [4]. It is obviously based 
on the form of the Newtonian potential, probed in familiar contexts, imple-
mented by the b.h. condition. This is, so to say, the opposite of the GR approach 
which is, in a sense, the extension of the weak field Newtonian limit. 

Our aim will be to see whether this, Newton based, very simple model ac-
counts for experimental facts without additional parameters. Indeed to make a 
long story short GR, at least in the form of Friedman [3] equations, essentially 
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reproduces Newtonian physics apart from the cosmological term. 
In addition ε  intervenes in the problem of inertial forces. Indeed the inertial 

and gravitational masses im  and gm  are equal if 

2 g
i

GMm
m c

r
=  

i.e. 

1ε =  

This is only a qualitative argument which has been detailed for the different 
situations where inertial forces enter in Ref. s ([5] [6] [7] [8] [9]). 

There is an additional relation which deserves attention, at least heuristically. 
Namely from the b.h. condition one can derive 

2 5
U U U U U PW E t m c t c G W= = = =  

i.e. that the power to create matter in the Universe is constant and equal to that 
at the Planck time to create radiation. Interesting is also the fact that in the ex-
pression for the Planck power   has disappeared. Of course this is balanced by 
an equal and opposite contribution from the self energy. 

For the present Universe 

2 1U

U

GM
c R

  

where 0UM M=  and 0UR R=  the subscript 0 standing for the present value 
of these quantities and when there is no possibility of misunderstanding simply 
M ad R. 

It is obvious that in a Universe which has expanded, if the mass would have 
remained constant, as in the standard treatment where 31 Rρ = , the previous 
value would have become 

2
U U

UU

GM R
Rc R

ε ε′ = = ×
′′

                      (2) 

which implies in turn a negative total energy! To cure it we must admit that the 
total mass has varied, necessarily increasing by the same amount.1 

Such an approach for the varying mass problem has already been proposed in 
[11] which we follow here in an improved version. 

It has been strongly emphasized [12] how close to the critical one the density 
in the course of the expansion must have been otherwise we would not be here. 
This reflects in the constancy of the strong field parameter ε . An additional 
argument why ε  cannot depend on time is that the only reasonable possibility 
is 

( )d
d

H t
t
ε ε  

Now since H is positive and ( ) ( )Planck 1Uε ε= = , as it will be shown later, 

 

 

1Such a relation which realizes Mach’s principle has also been used by [10] in considering the possi-
bility of a G variation. This however has been experimentally disproved. 
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this eventuality is discarded. 
Clearly the constancy of ε  implies the cancellation of the acceleration. Indeed 

2

d d d 0
d d d

G M GM R
t R t R t
ε
= − =                     (3) 

where the last term is proportional to the acceleration  

2

d
d

GM Ra v
R t

⋅ =  

cancelled by the mass variation  

d
d

G Ma
R R

=  

Thus the matter creation mechanism entering the black hole condition im-
plies also a steady state expansion. 

The present treatment will hence be based on Equations (1) and (3).  
How the b.h. condition treated as an equation compares to the Einstein ones 

will also be elucidated in the following. The essential point seems to be its im-
plementation of the strong field limit which appears to be realized in our Un-
iverse. How that happens will be shown explicitly for radiation. 

2. The Planck Scenario 

Vacuum fluctuations i.e. the appearance of virtual particles are an essential in-
gredient of our theoretical armory. For instance in QED the vacuum fluctuation 
of an e+-e− pair lives because of the uncertainty principle 

E t∆ ∆ ≥                               (4) 

essentially for times 

( )21 2 et m c∆   

and the potential 
2eV
r

  modifies negligibly the previous argument.2 

According to the prevailing picture the Planck fluctuation should last for 
times of the order of Planck’s time 4410 secPt

−
 . 

That this is not so can be seen by considering that the total Planck energy P  
is zero 

2 2 2 0P P P P P P PE GM R M c GM R= − = − =            (5) 

3) i.e. the same condition which applies to our Universe. The previous relation 
can be also easily proven with the explicit form of the Planck quantities. 

This backs up one way of deriving the Planck quantities by requiring the 
Compton wavelength of a particle to coincide with its b.h. radius. Thus the 
Planck mass corresponds to the energy contained in the minimum quantum ra-
dius (because it cannot be of smaller dimensions without violating the uncertainty 

 

 

2In this connection let us recall speculations [13] according to which in the QED strong field case 
also the previous relation might not hold true thus leading to pair creation. 
3One should therefore probably re express the uncertainty relation as P t∆ ∆ ≥  . 
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principle) i.e. to the smallest quantum black hole.  
Such a configuration is not stable and can thus evolve. 
Starting from the Planck scale, where dR cannot decrease, this bubble must 

have necessarily expanded. However an expanding gravitational system of given 
mass gains energy because of the interaction term as mentioned in the previous 
paragraph. Thus in order to conserve the total energy, and because of the differ-
ent role of the mass in the two terms, such an expansion produces a mass in-
crease i.e. mass must be created. 

Notice also (by using 200 MeV fm = 1) that 
19 35 22 20= 10 GeV 10 m 10 MeV 10 fm 1 2P P PE kT R − −× = ×   

which indicates a “strong interaction” relation between gravitational Planck 
quantities arising just from first principles. 

The interesting thing is moreover that the black body total energy expression 

( )3
P P P P PE kT kT R kT=   

yields effectively an additional consistency relation, substantiating the previous re-
lation (to within the above numerical approximations). The photon number is thus  

( )3 1P P PN kT R   

The previous relation should be corrected by including the effective number 
of constituents which behave like photons above their respective threshold [14] 
and hence contribute a sizable amount of energy ( ,e eν + − , hadrons). However 
the above connection between energy and photon number can be used as an ef-
fective result. 

In conclusion Pε  is equal to 1 and Feynman’s [4] conjecture receives also a 
microscopic support. 

3. The Time of Radiation. The Role of Pressure Gradient 

The balance between gravitational attraction of the photon cloud and its pres-
sure has also been considered by Weinberg [14] (“it is the balance between the 
gravitational field and the outward momentum of the contents of the universe 
that governs the rate of expansion of the universe”). 

Let us start by considering early enough times i.e. when “photons” are in ther-
mal equilibrium with hadrons through creation and destruction of (typically) 
nucleon-antinucleon pairs (short for hadrons like quarks.. etc and other degrees 
of freedom) which will add to photons, which however determine the typical 
orders of magnitude, particles masses being negligible. The photon energy den-
sity being  

( )42
rad c kT pε ρ=    

the radiation mass is 

( ) ( ) ( )4 32 3
radm c kT R kT kTR kT Nγ=   

Notice that these relations are based only on the Special Relativity treatment 
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of the black body. But its gravitational self energy in these extreme conditions 
cannot be neglected. We demand again the whole energy to be zero. The form of 
the self energy is dictated by the Newton potential4 

2 2
rad radGm R m c=  

In sum energy conservation can be formulated for primordial “photons” as 

( ) ( )4 3
4 3

41 0
G kT R

kT R
c R

 
 − =
 
 

                  (6) 

The overall total “bare” energy factors our like the mass in the energy con-
served Newtonian approach. We have 

( )42
2

2 2

G kTc H G
R c

ρ= = =  

which is sort of a relativistic Hubble-like relation for the dimensions of the Un-
iverse whose outer radius expands at velocity c. This provides a tentative alterna-
tive description where the critical density is halved and no dark energy enters 
(see below Friedman equations). Since the Hubble parameter is seen to be de-
termined by highly relativistic galaxies it seems also from an experimental point 
of view more adequate to resort to a relativistic description. 

Indeed one has for 2610 mR =   

173 10 secU
Rt
c

= ×  

which is in line with the traditional value and also the well known relation be-
tween temperature and the age of the Universe 

2 1T
t

                             (7) 

We can thus summarize our results: 
1) total energy remains equal to zero  

( )4 2KT R const→  

and the temperature decreases. 
2) bare mass increases  

( )4 3kT R R→  

3) photon number increases  

( )3 3 3 2kT R R→  

This provides repulsion. A huge generation of less energetic photons has 
taken place (because of the deep potential well) and a comparable number of 
nucleon-antinucleon pairs has been created which are in thermal equilibrium 
with them and which annihilate. 

 

 

4Also Weinberg considered the balance between pressure and potential energy to determine the 
Jeans mass which at 3000 KT =  resulted in too big globular clusters. That would roughly corres-
pond in the present approach to the total Universe mass. 
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From the previous expressions it is immediate to get 

d 2d 4dR R T Tρ ρ = − =  

As mentioned in the introduction also the cancellation of the acceleration re-
sults. 

Now  

( ) ( )

( ) ( ) ( )

( )

4
43 2

3 43 2

4 2

d d 3
d d d

2 3

kTM TR kT R
R T R

kT R KT R kT R
MkT R
R

= +

= − +

= =

 

which corresponds to Equation (3). 
Therefore the matter creation mechanism entering the black hole condition 

implies also a steady state expansion. The previous equation also clarifies the 
role of the expansion (+) and of the temperature (−) in the varying mass. Also 
with a generic 21 Rρ  , without an explicit T dependence, the result holds 
true. 

Let us underlined once more that the Nγ  behavior is the opposite of the 
classical black body spectrum where, at constant R a decreasing temperature im-
plies a decreasing number of photons. The fundamental difference is however 
that the temperature decrease is due here to an expansion i.e. to an increase of 
the “box” and this will result in an increase of the photon number. 

Here the black body treatment of primordial photons realizes and justifies the 
previous general results, at variance with GR. 

We can conclude that pressure counterbalancing attraction seems to be prov-
en for radiation (so that we do not think it justified to follow GR in adding 
pressure to the attraction) and for later times when hadrons are formed the dilu-
tion due to Universe expansion may be compensated by the increase of their 
number. 

This approach differs from the steady state proposal by Hoyle [15] since for us 
the density variation is fundamental and we give a microscopic justification of 
particle creation. As mentioned the constancy of ε  guarantees the constancy of 
the inertial mass and presumably disposes of the retardation problem. 

4. The Universe Evolution. Baryogenesis  

As repeatedly underlined the relevant point is that the self energy dependence on 
R is not the same as that of the energy so that this correction does not factorize. 
Thus self-energy can then act as a gauge in the reconstruction of the history of 
the Universe. As a consequence its evolution will be dictated by the black 
hole condition and will be therefore different from the traditional one de-
termined by the GR equations. In particular it will affect the CMB treatment 
and its horizon determination. Also the ratio of nucleon to photon number will 
be shown not to be constant. 
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Indeed whereas in going backward in time the black body constraint on mat-
ter keeps being valid (apart from very early times where it has to be interpreted 
as “radiation”), for photons it begins to play a role when the photon energy in-
creases reaching that limit at recombination and matches with the treatment of 
radiation of primordial times. 

We try here to outline the behavior of radiation and matter in the course of 
time (recalling some of the results obtained in [11]). Of course both of them 
contribute to the gravitational field. Due to their different behavior it is however 
simpler to treat them separately. At present the matter contribution completely 
realizes the strong field limit whereas radiation, in spite of the numerical pre-
ponderance of photons yields a negligible contribution. Indeed the total matter 
energy in the Universe coming from Hubble’s law is  

80 8010 GeV 10m pE m                       (8) 

depending on the nucleon energy density mε  and the particle density mn , as  

( )2 3 2m mn mc kTε = +  

m standing here for the nucleon mass and subscript m for matter. The present 
energy density of radiation, coming from the CBR, is 

( )4 5 310 eV mkTγ γε  
                    (9) 

This yields a total energy of radiation for the Universe at present 

( )3 7410 GeVUE Rγ γε                    (10) 

Thus matter dominates in energy over radiation 
610mE Eγ
−

                         (11) 

However the total number of photons is given by 
3 8710N n Rγ γ=   

The ratio of photons to nucleons is thus of the order 

710
m

N
N

γ
  

where 3
m mN n R= . 

As regards matter their present dominance with 1ε =  is used to reconstruct 
their importance down to 1310 KT =  where photons materialize in them. 
Therefore 

1) 3210 KT = , 4410 sect −
 , 3510 mR −

  the Universe begins 
2) 1310 KT = , 510 sect −

 , 33 10 mR = ×  
The number of photons at this temperature is roughly 1057 which is also plea-

santly the number of nucleons in going from the present 1080 to 1057 at that time 
(radii being in a 26 310 10  ratio). 

With these numbers we can give a more direct justification of baryogenesis. 
Indeed with the equality of the number of photons and nucleon antinucleons at 
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this temperature it would be enough an imbalance of ( )710O −  to justify the 
present nucleon dominance. So the explanation of baryogenesis is rather insen-
sitive to the model, provided it reproduces the photon dominance. 

3) 910 KT = , 310 sect  , 113 10 mR = ×  
This is the temperature for electron positron threshold. Below they annihilate 

leaving a cold Universe where nuclei can start forming. The photon to nucleon  

ratio is 410
e e

m t

N
N

γ

+ −

 . Customarily the photon density is regarded as a reliable  

quantity. Its ratio to nucleon density is then used to determine the latter quantity 
and finally the present percentage of the critical density. Of course since the re-
construction history is different in the present model, also that number will dif-
fer. Indeed when the photon mean free path will become larger than the Hubble 
radius 

1

m e

c
n H

λ
σ

= >  

where 29 26.6 10 meσ
−= ×  and m en n= , photons will decouple from the elec-

trons and the Universe will become transparent. And this decoupling happens 
roughly at recombination. Moreover baryogenesis (and D production) can be 
accounted for only if the nucleon density is sufficiently low. In a standard con-
text with constant nucleon number the density at that time would have turned 
out too big, whereas in the present approach where the nucleon number varies 
with time this finds a natural explanation, contradicting the smallness of the 
present nucleonic percentage. 

4) 3000 KT =  recombination, 143 10 secrect × . (roughly one order of mag-
nitude bigger than the traditional estimate based on 2 3R t ), 2310 mrecR = .5 

The remarkable thing is that at recombination photon and the matter energy 
equalize. Indeed 773 10 GeVEγ ×  whereas by enforcing the strong field limit 
for matter 7710 GeVmM  . Thus the remark by Weinberg [14] “It is striking 
that the transition from a radiation to a matter dominated universe occurred at 
just about the same time that the contents of the universe were becoming trans-
parent to radiation, at about 3000 K. No one really knows why this should be 
so ...” receives in this approach a natural explanation. 

Note also that the photon density nγ  is of the order of 109 at 3 KT =  and 
of 1018 at 3000 KT = . Thus Nγ  is constant from 2610R =  to 2310recR =   

corresponding to 1000z = . The photon to nucleon ratio is 910
m rec

N
N

γ
   

compared with the present estimate 107 showing that this ratio is not constant in 
time as usually said. 

To summarize, back to recR  we have conservation of Nγ  but decrease of 

 

 

5However at recombination the strong field limit is overcome by the previous value of the Universe 

radius so that in order to be consistent R must be determined from 
( )

4
2

4

cR
G kT

=  which yields 

223 10R × , slightly altering the previous estimate. 
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mN  till the different energy equalize. In still former times but after 1310T =  
both energy densities increase in the same way because of the self energy con-
straint. But their number density varies as 

2 3 2p

m

m c kTn
n kT
γ

γ

+
                      (12) 

In conclusions one has a linear connection between matter creation and the 
dimensions of the Universe throughout, and a linear dependence between the 
temperature of radiation and radius R back to recombination time and quadratic 
before, Equation (7) 

2 1T t c R=  

A totally different scenario from the prevailing one.6 

5. On the Friedman Equations. Elementary Considerations 

The Friedman equations with the cosmological term for a flat Universe read 
2 8 3 3H Gρ= π + Λ                       (13) 

and 

( )2 24 3 3 3H H G p cρ+ − +π= + Λ                 (14) 

where H χ χ=   and χ  is the scale factor. They are based on the LFRW me-
tric which will be extensively treated in par. 7) and are the Einstein equations re-
levant to determine the velocity and acceleration of the Universe. 

Let us first underline an obvious fact. Thanks to the Lemaitre-Hubble relation 
the first two terms of the first equation are forced to have the same χ  depen-
dence. The dimensions of the sphere around the origin factorize. This means 
that ρ  is independent of scale and may only depend on time. Thus the fact 
that one obtains the same condition which is regarded as a property of an infi-
nite universe, implies that one can use the metric and the equations locally also 
for the interior of the finite b.h. bubble. 

Thus the fact that the previous equation seems to get a support from the 
Newtonian limit is utterly misleading. Indeed in that case a real constant can be 
added to the sum of the kinetic and potential energy determining the escape ve-
locity. However no similar role can be attributed to Λ  in the cosmological case 
(it is worth recalling that the cosmological term was indeed introduced in order 
to provide a stable non expanding Universe, that the solution was found by 
Friedman not to be stable and that the cosmological constant was “forced” after 
the Lemaitre-Hubble discovery to somehow reproduce a repulsive agent). Thus 
Equation (15) and Equation (16) are substantially different. 

 

 

6This does not exhaust the treatment of photons. Indeed the CXB [16] shows the presence of an ad-
ditional sizable energetic photon background due to the 710 K 30 KeVT    photon emission 
from the core in the formation process of stars. Whether this can contribute to the baryonic black 
hole limit is an open question. In any case this more energetic photon component coming mainly 
from AGNs pertains to a later stage of the evolution. 
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2 22V G R const Eρ− = =                      (15) 
2 2 2 22H R G R const Rρ ′− ≠ = Λ                   (16) 

Put it another way one cannot add a constant term to a homogeneous equa-
tion without contradicting it. 

Let us also remark that pressure enters GR7 so has to increase the effect of 
matter density but then in whichever form ( 23p cρ + ) or in the cosmological 
term it turns out to be necessarily negative in order to account for experimental 
data. In this phenomenological approach it is attributed a repulsive role along 
the Newtonian picture, its gradient balances gravitational attraction and just 
from inspection of the previous equations this is consistent with the relativistic 
Hubble like equation without any dark energy. It has already been underlined 
that the b.h. condition halves the potential contribution to the first equation. 
Indeed as it is more transparent in Newtonian terms, in GR the coefficient of 
Gρ  comes essentially from a N.R. 2 2v Gρ=  where of course v can never at-
tain c, thus doubling the role of the density. This in spite of the fact that the 
Hubble parameter is essentially of relativistic character 18 110 seco UH c R− −

   
with a “reasonable” 2610 mUR  . From the b.h. condition 2 2

Uc R Gρ=  one 
immediately obtains a halved role of the density. 

So dark energy exists only within the standard theoretical framework and 
its existence ironically recalls of ether. As a matter of fact the necessity of in-
troducing the cosmological term in the acceleration equation implies an addi-
tional contribution of its potential energy. This does not happen for the b.h. 
model where the counter-acceleration follows from the varying mass in the energy 
equation.8 

The role of the density in the b.h. model is different from that in the Friedman 
equations. Indeed according to our model the density is fixed by the equation 
and there is no critical density which determines the fate of the Universe which 
will expand for ever. 

6. The Cosmological Term and Vacuum Energy. The Problem  
of Flatness 

Let us consider the first (the energy) Friedman equation which can be rewritten as  

2 21 m
G
H H
ρ

Λ
Λ

= Ω = Ω +Ω +  

 

 

7This does not question how pressure enters the energy momentum tensor nor GR, the problem 
simply being whether that theory accounts for reality or not. 
8We give here an additional heuristic argument to show how one can reconcile the present approach 
with Friedman-like equations. As a matter of fact if we give Λ  its correct dimensions 2 2c R  in 

the second equation, by neglecting pressure and imposing zero acceleration 
2

3 2

GM c
R R

Λ
=  with a 

unit value for Λ  we have 
2 1GM

c R
= Λ = . Thus a non constant cosmological term could realize the 

black hole condition. As mentioned, in going from the acceleration equation to the energy one the 
b.h. condition fixes the “integration constant”. 
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and said to be valid for all times (see e.g. [17]). It should constrain the amount 
of matter density and of the elusive dark energy associated to the cosmological 
constant. Now in the present matter dominated regime where 2 3tχ   we 
have 

3 21 tρ χ−
   

and  
2 21H t  

The same time dependent behavior of ρ  results also for radiation era where 
1 2tχ   and with 21 Rρ   and R c t  although with a different meaning 

of R (with respect to χ ) and different consequences. This proves that  
( )tρ ρ=  gives only the gross features of our expansion (in the sense that the 

two previous different solutions are both compatible) and that finer details can 
only be got from the behavior of χ . 

Therefore if energy conservation (to which the previous condition essentially 
corresponds) has a meaning at all i.e. must be valid at any time and not by 
chance just at the present one, the term with constant Λ  would increase due to 
the factor 21 H  in the future and decrease in the past thus unmistakably vi-
olating the above equality. 

In fact 

( )2d 1d 1 d 10
d d d

H

t tχ χ χ
Ω Ω
= = + Λ
 

 

The previous relation is regarded as a test of no curvature and at the same 
time it raises the problem of why space-time, which is the strongest quantity in 
the Universe development [18], would have so dramatically changed in the 
course of time due to the time dependence of the second term. This has been 
overcome (see e.g. [19]) showing that the effect coming from the cosmological 
term can be cancelled only by a curvature effect in turn reexpressed through the 
second Friedman equation. Its deviation from 1 is then shown to depend on the 
parameter of the corresponding pressure which has been obliged to be again 
negative ( p ρ− ). This leads to the stability of the solution 1Ω . Thus space 
curvature peculiar to GR can be reconciled with flatness simply because self 
energy provides the appropriate counterterm. In other words the popular picture 
of space deformation by gravity at a local level is completely discarded at uni-
versal scales. 

It can be also easily recognized that the previous condition on Ω  is equiva-
lent to the time derivative of the b.h. condition. 

Let us also underline that a void Universe 0ρ =  [20] would also produce 
v const= . That can be reconciled with our preceding result where 0ρ ≠  in the 
sense that the total zero energy requirement seems to be somewhat equivalent to 
the no matter case. 

Finally Perlmutter’s [21] worry about the fact that “it seems a remarkable and 
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implausible coincidence that the mass density, just in the present epoch, is with-
in a factor of 2 of the vacuum energy density” finds a natural explanation. The 
two things are just the same: indeed the (non existing) cosmological term can be 
related at most to (a fraction of) the present matter density. 

2
2
0 3 2 2

1U
U

U U U

GM cH G
R R t

ρ =                   (17) 

which when compared to the primordial quantities 
2

2
3 2 2

1P
P P

P P P

GM cH G
R R t

ρ = =                  (18) 

would yield 
2 2

1220
2 2 10P

P U

H t
H t

−=                         (19) 

 

and identifying Λ  with a fraction of matter density 
2 2 122

0 0 10P PH H −Λ Λ                     (20) 

Thus what is presented (if one assumes the constancy of Λ ) as the well 
known most disastrous prediction of physics ever, unless various bosons, fer-
mions etc. would conspire to cancel these 120 orders of magnitude, seems to find 
here a natural explanation. Λ  could be interpreted at best as part of the rate of 
particle creation from the vacuum which “accompanies” a varying matter densi-
ty of the universe. In other words we have to admit that the “Universe vacuum” 
may differ from the textbook one. 

7. Different Metrics and the Horizon Problem. Inflation?  
Acceleration?  

We now pass to see which conclusions can be reached in a more formal way. 
The local invariant interval of a homogeneous isotropic expanding Universe 
reads 

( )2 2 2 2 2d d ds c t t xχ= −                    (21) 

where ( )tχ  is the dimensionless scale factor which is supposed to convey all 
of the time dependence of the expansion, x is the comoving coordinate and the 
angular dependence has been left over because of isotropy. 

We will examine two different implementations: 
1) the time dependence of ( )tχ  is reabsorbed in the term 2 2dc t  via a res-

caling of the invariant interval. 
2) a “Painleve-Gullstrand like” one (or the Lemaitre-Hubble-Painleve-Gull- 

strand), where the same approach used in the central symmetric static case [22] 
will be extended to the “Hubble frame”. In other words like the free falling frame 
is used to dispose of gravity allowing the local use of SR, so it happens here for 
the (infinity of) frames which expand at the Hubble velocity. 
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Both approaches have advantages for different aspects of the problem and will 
help to elucidate which physical features are of course common to both and 
hence physical and which statements on the contrary have a significance only 
relative to a given metric. 

1) Rescaled Minkovski interval or the conformally flat coordinates and 
causality. The problem of the horizon. Inflation? 

The previous expression Equation (21) can be rewritten for 0t ≥  as 

( )2 2 2 2 2d d ds t c xχ τ = −   

where 

( )d dt tτ χ=  

In terms of ( ), xτ  light velocity is always c but of course the flow of time is 
altered with respect to “ours”. 

Notice that 

dt t∫  

(non accelerated expansion) is divergent for early times unlike tαχ   (decele-
rated expansion) for the α  of the GR treatment. If χ  is integrable, time has 
had a beginning and there are regions not causally connected to a common one 
in the past, if not this time is infinite in the past and any two finite regions have 
a common one in the past which they are causally connected to. This coordinate 
system is hence particularly suited for the discussion of causality since it is of the 
Minkovski form and it puts strong bounds on the behavior of the scaling factor 
χ . 

Indeed light velocity is obtained as usual by putting to zero the previous inva-
riant interval 

( )
d
d
x c
t tχ
=  

and in the present model 0t tχ = . 
The interpretation of ( )tτ , the conformal time, is important. It represents 

the comoving distance traveled by light at time t. Since two points can commu-
nicate at most with light velocity it therefore represents the dimensions of the 
region causally connected at time t, thus defining the causal horizon. 

This 1/t behavior which “stretches” early times with respect to the present ones, 
is enough to solve the problem of causality and the connected horizon problem. 
Indeed it reproduces naturally the inflationary explosion.  

As a matter of fact in the present model the dimensions of the region causally 
connected and hence thermalized at decoupling decχ∆  are much bigger than 
the comoving Hubble radius Hχ∆  which determines (for us) the observable re-
gion (see Figure 1) 

0d drec

P rec

t t
dec Ht t

t t t tχ χ∆ ∆∫ ∫   

( )14 44 17 14− − −  
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Figure 1. Starting at Pτ  from a region of dimensions PR  whose worlds lines expand at 
velocity c all subsequent events are causally connected since they were at the Planck scale. 
τ  is the comoving time. 

 
The world we experience has always been in causal contact. 
Moreover it gives us a measure of temperature fluctuations at decoupling time 

which appear at an angle of ( )1O   degrees. That the previous relation yields 

3H

dec

χ
θ

χ
∆

=
∆

  

should not be considered as a failure but on the contrary a spectacular semi-
quantitative confirmation of the present approach over 60 orders of magnitude. 

Let us now turn to the problem of the reported acceleration of supernovae. 
The comoving distance 

( ) ( )
0 d

t

t a
a t tχ ′ ′= ∫  

in the standard approach where 2 3R t  is given by [23] 

( )02 1 1 1H z− +  

whereas for “our” R t  by 

( )01 ln 1H z+  

As can be easily seen from Figure 2, they are equal for 0.0026z =  whereas 
for 0.86z =  they are respectively 0.52 [23] in the traditional approach and 0.60 
in present one, and for higher z always bigger in the latter. This is easily ex-
plained. The Universe was decelerating for 2 3R t  and hence light took less 
time to reach us from distant stars; therefore distant objects would look brighter. 
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Thus in order to justify their apparent faintness one had to invoke an accelera-
tion. On the contrary in the present approach, since expansion was a steady one, 
high z objects are actually farther apart than in the traditional scenario and 
hence fainter. We then see that the time evolution predicted by GR in a standard 
treatment can only be maintained at the price of introducing extra parameters 
(particularly dark energy), which are not necessary in the present description. 
One might object that one has replaced one parameter with another one. This is 
however not completely true in the sense that our “creation” mechanism has 
some microscopic justification particularly in the radiation era, and is predictive 
without further adjustments, in addition to accounting for causality whereas 
dark energy and inflation seem just questionable recipes. 

 

 
Figure 2. Comoving distance in the standard approach where 2 3R t  (lower curve) 
and in the present model where R t  (upper curve) vs. z. For given z comoving dis-
tances in the present approach are larger typically by some tens of a percent which cor-
respond actually to differences between traditional predictions and measured luminosi-
ties. 

 
The red shift is easily accounted for along standard lines. Indeed light emitted 

at former time 1t  is affected with respect to the present time 0t  where ( )0 1tχ =  
by the factor ( )1tχ  i.e. time runs slower. Hence the present time frequency is 
much slower than that at the time of emission 

( )
( ) ( )

0 0

0

1t R
t t R

ω λ
ω χ λ

′
= = =

′ ′ ′
 

To conclude the present 1/t evolution the Planck fluctuation disposes of infla-
tion. The standard picture of an infinite Universe at the Planck time, which, be-
cause of the unexpected causal connections, necessarily has to shrink at the in-
flation “point” which then expands very rapidly for a very short time is thus over-
ridden. 

2) The Lemaitre-Hubble-Painleve-Gullstrand (LHPG) metric 
Let us come to another relevant coordinate system: the Hubble-Painleve- 

Gullstrand (LHPG). This is reproduced by introducing in the invariant interval 
Equation (21) 

( )2 2 2 2 2d d ds c t t xχ= −                      (22) 
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y xχ=  and the Hubble parameter ( )H H t χ
χ

= =


. 

Thus  

( )
2

2 2 2 2
2

dd d dys c t t y tχχ
χ χ

  
 = − − 
   



 

or  

 ( )( )22 2 2d ds t c y Hy= − −                     (23) 

So the original space part of the invariant interval has been transformed in a 
velocity dependent one in contrast to what has been done in the case of the res-
caled Minkovski interval.  

Here  

( ),Hy v t y=  

represents the velocity of expansion of the point y at the time t. 
We can [22] keep the invariant interval in the genuine Painleve’-Gullstrand 

form i.e. 

( )( )22 2 2 2 2d d 1 d 2 d d ds c t Hy c y Hy y t y⊥= − − + +  

At equal times ( d 0t = ) the radial y coordinate 

d ds y=  

measures proper distances. 
We then have by putting d 0y =  

( )( )22 2 2 2d d d 1s c t Hy cτ= = −  

the proper time. Thus we get a well known but nevertheless relevant result that 
the most distant the celestial objects under consideration the higher their veloci-
ty and consequently the smaller their time intervals. Thus far away objects live 
longer than naively expected with respect to our time.  

For transverse light propagation 

( )2d
1

d
y c Hy c
t
⊥ = −  

Radial light propagation is got by setting to zero the previous invariant interval 

( )c y Hy= ± −  

or in terms of y , y=y  in the (y, t) plane 

( )d
d

H t
t
= −

y y c  

where the case of backward propagation is considered in order to see objects in 
the past. 

The first relevant result is that the velocity of light, always c in the local 
frame changes in space-time as the vector composition with the Hubble ex-
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pansion velocity. Thus light was more and more deviated in the past because of 
the increasing role of ( )H t  in the radial and transverse light propagation. This 
makes clear how the velocity of stars is of course composed of the recession ve-
locity of the Hubble frame plus the intrinsic subluminal intrinsic velocity x . 
This explains the so called “superluminal” behaviour of galaxies with high z. 

The similarity with the P.G. metric ([22] and ref.s therein) used in the static 
spherically symmetric case is manifest. There the free falling frame carrying the 
absolute time of ∞  represented the inertial frame with the SR Minkovski in-
terval locally eliminating gravity. Here the same happens for the outward Hub-
ble velocity. Therefore the LHPG metric represents an infinity of inertial 
frame and provides a dynamical extension of the Minkovski metric more in 
the Einstein spirit, this time not “eliminating “ gravity but expansion. 

The connection between the rescaled and LHPG coordinate systems is imme-
diate. 

If we rewrite the basic equation in terms of the comoving coordinate 

d
d

x x x x c
t
χ χ χ χ= + = −   

we get 

d
d
x c
t χ
=  

(where the proper sign of c has been chosen) just reproducing the light velocity 
of the previous paragraph. 

Recently the most distant galaxies observed (GN-z11) and (EGSY8p7) with 
respectively 11.1z =  and 8.68 at a distance of 13.4 and 13.2 billions of years 
have caused particular concern because of their closeness to the very age of the 
Universe. This however depends again on the history reconstruction. The present 

0 1t t z′
  with respect to ( )3 2

0 1t t z′
  of the usual treatment leaves us un-

worried since the time span between t’ and the present 0t  is larger in this ap-
proach than in the standard one.  

This metric has manifestly the advantage, already clear in the static symmetric 
case, of evidentiating the connection between local and global coordinates in the 
propagation of light. The mirage effect in space-time, much bigger than in light 
deflection and in lensing, would alter our view of the past. This is illustrated in 
Figure 3 and represents a simple realization of the photon geodetics, which near 
us can be well approximated by ( )2

0y c t t t+ − . Thus after decoupling which 
represents for us the frontier of visibility almost a straight line. This metric has 
however the advantage of explicitly showing that world lines originated in the 
primeval black hole. 

Finally application of the Euler-Lagrange equations (which can be used also 
for galaxies) of motion in the N.R. limit 

( )( )2
d d d 1 0L t s t y H t yδ δ δ  = = − − =  ∫ ∫ ∫           (24) 
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Figure 3. Light propagation in the ( ),t y  plane. Because of the vector composition of the 

local invariant light velocity c with the frame velocity determined by the varying Hubble 
parameter, light as observed at a given place (on Earth at present for example) in global 
coordinates deviates more and more when emitted at former times (with an analogous 
effect to light deviation in a static gravitational field). Not in scale. 
 
yields 

( )2y H H y= − +   

where the expression of the Universe acceleration enters. Thus the equivalence 
principle holds true if the Universe expansion is unaccelerated. 

8. On Olbers’s Paradox 

We want briefly to reconsider the reasons why the night is not brilliant. The first 
qualitative argument is that the night is indeed bright but at the wavelength of 
CMB photons and not at wavelength of visible light. 

Take a single star at a distance r from the earth of radius R. If it emits W pho-
tons per unit time, a fraction 

2

24
RW
r

π
π

 

is received from the earth. Consider then the whole Universe as composed of 
spherical layers of width dr with N stars per unit volume. The total contribution 
is then 
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2
2

2 4 d
4
RW Nr r

r
π

π
 

which, when integrated over all space appears to yield an infinite contribution. 
However, since distant stars have increasing velocity all of them outside of 

2r GM c=  do not contribute making the sum finite. Thus the same black hole 
condition enters again. 

9. Hubble’s Law, Angular Momentum and Missing Mass 

An immediate consequence of Hubble’s law is that since all points are equivalent 
the same expansion law should hold for all of them. Although this may appear 
trivial, the expansion with respect to a privileged point i.e. the center of a system 
(galaxy) implies that the relative distance of the orbiting object varies, apart from 
the moving away of the whole system. 

In Newtonian mechanism angular momentum for central forces is conserved 
i.e. 

d d 0
d d

m
t t

= × =L r v  

However if Hubble’s law is valid 

d
d

m H m
t

× = ×r v r v  

This implies non conservation of angular momentum 

d
d

H
t

=L L  

Thus in addition to particle number conservation another cherished belief 
cannot be extrapolated from our limited space time experience to other scales 
proper to the Universe creation process. 

One could as well reexpress the previous relation as 

HT∆L
L
  

i.e. that the violation of angular momentum conservation for a central force is 
greater the bigger the dimensions and therefore the characteristic time (T) of the 
system, in line with the previous result. 

This analysis has used Newtonian absolute time. It is therefore not correct, but 
it was just aimed at showing the limits of a Keplerian treatment. 

Let us now turn to the missing mass problem. If one has a mass M with spheri-
cal symmetry orbiting ones obey Newton’s law thus determining their accelera-
tion and therefore 

2

2

v GM
r r
=  

Thus the velocity should fall as 1v r . This is not what one observe since 
the orbital velocity is greater or when a curve is measured it flattens out for large 
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distances. Well known examples are the Sun velocity, the external Hydrogen 
lines orbiting the galaxy M33 and M11 and the Coma cluster whose parameters 
have been reported in the accompanying table. The Keplerian approach is ap-
parently justified since involved velocities are indeed non relativistic. To start 
with, given the quoted values for the velocities the respective periods are of the 
order of 108 y, 108 y and 109 y respectively. To trust our theoretical treatment 
over such periods when the star formation mechanism is not yet established is 
probably a bit presumptuous. This has lead, among other alternatives [24], to 
postulate the existence of missing mass. Its features, apart from peculiar gravita-
tional properties, are a relative increase according to the dimensions of the sys-
tem (Table 1). 
 
Table 1. Astronomical parameters. Distances in meters. Velocities in km/s. In the final 
column the Hubble velocity Hv Hd= , calculated not at the present time 0t  but at 

1610 sect′ , time of structure formation, is reported. 

star distance r dimensions d velocity Hubble velocity 

sun  3 × 1020 220 30 

M33 1014 1020 150 10 

Coma 3 × 1024 1022 1500 1000 

 
Thus the quantities for our Galaxy and M33 are similar but the distance of the 

latter is larger whereas for Coma all of them are bigger. For what has been said 
before we have H at the time of formation. The “Hubble” velocity which should 
add to that coming from the virial theorem and attributed to the visible mass is 
then almost ok for the sun, scanty for M33 and again ok for Coma. Moreover ro-
tating external layers might influence the velocity of orbiting masses. This has 
been considered by Mizony [25] showing that this is indeed the case and that the 
usual treatment based on a symmetrical central mass is inadequate, thus dis-
proving a missing mass halo. One further comment about the usual statement 
that dark matter is necessary to assure the necessary gravitational force to bind 
these systems otherwise they would have disappeared [26] To start with super-
clusters are not seen nearer and therefore at later times, where they have evolved 
in smaller structures (galaxies) with higher symmetry. Therefore they have 
decayed. Second we have from the LHRW invariant interval the connection 
between distant objects and their proper time. That is the farther the stars 
the slower their proper time. For instance for the Coma cluster the factor 

( )21 Hy c−  entering the proper time is close to zero with the present para-
meters. The ensuing picture is that of a competition between the Hubble effect 
which tends to disrupt and the slowing down of time which temporarily as-
sures the stability of the gravitating system. This completely overturns the 
naive and peacefully picture of Newtonian systems and alters our view of the 
past. Therefore we might conclude that the existence of missing mass is at least 
questioned. 
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10. Conclusions 

As summarized in the introduction the present theoretical situation is common-
ly dramatically presented as: some 90 percent of our world is in the form of un-
known entities (dark matter and dark energy) with, to say the least, “peculiar” 
properties. This naturally leads to question the validity of the GR description, 
which because of the success in the post Newtonian regime (whose results can 
however be obtained simply from the Equivalence Principle and Special Relativ-
ity [22]) seems hardly questionable. In the present work the theoretical treat-
ment has therefore been reconsidered. The model has been presented of a black 
hole Universe. It can successfully account for inflation, the horizon problem, 
flatness, dark energy. It also questions the reported acceleration and partially the 
need of dark matter. The extrapolation to cosmogonical scales of some of our 
most cherished and successful belief (at our space time scales) has been proven 
to be incorrect. 

Namely particle number and Newtonian angular momentum are necessarily 
not conserved. 
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Abstract 
When   is a linear partial differential operator of any order, a direct prob-
lem is to look for an operator 1  generating the compatibility conditions 
(CC) 1 0η =  of ξ η= . Conversely, when 1  is given, an inverse prob-
lem is to look for an operator   such that its CC are generated by 1  and 
we shall say that 1  is parametrized by 0=  . We may thus construct a 
differential sequence with successive operators 1 2, , ,   , each operator 

parametrizing the next one. Introducing the formal adjoint ( )ad  of an op-

erator, we have ( ) ( )1 10 0i i i iad ad− −= ⇒ =      but ( )1iad −  may 

not generate all the CC of ( )iad  . When [ ] [ ]1, , nD K d d K d= =  is the 
(non-commutative) ring of differential operators with coefficients in a diffe-
rential field K, then   gives rise by residue to a differential module M over 
D while ( )ad   gives rise to a differential module ( )N ad M=  over D. 

The differential extension modules ( ) ( ),i i
Dext M ext M D=  with  

( ) ( )0 ,Dext M hom M D=  only depend on M and are measuring the above 
gaps, independently of the previous differential sequence, in such a way that 

( ) ( )1ext N t M=  is the torsion submodule of M. The purpose of this paper is 
to compute them for certain Lie operators involved in the theory of Lie pseu-
dogroups in arbitrary dimension n and to prove for the first time that the ex-
tension modules highly depend on the Vessiot structure constants c. Com-
paring the last invited lecture published in 1962 by Lanczos with a commuta-
tive diagram that we provided in a recent paper on gravitational waves, we 
suddenly understood the confusion made by Lanczos between Hodge duality 
and differential duality. We shall prove that Lanczos was not trying to parametr-
ize the Riemann operator but its formal adjoint ( )Beltrami ad Riemann=  

which can indeed be parametrized by the operator ( )Lanczos ad Bianchi=  
in arbitrary dimension, “one step further on to the right” in the Killing se-
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quence. Our purpose is thus to revisit the mathematical framework of Lanc-
zos potential theory in the light of this comment, getting closer to the theory 
of Lie pseudogroups through double differential duality and the construction 
of finite length differential sequences for Lie operators. In particular, when 
one is dealing with a Lie group of transformations or, equivalently, when   
is a Lie operator of finite type, we shall prove that ( ) 0, 0 1iext M i n= ∀ ≤ ≤ − . 
It will follow that the Riemann-Lanczos and Weyl-Lanczos problems just 
amount to prove such a result for 1,2i =  and arbitrary n when   is the 
classical or conformal Killing operator. We provide a description of the po-
tentials allowing to parametrize the Riemann and the Weyl operators in arbi-
trary dimension, both with their adjoint operators. Most of these results are 
new and have been checked by means of computer algebra. 
 

Keywords 
Differential Sequence, Variational Calculus, Lanczos Potential, Lanczos  
Operator, Vessiot Structure Equations 

 

1. Introduction 

Introducing the Lanczos potential ( ),ij kL L=  as a 3-tensor satisfying the alge-
braic relations:  

, , , , ,0, 0ij k ji k ij k jk i ki jL L L L L+ = + + =                    (1) 

Lanczos claimed to have parametrized the Riemann tensor R through the rela-
tion:  

, , , , ,kl ij j kl i i kl j l ij k k ij lR L L L L= ∇ −∇ +∇ −∇                  (2) 

where ∇  is the covariant derivative. However, even if we can easily verify the 
algebraic conditions that must be satisfied by a Riemann candidate, namely:  

, , , , , , , ,, 0, 0r
kl ij lk ij kl ji ij kl kl ij ki jl kj li i rj ij jiR R R R R R R R R R= − = − = + + = = = ≠  (3) 

the generating compatibility conditions (CC) of the underlying operator for the 
left member cannot be the (second) Bianchi identities:  

, , , , 0k k k k
l ijr r l ij i l jr j l riB R R R≡ ∇ +∇ +∇ =                 (4) 

which are produced by the well known parametrization described by the Rie-
mann operator acting on a perturbation *

2S TΩ∈  of the background metric 
ω , that is, when ω  is the Minkowski metric:  

( ) ( ), , , ,2 0k k k
kl ij li kj lj ki ki lj kj li r l ij i l jr j l riR d d d d d R d R d R= Ω − Ω − Ω − Ω ⇒ + + =  

This contradiction can also be checked directly by substitution because we have:  

, , , , , , , , 0k k k
kl ij j kl i i kl j l ij k k ij l r l ij i l jr j l riR d L d L d L d L d R d R d R= − + − ⇒ + + ≠  

Then Lanczos tried to parametrize the Weyl tensor C, only knowing the alge-
braic conditions that must be satisfied by a Weyl candidate, namely:  
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, , , , , , , ,, 0, 0r
kl ij lk ij kl ji ij kl kl ij ki jl kj li i rjC C C C C C C C= − = − = + + = =       (5) 

The last condition is reducing the number of linearly independent components 
from 20 to 10 for space-time, that is when the dimension is 4n = , but the pre-
vious contradiction still holds.  

50 years ago, while the author of this paper was “professional” in GR under 
the leadership of Prof. A. Lichnerowicz, he became familiar with the Lanczos 
problems. Since that time, he had no wish at all to enter this kind of “private 
domain” where a few persons were writing alternatively. Also, all the papers 
were covered with “computations” involving many technical formulas, one pa-
per using computer algebra, another Gröbner bases, another Cartan exterior 
calculus, another Janet bases and so on during these 50 years. Finally, the author 
started to have doubts on the differential geometric conformal framework. A 
long time after, in 2001 and for quite different reasons, namely revisiting con-
trollability in control theory on one side and the intrinsic proof of the impossi-
bility to find potentials for Einstein equations in vacuum (contrary to the general 
dream of the GR community till now!) on the other side, the author wrote a big 
book, published by Kluwer (See Zbl 1079.93001). At this moment, being more 
familiar with differential homological algebra and the “parametrization prob-
lem”, the way towards the Lanczos problems became easier and we present it in 
four steps:  

1) In the only dimension 4n =  considered indeed by Lanczos, the so-called 
Lanczos “potential” , ,ij k ji kL L= −  has 6 4 24× =  components. As they must be 
related by the 4 additional relations , , , 0ij k jk i ki jL L L+ + = , we get 20 indepen-
dent components, namely the number of (second) Bianchi identities. We claim 
that only the knowledge of the Spencer δ-cohomology allows to exhibit the 
proper identification with the Bianchi candidate vector bundle 2F  in the short 
exact sequence of vector bundles where *

1g T T⊂ ⊗  is the symbol of the Kill-
ing equations:  

3 * 4 *
2 10 0F T g T T

δ
→ → ∧ ⊗ → ∧ ⊗ →  

and ( )2 24 4 20dim F = − =  when 4n = . However, speaking about “potential” 
also means “parametrization”, ... but of what?. Here comes the main confusion 
of Lanczos, familiar with electromagnetism (EM) while using mainly quadratic 
lagrangians with the Riemann tensor in place of the EM field F such that 

0dF = , with the Bianchi identities as differential constraint in the correspond-
ing variational calculus. The operator that must be parametrized indeed by 
means of the formal adjoint of the Bianchi operator is thus the formal adjoint of 
the Riemann operator, going now backwards, that is from right to left in the ad-
joint sequence of the Killing resolution. Such a construction, using quite difficult 
results (side changing functor) of homological algebra, could not have been dis-
covered by Lanczos and followers as such tools have only been available after 
1995 through the works of pure mathematicians not interested by applications. 
As a byproduct, this new framework is allowing in particular to replace technical 
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formulas by diagram chasing, without ANY formula.  
2) As for the differential sequence involved, people use to refer to E. Calabi or 

H. Goldschmidt who effectively gave “ad hoc” results a long time ago, around 
1965 but are not quoted because they cannot be used for our purpose. However, 
one should rather refer to the author’s many books (In particular the first one, 
published in 1978 and translated by MIR, Moscow, in 1983) in order to discover 
that such a differential sequence can be constructed for any Lie pseudogroup by 
using the Vessiot structure equations, still not known after 125 years!. This se-
quence is much more useful than the sequence constructed by Goldschmidt- 
Spencer who have never been aware of the work of Vessiot and has nothing to 
do with the work of Cartan who ignored this work.  

3) Going from left to right in the differential sequence, the Riemann operator 
is generating the compatibility conditions (CC) of the Killing operator and the 
Bianchi operator is generating the CC of the Riemann operator. However, 
going backwards, that is to say from right to left, by taking the respective ad-
joint operators, it is not true in general that the successive operators have the 
same property. This remark has been the reason for introducing the differen-
tial extension modules in homological algebra, the aim being to study the 
possible “gaps” just described. By chance, in this case it works, contrary to 
what could happen in the example given of the infinite dimensional Lie pseu-
dogroup of contact transformations. Indeed, in such a case, the differential se-
quence is existing because the Vessiot structure equation has only one Vessiot 
structure constant (totally unknown) like in the example of the constant Rie-
mannian curvature. The case of unimodular contact transformations is even 
more difficult with two Vessiot structure constants but no link with any Maur-
er-Cartan equation.  

4) Last but not least, the case of conformal isometries is even much more 
tricky:  

First of all, it is clear that, when 4n ≥ , the first order Killing operator must 
be replaced by the first order conformal Killing operator while the second order 
Riemann operator must be replaced by the second order Weyl operator. Howev-
er, ... what operator should be used in place of the first order Bianchi operator?. 
No chance, because we shall discover that, in dimension 4, it is a second order 
operator!. Such a result, neither known nor acknowledged up to now, has been 
checked with computer algebra by the author’s former PhD student A. Quadrat 
(INRIA) and appeared in book form ([1]). Acordingly, there does not exist a 
single reference on such a result. Needless to say that, in any other smaller or 
higher dimension, this material could not have been known by Lanczos himself 
or followers, a fact justifying the initial claim on the use of the Spencer δ-coho- 
mology. For example, when 3n = , the analogue of the Riemann operator is a 
third order operator with first order CC.  

In order to recapitulate the above procedure, we have the following differen-
tial sequence, indicating below the fiber dimensions of the vector bundles in-
volved with *

0 2F S T= :  
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0 1 20
Killing Riemann Bianchi

T F F F→Θ→ → → → →                 (6) 

( ) ( ) ( )( )2 2 2 20 1 2 1 12 1 2 24n n n n n n n n→Θ→ → + → − → − − →  

where Θ  is the sheaf of Killing vector fields for the Minkowski metric. Defin-
ing the operators:  

( ) ( ) ( ), ,Cauchy ad Killing Beltrami ad Riemann Lanczos ad Bianchi= = =  

we shall prove that Lanczos was in fact dreaming to construct the adjoint diffe-
rential sequence:  

( ) ( ) ( ) ( )0 1 20
Cauchy Beltrami Lanczos

ad T ad F ad F ad F← ← ← ← ←        (7) 

where ( ) * *nad E T E= ∧ ⊗  for any vector bundle E where *E  is obtained from 
E by inverting the transition rules when changing local coordinates, exactly like 
T and *T . Accordingly, all the problem will be to prove that each operator is 
indeed parametrized by the preceding one. As we shall see, the conformal situa-
tion could be treated similarly while starting with the conformal Killing operator 
followed by the Weyl operator and replacing each classical vector bundle F by 
the corresponding conformal bundle F̂ . However, this will lead to a true non-
sense because we shall discover that the analogue of the Weyl operator is of or-
der 3 when 3n =  while the analogue of the Bianchi operator is of order 2, ... 
just when 4n = . These striking results have been confirmed by computer alge-
bra and the reader can even find the details in book form ([1]). It follows that 
both the Riemann and Weyl frameworks of the Lanczos potential theory must be 
entirely revisited. The aim of this paper is to overcome these problems by using 
differential homological algebra.  

C. Lanczos (1893-1974) wrote three main papers (1939, 1949, 1962) on the 
search of potentials for parametrizing the Riemann and Weyl tensors ([2] [3] [4] 
[5]) and we refer the reader to the nice historical survey ([6]) for more details. 
However, Lanczos has been invited in 1962 by Prof. A. Lichnerowicz to lecture 
in France and this last lecture has been published in french. Getting inspiration 
from what happens in electromagnetism (EM) where the geometrical first set of 
Maxwell equations 0dF =  when 2 *F T∈∧  is a closed 2-form can be parame-
trized by dA F=  for an arbitrary potential *A T∈  with standard notations 
(See [7] for details), Lanczos created the concept of “candidate” while noticing 
that the Riemann and Weyl 4-tensors must “a priori” satisfy algebraic relations 
reducing the number of their components ,kl ijR  and ,kl ijC  respectively to 20 
and 10 when 4n = . Now, we have proved in many books ([8]-[13]) or papers 
([14] [15] [16] [17] [18]) that it is not possible to understand the mathematical 
structure of the Riemann and Weyl tensors, both with their splitting link, with-
out the following four important comments:  
● The results discovered by E. Vessiot as early as in 1903 ([19]) are still neither 

known nor even acknowledged today, though they generalize the constant 
Riemaniann curvature condition discovered 25 years later by L. P. Eisenhart 
([20]). They also allow to understand the direct link existing separately be-
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tween the Riemann tensor and the Lie pseudogroup of isometries of a non- 
degenerate metric on one side or between the Weyl tensor and the group of 
conformal isometries of this metric on another side. Vessiot proved that, for 
any Lie pseudogroup ( )aut XΓ∈  the pseudogroup of all local diffeomor-
phisms, there is a geometric object ω , may be of a high order q large enough 
and not of a tensorial nature, which is characterizing Γ  in the sense that 
one has:  

( ) ( )( ) ( ) ( ){ }1| q qf aut X j f j fω ω ω−Γ = ∈ Φ = =  

where { }Φ  is a fundamental set of differential invariants of order q and ω  must 
satisfy certain (non-linear in general) integrability conditions of the form:  

( )( ) ( )1I j cω ω=  

called Vessiot structure equations, depending on a certain number of Vessiot 
structure constants c eventually satisfying algebraic Jacobi conditions ( ) 0J c =  
and we let the reader compare this situation to the Riemann or contact cases 
([1]). We want to point out that these structure equations were perfectly known 
by E. Cartan (1869-1951) who never said that these results were at least compet-
ing with or even superseding the corresponding Cartan structure equations that 
he has developed about at the same time for similar purposes. The underlying 
reason is of a purely personal origin related to the differential Galois Theory 
within a kind of “mathematical affair” involving the best french mathematicians 
of that time. The original letters, given to the author of this paper by M. Janet, a 
friend of E. Vessiot, have ben published in ([10]) and have been put as a deposit 
in the main library of Ecole Normale Supérieure in Paris for future historical 
studies.  
● A nonlinear operator with second member does not in general admit CC, ... 

unless it corresponds to the defining equations in Lie form of a Lie pseudo-
group and the CC are the Vessiot structure equations in that case with struc-
ture constants determined by the chosen geometric object (compare again to 
the Riemannian geometry). We have shown in many books already quoted 
that, if   is a Lie operator and we set { }| 0Tξ ξΘ = ∈ = , with bracket 
[ ],Θ Θ ∈Θ  induced by the ordinary bracket of vector fields, then the system 
ξ = Ω  is the linearization of a non-linear version when Ω  is a perturba-

tion of ω  (twice the infinitesimal deformation tensor in elasticity) along the 
formula:  

( ) ( )( ) ( )( )1

0

d exp
d q

t

j t
t

ξ ξ ω ξ ω
−

=

= =   

Similarly, we can choose for the generating CC 1  the linearization of a 
non-linear version described by the Vessiot structure equations:  

( ) ( )( ) ( ) ( )1 1
1

I cj j
j

ω ω
ω ω

∂ ∂
Ω = Ω

∂ ∂
 

that is exactly what we did for the flat Minkowski metric. However, Lanczos has 
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been studying the CC 2  of 1 , ignoring that, contrary to the previous situa-
tion, 2  almost never comes from a linearization. It is therefore quite strange 
to discover that Lanczos never discovered that what he was doing with 1  and 

2  while using quadratic Lagrangians in R, was exactly what is done in any 
textbook of elasticity or continum mechanics with   and 1  while using 
quadratic Lagrangians in Ω  ([1] [7] [13] [16]). We do believe that Lanczos was 
too much obsessed by comparing R in GR to F in EM. Like in any good crime 
story, the solution will be given in the last section and could not have been given 
before by any classical approach.  
● The last invited lecture published in 1962 by Lanczos on his potential theory 

is never quoted because it is in French. Comparing it with a commutative di-
agram in a recently published paper on gravitational waves ([18]), we sud-
denly understood the confusion made by Lanczos between Hodge duality 
and differential duality when he introduced his tentative 3-tensor potential. 
Our final purpose is thus to revisit the mathematical framework of Lanczos 
potential theory in the light of this comment,  

2. Mathematical Tools 
2.1. Differential Sequences  

In view of the many examples that will be presented in this paper, it becomes 
clear that there is a need for classifying the properties of systems of PD equations 
in a way that does not depend on their presentations and this is the purpose of 
differential homological algebra along the scheme:  

SYSTEM

OPERATOR MODULE↔
   

in order to show that certain concepts, which are clear in one framework, may 
become quite obscure in the others and conversely, like the formal integrability 
and torsion concepts for example. 

When E is a vector bundle over X and we have a system of order q on E, say 
( )q qR J E⊂ , we can introduce the canonical projection  

( ) ( ): q q qJ E J E R FΦ → =  and define a linear differential operator  
( ) ( ) ( ) ( ): : k

kE F x x a x xτ τµ
µξ η ξ→ → = ∂ . When   is given, the compati-

bility conditions for solving ξ η=  can be described in operator form by 

1 0η =  and so on. In general, if a system is not formally integrable, it is possi-
ble to obtain a formally integrable system, having the same solutions, by “satu-
rating’’ conveniently the given PD equations through the adjunction of new PD 
equations obtained by various prolongations/projections (PP) and such a pro-
cedure must absolutely be done before looking for the compatibility conditions 
([21] [22]). 

In order to study differential modules, we shall simply forget about changes of 
coordinates and only consider trivial bundles. If K is a differential field with n 
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commuting derivations 1, , n∂ ∂  (Say ( ), a   or ( )1, , nx x  in the usual 
examples), we denote by ( )cst K  the subfield of constants of K, that is the set of 
elements killed by the n derivations (Say   in the usual examples). If 1, , nd d  
are formal derivatives (pure symbols in computer algebra packages!) which are 
only supposed to satisfy i i id a ad a= + ∂  in the operator sense for any a K∈ , 
we may consider the (non-commutative) ring [ ]1, , nD K d d=   of differential 
operators with coefficients in K. If now ( )1, , my y y=   is a set of differential 
indeterminates, we let D act formally on y by setting k kd y yµ µ=  for any mul-
ti-index ( )1, , nµ µ µ=   and set 1 mDy Dy Dy= + + . We may also set  

1

i

i

d
k k k

k i k i ka y d a y a yτ τµ τ τµ τµ
µ µ µ+Φ ≡ → Φ ≡ + ∂  for 1, , pτ =  . Denoting by DΦ  the  

subdifferential module generated by all the given OD or PD equations and all 
their formal derivatives, we may finally introduce the D-module M Dy D= Φ  
by residue. Here we recall that M is a module over a ring A or an A-module if 

, , ,a A m n M am m n M∀ ∈ ∀ ∈ ⇒ + ∈ . We may introduce as usual the torsion 
submodule ( ) { }| 0 , 0t M m M a A am= ∈ ∃ ≠ ∈ =  and we say that M is a torsion 
module if ( )t M M=  or that M is torsion-free if ( ) 0t M = . 

It is not evident at all to exhibit the link existing between these two approach-
es and we proceed as follows. First of all, the ring D is filtred by the order of the 
operators and we have the filtration or inductive limit  

1 0 10 qD D D D D D− ∞= ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ =  . Moreover, it is clear that D, as an 
algebra, is generated by 0K D=  and 1 0T D D=  with 1D K T= ⊕  if we iden-
tify an element i

id Tξ ξ= ∈  with the vector field ( )i
ixξ ξ= ∂  of differential 

geometry, but with i Kξ ∈  now. As a byproduct, the differential module mD  
is also filtred by the order and we obtain an induced filtration or inductive limit 

1 0 10 qM M M M M M− ∞= ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ =   with 1i q qd M M +⊆  provided 
by the prolongations. Now, if we suppose that the system ( )qR ker= Φ  is for-
mally integrable (FI), that is all the OD or PD equations of order q r+  are ob-
tained by using only r prolongations, then we have the projective limit  

0 0qR R R R∞= → → → →  obtained by successive jet projections. We have 
the following crucial technical proposition ([13] [17]):  

Proposition 2.A.1: ( ),KR hom M K=  is a differential module for the Spenc-
er operator and we have a bijective correspondence ( ),q q K qM R hom M K↔ =  
over K because K is a field.  

Proof: for any f R∈  and m M∈ , we may set for any ,f R m M∈ ∈ :  

( )( ) ( )( ) ( )
( )( ) ( )( ) ( )

, ,

,

af m a f m f am a K

f m f m f m T

= = ∀ ∈

= − ∀ ∈ξ ξ ξ ξ
 

and check that we have successively with r
ra a⋅ = ∂ξ ξ :  

( )( )( ) ( )( )( )
( )( ) ( )

( ) ( ) ( )( ) ( )
( ) ( ) ( )( )( )

a f m af m

af m af m

a f m a f m f a m

a f m a f m

=

= −

= ⋅ + ⋅ −

= ⋅ +

ξ ξ

ξ ξ

ξ ξ ξ

ξ ξ
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a result leading to a a a= + ⋅ξ ξ ξ  in the operator sense. Setting finally  

( )k kf y f=µ µ  with a slight abuse of notations when using the same notation kyµ  
for the residue instead of the standard kyµ . Setting ( )11 , , 1, ,i i n+ = + µ µ µ µ , 
it follows that R is a differential module for the law:  

( )( ) ( )( ) ( ) ( )1 1i i

k k k k k k k
i i i i id f y d f y f d y f f y f f+ += − = ∂ − = ∂ −µ µ µ µ µ µ µ   (8) 

and we have ,i j j i ijd d f d d f d f f R= = ∀ ∈ .  
Q.E.D.  

Through this paper, we shall only deal with linear differential operators. How-
ever, as explained in ([9] [23]), there is a nonlinear counterpart using the nonli-
near Janet sequence coming from the Vessiot structure equations and a nonli-
near Spencer sequence. The vertical machinery involved, that is a systematic 
use of fibered manifolds and vertical bundles, is much more difficult though 
we have chosen the notations of this paper in such a way that the interested 
reader may easily adapt them. As for the Vessiot structure equations first found 
in 1903 ([19]), they have been totally ignored during more than one century 
for reasons that are not scientific at all (See the original letters presented in [10] 
for explanations). Though we have written this paper in a rather self-contained 
way while using rather standard notations, the reader may refer to ([24] [25] 
[26]) for the differential geometric background, to ([27] [28]) for the elements of 
homological algebra needed through the various diagrames presented and to 
([29] [30] [31]) for the main (difficult) concepts of differential homological al-
gebra.  

Collecting all the results so far obtained, if a differential operator   is given 
in the framework of differential geometry, we may keep the same operator ma-
trix in the framework of differential modules which are left modules over the 
ring D of linear differential operators. We may also apply duality over D, that is 
apply ( ),Dhom D• , provided we deal now with right differential modules or use 
the operator matrix of ( )ad   and deal again with left differential modules 
obtained through the left right↔  conversion procedure. In actual practice, it 
is essential to notice that the new operator matrix may be quite different from 
the only transposed of the previous operator, even if we are dealing with con-
stant coefficients. 

Definition 2.A.2: If a differential operator →


ξ η  is given, a direct problem 

is to find (generating) compatibility conditions (CC) as an operator 
1

→


η ζ  such 

that 1 0= ⇒ = ξ η η . Conversely, given 
1

→


η ζ , the inverse problem will be 

to look for →


ξ η  such that 1  generates the CC of   and we shall say that 

1  is parametrized by   ... if such an operator   is existing! 

Remark 2.A.3: Solving the direct problem (Janet, Spencer) is necessary for 
solving the inverse problem. However, though the direct problem always has a 
solution, the inverse problem may not have a solution at all and the case of the 
Einstein operator is one of the best non-trivial PD counterexamples (Compare 
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[32] [33] [34]). It is rather striking to discover that, in the case of OD operators, 
it took almost 50 years to understand that the possibility to solve the inverse 
problem was equivalent to the controllability of the corresponding control sys-
tem ([34]) and the situation is similar in GR as the above result has been first 
found in 1995 ([32]).  

As ( )( ) ,ad ad P P P D= ∀ ∈ , any operator is the adjoint of a certain operator 
and we recall that the double duality test needed in order to check whether 
( ) 0t M =  or not and to find out a parametrization if ( ) 0t M =  when M is de-

fined by 1  has 5 steps which are drawn in the following diagram where ( )ad   
generates the CC of ( )1ad   and 1′  generates the CC of ( )( )ad ad=  :  

( ) ( )

1

1

1

5

4 1

3 2
ad ad

′

′

→ →

← ←





 

ζ

ξ η ζ

ν µ λ



                   (9) 

Theorem 2.A.4: We have 1  parametrized by  
( ) ( )1

1 1 0 0t M ext N′⇔ ⇔ = ⇔ =    in the differential module frame-
work when N is defined by ( )1ad  . These results do not depend on the finite 
free presentations of M or N (See [34] [35]) for more details).  

Corollary 2.A.5: In the differential module framework, if 
1

1 0 0
p

F F M→ → →


  

is a finite free presentation of ( )1M coker=   and we already know that 
( ) 0t M =  by using the preceding test and Theorem, then we may obtain an exact  

sequence 
1

1 0F F E→ →
 

 of free differential modules where   is the parame-
trizing operator, both with an inclusion M E⊂  by chasing. However, there 

may exist other parametrizations 
1

1 0F F E
′

′→ →
 

 called minimal parametrizations  

such that ( )coker ′  is a torsion module and we have thus ( ) ( )D Drk M rk E′=  
(See [18] and [35]).  

As shown by the next examples, the main difficulty met in OD or PD applica-
tions is that ( )ad   may not be formally integrable at all, even if   is involu-
tive (See [12] for other examples).  

Example 2.A.6: (Double pendulum) If a rigid bar is able to move horizontally 
with reference position x and we attach two pendula with respective length 1l  
and 2l  making the (small) angles 1θ  and 2θ  with the vertical, the correspond-
ing involutive control system is:  

2 2 1 1 2 2 2 2
1 20, 0d x l d g d x l d g+ + = + + =θ θ θ θ  

where g is the gravity. Multiplying these OD equations by two test functions 
1 2,λ λ  and integrating by parts, we get the adjoint system:  

2 1 2 2 1 2 1 1 2 2 2 2
1 20, 0, 0x d d l d g l d g→ + = → + = → + =λ λ θ λ λ θ λ λ  

Multiplying the second equation by 2l , the third by 1l  while using the first, we 
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obtain the zero order OD equation 1 2
2 1 0l l+ =λ λ . Differentiating twice this 

time and substituting, we obtain the new zero order OD equation  
( ) ( )1 2

2 1 1 2 0l l l l+ =λ λ . The determinant of the system of two zero order equa-
tions is then seen to be exactly 1 2l l− . It follows that the system is controllable if 
and only if 1l  is different from 2l , a fact that the reader can check easily when 
moving the bar conveniently. If one length depends on time, the corresponding 
controllability condition cannot be obtained without computer algebra, even on 
such an elementary control system. The totally unexpected fourth order para-
metrization of the control system when it is controllable is:  
● 1 2l l≠ :  

( )4 2 2
1 2 1 2

4 2
2 1

4 2
1 2

l l d g l l d g x

l d gd

l d gd

− − + − =
 + =
 + =

φ φ φ

φ φ θ

φ φ θ

 

● 2
1 2 1 2, 0l l l ld gθ θ θ θ θ= = = − ⇒ + = , ( ) ( ) ( )0 0, 0 0 0d t= = ⇒ =θ θ θ .  

It follows that the controllability of a control system is a “built in” property of 
this system that does not depend on the choice of the control variables, contrary 
to a tradition still existing in the control community (See Zbl 1079.93001 for a 
review). We invite the reader to use the Kalman approach that can be found in 
any control textbook today and to compare (See [12] or [34] for details).  

Example 2.A.7: (Einstein equations) If 1  is the Einstein operator which is 
self-adjoint, then ( )1ad   is also the Einstein operator, ( )ad   is the Cauchy 
operator and   is thus the Killing operator. It follows that 1′  is the Rie-
mann operator according to the Introduction. Using the previous theorem, any 
component of the Weyl tensor becomes a torsion element killed by the Dalem-
bert operator as a “modern” description of the so-called Lichnerowicz waves (as 
they are called in France!) ([16]).  

2.2. Variational Calculus  

Having in mind “Optimal Control Theory” while using the notations of the pre-
vious Formal Test, let us assume that the two differential sequences:  

( ) ( )

1

1ad ad

→ →

← ←



 

ξ η ζ

ν µ λ
                      (10) 

are formally exact, that is 1  generates the CC of   and ( )ad   generates 
the CC of ( )1ad  , namely ξ  is a potential for 1  and λ  is a potential for 

( )ad  . We may consider a variational problem for a cost function or lagran-
gian ( )ϕ η  under the linear OD or PD constraint described by 1 0=η .  
● Introducing convenient Lagrange multipliers λ  while setting  

1d d d nx x x= ∧ ∧  for simplicity, we must vary the integral:  

( ) ( )( )1 1d dx x Φ = − ⇒ Φ = ∂ ∂ −    ∫ ∫ ϕ η λ η δ ϕ η η δη λ δη  

Integrating by parts, we obtain the Euler-Lagrange (EL) equations:  
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( ) ( )1ad∂ ∂ = ϕ η η λ  

to which we have to add the constraint 1 0=η  obtained by varying λ  inde-
pendently. If ( )1ad   is an injective operator, in particular if 1  is formally 
surjective (no CC) while 1n =  as inOD optimal control and M is torsion-free, 
thus free ([12]) or 1n ≥  and M is projective, then one can obtain λ  explicitly 
and eliminate it by substitution. Otherwise, using the CC ( )ad   of ( )1ad  , 
we have to study the formal integrability of the combined system:  

( ) ( ) 10, 0ad ∂ ∂ = = ϕ η η η  

which may be a difficult task ([12], Introduction and Chapter VI).  
● However, we may also transform the given variational problem with con-

straint into a variational problem without any constraint if and only if the 
differential constraint can be parametrized. Using the parametrization of 1  
by  , we may vary the integral:  

( ) ( )( )d dx xΦ = ⇒ Φ = ∂ ∂∫ ∫ ϕ ξ δ ϕ η η δξ  

whenever = η ξ  and integrate by parts for arbitrary δξ  in order to obtain 
the EL equations:  

( ) ( ) 0,ad ∂ ∂ = = ϕ η η η ξ  

in a coherent way with the previous approach.  
As a byproduct, if the field equations 1 0=η  can be parametrized by a po-

tential ξ  through the formula =ξ η , then the induction equations  
( )ad = µ ν  can be obtained by duality in a coherent way with the double 

duality test, on the condition to know what sequence must be used. However, we 
have yet proved in ([9] [10] [13] [36]) that the Cauchy stress equations must be 
replaced by the Cosserat couple-stress equations and that the Janet sequence 
(only used in this paper) must be thus replaced by the Spencer sequence. Accor-
dingly, the work of Lanczos ([2] [3] [4] [5]) and followers ([37] [38] [39] [40] 
[41]), using either exterior calculus, Janet and Gröbner bases or Pommaret bases, 
has been based on a confusion between fields and inductions on one side, but 
also between the Janet sequence and the Spencer sequence. By chance, as we al-
ways refer to intrinsic concepts like the extension modules that do not depend 
on the differential sequence used, all the results that will be presented can be 
adapted at once to the systematic use of the Spencer sequence in place of the Ja-
net sequence.  

3. Riemann/Lanczos Problem  

The last invited lecture published in 1962 by Lanczos on his potential theory is 
never quoted because it is in French ([5]). Comparing it with a commutative di-
agram in a recently published paper on gravitational waves ([16]), we suddenly 
understood the confusion made by Lanczos between Hodge duality and diffe-
rential duality. Our purpose is thus to revisit the mathematical framework of 
Lanczos potential theory in the light of this comment, getting closer to the for-
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mal theory of Lie pseudogroups through double differential duality and the con-
struction of finite length differential sequences for Lie operators.  

When K is a differential field containing the field   of rational numbers 
and ( )1, , nd d  are commuting formal derivatives, we may introduce the ring 
(which is even an integral domain) [ ] [ ]1, , nD K d d K d= =  of differential op-
erators with coefficients in K. Accordingly, if a differential module M with tor-
sion submodule ( )t M  is defined by an operator   with coefficients in K, we 
may introduce the differential extension modules ( ) ( )0 ,Dext M hom M D=  and 

( ) ( ),i i
Dext M ext M D=  for 1, ,i n=  . We have the long exact ker/coker long 

exact sequence of (left) differential modules (See [12] or [34] for details):  

( ) ( )( ) ( )1 20 , , 0D Dext N M hom hom M D D ext N→ → → → →
ε

    (11) 

where the morphism ε  is defined by  
( )( )( ) ( ) ( ), , ,Dm f f m m M f hom M D= ∀ ∈ ∀ ∈ε  and the adjoint differential 

module ( )N ad M=  is defined by the adjoint operator ( )ad  . Then M is 
torsion-free if and only if ( ) ( )1 0t M ext N= = , that is ε  is a monomorphism 
or, equivalently,   can be parametrized by the operator 1−  when ( )1ad −  
generates the compatibility conditions (CC) of ( )ad  . Finally M is reflexive if 
and only if, in addition, ε  is an epimorphism, that is we have also ( )2 0ext N =  
or, equivalently, 1−  can be parametrized again by 2−  when ( )2ad −  ge-
nerates the CC of ( )1ad − . As we have ( )( )ad ad =   and though this is 
not evident at first sight by exchanging M with N, we may also say that  

( )1 0ext M =  if ( )ad   generates the CC of ( )1ad   whenever 1  gene-
rates the CC of   and, similarly, that ( )2 0ext M =  when ( )1ad   generates 
the CC of ( )2ad   whenever 2  generates the CC of 1 . We shall provide 
an explicit description of the potentials allowing to parametrize the Riemann 
and the Weyl operators in arbitrary dimension, both with their respective ad-
joint operators.  

We now consider with details the Riemann/Lanczos problem which is at the 
same time the simplest of the two Lanczos problems as it can be solved in arbi-
trary dimension 2n ≥  but is also an example of the successive confusing works 
that have been done during the last fifty years as we already said. According to 
the last Section, the starting motivation seems absolutely natural at first. Indeed, 
considering the Killing operator ( ) *

2 0: S T F→ = Ω∈ = ξ ξ ω  where ( ) ξ  
is the Lie derivative with respect to ξ  and *

2S T∈ω  is a nondegenerate me-
tric with ( ) 0det ≠ω . Accordingly, it is a Lie operator with  

[ ]0, 0 , 0= = ⇒ =  ξ η ξ η  and we denote simply by TΘ ⊂  the set of so-
lutions with [ ],Θ Θ ⊂ Θ . Now, as we have explained many times, the main 
problem is to describe the CC of 0F= Ω∈ξ  in the form 1 0Ω =  by intro-
ducing the so-called Riemann operator 1 0 1: F F→ , using the standard nota-
tions that can be found at length in our many books ([8]-[13]) or papers ([14] 
[42]). We advise the reader to follow closely the next lines and to imagine why it 
will not be possible to repeat them for studying the Weyl/Lanczos problem. 
Introducing the Levi-Civita isomorphism ( ) ( ) ( )1 , ,xj = ∂ω ω ω ω γ  and the  
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Christoffel symbols ( )1
2

k kr
ij i rj j ir r ij= ∂ + ∂ − ∂γ ω ω ω ω  where ( )rsω  is the in-

verse matrix of ( )ijω , we get ( )2 2R J T⊂ :  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0

0

r r r
ij rj i ir j r ij

k k k r k r k r r k r k
ij ij rj i ir j ir j ij r r ij

x x x

x x x x x

Ω ≡ + + ∂ =

Γ ≡ + + + − + ∂ =

ω ξ ω ξ ξ ω

ξ γ ξ γ ξ γ ξ γ ξ ξ γ
 

if we use jet coordinates with sections ( ) ( ) ( )( ): , , ,k k k
q i ijx x x x→ ξ ξ ξ ξ  trans-

forming like ( ) ( ) ( ) ( )( ): , , ,k k k
q i ijj x x x x→ ∂ ∂ ξ ξ ξ ξ . The system ( )1 1R J T⊂  

has a symbol 2 * *
1g T T T∧ ⊂ ⊗  depending only on ω  with  

( ) ( )1 1 2dim g n n= −  and is finite type because its first prolongation is 2 0g = . 
It cannot be thus involutive as can be seen directly on the following Janet board 
for finding a Pommaret basis when 2n =  and ω  is the euclidean metric:  

2
2
1 2
2 1
1
1

0 1 2
0 1 2

0 1

 =


+ =
 = •

ξ
ξ ξ
ξ

 

Indeed, the only dot appearing in the board cannot provide any CC for the 
symbol 1g  and we have therefore the short exact sequence:  

* *
2 2 00 0g S T T T F→ → ⊗ → ⊗ →  

by using the fact that 2 0g =  and counting the common dimension ( )2 1 2n n + , 
because an epimorphism between two spaces of the same dimension is also a 
monomorphism and thus an isomorphism. Accordingly, we need to use one ad-
ditional prolongation and arrive to the:  
● First comment: Using now one of the main results to be found in ([8], ... 

[12]), we know that, when 1R  is formally integrable, then the CC of   are 
of order 1s +  where s is the number of prolongations needed in order to get 
an involutive symbol, that is 1s =  in the present situation, a result that 
should lead to CC of order 2 if 1R  were formally integrable. 

( ) ( )

( ) ( )

* *
3 2 0 2

3 3 2 0 2

2 2 1 0 1

0 0

0 0

0 0

0 0

0 0 0

S T T S T F h

R J T J F Q

R J T J F Q

↓ ↓
→ ⊗ → ⊗ → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓

 

As 1 0Q =  by counting the dimensions with  
( ) ( ) ( )2 1 2 1 2dim R n n n n n= + − = +  and 3 0g = , we get  
( ) ( ) ( ) ( )( ) ( )22 2 2 2

2 2 1 4 1 2 6 1 12dim Q dim h n n n n n n n≤ = + − + + = − . Hence, 
we understand that the number of CC 1  of   is equal to the number of 
components of the Riemann tensor if and only if 2R  is formally integrable, that 
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is if and only if ω  has constant Riemannian curvature, a result first found by 
L.P. Eisenhart in 1926 ([20]) though in a different setting (See [8] for an explicit 
modern proof). Such a necessary condition for constructing an exact differential 
sequence could not have been used by Lanczos because the work of Spencer has 
only been known after 1970 ([24] [26]). Otherwise, if the metric does not satisfy 
this condition, CC may exist by using the Petrov classification but have no link 
with the Riemann tensor ([22]). We may therefore define the model vector bun-
dle 1F  with ( ) ( )2 2

1 1 12dim F n n= −  in the sense of Lanczos by the short ex-
act sequence:  

* *
3 2 0 10 0S T T S T F F→ ⊗ → ⊗ → →  

A result leading to the operator ( )
2

1 0 2 0 1:
j

D F J F F→ →  and the:  

● Second comment: Applying the Spencer operator δ  to the top line of the 
preceding diagram, we get the commutative diagram:  

* *
3 3 2 0 1

* * * * *
2 2 0

2 * 2 * * 2 *
1 0

3 * 3 *

0 0 0

0 0

0 0

0 0

0 0

0 0

g S T T S T F F

T g T S T T T T F

T g T T T T F

T T T T

↓ ↓ ↓
→ → ⊗ → ⊗ → →

↓ ↓ ↓
→ ⊗ → ⊗ ⊗ → ⊗ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ = ∧ ⊗ →

↓ ↓

 

Using a diagonal chase, we discover that 1F  is just the Spencer δ-cohomology 
( )2

1H g  at 2 *
1T g∧ ⊗  along the following short exact sequence:  

2 * 3 *
1 10 0F T g T T→ →∧ ⊗ → ∧ ⊗ →

δ
 

because 2 0g =  and we get the striking formula where the + signs have been 
replaced by signs:  

( ) ( ) ( )( ) ( )22 2 2 2
1 1 4 1 2 6 1 12dim F n n n n n n n= − − − − = −  

This result, first found by the author in 1978 ([8]), clearly exhibit the two well 
known algebraic properties of the Riemann tensor. We now understand that 
Lanczos had in mind to linearize the Riemann tensor over the Minkowski metric, 
exactly like in GR, in order to construct a Lagrangian as a function of the cor-
responding linearization ,

k
l ijR  of the Riemann tensor ,

k
l ijρ , transforming the 

usual variational problem into a variational with a differential constraint de-
scribed by the Bianchi identities leading to the operator 2 . As an equivalent 
alternative approach, his idea was to consider the curvature as a field by itself 
and construct the lagrangian on this field like in EM while adding the Bianchi 
identities as a differential constraint by using as many Lagrange multiplier as the 
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number of Bianchi identities, a number not known by combinatorics at the time 
Lanczos was writing, a result leading to the:  
● Third comment: Lanczos, who also knew continuum mechanics as an engi-

neer, just copied the way used in elasticity (EL) and in electromagnetism 
(EM), for example introducing a Lagrangian as a function of the deformation 

( )1 2= Ωε  while adding a differential constraint described by the vanishing 
linearized Rieman tensor with therefore as many Lagrange multipliers as the 
number ( )2 2 1 12n n −  of components of the Riemann tensor. It is crucial to 
notice that the same differential sequence is used one step before, that is with 
  and 1  while he was dealing with 1  and 2  previously, that is one 
step ahead in the sequence. We have proved recently that such a procedure is 
in total contradiction with the piezoelectricity and photoelasticity existing 
between EL and EM (See the picture in [7]). It thus remains to exhibit the 
Bianchi operator exactly as we did for the Riemann operator, with the same 
historical comments already provided. However, now we know that 1R  is 
formally integrable (otherwise nothing could be achieved and we should start 
with a smaller system!), the construction of the linearized Janet-type diffe-
rential sequence as a strictly exact differential sequence but not an involutive 
differential sequence because the system 1R  and thus the first order opera-
tor   are formally integrable though not involutive as 1g  is finite type 
with 2 0g =  but not involutive. Doing one more prolongation only, we ob-
tain the first order Bianchi CC from 2F  in the following long exact symbol 
sequence (See the details below):  

* * *
4 3 0 1 20 0S T T S T F T F F→ ⊗ → ⊗ → ⊗ → →  

or from the short exact sequence:  

3 * 4 *
2 10 0F T g T T→ →∧ ⊗ → ∧ ⊗ →

δ
 

showing that ( )3
2 1F H g=  ([8] [9] [13]). We have in particular for 3n ≥ :  

( )
( ) ( ) ( )( )( )
( )( )( ) ( ) ( )( )( )

( )( )

2

22 2

2 3 2 2

2 2

1 2 12 1 2 3 24

1 2 3 24 1 12 1 2 3 24

1 2 24

dim F

n n n n n n n

n n n n n n n n n n

n n n

= − − − − − −

= + + + + − − + + +

= − −

 

and thus ( ) ( ) ( ) ( )2 4 6 1 4 16 15 2 24 20dim F = × − × = × × =  when 4n = , a result 
leading to:  
● Fourth comment: (Double Hodge duality) For an arbitrary n, it is not possi-

ble to recognize that one of the algebraic conditions for the Bianchi identity 
comes from the Spencer δ-map and is again an epimorphism as it was before 
for defining 1F , a result obtained by chasing in the commutative diagram 
obtained by applying δ  to the long exact symbol sequence finishing with 

2F . It is not evident at all to discover that the modern description of the 
model vector bundle 2F  is just equivalent to the one provided by Lanczos 
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but only for 4n = . For this, using local coordinates, we have the 4 linear 
equations with 1,2,3,4i = :  

1,234 2,341 3,412 4,123 0i i i iB B B B− + − =  

to be compared with the 4 equations for the Lanczos tensor with , , 0ij k ji kL L+ = , 
namely:  

, , , 0ij k jk i ki jL L L+ + =  

Before reading the next lemma, we invite the reader to prove ... that they are 
identical!  

Lemma 3.1: These two equations are identical only when 4n = .  
Proof: Using Hodge duality a first time, we may rewrite the first ones in the 

form:  

1,1 2,2 3,3 4,4 0, 1, 2,3, 4i i i iB B B B i+ + + = ∀ =  

Lowering the index i by means of the Eucldean metric for simplicity and setting 
4i = , we get:  

44,4 41,1 42,2 43,30 0B B B B= ⇒ + + =  

Using again the Hodge duality but setting now 41,1 23,1B L=  and so on, we get:  

23,1 31,2 12,3 0L L L+ + =  

that is exactly the Lanczos formula, a result showing that, for 4n =  only, we 
discover that 3 *

1L B T g∈∧ ⊗  are both killed by δ .  
We are thus able to exhibit the Lanczos potential 2 * *L T T∈∧ ⊗  as a 3-ten- 

sor satisfying:  

, , , , ,0, 0ij k ji k ij k jk i ki jL L L L L+ = + + =               (1) 

in the short exact sequence ( )* * 2 * * 3 *
20 0T S T T T T→ ⊗ → ∧ ⊗ → ∧ →

δ
δ  but  

this result does not provide any potential because ... the adjoint sequence is 
going backwards!.  

Q.E.D.  
Using adjoint operators and adjoint bundles while setting ( ) * *nad E T E= ∧ ⊗  

when E is a vector bundle over X and using the Hodge duality, we obtain the 
short exact sequences with arrows reversed:  

( )
*

3 * * 4 * *
2 10 0n nad F T g T T− −← ← ∧ ⊗ ← ∧ ⊗ ←

δ
 

as a way to describe the Lagrange multiplier ( )2ad F∈λ  in arbitrary dimen-
sion.  

These results are leading to the:  
● Fifth comment: The div-type operator induced (on the right) by the Bianchi 

operator has strictly nothing to do with the Cauchy operator (namely 
ad(Killing) on the left), contrary to what is still believed in GR. In addition, 
we have the:  

● Sixth comment: We have proved in ([38] [39] [40]) that the usual Cauchy 
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stress equations must be replaced by the Cosserat couple-stress equations or, 
equivalently, that the Janet sequence must be replaced by the Spencer se-
quence in a coherent way with the couplings existing between EL and EM. It 
is also important to notice that, in the non-linear framework, there is no 
analogue of 2  in the nonlinear Janet sequence or of D3 in the nonlinear 
Spencer sequence, a redhibitory reason leading to use only   and 1  or 
D1 and D2 both with their formal adjoints.  

As a way to conclude this example, we may say that, for any 3n ≥ , the Rie-
mann operator 1  is parametrizing the Bianchi operator 2  while the opera-
tor ( )2ad   is parametrizing the operator ( )1ad  . Nevertheless, according to 
([15]), there may exist minimal parametrizations of 2  with a lower number of 
potentials equal to ( ) ( ) ( )1 0dim T dim F dim F+ − , thus 4 20 10 14 20 6+ − = = −  
when 4n =  because of the Euler-Poincaré characteristic  
4 10 20 20 6 0− + − + =  (See [18]).  

Remark 3.2: Lanczos has been trying in vain to do for the Bianchi operator 
what he did for the Riemann operator, a useless but possible “shift by one step to 
the right” and to do for the Weyl operator what he did for the Riemann operator. 
However, we shall discover that the dimension 4n = , which is particularly “fine” 
for the classical Killing sequence, is particularly “bad” for the conformal Killing 
sequence, a result not known after one century because it cannot be understood 
without using the Spencer δ-cohomology in the following commutative diagram 
which is explaining therefore what we shall call the “Lanczos secret”. Following 
([21]) and the fact that the two central vertical δ-sequences are exact, this dia-
gram allows to construct the Bianchi operator 2 1 2: F F→  as generating CC 
for the Riemann operator *

1 0 2 1: F S T F= →  defined by a similar diagram and 
thus only depends on the symbol 1g . For the reader not familiar with homolog-
ical algebra, we provide below the main diagram allowing to construct the Bi-
anchi operator both with the corresponding fiber dimensions when 4n = . In 
this commutative diagram, all the rows are exact and the columns are exact but 
eventually the left one:  

* * *
4 4 3 0 1 2

* * * * * *
3 3 2 0 1

2 * 2 * * 2 * *
2 2 0

3 * 3 * * 3 *
1 0

4 * 4 *

0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

g S T T S T F T F F

T g T S T T T S T F T F

T g T S T T T T F

T g T T T T F

T T T T

↓ ↓ ↓ ↓
→ → ⊗ → ⊗ → ⊗ → →

↓ ↓ ↓
→ ⊗ → ⊗ ⊗ → ⊗ ⊗ → ⊗ →

↓ ↓ ↓ ↓
→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ = ∧ ⊗ →

↓ ↓


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0 0 0

0 140 200 80 20 0

0 320 400 80 0

0 240 240 0

0 24 64 40 0

0 4 4 0

0 0

↓ ↓ ↓

→ → → → →

↓ ↓

→ → → →

↓ ↓ ↓

→ → →

↓ ↓

→ → → →

↓ ↓ ↓

→ = →

↓ ↓



 

Using the Spencer cohomology at 2 *
1T g∧ ⊗ , the vector bundle ( )2

1 1F H g=  
in this diagram or Riemann candidate in the language of Lanczos, is defined by 
the short exact sequence:  

2 * 3 *
1 10 0

0 20 36 16 0

F T g T T
δ

δ

→ → ∧ ⊗ → ∧ ⊗ →

→ → → →
 

All the vertical down arrows are δ-maps of Spencer and all the vertical columns 
are exact but the first, which may not be exact only at 3 *

1T g∧ ⊗  with coho-
mology equal to ( )3

1H g  because we have:  

{ }
( )

* 2 * *
1

0

2 3 4

| 0

0 0 0

k r r
i rj i ir j

det

g T T T T T

g g g
ω

ξ ω ξ ω ξ
≠

= ∈ ⊗ + = ∧ ⊂ ⊗

⇒ = ⇒ = ⇒ =



 

A snake-type chase similarly provides the identification ( )3
2 1F H g=  while 

using again the Spencer cohomology at 3 *
1T g∧ ⊗ . The vector bundle 2F  pro-

viding the Bianchi identities is thus defined by the exactness of the top row of 
the preceding diagram or, equivalently, using the left column, by the short exact 
sequence:  

3 * 4 *
2 10 0

0 20 24 4 0

F T g T T→ → ∧ ⊗ → ∧ ⊗ →

→ → → →

δ

δ
 

We conclude this Remark by saying that it is not even easy to discover that the 
bottom δ-map in the first column on the left is an epimorphism. In order to 
convince the reader of the powerfulness of these new methods, this result is left a 
an exercise (Hint: prove that:  

( )3 * * 3 * 2 * *
1 2T T T T g T S T T∧ ⊗ ⊗ ∧ ⊗ + ∧ ⊗ ⊗δ  
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by using a circular counterclockwise chase and that  

( )3 * 2 * *
2 1 2F T g T S T T∧ ⊗ ∧ ⊗ ⊗δ ).  
Starting with the (classical) Killing operator *

2:K T S T→  defined by 
( )L→ξ ξ ω , we obtain successively the following differential sequences for 

various dimensions:  

1 2

1 2 1

1 2 1 1

1 2 1 1 1

2 2 3 1 0

3 3 6 6 3 0

4 4 10 20 20 6 0

5 5 15 50 75 45 10 0

K R

K R B

K R B

K R B

n

n

n

n

= → → →

= → → → →

= → → → → →

= → → → → → →

 

For example, we have the Euler-Poincaré characteristic:  
( ) 4 10 20 20 6 0Drk M = − + − + =  when 4n =  or 5 15 50 75 45 10 0− + − + − =  

when 5n = .  
Setting successively 1 2, ,K R B= = =    and so on, it follows therefore 

from the previous study that each operator is parametrizing the following one. 
Applying double duality and introducing the respective adjoint operators, then 

( )2ad   is parametrizing the Beltrami operator ( ) ( )1ad Riemann ad=   with 
(canonical) potentials called Lanczos only when 4n =  while ( )1ad   is pa-
rametrizing the Cauchy operator ( )ad   with (canonical) potentials called 
Airy, Beltrami, ... ([15] [18]). It must be finally noticed that ( )ad Ricci  is also 
parametrizing the Cauchy operator ([16] [18]).  

4. Weyl/Lanczos Problem  

Starting now afresh with the conformal Killing operator CK such that  
( ) ( )A x= ξ ω ω  or, equivalently, introducing the metric density  

( )
1

ˆ n
ij ij det

−
=ω ω ω , we have a new operator  

( ){ }*
2: | 0ij

ijCK T S T tr→ Ω∈ Ω = Ω =ω  defined by ( ) ˆ→ ξ ξ ω  and we ob-
tain successively the following differential sequences for various dimensions 

3n ≥  ([43]):  
? ?

1 3 1
?

1 2 2 1

1 2 1 2 1

3 3 5 5 3 0

4 4 9 10 9 4 0

5 5 14 35 35 14 5 0

CK

CK W

CK W CB

n

n

n

= → → → →

= → → → → →

= → → → → → →

 

For example, we have the Euler-Poincaré characteristic:  
( ) 5 14 35 35 14 5 0Drk M = − + − + − = .  

Proceeding exactly as before, we obtain for example when 4n =  the follow-
ing commutative diagram where all the rows are exact and the columns are exact 
but eventually the left one:  

https://doi.org/10.4236/jmp.2021.126053


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2021.126053 849 Journal of Modern Physics 
 

* * *
5 5 4 0 2 1 2

* * * * * * *
4 4 3 0 1

2 * 2 * * 2 * * 2 *
3 3 2 0 1

3 * 3 * * 3 * *
2 2 0

4 * 4 *
1

0 0 0 0

ˆ ˆ ˆˆ0 0

ˆ ˆˆ0 0

ˆ ˆˆ0 0

ˆˆ0 0

ˆ0

g S T T S T F S T F F

T g T S T T T S T F T T F

T g T S T T T S T F T F

T g T S T T T T F

T g T

↓ ↓ ↓ ↓

→ → ⊗ → ⊗ → ⊗ → →

↓ ↓ ↓

→ ⊗ → ⊗ ⊗ → ⊗ ⊗ → ⊗ ⊗ →

↓ ↓ ↓ ↓

→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →

↓ ↓ ↓ ↓

→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ ⊗ →

↓ ↓ ↓

→ ∧ ⊗ → ∧ ⊗



* 4 *
0̂ 0

0 0 0

T T T F⊗ → ∧ ⊗ →

↓ ↓ ↓

 

Nevertheless, the same (but very tricky now!) chase as before allows to prove 
that the bottom δ-map in the first column on the left is again ... an epimorphism, 
a crucial result indeed, left again as a difficult exercise of diagram chasing (Hint: 
double step circular chase as before!).  

0 0 0

0 224 315 100 9 0

0 560 720 160 0

0 480 540 60 0

0 16 160 144 0

0 7 16 9 0

0 0 0

↓ ↓ ↓

→ → → → →

↓ ↓ ↓

→ → → →

↓ ↓ ↓

→ → → →

↓ ↓ ↓

→ → → →

↓ ↓ ↓

→ → → →

↓ ↓ ↓

 

Of course, in view of the dimensions of the matrices involved (up to 
540 720× ), we wish good luck to anybody trying to use computer algebra and 
refer to the computations done in ([1]) that have been done while knowing “a 
priori “ the dimensions that should be found.  

Remark 4.1: Using the splitting of the Riemann tensor between the Ricci ten-
sor and the Weyl tensor for the second column while taking into account the fact 
that the extension modules are torsion modules and thus that each component 
of the Weyl tensor is differentially dependent on the Ricci tensor, we obtain the 
following commutative and exact diagram:  
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0 0 0

0 10 16 6 0

10 20 20 6 0

10 10 4 0

0 0 0

Riemann Bianchi

Einstein div

↓ ↓ ↓
→ → →

↓ ↓↑ ↓

→ → → →
↓↑ ↓ ↓

→ → →
↓ ↓ ↓





 

It follows that the 10 components of the Weyl tensor must satisfy a first order 
linear system with 16 equations, having 6 generating first order CC. The diffe-
rential rank of the corresponding operator is thus equal to 16 6 10− =  and such 
an operator defines a torsion module in which we have to look separately for 
each component of the Weyl tensor in order to prove that it is killed by the Da-
lembert operator ([16]). The situation is similar to that of the Cauchy-Riemann 
equations obtained when 2n =  by considering the conformal Killing operator 
CK. Indeed, any complex transformation ( )y f x=  must be solution of the 
(linear) first order system 2 1 1 2

2 1 2 10, 0y y y y− = + =  of finite Lie equations though 
we obtain 1 1 2 2

11 22 11 220, 0y y y y+ = + = , that is 1y  and 2y  are separately killed 
by the second order Laplace operator 11 22d d∆ = + . We obtain the following 
striking technical lemma explaining the so-called gauging procedure of the Lanc-
zos potential.  

Lemma 4.2: When 4n = , the central vertical arrow 20 4→  is just de-
scribed by the contraction formula 2 * * 2 * *T T T T T∧ ⊗ → ∧ ⊗ →  depending on 
the metric:  

, ,
jk

ij k i ij kL L L→ =ω                        (12) 

Proof: Let us write down the Bianchi operator in the form:  

, , , ,
k k k k

r l ij i l jr j l ri l ijrR R R B∇ +∇ +∇ =  

Contracting with k j s= = , we obtain:  

, , , ,
s s s s

r l is i l sr s l ri l isrR R R B∇ +∇ +∇ =  

Setting as usual ,
s
l sr lr rlR R R= =  with ij

ijR R=ω  and contracting with liω , 
we finally get :  

,2 s ij s
s r r i jrsR R B∇ −∇ =ω  

as the way to use a contraction in order to exhibit Einstein equations.  
With 4n = , let us write down all the terms, using the Euclidean metric for 

simplicity instead of the Minkowski metric, recalling that only this later choice 
allows to find out both the Poincaré group and the differential sequence with 
successive operators , ,K R B  according to ([22]):  

1,1 2,2 3,3 4,4,
s s s s

rs rs rs rs rB B B B C+ + + =  
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that is to say with all the terms:  
1 2 3 4 1 2 3 4
1,1 1 1,1 2 1,1, 3 1,1 4 2,2 1 2,2 2 2,2, 3 2,2 4

1 2 3 4 1 2 3 4
3,3 1 3,3 2 3,3, 3 3,3 4 4,4 1 4,4 2 4,4 3 4,4 4

r r r r r r r r

r r r r r r r r r

B B B B B B B B

B B B B B B B B C

+ + + + + + +

+ + + + + + + + =
 

where, in any case, we have 1 2 3 4
1,1 1 2, 2 3, 3 4, 4 0r r r rB B B B= = = = .  

If we set 1r = , the first line disappears because of the 3-form 3 *T∧  and we 
are left with:  

3 4 2 4 2 3
2,213 2,214 3,312 3,3,14 4,412 4,413 1B B B B B B C+ + + + + =  

Using Hodge duality, we get with new indices:  
3 4 2 4 2 3

2,4 2,3 3,4 3,2 4,3 4,2 1B B B B B B C− + + − − + =  

arriving finally to the formula:  

( )2 3 4
3,4 4,2 2,3 12 B B B C+ + =  

that is exactly twice the trace of the Lanczos tensor, namely:  
2 3 4

1 2 1 3 1 4 1
r

rL L L L+ + =  

This result explains why the Lanczos tensor , ,ij k ji kL L= −  with 24 components 
is first reduced to 20 components through the condition , , , 0ij k jk i k ijL L L+ + =  
and finally to 16 components as in the diagram through the kernel of the above 
trace condition. It is thus impossible to understand this result, even for 4n = , 
without the Spencer δ-cohomology and absolutely impossible to generalize this 
result in arbitrary dimension without the combination of the δ-cohomology and 
double duality in differential homological algebra.  

 Q.E.D.  
Finally, using the previous definition ( ) * *nad E T E= ∧ ⊗ , such a result ex-

plains the confusion done by Lanczos and followers between the Riemann can-
didate 2F  or the Weyl candidate 2̂F  and their respective formal adjoint vector 
bundles having of course the same fiber dimension but quite different transition 
rules under changes of local coordinates.  

We notice that the changes of the successive orders are totally unusual and 
refer to ([22]) for more details on the computer algebra methods. In particular, 
when 4n = , the conformal analogue of the Bianchi operator is now of order 2, 
a result explaining why Lanczos and followers never succeeded adapting the 
Lanczos tensor potential L for the Weyl operator. We understand therefore that 
the solution of what we called “Lanczos secret” must be depending on a quite 
different homological framework. It is only after exhibiting it in the last section 
below that we will be able to say that we have thus solved the Riemann-Lanczos 
and Weyl-Lanczos parametrization problems in arbitrary dimension. In the 
meantime, we provide two examples that can be fully computed as a way to un-
derstand the use of adjoint differential sequences.  

5. Motivating Examples  

The two following examples will show how the differential extension modules 
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may depend on the Vessiot structure constants.  
Example 5.1: With 2, 1,m n q K= = = =  ω  and ( ),=ω α β  with  

* 2 *,T T∈ ∈∧α β , let us consider the Lie operator  
( ) ( ) ( )( ): : ,T A B→Ω → = = =   ξ ξ ω ξ α ξ β . The corresponding first 

order system:  

0, 0r r r r
i r i r i r rA B≡ ∂ + ∂ = ≡ ∂ + ∂ =α ξ ξ α β ξ ξ β  

is involutive whenever 0≠β  and d c=α β  where now d is the standard exte-
rior derivative and c cst= , exactly as in ([19], p 438-440). We have the diffe-
rential sequence:  

1* 2 * 2 *0 0XT T T T→Θ→ → × ∧ → ∧ →


 

with ( )1 2, , 0A A B C→ → →ξ  or the resolution:  
1 3 20 0

p
D D D M→ → → → →

 
 

Multiplying ( )1 2, ,A A B  respectively by ( )1 2 3, ,µ µ µ , we obtain ( )ad   in the 
form:  

( ) ( )
( ) ( )

1 2 3 2 1
1 1 2 1

1 2 3 1 2
2 1 2 2

,c

c

− ∂ + ∂ − ∂ − =

− ∂ + ∂ − ∂ + =

α µ µ β µ µ ν

α µ µ β µ µ ν
 

Then, multiplying 1 2 2 1A A cB C∂ − ∂ − =  by λ , we obtain ( )1ad   as:  
1 2 3

2 1, , c∂ = − ∂ = − =λ µ λ µ λ µ  

We have therefore to consider the two cases:  
● 0c = : We have the new CC 1 2

1 2 0∂ + ∂ =µ µ  and 3 0=µ . It follows that 
the torsion module ( )1 0ext M ≠  is generated by the residue of 3 ′=µ ν  
because 0≠α  and we may thus suppose that 1 0≠α . As for ( )2ext M , 
this torsion module is just defined by the system 2 10, 0∂ = ∂ =λ λ  for λ  
and thus ( )2 0ext M ≠ .  

● 0c ≠ : We must have the new CC:  
3 2 3 1 1 2

1 2 1 20, 0 0c c∂ − = ∂ + = ⇒ ∂ + ∂ =µ µ µ µ µ µ  

It follows that ( )1ext M  is now generated by the residue of 1 2
1 2 ′∂ + ∂ =µ µ ν . 

Finally, ( )( )1ker ad   is defined by 0=λ  and thus ( )2 0ext M = .  
Hence, both ( )1ext M  and ( )2ext M  highly depend on the Vessiot structure 

constant c.  
Example 5.2: (Contact transformations)  
With ( )1 2 33, 1, , ,m n q K x x x= = = =   or simply ( )x , we may introduce 

the 1-form 1 3 2 *dx x dx T= − ∈α  and consider the system of finite Lie equations 
defined by ( ) ( ) ( )1

1j f x− =α ρ α . Eliminating the factor ρ  and linearizing at 
the q-jet of the identity, we obtain the first order involutive system of infinite-
simal Lie equations:  

( )

3 3 2 1 3 2
3 2 1 1

2 1 3 2
3 3

21 1 3 2 3 1 3 2 3
2 2 1 1

2 0 1 2 3
0 1 2 3

1 20

x

x

x x x

 ≡ ∂ + ∂ − ∂ + ∂ = ≡ ∂ − ∂ =
 •≡ ∂ − ∂ + ∂ − ∂ − =

η ξ ξ ξ ξ

η ξ ξ

η ξ ξ ξ ξ ξ
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with two equations of class 3, one equation of class 2 and thus one CC of order 1, 
namely 1 2 3 2 3

3 2 1 0d d x d− − + =η η η η . Now, it is well known that this contact 
operator 0=   can be parametrized by an operator 1−  as follows:  

3 1 2 3 3 1 3 2
3 3 2 1, ,x x x− ∂ + = − ∂ = ∂ + ∂ = ⇒ − =φ φ ξ φ ξ φ φ ξ ξ ξ φ  

and thus M D . We have obtained the following formally exact sequence which 
is nevertheless not strictly exact because 1−  is not formally integrable:  

1 1

0 0
−

→ → → → →
 

φ ξ η ζ  
3 30 1 3 3 1 0 0 0D D D D→ → → → → ⇔ → → → → →  

As M is therefore free and thus projective, it follows that the adjoint sequence is 
exact too.  

Coming back to the Vessiot structure equations, we notice that α  is not in-
variant by the contact Lie pseudogroup and cannot be considered as an asso-
ciated geometric object. We have shown in ([9], p 684-691) that the corres-
ponding geometric object is a 1-form density ω  leading to the system of infi-
nitesimal Lie equations in Medolaghi form:  

( )( ) 1 0
2

r r r
i r i i r r ii

Ω ≡ ≡ ∂ − ∂ + ∂ = ξ ω ω ξ ω ξ ξ ω  

and to the only Vessiot structure equation:  

( ) ( ) ( )1 2 3 3 2 2 3 1 1 3 3 1 2 2 3 c∂ − ∂ + ∂ − ∂ + ∂ − ∂ =ω ω ω ω ω ω ω ω ω  

with the only structure constant c. In the present contact situation, we may 
choose ( )31, ,0x= −ω  and get 1c =  but we may also choose ( )1,0,0=ω  and 
get 0c = , these two choices both bringing an involutive system. Let us prove 
that the situation becomes completely different with the new system:  

3 2 1 1 1
1 3 2 1 2 2 3 32 0, 0, 0− Ω ≡ ∂ + ∂ − ∂ = Ω ≡ ∂ = Ω ≡ ∂ =ξ ξ ξ ξ ξ  

having the only CC 2 3 3 2 0d dΩ − Ω = .  
Multiplying the three previous equations by the three test functions µ , the 

only CC by the test function λ  and integrating by parts, we get the adjoint op-
erators:  

1 2 3
3 20 , ,= ∂ = − ∂ =µ λ µ λ µ  

1 2 3 1 1 2 1 3
1 2 3 2 3, ,∂ − ∂ − ∂ = − ∂ = − ∂ =µ µ µ ν µ ν µ ν  

It follows that ( )10 D t M M≠ = ⊂ξ  with a strict inclusion and ( )1 0ext M ≠ . 
Similarly, ( )( )1ker ad   is defined by 2 30, 0∂ = ∂ =λ λ  and thus ( )2 0ext M ≠ .  

Our problem will be now to construct and compare the differential sequences:  
1 1

C
−

→ →Ω→
 

φ ξ  

( ) ( ) ( )1 1ad ad ad−

← ← ←
  

θ ν µ λ  

For this, linearizing the only Vessiot structure equation, we get the CC operator 

1  and the corresponding system 1 0Ω =  in the form:  
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( ) ( ) ( )
( ) ( ) ( )
1 2 3 3 2 2 3 1 1 3 3 1 2 2 1

2 3 3 2 1 3 1 1 3 2 1 2 2 3 3 0

∂ Ω −∂ Ω + ∂ Ω −∂ Ω + ∂ Ω −∂ Ω

+ ∂ − ∂ Ω + ∂ − ∂ Ω + ∂ − ∂ Ω =

ω ω ω

ω ω ω ω ω ω
 

Multiplying on the left by the test function λ  and integrating by parts, we get 
the operator ( )1ad   in the form:  

( )
( )
( )

1
1 3 2 2 3 2 3 3 2

2
2 1 3 3 1 3 1 1 3

3
3 2 1 1 2 1 2 2 1

2

2

2

Ω → ∂ − ∂ + ∂ − ∂ =
Ω → ∂ − ∂ + ∂ − ∂ =

Ω → ∂ − ∂ + ∂ − ∂ =

ω λ ω λ ω ω λ µ

ω λ ω λ ω ω λ µ

ω λ ω λ ω ω λ µ

 

We obtain therefore the crucial formula 2 i
ic =λ ω µ  showing how the previous 

sequences are essentially depending on the Vessiot structure constant c. Indeed, 
if 0c ≠ , then 0 0= ⇒ =µ λ  and the operator ( )1ad   is injective. This is 
the case when ( )31, ,0 1 0x c= − ⇒ = ⇒ =ω λ . On the contrary, if 0c = , then 
the operator ( )1ad   may not be injective as can be seen by choosing 

( )1,0,0=ω . Indeed, in this case we get a kernel defined by 3 20, 0∂ = ∂ =λ λ .  
We invite the reader to treat similarly the case of unimodular contact trans-

formations, namely transformations preserving the 1-form 1 3 2dx x dx= −α , 
thus also the 2-form 2 3d dx dx= = ∧β α  and even the 3-form 1 2 3dx dx dx∧ ∧  
that can be used as a volume form. The Vessiot structure equations for the 
ground geometric object ( ),=ω α β  are now ,d c d c′ ′′= = ∧α β β α β  with the 
only striking Jacobi condition 0c c′ ′′ =  (See [1] for more details).  

6. Generalized Lanczos Problem  

In this last section, we prove that the following theorem allows to solve locally 
the Lanczos problem in a similar way for any Lie group of transformations:  

Theorem 6.1: The Spencer sequence for any Lie operator   which is com-
ing from a Lie group of transformations, with a Lie group G acting on X, is (lo-
cally) isomorphic to the tensor product of the Poincaré sequence for the exterior 
derivative by the Lie algebra   of G.  

Proof: If M is the differential module defined by  , we want to prove that 
the extension modules ( )1ext M  and ( )2ext M  vanish, that is, if 1  gene-
rates the CC of   but also 2  generates the CC of 1 , then ( )ad   gene-
rates the CC of ( )1ad   and ( )1ad   generates the CC of ( )2ad  . We also 
remind the reader that we have shown in ([18] [22]) that it is not easy to exhibit 
the CC of the Maxwell or Morera parametrizations when 3n =  and that a di-
rect checking for 4n =  should be strictly impossible. It has been proved by L. P. 
Eisenhart in 1926 ([20]) that the solution space Θ  of the Killing system has 
( )1 2n n +  infinitesimal generators { }τθ  linearly independent over the con-

stants if and only if ω  had constant Riemannian curvature, namely zero in our 
case. As we have a transitive Lie group of transformations preserving the metric 
considered as a transitive Lie pseudogroup, the three classical theorems of So-
phus Lie assert than , c  = 

τ
ρ σ ρσ τθ θ θ  where the structure constants c define a 

Lie algebra  . We have therefore { }| cst∈Θ⇔ = =τ τ
τξ ξ λ θ λ . Hence, we 
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may replace locally the Killing system by the system ( ) 0i x∂ =τλ , getting there-
fore the differential sequence:  

0 * 1 * *0 0
d d d

nT G T G T G→Θ→ ∧ ⊗ → ∧ ⊗ → → ∧ ⊗ →  

which is the tensor product of the Poincaré sequence by  . Finally, it follows 
from the above Theorem that the extension modules considered do not depend 
on the resolution used and thus vanish because the Poincaré sequence is self ad-
joint (up to sign), that is ( )ad d  generates the CC of ( )ad d  at any position, 
exactly like d generates the CC of d at any position. This (difficult) result ex-
plains why the adjoint differential modules we shall meet will be torsion-free or 
even reflexive. We invite the reader to compare with the situation of the Maxwell 
equations in electromagnetisme (See ([12], p 492-494) for more details). However, 
we have explained in ([11] [13]) why neither the Janet sequence nor the Poincaré 
sequence can be used in physics and must be replaced by the Spencer sequence 
which is another resolution of Θ . Though this is out of the scope of this paper, 
we shall nevertheless shortly describe the relation existing between the above re-
sults and the Spencer operator, thus the Spencer sequence. For this, let us define for 
any 0q ≥  the section ( ) ( )( ) ( ) ( ) ( )( )k k

q q qx j x x x x R= = = ∂ ∈τ τ
τ µ µ τξ λ θ ξ λ θ . 

With the standard notations of ([8] [11] [12]) and 0 q≤ ≤µ , the components 
of the Spencer operator become:  

( ) ( ) ( )( )
( )( ) ( )( )

1 1 1 1 1

*

i

k k
q q q q i

k
i q

R j x x

x x T R

+ + + +∈ → − = ∂ −

= ∂ ∂ ∈ ⊗

µ µ

τ
µ τ

ξ ξ ξ ξ ξ

λ θ ξ
 

when q is large enough, that is 2q =  for the Killing system and 3q =  for the 
conformal Killing system in arbitrary dimension ([43]), we have involutive sys-
tems with vanishing symbols because both are finite-type. We obtain therefore 
the desired identification justifying our claim.  

 Q.E.D.  
Corollary 6.2: When   is the Killing operator or the conformal Killing op-

erator, then ( ) ( )1 20, 0ext M ext M= =  and there is no gap. Moreover, if the 
differential module M defined by   is a torsion module as in the Theorem, 
then we have ( ) ( )0 , 0Dext M hom M D= =  in any case.  

7. Conclusion  

E. Vessiot discovered the so-called Vessiot structure equations as early as in 1903 
and, only a few years later, E. Cartan discovered the so-called Maurer-Cartan 
structure equations. Both are depending on a certain number of constants like 
the single geometric structure constant of the constant Riemannian curvature for 
the first and the many algebraic structure constants of Lie algebra for the second. 
However, Cartan and followers never acknowledged the existence of another 
approach which is therefore still totally ignored today, in particular by physicists. 
Now, it is well known that the structure constants of a Lie algebra play a funda-
mental part in the Chevalley-Eilenberg cohomology of Lie algebras and their 
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deformation theory. It was thus a challenge to associate the Vessiot structure 
constants with other homological properties related to systems of Lie equations, 
namely the extension modules determined by Lie operators. As a striking con-
sequence, such a possibility opens a new way to understand and revisit the vari-
ous contradictory works done during the last fifty years or so by different groups 
of researchers, using respectively Cartan, Gröbner or Janet bases while looking 
for a modern interpretation of the work done by C. Lanczos from 1938 to 1962. 
However, the reader must not forget that the Weyl tensor was not known by 
Lanczos, even as late as in 1967, and that it was not possible to discover any so-
lution of the parametrization problem by potentials through double duality be-
fore 1990/1995, that is too late for the many people already engaged in this type 
of research. We finally hope that this paper will open a new domain for applying 
computer algebra while offering a collection of useful test examples.  
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