
9 772327 715004 10

International Journal of Internet and Distributed Systems, 2020, 4, 1-13
https://www.scirp.org/journal/ijids

ISSN Online: 2327-7165
ISSN Print: 2327-7157

Table of Contents
Volume 4 Number 1 February 2020

Challenges and Considerations in Developing and Architecting Large-Scale
Distributed Systems

I.-A. Secara……..1

The figure on the front cover is from the article published in International Journal of Internet and Distributed Sys-
tems, 2020, Vol. 4, No. 1, pp. 1-13 by Ion-Alexandru Secara.

https://www.scirp.org/journal/ijids
https://www.scirp.org/

International Journal of Internet and Distributed Systems (IJIDS)
Journal Information

SUBSCRIPTIONS

The International Journal of Internet and Distributed Systems (Online at Scientific Research Publishing, https://www.scirp.org/) is
published quarterly by Scientific Research Publishing, Inc., USA.

Subscription rates:
Print: $59 per issue.
To subscribe, please contact Journals Subscriptions Department, E-mail: sub@scirp.org

SERVICES

Advertisements
Advertisement Sales Department, E-mail: service@scirp.org

Reprints (minimum quantity 100 copies)
Reprints Co-ordinator, Scientific Research Publishing, Inc., USA.
E-mail: sub@scirp.org

COPYRIGHT

Copyright and reuse rights for the front matter of the journal:
Copyright © 2020 by Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Copyright for individual papers of the journal:
Copyright © 2020 by author(s) and Scientific Research Publishing Inc.

Reuse rights for individual papers:
Note: At SCIRP authors can choose between CC BY and CC BY-NC. Please consult each paper for its reuse rights.

Disclaimer of liability
Statements and opinions expressed in the articles and communications are those of the individual contributors and not the
statements and opinion of Scientific Research Publishing, Inc. We assume no responsibility or liability for any damage or injury to
persons or property arising out of the use of any materials, instructions, methods or ideas contained herein. We expressly disclaim
any implied warranties of merchantability or fitness for a particular purpose. If expert assistance is required, the services of a
competent professional person should be sought.

PRODUCTION INFORMATION

For manuscripts that have been accepted for publication, please contact:
E-mail: ijids@scirp.org

https://www.scirp.org/
mailto:sub@scirp.org
mailto:service@scirp.org
mailto:sub@scirp.org
http://creativecommons.org/licenses/by/4.0/
mailto:ijids@scirp.org

International Journal of Internet and Distributed Systems, 2020, 4, 1-13
https://www.scirp.org/journal/ijids

ISSN Online: 2327-7165
ISSN Print: 2327-7157

DOI: 10.4236/ijids.2020.41001 Feb. 28, 2020 1 International Journal of Internet and Distributed Systems

Challenges and Considerations in Developing
and Architecting Large-Scale Distributed
Systems

Ion-Alexandru Secara

Human Factors and Ergonomics Society, San Francisco, California, USA

Abstract
This paper investigates large-scale distributed system design. It looks at fea-
tures, main design considerations and provides the Netflix API, Cassandra
and Oracle as examples of such systems. Moreover, the paper investigates the
challenges of designing, developing, deploying, and maintaining such sys-
tems, in regard to the features presented. Finally, the paper discusses aspects
of available solutions and current practices to challenges that large-scale dis-
tributed systems face.

Keywords
Distributed Systems, Concurrency, Large-Scale

1. Introduction to Distributed Systems

Computing has changed significantly since the 1970s. The introduction of com-
puter networks has led to the development of distributed systems. A distributed
system is a collection of independent computers that appear to the user as a sin-
gle computer. Components located at networked computers, which could be se-
parated physically due to different locations, communicate, and coordinate their
actions. The coordinated aggregation of those distributed components and their
afferent resources facilitate high scalability and access to a larger amount of
computing power [1]. Previous research has investigated challenges and consid-
eration in developing small to medium scale distributed systems. However, the
recent widespread usage of various smart gadgets and the increasing availability
of the internet have tremendously increased the speed of research and innova-
tion in this area. One key aspect, that became crucial especially to many busi-
nesses, was developing large-scale distributed systems [2]—some of the previous

How to cite this paper: Secara, I.-A. (2020)
Challenges and Considerations in Develop-
ing and Architecting Large-Scale Distributed
Systems. International Journal of Internet and
Distributed Systems, 4, 1-13.
https://doi.org/10.4236/ijids.2020.41001

Received: February 10, 2020
Accepted: February 25, 2020
Published: February 28, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ijids
https://doi.org/10.4236/ijids.2020.41001
https://www.scirp.org/
https://doi.org/10.4236/ijids.2020.41001
http://creativecommons.org/licenses/by/4.0/

I.-A. Secara

DOI: 10.4236/ijids.2020.41001 2 International Journal of Internet and Distributed Systems

research does not focus on the challenges and considerations in developing
large-scale distributed systems or in some cases, and the research is based on
certain assumptions since developing and maintaining large-scale distributed
systems require considerable amounts of resources [3]. This led companies to
develop their own distributed systems architectures and practices that scaled
most efficiently for their business needs and quickly increasing usage load. One
such example is Netflix, the 21st most accessed online platform in the world [4].
Netflix developed its own proprietary system, Ribbon, of load-balancers and
DBSCAN, a fault tolerance monitoring tool, presented later in this paper. Those
innovations as well as other advancements in the field have made it possible to
provide new environments for data sharing, resource allocation, cycle sharing
and other ways of interaction that involve distributed resources [5]. Hence, it
became possible to relocate production units to decentralized zones and develop
seamless large-scale distributed systems.

2. Main Design Considerations and Motives of Use

A distributed system is comprised of several nodes that are connected across a
network. Software coordinates multiple nodes across a network, through mes-
sages. The coordinated aggregation of resources allows components to cooperate
together to perform related tasks [1].

The nodes may have various roles within a distributed system. The role de-
pends on the node’s hardware specifications and software properties, as well as
the system architecture (i.e. master-slave architecture) [6].

Distributed systems are provided by a variety of vendors. Thus, they use a va-
riety of software components, based on each vendor’s standards. Those systems
are independent from the underlying software, in that they can run on various
operating systems (individual nodes may operate Linux, Windows etc.). Also,
the nodes can use various communication protocols—sets of rules to encode and
decode the messages passed. Communication protocols can range from SNA,
TCP/IP, Ethernet to Token Ring. For instance, HTTP (Hypertext Transfer Pro-
tocol) is the protocol for transferring messages over the World Wide Web [7].

In a standalone system, performance, storage, and many other features (scala-
bility etc.) are limited to the hardware capabilities of the particular system. Cen-
tralized systems often experience high latency, thus poor overall performance,
since parallel processing is limited and the physical distance from the majority of
the users to the servers can be very large [8]. Large-scale enterprises require sca-
lability as well as high performance levels to ensure a high Quality of Service
(QoS) standard.

One of the main reasons of using a distributed system is sharing resources
(software and hardware components) among clients and activities. Hence, dis-
tributed systems process concurrent activities in parallel, providing enhanced
performance [9].

The resources are distributed at various geographical locations. Users can

https://doi.org/10.4236/ijids.2020.41001

I.-A. Secara

DOI: 10.4236/ijids.2020.41001 3 International Journal of Internet and Distributed Systems

connect to a data center that is physically closest, reducing latency. Moreover, in
case a failure occurs within a data center, the other data centers can possibly take
over the traffic, facilitating high availability.

For instance, Netflix Ribbon provides software load-balancers. It allows the
client to communicate to individual servers, by supplying the IP or public DNS
names of the servers. Groups of servers are divided into zones. Users have their
address mapped and are redirected to the closest zone, to reduce latency. Ribbon
also keeps track of statistics of zones. In case of high loads or latency to the ex-
isting nearest zone, users will get redirected to the next closest zone [10]. This
improves overall QoS and reduces communication latency across the network
channel.

3. Features of Large-Scale Distributed Systems

There are lots of issues that can arise when designing a distributed system. What
if users request the same resources at the same time? What if one of the nodes
undergoes a failure? Can a distributed system scale on demand?

Therefore, a distributed system has a multitude of defining features and cha-
racteristics. Those include concurrency, fault tolerance, no global clock, consis-
tency, resilience and scalability [6].

3.1. Concurrency

On a single sequential processor, programs can be broken down into smaller in-
dependent tasks. Thus, the execution of those tasks can be interleaved. This
creates the illusion of concurrency [6].

Moreover, large-scale distributed systems provide resources that are shared by
multiple users and activities. Generated processes and user interactions happen
at random times. Therefore, there is a high probability that several parallel
process will access the same set of resources concurrently [9]. Concurrent access
to the same resources can leave a distributed system in an inconsistent state.

Large-scale distributed systems are accessed multiple times at any point in
time. Executing processes sequentially limits throughput. A single process can be
broken down into smaller tasks that can be executed independently [6]. This
would substantially increase the process execution speed.

On top of this, concurrency hides latency. It is often the case that some of the
tasks are blocked because of external resources that they must wait responses
from (i.e. disk or network I/O operations) [6]. Concurrency allows tasks that are
not being blocked, to make use of available shared resources.

3.2. Challenges and Current Practices to Achieving Concurrency

Concurrency is affected by the extent to which tasks within a process need to in-
teract with other processes, in order to successfully complete their execution.
Also, there are processes that cannot be broken down into smaller tasks. Thus,
they have to be executed sequentially [9].

https://doi.org/10.4236/ijids.2020.41001

I.-A. Secara

DOI: 10.4236/ijids.2020.41001 4 International Journal of Internet and Distributed Systems

Therefore, the challenge of achieving concurrency can be broken down into
two separate issues.

As mentioned above, processes can be either executed as a whole or they can
be broken down into smaller tasks that can be executed in parallel.

The resource management service, comprised of scheduling algorithms and
the QoS agent, is used to allocate system resources to balance the loads of work
and facilitate an optimal and efficient parallel execution of concurrent processes
[9].

To prevent inconsistency, distributed systems use a form of process synchro-
nization. This involves processors communicating with each other, using mes-
sages. Thus, processors can exchange changes in data and can adjust rate of
process execution, in order to facilitate synchronization [11]. Once all the
processes are finished, the different results are put together, to successfully final-
ize the execution.

Hadoop MapReduce is a framework that facilitates parallel execution, on mul-
tiple nodes, of processes involving huge amounts (multi-terabyte) of data. Each
node runs the MapReduce framework and the Hadoop Distributed File system,
to efficiently schedule tasks across multiple nodes and create a high bandwidth
aggregation of data [12].

Hadoop MapReduce consists of two activities that allow parallel processing.
The mapper creates intermediate key-value pairs out of the input, while the re-
ducer takes the intermediate pairs and reduces them to unique keys and their
respective total value. This is effective across many fields but is used in particular
with tasks that process vast amounts of data [12]. A common use of the Ma-
pReduce is counting the frequency of words across multiple documents. This
can be useful in algorithms involving natural language processing (Figure 1).

Figure 1. [13] Two input files with small samples of words are provided. The mapper
splits the files further to execute multiple processes in parallel. Words within each block
of data are mapped to key-value groups, representing the word and its current frequency.
The reducer then sorts and shuffles keys together and reduces the values with the same
key. The results process on different nodes is then grouped together into a single re-
sponse.

https://doi.org/10.4236/ijids.2020.41001

I.-A. Secara

DOI: 10.4236/ijids.2020.41001 5 International Journal of Internet and Distributed Systems

Symmetric configuration is a popular configuration to execute concurrent
processes in parallel. Each node has the same processor type and the same sche-
duling algorithm. Scheduling is decentralized—the resource management service
holds a table listing of processes and their status [11].

Due to similar performance features, tasks are assigned based on the load of
the respective node. The job can be broken down into smaller tasks that can be
executed in parallel using multiple processors on the available nodes. This
creates the need of process synchronization, which can create deadlock issues
[11].

Netflix makes use of Apache Cassandra, as a Distributed Database Manage-
ment System (DDBMS) [14]. Cassandra is an open-source distributed database
system that offers high performance, availability and scalability, by replicating
data and creating clusters of identical nodes across data centers—symmetric
configuration [15].

Netflix employs a video encoding pipeline, across its EC2 instances. Jobs are
divided into smaller tasks and executed in parallel. The internal spot market dy-
namically allocates jobs to nodes, based on real time availability of the computer
resources [16].

Videos must be encoded in various quality representations and codec profiles,
due to various viewing devices and levels of network connectivity; thus, the
quality of a video has to adjust accordingly [16] (Figure 2).

Multiple processes can access and alter the same set of resources at the same
time, within a large-scale distributed system.

Concurrency and data consistency are crucial in transactions. Transactions
conform to the ACID standards (atomicity, consistency, isolation and durabili-
ty). In order to ensure consistency, a schedule orders the execution of transac-
tions [17].

In general, distributed systems enforce either locking protocols or the Mul-
ti-Version Concurrency Control technique.

Locking protocols are sets of rules that transactions follow when requesting

Figure 2. This shows a high-level overview of the video encoding processes. A single
video source encoding is broken down into multiple tasks that are run in parallel on mul-
tiple processors. Each video source is further broken down into several chunks assigned
to different nodes. After all the tasks are finished, the different chunks are put together
and quality checked against the original video [16].

https://doi.org/10.4236/ijids.2020.41001

I.-A. Secara

DOI: 10.4236/ijids.2020.41001 6 International Journal of Internet and Distributed Systems

and releasing locks to the concurrency-control manager, in order to access a re-
source. A process must make a lock request to a resource, before accessing the
actual resource [17].

A lock on a resource can be marked as exclusive (x)—the resource can be read
and altered or shared (s)—the resource can only be read

A popular locking protocol is the Two-Phase Locking protocol. It is com-
prised of two phases, the growing phase (obtain and don’t release locks) and the
shrinking phase (release and don’t obtain locks) [17].

The following scenario depicts, the concept of the Two-Phase Locking proto-
col (Figure 3).

The main challenge is running into deadlock – reader and writer locks are set
to the same resources by different transactions. Thus, neither of the transaction
can proceed execution.

To detect a deadlock, the systems set timestamps for each lock. This can tell
whether a transaction is blocked. In case, the process runs into a deadlock, the
system performs a roll-back—a transaction will be rolled back to a previous state
[17].

MVCC is used by many enterprises, including Oracle, HyPer and Microsoft’s
Hekaton [18]. Before MVCC, locking protocols were the only viable option.

MVCC holds a snapshot of data (a database version) at a single point in time.
The snapshot holds data as it was, before other currently uncommitted transac-
tions were started [19]. Therefore, the transaction cannot view inconsistent data
caused by other concurrent transaction updates, providing isolation.

Figure 3. As seen above, the execution of transactions is serial, in regards to their lock
points. In the growing phase, both transaction acquire locks (Lock-X(b), Lock-X(c),
Lock-X(a)), while in the shrinking phase they release the locks (Unlock(b), Unlock(c),
Unlock(a)) [17].

https://doi.org/10.4236/ijids.2020.41001

I.-A. Secara

DOI: 10.4236/ijids.2020.41001 7 International Journal of Internet and Distributed Systems

Oracle uses the MVCC mechanism. Queries are provided read consistency,
since all the data, the query sees, comes from a single point in time (“state-
ment-level read consistency”) [19].

Oracle uses roll-back segments that hold data values before it was changed by
uncommitted or recently committed transactions. Data inside roll-back seg-
ments can be retrieved upon execution of read queries [20] (Figure 4).

Therefore, the query reads data with respect to the time when its execution
began. Changes to data that occur during or after a query’s execution start are
not recorded. This guarantees that each query can access a consistent state of
data.

3.3. Fault Tolerance

Multiple failures can occur within a distributed system. Those failures may not
be detected immediately but can cause sudden changes in the performance of the
system. The availability of the system measures the proportion of time that a
system is available for use [5]. Hadzilacos and Toueg categorize failures into
omission failures, arbitrary failures and timing failures, distinguishing between
failures of processes and communication channels. Failure models such as this
help categorize the occurrence of failures and the effects that they will have [6].
• Omission failures refer to failures that can occur within a processes or com-

munication channel [6].

Figure 4. When a query is executed, is it given a current system change number (SCN),
timestamp, “10023” in our case [20]. As the query proceeds through the available blocks,
data with more recent (higher) SCNs is retrieved from the roll-back segment [20]. As
seen above, the two “10024” blocks have their data retrieved from the rollback segment,
since the SCN of “10024” is more recent that the query SCN “10023”.

https://doi.org/10.4236/ijids.2020.41001

I.-A. Secara

DOI: 10.4236/ijids.2020.41001 8 International Journal of Internet and Distributed Systems

• A process can crash unexpectedly, due to a software error or a hardware fail-
ure. If the process does not answer to invocation messages sent by other
processes, within a time-out period; the process is halted and will not per-
form its actions further. This is called a fail-stop. Depending on the design of
the system, other running services can remain active if the tasks they execute
can still function correctly [6].

• Communication omission failures occur when a message is not successfully
transmitted by the outgoing message buffer to the incoming message buffer
of another message, across the network channel. This can be due to lack of
space on the incoming message buffer or by a network transmission error.
This can leave nodes isolated, unable to proceed with the execution of their
tasks [6].

• Arbitrary failures refer to failures that happen due to incorrect processing,
rather than actual software or hardware crashes. They usually occur when a
tasks sets incorrect values or returns wrong values when executed. This is
caused by the logic of the process or randomly omitting tasks and instruc-
tions. Thus, corrupt message content or replicated messages can be sent over
the communication channel [6]. However, those messages carry checksums
and sequence numbers. The latter can detect non-existent or duplicated
messages, while the earlier is used to detect corrupted message contents [6].

• Timing failures refer to failures that involve the process execution time pass-
ing the time-out limit. Thus, they can occur within synchronous distributed
systems, since they have time-outs set on execution of processes. In asyn-
chronous systems, no guarantees are offered on process execution time, thus
timing failures are not really applicable [6]. A defect hardware component
causing slow processing or slow message transmission speed can cause a
timing failure. Moreover, processing and transmitting large pieces of data
(i.e. videos, audio, images etc.) can require a considerable amount of time [6].

Large-scale distributed systems can consist of thousands of components. Al-
though components may fail regularly, it is important that the system will keep
running optimally.

Google, the world’s most popular search engine, is accessed daily by millions
of users. Some few usual failures that occur within the first year of a Google
cluster of machines include [21]:
• approx. 1 PDU failure, which make 500 to 1000 machines disappear of the

network channel. This requires between 1 and 6 hours to recover.
• approx. 1000 individual machine failures
• approx. thousands of hard drive failures

Those are only a few of the failures that happen. Therefore, system designers
have to take into consideration any possible failures when designing a distri-
buted system, since it is desirable for the distributed system to carry out its activ-
ity regardless of failures that occur.

The Netflix API receives more than 1 billion calls/day and sends out several

https://doi.org/10.4236/ijids.2020.41001

I.-A. Secara

DOI: 10.4236/ijids.2020.41001 9 International Journal of Internet and Distributed Systems

billion calls to underlying dependencies [22].
Imagine there are 30 dependencies with 99.99% uptime each. In a month, the

dependency would have a downtime of 0.0001 × 30 = 0.003 or 0.3%. This results
in an overall 99.7% uptime (100% - 0.3%), resulting in 2+ hours of downtime in
a month. A single API dependency fail, can rapidly overflow all available Tomcat
request threads, and crash the whole API [23].

Therefore, as for Netflix, a large-scale distributed system has to tolerate fail-
ures and continue its activity seamlessly.

3.4. Challenges and Current Practices to Achieving Fault
Tolerance

Many failures are time-consuming or almost impossible to detect. A common
practice is having a monitoring service that sets up agents at each of the four
software levels—application, middleware, OS and network [6].

The Falcon spy network sets up “spies” at each of those levels. The network of
“spies” sends back performance metrics of components at each layer and alert
the system of any abnormal activity [24]. A simple architecture model of the
Falcon Spy Network can be seen below.

Netflix uses an automated outlier detection service. It is known as the Densi-
ty-Based Spatial Clustering of Applications with Noise (DBSCAN)—a cluster
analysis technique, using unsupervised machine learning. A server’s network
connection can be very slow or defect, causing latency, or its system-level me-
trics can show abnormal behavior [23].

The effects of an unhealthy server may not overpass the default performance
threshold of a distributed system, which does not allow fault detection but af-
fects the customer service. This can be detected by a default threshold, but the
server may be slow only temporarily, due to various reasons (i.e. high traffic
rate) [23].

Netflix’s DBSCAN groups nodes in clusters, such that nodes in the same clus-
ter have similar traffic density and performance levels [25]. After grouping clus-
ters together, DBSCAN marks outliers—deviating servers. Metrics to be moni-
tored are collected from Atlas (primary time-series telemetry platform) and
passed to DBSCAN [23].

Using machine learning, the performance of the outliers is evaluated against
the performance of the cluster. Thus, a deviating server can be labelled as an
outlier. The alerting service then alerts the system and can even terminate the
server, allowing the auto-scaling group to replace [23].

3.5. Recovering from Failures

A failure can leave the system in an inconsistent state—unavailable services, lost
data etc. Therefore, a common process is a roll-back recovery, which has two
approaches—operation-based and state-based recovery [26].

In an operation-based recovery, all the modifications made to the distributed

https://doi.org/10.4236/ijids.2020.41001

I.-A. Secara

DOI: 10.4236/ijids.2020.41001 10 International Journal of Internet and Distributed Systems

system, over a certain period of time, are stored in log files [26]. Therefore, in
case the system would fail at any point in time, the previous state of the system
can be restored by reversing all the changes. The log files can be stored remotely,
on other availability zones or using multiple storage providers. This would en-
sure to a certain extent, that they will be highly available and ready to be ac-
cessed in case of a large-scale failure (Figure 5).

A state-based recovery involves replication of data—periodic checkpoints or
back-ups of the distributed system [26]. Back-ups can be stored in different
availability zones, such that it can be made available at any moment. User re-
quests can be redirected to the backup state of the system, while processes that
were being executed are simply dropped [27].

Priam is a process that runs next to Cassandra on each node. It provides
backup, recovery and metrics monitoring. During low traffic hours, a daily
snapshot and modifications to the state of the distributed system are backed up
on S3 (part of Amazon Web Services), offering an alternative backup strategy
than the one employed by Cassandra [28].

During recovery, the Priam process on each node, downloads the respective
snapshot and starts the cluster again. It restores the cluster to half the original
size, by skipping alternate nodes and executing the repair process which repro-
duces the skipped data. This allows for a faster recovery—while Priam restores
some of the data, the cluster can start producing the missing data [28].

However, to restart the cluster to a consistent state requires downtime.
Therefore, Netflix employs another technique to achieve fault tolerance.

Netflix employs stateless services. Keeping copies of data and multiple run-
ning instances across various zones allowed Netflix to keep running (even dur-
ing the AWS US-East outage). Netflix is designed for “N + 1” redundancy. This
means that the platform allocates more capacity than it requires at any point in
time. Thus, this surplus in capacity can support up to an entire AWS zone fail-
ure. When the availability zone failed, requests were redirected to other availa-
bility zones [28].

Figure 5. (Leners, Wu, Hung, Aguilera, & Walfish, 2011): Network
of monitoring agents within the Falcon spy network. A “spy” lies at
each software level and monitors the components within the specif-
ic layer.

https://doi.org/10.4236/ijids.2020.41001

I.-A. Secara

DOI: 10.4236/ijids.2020.41001 11 International Journal of Internet and Distributed Systems

4. Conclusion

In conclusion, there are many reasons that large-scale distributed systems have
gained popularity over standalone systems. They offer benefits to clients, in-
cluding a high QoS standard, by reducing latency and executing processes con-
currently on multiple nodes. Despite facing many issues that can arise, distri-
buted systems have developed solutions and current practices, such as Netflix’s
main design considerations and technology stacks that achieve, to a certain ex-
tent, fault tolerance, concurrency, and high availability. Therefore, distributed
technologies will continue to improve and develop new technologies to achieve
even higher standards.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] Hajibaba, M. and Gorgin, S. (2014) A Review on Modern Distributed Computing

Paradigms: Cloud Computing, Jungle Computing and Fog Computing. Journal of
Computing and Information Technology, 22, 69-84.
https://doi.org/10.2498/cit.1002381

[2] Bagchi, S. (2015) Emerging Research in Cloud Distributed Computing Systems. IGI
Global, USA, 158-166. https://doi.org/10.4018/978-1-4666-8213-9

[3] Hierons, R. and Nunez, M. (2010) Testing Probabilistic Distributed Systems. In:
Hatcliff, J. and Zucca, E., Eds., Formal Techniques for Distributed Systems. FMOODS
2010, FORTE 2010. Lecture Notes in Computer Science, Vol. 6117, Springer, Berlin,
Heidelberg, 63-77. https://doi.org/10.1007/978-3-642-13464-7_6

[4] Amazon (n.d.) netflix.com Traffic Statistics. Alexa.
https://www.alexa.com/siteinfo/netflix.com

[5] Ahmed, W. and Wu, Y. (2013) A Survey on Reliability in Distributed Systems. De-
partment of Computer Science and Technology, Tsinghua University, Beijing.

[6] Colouris, G., Dollimore, J. and Kindberg, T. (2005) Distributed Systems Concepts
and Design. Addison Wesley, Boston, MA.

[7] IBM (n.d.) What Is Distributed Computing. IBM Knowledge Center.
https://www.ibm.com/support/knowledgecenter/en/SSAL2T_8.2.0/com.ibm.cics.tx.
doc/concepts/c_wht_is_distd_comptg.html

[8] Microsoft (2005, April 29) Centralized vs. Distributed Messaging System. TechNet.
https://technet.microsoft.com/en-us/library/bb123575(v=exchg.65).aspx

[9] Hussain, H., Malik, S., Hameed, A., Khan, S., Bickler, G., Min-Allah, N. and Rayes,
A. (2013) Parallel Computing.

[10] Netflix (2014, January 6) Working with Load Balancers. GitHub.
https://github.com/Netflix/ribbon/wiki/Working-with-load-balancers

[11] Goodwin, D. (2013) Lecture #9: Concurrent Processes. Operating Systems.
https://warwick.ac.uk/fac/sci/physics/research/condensedmatt/imr_cdt/students/da
vid_goodwin/teaching/operating_systems/l9_concurrentprocesses2013.pdf

[12] Apache (n.d.) MapReduce Tutorial. Apache Hadoop.

https://doi.org/10.4236/ijids.2020.41001
https://doi.org/10.2498/cit.1002381
https://doi.org/10.4018/978-1-4666-8213-9
https://doi.org/10.1007/978-3-642-13464-7_6
https://www.alexa.com/siteinfo/netflix.com
https://www.ibm.com/support/knowledgecenter/en/SSAL2T_8.2.0/com.ibm.cics.tx.doc/concepts/c_wht_is_distd_comptg.html
https://www.ibm.com/support/knowledgecenter/en/SSAL2T_8.2.0/com.ibm.cics.tx.doc/concepts/c_wht_is_distd_comptg.html
https://technet.microsoft.com/en-us/library/bb123575(v=exchg.65).aspx
https://github.com/Netflix/ribbon/wiki/Working-with-load-balancers
https://warwick.ac.uk/fac/sci/physics/research/condensedmatt/imr_cdt/students/david_goodwin/teaching/operating_systems/l9_concurrentprocesses2013.pdf
https://warwick.ac.uk/fac/sci/physics/research/condensedmatt/imr_cdt/students/david_goodwin/teaching/operating_systems/l9_concurrentprocesses2013.pdf

I.-A. Secara

DOI: 10.4236/ijids.2020.41001 12 International Journal of Internet and Distributed Systems

https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapred
uce-client-core/MapReduceTutorial.html

[13] Bejoy, K.S. (2011, April 29) Word Count—Hadoop Map Reduce Example. Kick
Start Hadoop.
http://kickstarthadoop.blogspot.com/2011/04/word-count-hadoop-map-reduce-exa
mple.html

[14] Walz, E. (2016, July 7) How Netflix Uses a Distributed Database Management Sys-
tem to Deliver Your Movies. LinkedIn.
https://phantom448.wordpress.com/2016/07/14/how-netflix-uses-a-distributed-dat
abase-management-system-to-deliver-your-movies/

[15] Apache Cassandra (n.d.) What Is Cassandra? Apache Cassandra.
http://cassandra.apache.org/

[16] Netflix Technology Blog (2015, December 9) High Quality Video Encoding at Scale.
The Netflix Tech Blog.
https://medium.com/netflix-techblog/high-quality-video-encoding-atscale-d159db0
52746

[17] Letham, D.R. (2017, November 27) CS3101 Databases Lecture 19: Transactions.
Studres.
https://studres.cs.st-andrews.ac.uk/CS3101/Lectures/L19_Transactions.pdf

[18] Diaconu, C., Freedman, C., Ismert, E., Larson, P.-A., Mittal, P., Stonecipher, R. and
Zwilling, M. (2015) Hekaton: SQL Server’s Memory-Optimized OLTP Engine. Mi-
crosoft.

[19] Oracle (n.d.) Using Multiversion Concurrency Control Chapter 3. Berkeley DB
Features. Oracle Docs.
https://docs.oracle.com/cd/E17276_01/html/bdb-sql/mvcc.html

[20] Oracle (n.d.) Database Concepts. Oracle Help Center.
https://docs.oracle.com/cd/B19306_01/server.102/b14220/consist.htm

[21] Dean, J. (n.d.) Software Engineering Advice from Building Large-Scale Distributed
Systems. Google User Content.
https://static.googleusercontent.com/media/research.google.com/en//people/jeff/sta
nford-295-talk.pdf

[22] Netflix Technology Blog (2012, February 29) Fault Tolerance in a High Volume,
Distributed System. The Netflix Tech Blog.
https://medium.com/netflix-techblog/fault-tolerance-in-a-highvolume-distributed-s
ystem-91ab4faae74a

[23] Netflix Technology Blog (2015, July 14) Tracking down the Villains: Outlier Detec-
tion at Netflix. The Netflix Tech Blog.
https://medium.com/netflix-techblog/tracking-downthe-villains-outlier-detection-a
t-netflix-40360b31732

[24] Leners, J., Wu, H., Hung, W.-L., Aguilera, M. and Walfish, M. (2011) Detecting
Failures in Distributed Systems with the Falcon Spy Network. Proceedings of the
23rd ACM Symposium on Operating Systems Principles, Cascais, October 2011,
279-294. https://doi.org/10.1145/2043556.2043583

[25] Harris, N. (2015, January 24) Visualizing DBSCAN Clustering. Naftali Harris.
https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

[26] Yu, D. (2010, March) Recovery and Fault Tolerance. CSE 660 Operating Systems
Concepts & Theory. http://cse.csusb.edu/tongyu/courses/cs660/notes/recovery.php

[27] Netflix Technology Blog (2011, April 29) Lessons Netflix Learned from the AWS

https://doi.org/10.4236/ijids.2020.41001
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://kickstarthadoop.blogspot.com/2011/04/word-count-hadoop-map-reduce-example.html
http://kickstarthadoop.blogspot.com/2011/04/word-count-hadoop-map-reduce-example.html
https://phantom448.wordpress.com/2016/07/14/how-netflix-uses-a-distributed-database-management-system-to-deliver-your-movies/
https://phantom448.wordpress.com/2016/07/14/how-netflix-uses-a-distributed-database-management-system-to-deliver-your-movies/
http://cassandra.apache.org/
https://medium.com/netflix-techblog/high-quality-video-encoding-atscale-d159db052746
https://medium.com/netflix-techblog/high-quality-video-encoding-atscale-d159db052746
https://studres.cs.st-andrews.ac.uk/CS3101/Lectures/L19_Transactions.pdf
https://docs.oracle.com/cd/E17276_01/html/bdb-sql/mvcc.html
https://docs.oracle.com/cd/B19306_01/server.102/b14220/consist.htm
https://static.googleusercontent.com/media/research.google.com/en/people/jeff/stanford-295-talk.pdf
https://static.googleusercontent.com/media/research.google.com/en/people/jeff/stanford-295-talk.pdf
https://medium.com/netflix-techblog/fault-tolerance-in-a-highvolume-distributed-system-91ab4faae74a
https://medium.com/netflix-techblog/fault-tolerance-in-a-highvolume-distributed-system-91ab4faae74a
https://medium.com/netflix-techblog/tracking-downthe-villains-outlier-detection-at-netflix-40360b31732
https://medium.com/netflix-techblog/tracking-downthe-villains-outlier-detection-at-netflix-40360b31732
https://doi.org/10.1145/2043556.2043583
https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/
http://cse.csusb.edu/tongyu/courses/cs660/notes/recovery.php

I.-A. Secara

DOI: 10.4236/ijids.2020.41001 13 International Journal of Internet and Distributed Systems

Outage. The Netflix Tech Blog.
https://medium.com/netflix-techblog/lessons-netflix-learnedfrom-the-aws-outage-d
eefe5fd0c04

[28] Sadhu, P., Parthasarathy, V. and Jami, A. (2012, February 21) Announcing Priam.
The Netflix Tech Blog.
https://medium.com/netflix-techblog/announcing-priam-4165565c7b07

https://doi.org/10.4236/ijids.2020.41001
https://medium.com/netflix-techblog/lessons-netflix-learnedfrom-the-aws-outage-deefe5fd0c04
https://medium.com/netflix-techblog/lessons-netflix-learnedfrom-the-aws-outage-deefe5fd0c04
https://medium.com/netflix-techblog/announcing-priam-4165565c7b07

9 772327 715004 10

	Front Cover
	Inside Front Cover-Editorial Board
	Table of Contents
	Journal Information
	1-Challenges and Considerations in Developing and Architecting Large-Scale Distributed Systems
	Inside Back Cover-Call for Papers
	Back Cover

