

J. Software Engineering & Applications, 2009, 2
Published Online October 2009 in SciRes(www.SciRP.org/journal/jsea)

Copyright © 2009 SciRes JSEA

CONTENTS

Volume 2 Number 3 October 2009

Cyclomatic Complexity and Lines of Code: Empirical Evidence of a Stable Linear

Relationship

G. JAY, J. E. HALE, R. K. SMITH, D. HALE, N. A. KRAFT & C. WARD…………………………137

Applying Heuristic Search for Distributed Software Performance Enhancement

O. BUSHEHRIAN…………………………………………………………………………………144

Data Mining in Biomedicine: Current Applications and Further Directions for Research

S. L. TING, C. C. SHUM, S. K. KWOK, A. H. C. TSANG & W. B. LEE……………………………150

A Solution Based on Modeling and Code Generation for Embedded Control System

G. H. WU, D. W. CHENG & Z. ZHANG……………………………………………………………160

Product Maintainability Design Method and Support Tool Based on Feature Model

Y. F. DING……………………………………………………………………………………………165

Research on Software Production Support Structure

J. P. WAN………………………………………………………………………………………………173

Formal Derivation of the Combinatorics Problems with PAR Method

L. Y. SUN & Y. T. SUN………………………………………………………………………………195

Sharing and Implementation of Heterogeneous Database for Education Resource Based on

XML

S. X. TANG……………………………………………………………………………………………200

MicrobIdentifier: A Microbial Identification Software Based on Mass-Spectrometry

F. LIU, L. LI, C. ZHANG, L. B. WANG & P. LI………………………………………………………206

An Exploratory Case Study in Designing and Implementing Tight Versus Loose Frameworks

M. GUPTA, R. GUPTA & A. K. TRIPATHI…………………………………………………………209

Journal of Software Engineering and Applications (JSEA)

Journal Information

SUBSCRIPTIONS

The Journal of Software Engineering and Applications (Online at Scientific Research Publishing, www.SciRP.org)

is published monthly by Scientific Research Publishing, Inc., USA.

E-mail: jsea@scirp.org

Subscription rates: Volume 2 2009
Print: $50 per copy.

Electronic: free, available on www.SciRP.org.

To subscribe, please contact Journals Subscriptions Department, E-mail: jsea@scirp.org

Sample copies: If you are interested in subscribing, you may obtain a free sample copy by contacting Scientific

Research Publishing, Inc. at the above address.

SERVICES

Advertisements

Advertisement Sales Department, E-mail: jsea@scirp.org

Reprints (minimum quantity 100 copies)

Reprints Co-ordinator, Scientific Research Publishing, Inc., USA.

E-mail: jsea@scirp.org

COPYRIGHT

Copyright© 2009 Scientific Research Publishing, Inc.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in

any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as

described below, without the permission in writing of the Publisher.

Copying of articles is not permitted except for personal and internal use, to the extent permitted by national

copyright law, or under the terms of a license issued by the national Reproduction Rights Organization.

Requests for permission for other kinds of copying, such as copying for general distribution, for advertising or

promotional purposes, for creating new collective works or for resale, and other enquiries should be addressed to

the Publisher.

Statements and opinions expressed in the articles and communications are those of the individual contributors and

not the statements and opinion of Scientific Research Publishing, Inc. We assume no responsibility or liability for

any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas

contained herein. We expressly disclaim any implied warranties of merchantability or fitness for a particular

purpose. If expert assistance is required, the services of a competent professional person should be sought.

PRODUCTION INFORMATION

For manuscripts that have been accepted for publication, please contact:

E-mail: jsea@scirp.org

J. Software Engineering & Applications, 2009, 2: 137-143
doi:10.4236/jsea.2009.23020 Published Online October 2009 (http://www.SciRP.org/journal/jsea)

Copyright © 2009 SciRes JSEA

137

Cyclomatic Complexity and Lines of Code: Empirical
Evidence of a Stable Linear Relationship

Graylin JAY1, Joanne E. HALE2, Randy K. SMITH1, David HALE2, Nicholas A. KRAFT1,
Charles WARD1

1Department of Computer Science, University of Alabama, Tuscaloosa, USA; 2 Department of Management Information Systems,
University of Alabama, Tuscaloosa, USA.
Email: {tjay, rsmith, nkraft, cward}@cs.ua.edu, {jhale, dhale}@cba.ua.edu

Received April 21st, 2009; revised June 9th, 2009; accepted June 12nd, 2009.

ABSTRACT

Researchers have often commented on the high correlation between McCabe’s Cyclomatic Complexity (CC) and lines
of code (LOC). Many have believed this correlation high enough to justify adjusting CC by LOC or even substituting
LOC for CC. However, from an empirical standpoint the relationship of CC to LOC is still an open one. We undertake
the largest statistical study of this relationship to date. Employing modern regression techniques, we find the linearity
of this relationship has been severely underestimated, so much so that CC can be said to have absolutely no explana-
tory power of its own. This research presents evidence that LOC and CC have a stable practically perfect linear rela-
tionship that holds across programmers, languages, code paradigms (procedural versus object-oriented), and software
processes. Linear models are developed relating LOC and CC. These models are verified against over 1.2 million
randomly selected source files from the SourceForge code repository. These files represent software projects from three
target languages (C, C++, and Java) and a variety of programmer experience levels, software architectures, and de-
velopment methodologies. The models developed are found to successfully predict roughly 90% of CC’s variance by
LOC alone. This suggest not only that the linear relationship between LOC and CC is stable, but the aspects of code
complexity that CC measures, such as the size of the test case space, grow linearly with source code size across lan-
guages and programming paradigms.

Keywords: Software Complexity, Software Metrics, Cyclomatic Complexity

1. Introduction

Software complexity is traditionally a direct indicator of
software quality and cost [1-6]. The greater the com-
plexity (by some measure) the more fault prone the soft-
ware resulting in higher cost. Much effort has gone into
identifying techniques and metrics to ‘measure’ the com-
plexity of software and software modules [7]. Logically,
many of these measures have been shown to be corre-
lated in some manner. Understanding these relationships
is important to understanding and evaluating the metrics
themselves and ultimately in reducing software devel-
opment and maintenance efforts. This research reexam-
ines the relationship between Lines of Code (LOC) and
McCabe’s Cyclomatic Complexity (CC) a traditional
complexity metric.

First introduced in 1976 [8], McCabe’s Cyclomatic
Complexity (CC) is intended to measure software com-
plexity by examining the software program’s flow graph.
In practice, CC amounts to a count of the “decision

points” present in the software. CC can be calculated as:

CC = E – N + 2P

where

E is the number of edges,

N is the number of nodes, and

P is the number of discrete connected components.

CC was originally meant as a measure of the size of
the test case space [8].

While numerous studies [1–3,9] have examine the re-
lationship between LOC and CC, few have made it their
central point of inquiry. As a result, while many state,
sometimes strongly, that LOC and CC have a linear rela-
tionship, few investigate statistical issues such as the
distribution of variance among LOC and CC. Shepperd,
for example, uses data from previous studies to argues
that CC was often “merely a proxy for ... lines of code”
[9]. Many investigators either consciously or serendipi-
tously avoid the issue entirely by using mixed metrics

Cyclomatic Complexity and Lines of Code: Empirical Evidence of a Stable Linear Relationship 138

such as error density or adjustments for size [5, 10]. Oth-
ers investigating the relationship of CC to some other
factor explicitly tested for a detrimental multi-collinear
effect from LOC [11]. While previous studies have indi-
cated the large role that LOC seems to play in CC [12],
they stop short of claiming a general model of the rela-
tionship. While we do not seek to settle the issue, it is for
these reasons that this research reexamines the relation-
ship of LOC and CC in the context of a large empirical
study.

2. Study Methodology

As a baseline and to confirm the LOC/CC relationship
results reported in the literature, a pilot study looked at 5
NASA projects from the PROMISE Software Engineer-
ing Repository [13]. The PROMISE Repository is a col-
lection of publicly available datasets for software engi-
neering researchers. The NASA projects were originally
archived in the NASA Metrics Data Program. Table 1
shows the Pearson Moment of Correlation between LOC
and CC.

The correlation is remarkably high (average 0.896),
yet does have a significant variance. When expanding on
this pilot, variance was examined closely for the larger
sample population.

2.1 Sample Population

For the larger study, the SourceForge.net (SourceForge)
software repository was chosen because of its breadth
and popularity [14]. SourceForge is the most popular
public software repository on the Internet and is second
only to Download.com as the most popular provider of

software on the web [15]. SourceForge is home to pro-
jects actively sponsored and developed by companies
such as HP [16] and IBM [17] as well as academic and
other open-source projects. SourceForge is home to over
170 thousand different software projects all with their
full codebases publicly available.

2.2 Population Candidate Stratification

Based on the observations of the PROMISE Repository,
the large sample population of SourceForge projects was
stratified based on three popular languages: C, C++ and
Java. Identification of the implementation language is
part of project creation on SourceForge. This self-re-
ported information was used to establish three subject
candidate populations. Table 2 shows the number, by
language, of candidate projects considered for this study
as well as the number of projects actually selected and
analyzed.

Projects that mixed candidate languages were elimi-
nated. That is: while a project that employed Python and
C was considered an acceptable candidate, a project that
used Java and C++ was not.

2.3 Subject Selection

One thousand subjects were randomly chosen from the
stratified lists (column two of table 2). All of the chosen
subjects needed to employ the Subversion (SVN) version
control system [18] rather than the more traditional CVS,
so this criterion was used to further discriminate amongst
projects. The speed and reliability of SVN made this ex-
periment practical. The choice of SVN over CVS did not
affect the sample statistics. A complete discussion of this
issue and other analysis is given in the Results section.

Table 1. Representative NASA projects and their pearson moment between LOC and CC

Project Language Pearson Moment

spacecraft instrument C 0.94

real-time predictive simulation C 0.82

data storage manager C++ 0.90

science data processor C++ 0.96

satellite flight software C 0.86

Table 2. Candidate population sizes (in projects) and final number of active subjects

Language Candidate Projects Selected Active Projects (at least one source file)

Java 21,739 728

C 13,336 749

C++ 15,194 747

Copyright © 2009 SciRes JSEA

Cyclomatic Complexity and Lines of Code: Empirical Evidence of a Stable Linear Relationship 139

Figure 1. LOC and CC versus number of source files

Given its breadth and scope, many of the projects in

SourceForge are no longer active or are simply non-ex-
istent – project space exists but no files exist. Rather than
risk tainting the samples by overstating the “active” pro-
jects, the one thousand subjects for each language were
randomly selected from the candidate populations with
no regard to project activity level or completeness. This
resulted in a number of the projects in the sample not
having any source files at all. The final number of “ac-
tive” (one or more source files) projects contained in the
final samples is given in Table 2 (column three). It is
noted that the ratio of active to non-existent projects
seems fairly constant between languages (3% - 5%).
When the selection process was finished, the sample
projects to be analyzed (about 750 per language) con-
sisted of more than a quarter terabyte of source code.

2.4 The Metric Tools

To collect the actual CC and LOC metrics, the study em-
ployed two tools. The main tool was the popular com-
mercial tool RSM (Resource Standard Metrics). RSM
was chosen because of its ISO certification and its use at

various Fortune 100 companies [19]. For comparison, the
C and C++ Code Counter (CCCC) [20] open-source tool
was employed. CCCC and RSM provided similar results
for LOC and CC.

3. Descriptive Statistics

The study examined roughly 1.2 million files, over
400,000 C files alone. Figure 1 shows the distribution of
LOC and CC for each language.

Before proceeding with any regressive or other corre-
lation analysis the assumption of normality was con-
firmed by an Anderson-Darling analysis. At a 95% con-
fidence level, it was concluded that all distributions were
log normal distributions, save for C language files. The C
language samples’ LOC and CC instead have a Pareto
(also known as a Bradford) distribution. The Pareto dis-
tribution is very similar to the log normal distribution
except that its population distribution is less even. In this
case, relatively fewer projects account for more of the
CC and LOC. Since both log normal and Pareto have
similar curvature issues, the rest of our analysis were
performed in a log adjusted space. An example of such

Copyright © 2009 SciRes JSEA

Cyclomatic Complexity and Lines of Code: Empirical Evidence of a Stable Linear Relationship 140

an adjustment is presented below in Figure 2, which
shows the log adjusted LOC distribution for the C++
samples. These adjustments result in almost ideal normal
curves for the sample populations.

3.1 Variance Issues

To test the assumption of evenly distributed variances, A
Breusch-Pagan [21] test was performed on each of the
samples with a significance level of .05. In each case
homoscedasticity was rejected. This indicates that the
variance within the sample populations was not uniform.
This is a significant finding. Equality of variance is a
required assumption for most traditional forms of regres-
sion. These traditional forms of regression are exactly the
types of regression used in previous research. Our results
indicate that this unevenness is more than just a theoreti-
cal concern. Below it is shown that a Pearson analysis is
skewed compared to a more robust analysis.

4. Results

The Pearson Moment was calculated between the log of

the LOC and the log of the CC for the samples as was the
explanatory power of the log of the LOC over the vari-
ance of the log of the CC. These log transformations ad-
just for the curvature present in the samples' log normal
distributions. Table 3 gives the Pearson Moment and
variance by language and tool. The CCCC tool could not
process Java files.

Earlier, it was discussed that samples were limited to
those that utilized SVN. As a check that this did not in-
validate the results, a small random sample of 32 projects
per language were selected that utilized another open-
source versioning system (CVS). Table 4 gives those
results.

Table 3 and Table 4 below indicate a strong linear cor-
relation between the log of LOC and the log of CC, and
hence between LOC and CC. This correlation is strong
regardless of language. When CCCC failed to be capable
of processing a source file in a project, the project was
removed from the CCCC sample. Despite the fact that this
meant CCCC's sample was differentiated, the two tools
still both indicate the same strong correlation.

Figure 2. Log adjusted C++ LOC distribution

Table 3. Pearson moment in log adjusted space by language and tool

Language Tool Files Pearson Moment Percent of Variance

Java
RSM

CCCC
480,336

NA
0.88
NA

78.3
NA

RSM 401,474 0.88 78.4
C

CCCC 399,483 0.91 82.7

RSM 411,718 0.87 76.2
C++

CCCC 410,051 0.85 72.9

Copyright © 2009 SciRes JSEA

Cyclomatic Complexity and Lines of Code: Empirical Evidence of a Stable Linear Relationship 141

Table 4. Pearson moment in log adjusted space by language (32 CVS projects each)

Language Pearson Moment Percent of Variance

Java 0.91 82.5

C 0.87 76.8

C++ 0.93 86.4

Table 5. Coefficient of determination for Siegal repeated median regression and “equivalent” pearson moment

Language Coefficient of Determination Equivalent Pearson Moment

Java 0.87 0.93

C 0.93 0.97

C++ 0.97 0.98

Concerns over variance made it necessary to run a

more robust test than Pearson. The test chosen was the
Siegal repeated median regression, a technique known to
be robust against heteroscedasticity and tolerant to up to
50% of the data points being outliers [22]. Siegal is
computationally intensive. To accommodate the compu-
tational complexity given the sample size, 3000 data
points were randomly sub-selected from the samples. A
linear model for a each sub-sample was created using
repeated median regression. These models were then
used to predict CC for all the samples of a language
population based solely on LOC. To assess how predic-
tive these models were, their coefficient of determination
were computed (see column two of Table 5.). So that
the accuracy of our repeated median regression models
could be compared to more traditional models, the
equivalent Pearson Moment for each coefficient were
also calculated. These are what the Pearson Moments in
a traditional model would have to have been in order to
account for the same amount of variance as our Sie-
gal-based models. All of the calculations here described
were performed in the same log adjusted space as with
our previous Pearson Moment calculations. The results
for each language are shown in Table 5.

As shown in Table 5, once the study accounted for
issues of variance LOC and CC, extremely accurate
linear models were developed. It is worth reiterating:
while the models were developed using sub-samples,
the values in Table 5 are from applying the model to the
whole populations. Our models can use log of LOC to
explain all but 13% of the log of CC's variance (on av-
erage they explain 90% of the variance). Based on these
results we propose:

LOC and CC are measuring the same property.
Whether this means that LOC and CC are merely esti-
mates of each other or if they are both estimates of some
third factor is left as an open question. Regardless, the
fact that LOC and CC do measure each other indicates

that models using one or the other must be careful of
collinear effects.

Figure 3 shows how similar the models are for each
language. Figure 3 shows the graph of the Siegal re-
peated median model for each language. For clarity's
sake this graph is in the un-adjusted space.

4.1 Model Validation

It is worth reiterating how our Siegal repeated median
models were developed. They were built using data from
a small portion of each language population and then
used to predict attributes of the entire, larger, language
population. This is an important point because it means
that the link between LOC and CC that the models rep-
resent have been externally validated as indicated by
Zuse [23]. We have used LOC to accurately predict CC
in a large (hundred of projects, thousands of files) varied
(professional, amateur, and academic) population.
SourceForge provides a heterogeneous cross-section of
the general software population.

5. Threats to Validity

It would be misleading to think that this study concerning
metric directly mitigates internal validity threats. While
they are considered metrics in their own right, there is a
great deal of dispute as to how to practically “measure”
CC and LOC. We attempt to address this issue through
our use of multiple measures in the form of our two
toolsets. However, this is by no means an exhaustive
solution to the problem and was not possible for Java.

We present strong statistical evidence for the general
applicability of our findings across languages, paradigms,
and skill-sets. We stress that while this generally appli-
cability is statistically true, it is only true in aggregate.
The general applicability to any given project is still an

pen issue. o

Copyright © 2009 SciRes JSEA

Cyclomatic Complexity and Lines of Code: Empirical Evidence of a Stable Linear Relationship 142

Figure 3. Siegal repeated median model for each language

6. Discussion

It is known that accurately estimating collinear factor’s
linearity can be difficult. By utilizing the large sample
size in this study, the co-linearity of CC and LOC was
statistically determined. These results help to address
some of the contradictory findings in previous studies
[2,3,6,9,24,25,26] regarding CC, LOC, errors, mainte-
nance effort, and so forth. Factors as linearly related as
LOC and CC should be considered collinear. Models that
fail to properly bind together collinear or multi-collinear
factors will often have unstable explanatory power. The
instability of predictions based on collinear factors can
provide a theoretical explanation for so many contradic-
tory findings. While likely not the dominant factor, this
effect could also provide a partial explanation for why
researcher such as Menzies et al. have discovered so
much more predictive power in hybrid predictors than
so-called mono-metrics [27]. In support of Menzies et al,
hybrid metrics can properly bind these factors where
mono-metrics cannot. Mono-metrics lack needed infor-
mation that is captured by combined or hybrid metrics.

The linear relationship between LOC and CC raises
has several direct implications for software maintainers
and evolution management.

CC has no (or very little) explanatory power of its own.

This implies that indicators that rely on CC may more
easily be calculated and normalized by using LOC. Cal-
culation of CC requires some cost however small. The
results from this study indicate there is no more insight
gained from CC when compared to LOC.

The relationship between CC and LOC is near linear
regardless of language type for the three languages in this
study. This result implies that the characteristic of com-
plexity and test case size measured by CC and LOC is the
same in a procedural language (C), an objected-oriented
language (Java) and a hybrid language (C++). It also im-
plies that if CC indeed measures some aspects of com-
plexity, then developers tend to add these aspects to a
program at an incredibly steady rate (at least in practice).

Modules where LOC does not predict CC are outliers
and should be targeted for closer scrutiny. These models
on average accounted for 90% of CC’s variance. This
means that any source-file/program which does not fit
this model is in a statistical sense an outlier. If the outlier
status of these modules to the model is equally (or even
partially) indicative of a similar status for true complex-
ity then these linear models themselves can be used as a
form of complexity metric or at least as a monitor for
possible complexity issues. Modules where LOC does
not predict CC (or vice-versa) may indicate an overly-
complex module with a high density of decision points or

Copyright © 2009 SciRes JSEA

Cyclomatic Complexity and Lines of Code: Empirical Evidence of a Stable Linear Relationship 143

an overly-simple module that may need to be refactored.
We plan to pursue this line of inquiry in future work.

7. Conclusions

We carried out a large empirical study of the relationship
between LOC and CC for a sample population that
crossed languages, methodologies, and programming
paradigms. We found that due mostly to issues regarding
population variance, that the linearity of the relationship
between these two measurements has been severely un-
derestimated. Using modern statistical tools we develop
linear models that can account for the majority of CC by
LOC alone. We conclude that CC has no explanatory
power of its own and that LOC and CC measure the same
property. We also conclude that if CC does have any va-
lidity as a measure of either complexity or test space size,
then we must conclude these factors grow linearly with
size regardless of software language, paradigm, or meth-
odology. The stability of the linear relationships we
found suggests future work in examining their worth as
metrics in their own right.

REFERENCES
[1] R. D. Banker, M. D. Srikant, C. F. Kemerer, and D.

Zweig, “Software complexity and maintenance cost,”
Communications of the ACM, Vol. 36, No. 11, pp. 81–94,
1993.

[2] G. K. Gill and C. F. Kemerer, “Cyclomatic complexity
density and software maintenance productivity,” IEEE
Transactions on Software Engineering, Vol. 17, No.12, pp.
1284–1288, 1991. (REF 15)

[3] F. G. Wilkie and B. Hylands, “Measuring complexity in
C++ application software,” Software: Practice and Ex-
perience, Vol. 28, No. 5, pp. 513–546, 1998. (REF 17)

[4] B. Curtis, S. B. Sheppard and P. Milliman, “Third time
charm: Stronger prediction of programmer performance
by software complexity metrics,” Proceedings of the 4th
International Conference on Software Engineering, pp.
356–360, 1979.

[5] J. C. Munson and T. M. Khoshgoftaar. “The detection of
fault-prone programs,” IEEE Transactions on Software
Engineering, Vol. 18, No. 5, pp. 423–433, 1992.

[6] V. R. Basili and B. T. Perricone, “Software errors and
complexity: An empirical investigation,” Communica-
tions of the ACM, Vol. 27, No. 1, pp. 42–52. 1983. (REF
4)

[7] J. C. Munsona and T. M. Khoshgoftaar, “The dimension-
ality of program complexity,” Proceedings of the 11th In-
ternational Conference on Software Engineering, pp.
245–253, 1989.

[8] T. J. McCabe, “A complexity measure,” IEEE Transac-

tions on Software Engineering, Vol. 2, No. 4, pp. 308–320,
1976.

[9] M. Shepperd, “A critique of cyclomatic complexity as a
software metric,” Software Engineering Journal, Vol. 3,
No. 2, pp. 30–36, 1988.

[10] A. R. Feuer and E. B. Fowlkes, “Some results from an
empirical study of computer software,” Proceedings of the
4th International Conference on Software Engineering, pp.
351–355, 1979. (REF 6)

[11] R. Subramanyam and M. S. Krishnan, “Empirical analysis
of CK metrics for object-oriented design complexity: Im-
plications for software defects,” IEEE Transactions on
Software Engineering, Vol. 29, No. 4, pp. 297–310. 2003.

[12] W. Li, “An empirical study of software reuse in recon-
structive maintenance,” Software Maintenance: Research
and Practice, Vol. 9, pp. 69–83, 1997.

[13] S. J. Sayyad and T. J. Menzies, The PROMISE Repository
of Software Engineering Databases, School of Information
Technology and Engineering, University of Ottawa, Can-
ada, http://promise.site.uottawa.ca/SERepository.

[14] SourceForge, http://www.sourceforge.net/.

[15] Alexa, Top 500, 2007, http://www.alexa.com/.

[16] Hewlett Packard: HP-sponsored projects hosted on Source-
Forge, 2007, http://hp.sourceforge.net/.

[17] IBM, http://sourceforge.net/powerbar/websphere/.

[18] Subversion, http://subversion.tigris.org/.

[19] RSM, http://www.msquaredtechnologies.com/.

[20] CCCC, C and C++ Code Counter, 2007, http://sourcefor-
ge.net/projects/cccc/.

[21] T. S. Breusch and A. R. Pagan, “A simple test for hetero-
scedasticity and random coefficient variation,” Economet-
rica, Vol. 47, No. 5, pp. 1287–1294, 1979.

[22] A. F. Siegel, “Robust regression using repeated medians,”
Biometrika, Vol. 69, No. 1, pp. 242–244, 1982.

[23] H. Zuse, “A framework of software measurement,” Walter
de Gruyter, New York, 1998.

[24] J. Bowen, “Are current approaches sufficient for measur-
ing software quality?” Proceedings of Software Quality
Assurance Workshop, pp. 148–155, 1978.

[25] M. R. Woodward, M. A. Hennell and D. A. Hedley, “A
measure of control flow complexity in program text,”
IEEE Transactions on Software Engineering, Vol. 5, No. 1,
pp. 45–50, 1979.

[26] M. Paige, “A metric for software test planning,” Proceed-
ings of COMPSAC 80 Conference, Buffalo, NY, pp.
499–504, Oct. 1980.

[27] T. Menzies, J. Greenwald and A. Frank. “Data mining
static code attributes to learn defect predictors,” IEEE
Transactions on Software Engineering, Vol. 33, No. 1,
2–13, 2007.

Copyright © 2009 SciRes JSEA

J. Software Engineering & Applications, 2009, 2: 144-149
doi:10.4236/jsea.2009.23021 Published Online October 2009 (http://www.SciRP.org/journal/jsea)

Copyright © 2009 SciRes JSEA

Applying Heuristic Search for Distributed Software
Performance Enhancement

Omid BUSHEHRIAN

Computer and IT Department, Shiraz University of Technology, Shiraz, Iran.
Email: bushehrian@sutech.ac.ir

Received April 2nd, 2009; revised April 28th, 2009; accepted May 4th, 2009.

ABSTRACT

Software reverse engineering and reengineering techniques are most often applied to reconstruct the software archi-
tecture with respect to quality constraints, or non-functional requirements such as maintainability or reusability. In this
paper, the performance improvement of distributed software is modeled as a search problem that is solved by heuristic
search algorithms such as genetic search methods. To achieve this, firstly, all aspects of the distributed execution of a
software is specified by an analytical performance evaluation function that not only evaluates the current deployment
of the software from the performance perspective but also can be applied to propose the near-optimal object deploy-
ment for that software. This analytical function is applied as the Heuristic search objective function. In this paper a
novel statement reordering method is also presented which is used to generate the search objective function such that
the best solution in the search space can be found.

Keywords: Performance Engineering, Heuristic Search Methods, Software Reverse Engineering

1. Introduction

Automatic software reverse engineering and reengineer-
ing techniques are most often applied to reconstruct the
software architecture with respect to quality constraints,
or non-functional requirements such as maintainability or
reusability [1–5]. However, there has been no effort to
assess the architecture of existing distributed software
from the performance viewpoint. All the architectural
level performance engineering techniques are focused on
the performance assessment at the early stages of the
software development life cycle. However, the imple-
mented software still may not meet its performance pro-
visions and needs to be modified to improve the per-
formance.

In this paper, a novel software reengineering approach
is presented that proposes some alterations to the de-
ployment of the distributed software to improve its over-
all performance. The performance improvement is
achieved by providing the chance for concurrent execu-
tion among method calls including the remote calls or
local ones. The concurrency among the method calls is
obtained when some of the blocking invocations are
transformed into non-blocking or asynchronous form.
However, this transformation entails execution overheads
that should be considered very carefully. Therefore, the
question is how to automatically find a set of invocations

to be transformed to non-blocking such that the highest
amount of concurrency in the execution of distributed
software over a cluster is obtained.

To address this problem, in this paper the program
source code is analyzed to extract a performance evalua-
tion function considering the characteristics of the cur-
rent deployment of the distributed software. These char-
acteristics include the number of available workstations,
the number of processors of each workstation and the
deployment constraints. According to these constraints,
some of the objects must reside on specific workstations
as they need to access hardware or software resources
(such as Database, printer, file,…) on that workstation.

The current researches in the Software Performance
Engineering (S.P.E) are dedicated to estimate the per-
formance of software in the early stage of development
process due to needs for QOS. In order to achieve this
goal, several works have been done to transform the
software architectural models to the analyzable formal
models. Some examples are deriving Queuing Network
models from UML diagrams [6] or translating some of
the UML diagrams to the Perti Nets [7,8]. In [9] con-
structing and analyzing two kinds of performance models
are proposed: software execution model and system exe-
cution model. The former represents the software execu-
tion behavior and is modeled by execution graphs and
the latter is based on the queuing network models, which

mailto:bushehrian@sutech.ac.ir

Applying Heuristic Search for Distributed Software Performance Enhancement 145

represent the computer system platform, including hard-
ware and software components. The software and system
execution models are applied to assess the performance
of the intended software architecture.

There are also some related researches in the area of
performance optimization of existing distributed pro-
grams. In a mixed dynamic and programmer-driven ap-
proach to optimize the performance of large-scale ob-
ject-oriented distributed systems [10], an object-partit-
ioning method is dynamically invoked at runtime to col-
locate objects that communicate often. Here, the parti-
tioning criterion is to gather objects that often communi-
cate in a same partition. In a distribution strategy for
program objects [11], an object graph construction algo-
rithm and a partitioning policy for the program objects
based on object types is presented. The distribution
strategy is to place the most communicating objects in
the same machine to minimize the network traffic. How-
ever, when partitioning a program, in addition to mini-
mizing the communication cost, the amount of concur-
rency in the execution of the distributed partitions has to
be maximized. To achieve this, in this paper, a new per-
formance-driven partitioning criterion is proposed.

The main contribution of this paper is to extend the
Software Performance Engineering techniques to the
reengineering area in order to optimize the performance
of existing distributed software. To achieve this, a new
parametric performance evaluation function to assess the
performance of the current object deployment of the
software over the computational nodes is presented. This
function not only evaluates the current software deploy-
ment but also proposes the best object deployment for the
software. This function is automatically constructed
while traversing the program call flow graph and consid-
ers both blocking and non-blocking types for each invo-
cation.

The remaining parts of this paper are organized as fol-
lows: in section 2 the main steps of the proposed method
are described. Section 3 presents an optimization tech-
nique called statement reordering which is applied to
improve the amount of concurrency in the distributed
program code. In section 4 the implementation of the
proposed method is described. Finally the conclusions
and future works are presented in section 5.

2. Software Performance Modeling

To improve the performance of distributed software,
some of the blocking invocations among objects should
be transformed to non-blocking ones. The non-blocking
invocations are implemented either by means of remote
asynchronous calls (supported in some middlewares such
as JavaSymphoney [12]) or Java Threads. However, an
invocation is converted to non-blocking only when this
conversion results in concurrent execution between the
caller and callee considering the resultant overheads.

Each non-blocking invocation incurs communication and
initiation overheads. The former is the amount of re-
quired time for sending the invocation parameters and
receiving the return values between caller and calee. The
latter is the amount of time required for starting the
non-blocking invocation (such as asynchronous RMI or
Java Threads).

The object deployment for a given program is defined
as pair (r,d). r denotes the set of all invocations in the
program along with each invocation status (blocking or
non blocking) an d denotes the deployment of caller and
called objects, for each invocation Ii in r, over the avail-
able computational nodes. The performance evaluation
function Θ(r,d) estimates the amount of execution time
for object deployment (r,d). The optimal object deploy-
ment (ro,do) is the one for which the amount of Θ is
minimum. To find the optimal object deployment all
possible object deployment for the software should be
evaluated using function Θ. However, this is a
NP-Complete problem and should be solved using heu-
ristic search algorithms such as Genetic algorithms. The
deployment constraints must be considered during the
search for the optimal object distribution. According to
these constraints, some of the objects must reside on spe-
cific workstations as they need to access hardware or
software resources (such as Database, printer, file,…) on
that workstation. We have used a Constrained Genetic
Clustering algorithm to find the optimal object deploy-
ment. In this algorithm function Θ is used as the search
objective function.

The main steps can be summarized as follows:
 Extracting Call Graph from the program source

code.
 Unfolding the all graph to obtain the Call Tree.
 Extracting function Θ by analyzing the program

source code.
 Search for the optimal object deployment (ro,do).

This is achieved by using a genetic clustering algorithm
that uses Θ as the search objective function.

We have omitted the cycles in the extracted call graph
to obtain the program call tree. This is necessary as in the
call graph each node represents a class with multiple in-
coming invocations. However at runtime each invocation
may be performed using a separate instance of a class.
Each object deployment (r,d) corresponds to a labeled
partitioning of the program call tree. Each label of a node
in the call tree specifies the workstation on which the
object represented by that node resides. The status of
invocations is determined by the partitioning. The invo-
cations among partitions are assumed non-blocking while
the invocations inside a partition are blocking. Therefore
each labeled partitioning of the call tree specifies an ob-
ject deployment (r,d) of the software uniquely and vice
versa. To search for the optimal object deployment (ro,do)
all possible labeled partitioning of the call tree are evalu-

Copyright © 2009 SciRes JSEA

Applying Heuristic Search for Distributed Software Performance Enhancement 146

ated by the constrained genetic clustering algorithm.
The performance evaluation function Θ is built auto-

matically while traversing a program call flow graph. A
call flow graph represents the flow of method calls
among program classes. Θ is built considering the esti-
mated execution times of all instructions within the pro-
gram code including the invocations. Since, the type of
invocations affects the overall execution time of the pro-
gram and is not determined until the program is parti-
tioned; Θ is built as a general function including all the
possible invocation types for each method call. There are
four types of invocations: local blocking, remote block-
ing (implemented using RMI), local non-blocking (im-
plemented using Java Thread) and remote non-blocking
(implemented using asynchronous RMI). For each type
of invocation an overhead is defined as shown in Table 1.

As described in the previous section, Θ maps each ob-
ject distribution (r,d) to a value representing the esti-
mated execution time of the distributed software with
object distribution (r,d). Object distribution (r,d) is de-
fined using a set of functions presented in Table 2 .

For instance, consider a method invocation I1 that per-
forms another invocation I2 during its execution. The
estimated execution time of I1, denoted by TI1, when I2
type is (1) local blocking, (2) remote blocking,(3) local
non-blocking and (4) remote non-blocking , is shown by
relations (1) to (4) below respectively.

Table1. Different overhead types

α RMI initiation overhead

β Thread creation overhead

γ Asynch RMI initiation overhead

Table 2. The maps that specify a labeled portioning and its
equivalent object deployment (r,d)

Φ
Maps invocation Ii to a value 0 or 1, if Ii is
inside a partition it is 1 otherwise it is 0.

μ
Maps invocation Ii to a value 0 or 1, if the
caller and callee objects of Ii reside on the
same workstation it is 0, otherwise it is 1.

ω
Maps invocation Ii to a workstation name on
which Ii is executed

Δ

Maps invocation Ii to a value indicating the
communication cost of the network link
over which Ii is sending parameters or re-
ceiving return values as a RMI or asyn-
chronous RMI

Г
Maps each workstation w to the maximum
number of threads created on it

Π
Maps each workstation w to the number of
processing units installed on it

TI1

= T0 + TI2, TI2=T1 (1)

TI1

= T0 + α + TI2+ δ(I2) , TI2=T1 (2)

TI1 = T0 + β + S2 , S2=max(T1-d2,0) (3)

TI1 = T0 + γ + S2 , S2=max(T1+ δ(I2)-d2,0) (4)

Assuming that the target of the invocation I1 is method
m, T0 is the total execution time of all the instructions
excluding I2 within m. When an invocation such as I2 is
non-blocking, the caller should wait for the results of I2
at some synchronization point during its execution. In
relation (3) and (4), S2 denotes the amount of required
time at the synchronization point of I2, to receive the re-
sults of I2. The above relations can be combined as a sin-
gle relation as follows:

TI1= T0+Φ(I2)*(TI2 +μ(I2)*(α+δ(I2)))

+ (1-Φ(I2))*(S2+μ(I2)*γ+(1-μ(I2))*β) (5)

S2=max(T1+μ(I2)* δ (I2) -d2,0)

There may be several invocations, Ii, within method m
and each invocation itself may include other invocations.
Therefore, relation (5) for estimating the execution time
of I1 can be generalized as follows:

TI1 = T0 +  Φ (Ii)*(TIi + μ(Ii)*(α+ δ(Ii)))

+ (1-Φ (Ii))*(Si + μ(Ii)*γ+(1-μ(Ii))*β) (6)

Si= max(TIi+ μ(Ii)*δ(Ii) – di,0)

In the above relation, Si denotes the time elapsed to
wait for the results of the invocation Ii, di denotes the
estimated execution time of the program statements lo-
cated between each call statement, Ii, and the first loca-
tions where the results of the call are required (the syn-
chronization point of Ii).

We can generalize relation (6) to obtain function Θ.
this function that returns the estimated execution time for
object deployment (r,d) is built by applying relations (6)
recursively starting from the main() method of the pro-
gram. Assuming that the program call flow graph is cy-
cle-free, Θ (r,d) can always be computed recursively.
However, there may be cycles in the call flow graph,
resulting from direct or indirect recursive calls. Assum-
ing that Ii is an invocation to a method in the cycle (and
itself is not in the cycle) and the estimated number of
recursions is ni then the estimated execution time of in-
vocation Ii is multiplied by ni. An invocation Ii or a syn-
chronization point Si may be located within a loop state-
ment. Therefore to consider the impact of loop iterations
on the time estimation, coefficients mi and ki have been
added to relation (7):

Θmain(r,d) = T0 +Φ(Ii)*ni*mi*(Θ Ii(r,d)

+μ(Ii)*(α+δ(Ii)))+ (1-Φ(Ii))* (7)

(Si + μ(Ii)* γ+(1- μ(Ii))* β)

Si= ki*max(Η(Ii)*Θ Ii(r,d)+ μ(Ii)*δ(Ii) – di,0)

Copyright © 2009 SciRes JSEA

Applying Heuristic Search for Distributed Software Performance Enhancement 147

In the above relation, Θ Ii(r,d) denotes the estimated
execution time of the program starting from invocation Ii.
H(Ii) is the adjustment factor that adjusts the execution
time of invocation Ii according to the hardware capacity
of the workstation on which Ii will be executed. H(Ii) is
defined as follows:

H(Ii)= Г (ω(Ii)) / Π(ω(Ii)) (8)

As described in Table 2, Г maps each workstation w to
the number of possible threads created on it due to re-
mote or local non-blocking invocations executed on w
considering an object distribution (r,d). Г(w) for each
workstation w in object distribution (r,d) is calculated as
follows:

Г(w)= Φ(Ii)*μ(Ii)+(1- Φ(Ii)) , (9)

for all Ii such that: ω(Ii)=w

3. Statement Reordering

In the preceding sections, the idea of partitioning the
program call tree directed by Θ function was described.
The main idea was to search for a partitioning of the
program classes which results in the highest amount of
concurrency among invocations. Obviously the concur-
rency is achieved by performing some of the method
invocations among actors asynchronously. Generally,
converting an ordinary method call to an asynchronous
one, poses two kinds of overheads on the execution: ini-
tiation and communication (described earlier). The for-
mer is denoted by s and the latter is denoted by O.
Therefore, from the performance perspective, converting
an ordinary call Ik to an asynchronous call is only benefi-
cial when the sum of execution times of program instruc-
tions located between Ii and its synchronization point Si ,
denoted by di, is greater than s+O. Obviously, the larger
the amount of di, the more concurrency between the
caller and the callee is obtained.

Figure 1. The statement reordering

However, a major difficulty is that programmers usu-
ally use the results of any method call Ii immediately
after (di=0). Therefore there will be no chance for con-
currency when transforming method calls to asynchro-
nous calls. To resolve the difficulty, we have applied the
ideas of statement reordering to enhance the potential
parallelism degree of a program by increasing the
amount of di for each invocation. The algorithm attempts
to insert as many statements as possible between an in-
vocation and its first data-dependent statement, consid-
ering the data dependencies between the statements. Ob-
viously the reordering should be performed such that the
original semantic of the program is preserved. To do this
during the statement reordering the data and control de-
pendency among statements must not be violated. Data
and control dependency among program statements are
represented by a acyclic graph called Task Graph [13].
The statement reordering is performed such that the de-
pendencies represented by the program task graph are not
violated. The overall steps including statement reordering
is illustrated in Figure 1.

In the statement reordering algorithm, the program
statements are classified as follows:
 Call: a method invocation
 Use, statement which is data dependent on a Call
 Common, an ordinary statement which is neither

a Call nor a Use
The algorithm comprises two main steps. In the first

step the program statements are moved from the Original
Code to the Reordered Code gradually. In this step, pre-
sented in Figure 2, Call statements are moved to the re-
ordered cod first and Use statements are moved as late as
possible. In the second step, the reordered code resulted
by applying the first step, is further optimized by reduc-
ing the time elapsed to wait for the results of Call state-
ments. This is achieved by inserting as many statements
as possible between each Call and its corresponding Use.

In the first step, Call statements of longer execution
time are moved to the reordered code first because the
longer the execution time of a Call, the more statements
should be inserted between that Call and the correspond-
ing Use. Obviously, before a statement is moved into the
reordered code, all of its parent statements in the pro-
gram task graph should be moved into the reordered
code.

In the second step, the reordered code resulted in the
first step is further optimized. To achieve this, the time
required to wait for the results of Call statements is
minimized. This is achieved by pushing down Use
statements with positive wait time as far as their wait
time reaches zero. Here Use statements with longer wait
time are selected and pushed down first.

4. Implementation

We have developed a tool support that implements the

Copyright © 2009 SciRes JSEA

Applying Heuristic Search for Distributed Software Performance Enhancement 148

steps described in section 2 to find the optimal object
distribution for distributed software. Within this envi-
ronment, a Java source code analyzer implemented using
COMPOST [14] library, analyzes the program source to
extract the call graph, call flow graph, call tree and build
the Θ function. To build the Θ function for a program,
first the number of clock cycles for each statement in the
program is determined, according to the JOP microin-
struction definition [15], and saved in an XML document.
JOP is an implementation of Java Virtual Machine in

Algorithm Reorder (Task-Graph: DAG) OUT: Reordered-Code :
List
Begin

1. If there is no Call in Task-Graph which is not moved
2. While there is a Common-statement in Task-Graph which is
not moved
3. Select a Common-statement whose predecessors in Task-Graph
are already moved
4. Append this statement to Reordered-Code
5. Label this instruction as moved
6. End While
7. While there is a Use in Task-Graph which is not moved
8. Select a Use whose predecessors in Task-Graph are already
moved
9. Append this instruction to Reordered-Code
10. Label this instruction as moved
11. End While
12. Else
13. Find a Call C with the longest execution time in Task-Graph
which is not moved
14. Let New-Task-Graph be a Sub-graph of Task-Graph, including
Predecessors of C
15. Reorder(New-Task-Graph)
16. Append C to Reordered-Code
17. Label C as moved
18. Reorder(Task-Graph)
19. End If

End

Algorithm Optimize (Task-Graph: DAG, Reordered-Code : List)
OUT: New-Reordered-Code: List
Begin

1. While there is a Use in Task-Graph which is not selected
2. Select a Use U with the longest wait time W in
Task-Graph
3. Find all unselected nodes in Task-Graph which are not
connected to U through a path in the task graph and
4. Add them to Moving-List
5. Remove all those nodes from Moving-List which do not
share an immediate control dependent parent with U
6. While W>0
7. Select an instruction I, from Moving-List, whose prede-
cessors in Task-Graph are not in Moving-List
8. Let P be the set of immediate predecessors of I
9. Let C be a Call whose results are used by U
10. Let P=P  {C}
11. Move I to a position after instructions in P and before U in
Reordered-Code
12. Remove I from Moving-List
13. Subtract the estimated time of I form W

 End While
End While
End

Figure 2. The statement reordering algorithms

hardware. Our tool also inputs the loop bounds in the
program as they are needed during the Θ generation. The
generated XML document is applied by a statement re-
ordering [13] engine to maximize the distances between
each call statement and its very first data-dependent
statement. The reordered program and the XML docu-
ment are input to a separate module to produce the Θ
function. The resultant Θ function is applied as an objec-
tive function of a constrained genetic clustering algo-
rithm [16] to find a near-optimal object deployment for
the distributed software.

A practical evaluation of the proposed method to op-
timize the performance of distributed object-oriented
programs is presented in this section. We have used two
Java case-studies: TSP and Consolidated Clustering (CC).
The first case study evaluates the impact of applying the
proposed approach on a TSP program containing 18
classes and 129 method calls. This program finds near
optimal Hamiltonian Circuit in a graph, using minimum
spanning trees. The second case study measures the
amount of speedup achieved by optimizing the perform-
ance of a program called Consolidated Clustering [17].
Consolidated Clustering is a graph clustering application
written in Java. This program comprises 16 classes and
23 method calls. In this program, a graph is clustered
several times using heuristic clustering algorithms. The
results of each clustering are stored in a database for fur-
ther uses. This program consolidates the clustering re-
sults to obtain a clustering with a specific confidence
threshold. The program is relatively slow, because it ap-
plies the heuristic algorithms for clustering.

The case studies were analyzed first to extract function
Θ for them. Then a genetic clustering algorithm was ap-
plied to partition the call tree of each program to find the
optimal object deployment using Θ as the objective func-
tion. The chosen test bed was a cluster with 3 single
processor Pentium computers running JavaSymphoney
[12] as the cluster middleware. The parameter passing
mechanism in remote non-blocking invocations in this
test bed is implemented using copy-restore technique.

Before applying the genetic clustering algorithm on
the case-studies, the values for parameters α, β, γ and δ(Ii)
were measured in the test bed. The amount of communi-
cation cost over the Pentium cluster, regarding our un-
derlying communication middleware, JavaSymphony,
was measured less than 100 ms. To estimate the commu-
nication cost in terms of JOP clock cycles, the number of
clock cycles of a sample program was divided by the
measured execution time of that program. According to
this estimation, the communication cost δ(Ii) was nearly
107 clock cycles for all Ii. The measured amount of pa-
rameters α, β and γ in the test bed were almost the same
and was estimated 104 clock cycles. We applied a con-
straint for the CC program as 3 of its classes in the call
tree should necessarily reside on the workstation on

Copyright © 2009 SciRes JSEA

Applying Heuristic Search for Distributed Software Performance Enhancement

Copyright © 2009 SciRes JSEA

149

Table 3. Measured speedups

 20 40 100 130 400 500

TSP:Θ 0.8 0.9 1 1.2 1.35 1.4

CC: Θ 0.6 0.7 0.8 1 1.3 1.4

TSP:MCC 0.3 0.5 0.6 0.7 0.78 0.8

TSP:TM 0.6 0.8 0.2 0.8 1 0.8

which the Data Base server was running.

The measured speedups resulted from executing TSP
and CC on the test bed are presented in Table 3. The re-
sults are compared to other methods: (1) applying MCC
function and (2) and applying trivial method. MCC de-
notes Minimum Communication Cost described in sec-
tion 1. In the trivial method, denoted by TM, the invoca-
tions are assigned to a workstation with the lowest load
at runtime for execution.

5. Conclusions

In this paper the software reengineering research area has
been extended to include performance improvement of
existing distributed software. To achieve this first a per-
formance assessment function is extracted from the pro-
gram source code. Then this function is applied to find
optimal object deployment of the software using a con-
strained genetic clustering algorithm. The result is a la-
beled partitioning of the program call tree. The invoca-
tions inside a partition are assumed blocking while the
invocations among partitions are non-blocking. The la-
bels in the labeled partitioning graph indicate the work-
stations on which objects reside. We have implemented
this approach and applied that on two case studies. The
result of our measurements shows this approach can be
applied to improve the performance of legacy software.

This is an ongoing research in the field of Software
Performance Engineering. As the future work we intend
to extend the idea of architectural level performance as-
sessment in forward engineering to validate the software
models in the sense that whether they satisfy the per-
formance provisions or not.

REFERENCES
[1] B. Bellay and Gallh, “Reverse engineering to recover and

describe a systems architecture,” Development and Evo-
lution of Software Architectures for Product Families
Lecture Notes in Computer Science, Vol. 1429, 1998.

[2] D. R. Harris, H. B. Reubenstein and A.S.Yeh, “Reverse
engineering to the architectural level,” Proc. 17th Int.
Conf. Software Engineering, Seattle, Washington, US,
1995.

[3] S. Parsa and O. Bushehrian, “The design and implemen-
tation of a tool for automatic software modularization,” J.

Supercomput., Vol. 32, No. 1, pp. 71–94, 2005.

[4] B. S. Mitchell and M. Spiros, “Bunch: A clustering tool
for the recovery and maintenance of software system
structure,” Proc. Int. Conf. Software Maintenance, 1999.
(IEEE)

[5] L. Tahvildari, K. Kontoglannis and J. Mylopoulos, “Qual-
itydriven software re-engineering,” J. Syst. Softw., Vol.
66, pp. 225–239, 2003.

[6] Hyunsang Youn, Suhyeon Jang and Eunseok Lee, “De-
riving queuing network model for UML for software per-
formance prediction,” Fifth International Conference on
Software Engineering Research, Management and Appli-
cation, pp. 125–131, 2007. (IEEE)

[7] J. M. Fernandes, S. Tjell, J. B. Jorgensen and O. R.
Ribeiro, “Designing tool support for translating use cases
and UML 2.0 sequence diagrams into a colored Petri
Net,” Proc. 16th international Workshop on Scenarios and
State Machines, 2007. (IEEE)

[8] R. G. Pettit and H. Gomma, “Analyzing behavior of con-
current software designs for embedded systems,” Proc.
10th International Symposium on Object and Compo-
nent-Oriented Real-Time Distributed Computing, 2007.
(IEEE)

[9] Andolfif., F. Aquilani, S. Balsamo, and P. Inverardi, “De-
riving performance models of software architectures from
message sequence charts,” Proc. 2nd Int. Workshop on
Software and Performance (WOSP2000), Canada, 2000.

[10] Y. Gourhant, S. Louboutin, V. Cahill, A. Condon, G.
Starovic, and B. Tangney, “Dynamic clustering in an ob-
ject-oriented distributed system,” Proc. OLDA-II (Objects
in Large Distributed Applications), Ottawa, Canada, Oc-
tober 1992.

[11] D. Deb, M. Fuad, and M. J. Oudshoom, “Towards auto-
nomic distribution of existing object oriented programs,”
Int. Conf. Autonomic and Autonomous Systems (ICAS’
06), 2006. (IEEE)

[12] T. Fahringer and A. Jugravu, “JavaSymphony: New di-
rectives to control and synchronize locality, parallelism,
and load balancing for cluster and GRID-computing,”
Proc. Joint ACM Java Grande–ISCOPE 2002 Conf., Se-
attle, Washington, November 2002.

[13] S. Parsa and O. Bushehrian, “Genetic clustering with
constraints,” Journal of research and practice in informa-
tion technology, Vol. 39, No. 1, pp. 47–60, 2007.

[14] http://www.info.uni-karlsruhe.de/~compost, last visit: 12th
September 2009.

[15] M. Schoeberl, “A time predictable Java processor,” Proc.
Conf. Design, Automation and Test in Europe, Germany,
pp. 800–805, 2006.

[16] S. Parsa and O. Bushehrian, “Performance-driven object
oriented program re-modularization,” Journal of IET
Software, Vol. 2, No. 4, pp. 362–378, 2008.

[17] B. S. Mitchell, “A heuristic search approach to solving
the software clustering problem,” Ph.D Thesis, Drexel
University, March 2002.

J. Software Engineering & Applications, 2009, 2: 150-159
doi:10.4236/jsea.2009.23022 Published Online October 2009 (http://www.SciRP.org/journal/jsea)

Copyright © 2009 SciRes JSEA

Data Mining in Biomedicine: Current Applications and
Further Directions for Research

S. L. TING1, C. C. SHUM2, S. K. KWOK1, A. H. C. TSANG1, W. B. LEE1

1Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China; 2Department of
Computing, The Hong Kong Polytechnic University, Hong Kong, China.
Email: jacky.ting@polyu.edu.hk

Received January 16th, 2009; revised June 18th, 2009; accepted June 24th, 2009.

ABSTRACT

Data mining is the process of finding the patterns, associations or relationships among data using different analytical
techniques involving the creation of a model and the concluded result will become useful information or knowledge.
The advancement of the new medical deceives and the database management systems create a huge number of data-
bases in the biomedicine world. Establishing a methodology for knowledge discovery and management of the large
amounts of heterogeneous data has become a major priority of research. This paper introduces some basic data mining
techniques, unsupervised learning and supervising learning, and reviews the application of data mining in biomedicine.
Applications of the multimedia mining, including text, image, video and web mining are discussed. The key issues faced
by the computing professional, medical doctors and clinicians are highlighted. We also state some foreseeable future
developments in the field. Although extracting useful information from raw biomedical data is a challenging task, data
mining is still a good area of scientific study and remains a promising and rich field for research.

Keywords: Data Mining, Biomedicine

1. Introduction

With the tremendous improvement in the speed of com-
puter and the decreasing cost of data storage, huge vol-
umes of data are created. However, data itself has no
value. Only if data can be changed to information, it be-
comes useful. In order to generate meaningful informa-
tion, or knowledge from database, the field of data min-
ing was born. The data mining field is about two decade
old. Early pioneers such as U. Fayyad, H. Mannila, G.
Piatetsky-Shapiro, G. Djorgovski, W. Frawley, P. Smith,
and others found that the traditional statistical techniques
were not adequate to handle the mass amount of data.
They recognized the need of better, faster and cheaper
ways to deal with the dramatic increase in the amount of
data.

Nowadays, besides the numerous number of databases
created and accumulated in a dramatic speed, data is no
longer restricted to numeric or character only especially
in the biomedicine aspect. The advanced medical de-
ceives and database management systems enable the in-
tegration of the different types of high dimensional mul-
timedia data (e.g. text, image, audio, and video) under
the same umbrella. Establishing a methodology for kno-
wledge discovery and management of large amounts of
heterogeneous data has therefore become a main priority.

Various techniques are used in different areas of bio-
medicine, including genomics, proteomics, medical di-
agnosis, effective drug design and pharmaceutical indus-
try.

In this paper, we would first give a brief outline on
what is data mining, its position or role in the knowledge
discovery process and the basic principles of some com-
monly used data mining techniques. Next, we present our
investigation results of the applications of the data min-
ing in the biomedicine aspect, which includes the area of
biology, medicine, pharmacy and health care. Lastly, we
discuss some difficulties of data mining in biomedicine
and the possible direction for the future development.

2. What is Data Mining?

Data mining (DM) is the process of finding the patterns,
associations or relationships among data using different
analytical techniques involving the creation of a model
and the concluded result will become useful information
or knowledge. DM can also be expressed as
 Nontrivial extraction of implicit, previously un-

known, and potentially useful information from data [1];
and
 Making sense of large amounts of mostly unsuper-

vised data in some domain [2]

Data Mining in Biomedicine: Current Applications and Further Directions for Research 151

It is an interdisciplinary subject that lies at the inter
face of pattern recognition and database systems and
emerges the techniques from the mathematics and statis-
tical disciplines as well as from the artificial intelligence
and machine leaning communities. It has a great deal in
common with statistics but on the other hand, there are
differences. Unlike statistics, data mining can be due
with heterogeneous data fields.

Very often, the term knowledge discovery is used to-
gether with Data Mining. Knowledge discovery, also
known as knowledge discovery in database (KDD), is the
process that seeks new knowledge in some application
domain. DM is one of the steps in the knowledge discov-
ery process. Figure 1 is an outline of the six step hybrid
KDD model developed by [2].

The initial step of understanding the problem domain
involves working closely with domain experts to define
the problem and determine the project goals, and learning
about current solutions to the problem. A description of
the problem, including its restrictions, is prepared. The
DM tool to be used in the later stage is selected. Next, we
need to understand the data which includes collecting
sample data and deciding which data, including format
and size, will be needed. Data are checked for complete-
ness, redundancy, missing values, plausibility of attribute
values, etc. Preparation of data decides which data will
be used as input for DM methods in the subsequent step.
It involves sampling, running correlation and signifi-
cance tests, and data cleaning. Data miner then uses

various DM methods to derive knowledge from preproc-
essed data. Evaluation includes understanding and
checking if the result is novel. Finally, we will decide
how to use and deploy the discovered knowledge.

3. Data Mining Techniques

Data mining techniques fall into two broad categories:
unsupervised and supervised. Unsupervised learning re-
fers to the technique that is not guided by any particular
variable or class label. In the unsupervised learning, we
do not create a model or hypothesis prior to the analysis.
We apply the algorithm directly to the data and observe
the results. A model will then be built according to the
results. Thus, unsupervised leaning is used to define class
for data without class assignments. Clustering is one of
the common unsupervised techniques.

In contrast, for supervised learning, a model is built
prior to the analysis. We then apply the algorithm to the
data in order to estimate the parameters of the model.
The objective of building models using supervised
learning is to predict an outcome or category of interest.
The biomedical literature on applications of supervised
learning techniques is vast. Classification, statistical re-
gression and association rules building are very common
supervised learning techniques used in medical and
clinical research. Table 1 is the summary comparing the
characteristics and the techniques used for the two dif-
ferent learning methods. Followed is a brief explanation

Figure 1. Six-step hybrid KDD model [2]

Copyright © 2009 SciRes JSEA

Data Mining in Biomedicine: Current Applications and Further Directions for Research 152

Table 1. Comparing the characteristics and the techniques of the unsupervised and supervised learning

 Characteristics Techniques

Unsupervised Learning
 No guidance
 Use to Define the class
 Seldom utilized (until recently)

 Clustering
 Association Rule

Supervised Learning
 With guidelines
 Class defined
 Common with vast literature and application

 Classification
 Statistical Regression
 Artificial neural networks

of the four learning techniques.

3.1 Clustering

Clustering is an unsupervised learning technique reveal-
ing natural groupings in the data. Cluster analysis refers
to the grouping of a set of data objects into clusters. A
cluster is a collection of data objects which are similar to
one another within the same cluster but not similar to the
objects in another cluster. Clustering is also called unsu-
pervised classification where no predefined classes are
assigned.

3.2 Association Rule

Association rule discovery is to find the relationships
between the different items in a data base. It is normally
express in the form X => Y, where X and Y are sets of
attributes of the dataset which implies that transactions
that contain X also contain Y.

3.3 Classification

Classification is a supervised learning method. It is a
method of categorizing or assigning class labels to a pat-
tern set under the supervision. The object of classifica-
tion is to develop a model for each class. Classification
methods can usually be categorized as follows:

a) Decision tree
Decision tree classifiers divide a decision space into

piecewise constant regions. It splits a dataset on the basis
of discrete decisions, using certain thresholds on the at-
tribute values. It is one of the most widely used classifi-
cation method as it is easy to interpret and can be repre-
sented under the If-then-else rule condition.

b) Nearest-neighbor
Nearest-neighbor classifiers [3] typically define the

proximity between instances, find the neighbors if a new
instance, and then assign to it the label for the majority
class of its neighbors.

c) Probabilistic models
Probabilistic models are models which calculate prob-

abilities for hypotheses base on Bayes’ theorem [3].

3.4 Statistical Regression

Regression models are very popular in the biomedical

literature and have been applied in virtually every sub-
specialty of medical research. Before computers were
widely used, linear regression was the most popular
model to find solutions of the problem of estimating the
intercept and coefficients of the regression question. It
has solid foundation from the statistical theory. Linear
regression is similar to the task of finding the line that
minimizes the total distance to a set of data. That is find
the equation for line Y = a + bX. With the help of com-
puters and software package, we can calculate the high
complex models.

3.5 Artificial Neural Networks

Artificial neural networks [4] are signal processing sys-
tems that try to emulate the behavior of human brain by
providing a mathematical model of combination of nu-
merous neurons connected in a network. It learns through
examples and discriminate the characteristics among
various pattern classes by reducing the error and auto-
matically discovering inherent relationships in a data-rich
environment. No rules or programmed information is
need beforehand. It composes of many elements, called
nodes which are connected in between. The connection
between two nodes is weighted and by the adjustment of
these weights, the training of the network is performed.
The weights are network parameters and their values are
obtained after the training procedure. There are usually
several layers of nodes. During the training procedure,
the inputs are directed in the input layer with the desir-
able output values as targets. A comparison mechanism
will operates between the out and the target value and the
weights are adjusted in order to reduce error. The proce-
dure is repeated until the network output matches the
targets. There are many advantages of neural networks
like adaptive learning ability, self-organization, real-time
operation and insensitivity to noise. However, it also has
a huge disadvantage that it is highly dependence on the
training data and it does not provide an explanation for
the decisions they make, just like working in the ‘black box’.

3.6 Advanced Data Mining Techniques

During the past few years, researchers have tried to com-
bine both unsupervised and supervised methods for the

Copyright © 2009 SciRes JSEA

Data Mining in Biomedicine: Current Applications and Further Directions for Research 153

analysis [5]. Some examples of advanced unsupervised
learning models are hierarchical clustering, c-means
clustering self-organizing maps (SOM) and multidimen-
sional scaling techniques. Advanced examples of the
supervised learning models classification and regression
trees (CART) and support vector machines [6].

4. Applications of Data Mining in Biomedicine

4.1 Data Mining Models

Data mining applies in descriptive modeling for under-
standing. In [7], Tseng and Yang use Gene Ontology
(GO) to group genes in advance in order to show the po-
tential relations among gene groups and discover the
hidden relations between genes set in association with
GO terms. It can also be used to predict the outcome of a
future observation or to assess the potential risk in a dis-
ease situation. Regarding the predictive power, data
mining algorithms can learn from past examples in clini-
cal data and model the oftentimes non-linear relation-
ships between the independent and dependent variables,
thereby the resulting model representing the formalized
knowledge that can often provide a good diagnostic op-
tion [8]. Data mining techniques have been widely used
to find new patterns and knowledge from biomedical
data.

4.2 Recent Development

The typical data mining process involves transferring
data originally collected in production systems (such as
electronic medical records) into data warehouse, cleaning
or scrubbing the data to remove errors and check for

format consistency, and then searching the data using
statistical model, artificial intelligence (such as neural
networks), and other machine learning methods [9]. In
[10], Prather et al. employs the KDD for identifying the
factors that will improve the quality and cost effective-
ness of perinatal care in an extensive clinical database of
obstetrical patients. Given the data warehouse of diabetic
patients, Breault et al. employ the CART to investigate
the factors affecting the occurrence of diabetics [11].
They are surprisingly discovered that younger age pre-
dicts bad diabetic control, in which explore a new area to
manage the diabetic control in younger age. Similar ap-
plications of data mining can also be found in Table 2.

Apart from the diagnostic prediction, the knowledge
discovery ability in data mining also demonstrated a
good detector in adverse drug events (ADE). In [12],
Wilson et al. utilize the KDD techniques in pharma-
covigilance for detecting signals earlier than using exist-
ing methods. In [13], Lian et al. has pointed out that the
prescription is specified by a preference function based
on the user's preference in prior clinical experience. Thus,
they propose a dose optimization framework based on
probability theory. In [14], Susan and Warren have
demonstrated that the conditional probability (CP) model
is superior in optimizing the drug lists over the multiple
linear regression and discriminant analysis models. Con-
cerning the strong relationship between the diagnosis and
medication, it formulates a posterior probability (what
medication is needed) based on a priori probability (what
diagnosis has been made). This approach aligns with the
Mediface as purposed by [15].

Table 2. Recent applications of data mining

Author Description

Megalooikonomou et al. [20]
They introduce statistical methods that aid the discovery of interesting associations and patterns between brain
images and other clinical data

Brossette et al. [21]
They design a Data Mining Surveillance System (DMSS) that uses novel data mining techniques to discover
unsuspected, useful patterns of nosocomial infections and antimicrobial resistance from the analysis of hospital
laboratory data

Antonie et al. [22]
They investigate the use of different data mining techniques for anomaly detection and classification of medi-
cal images

Coulter et al. [23] They examine the relation between antipsychotic drugs and myocarditis and cardiomyopathy

Li et al.[24]
They explore a novel analytic cancer detection method with different feature selection methods and to compare
the results obtained on different datasets and that reported by Petricoin et al. in terms of detection performance
and selected proteomic patterns

Delen et al.[25]
They use two popular data mining algorithms (artificial neural networks and decision trees) along with a most
commonly used statistical method (logistic regression) to develop the prediction models on breast cancer using
a large dataset.

Su et al. [26] They use four different data mining approaches to select the relevant features from the data to predict diabetes

Phillips-Wren et al. [27]
They assess the utilization of healthcare resources by lung cancer patients related to their demographic charac-
teristics, socioeconomic markers, ethnic backgrounds, medical histories, and access to healthcare resources in
order to guide medical decision making and public policy

Copyright © 2009 SciRes JSEA

Data Mining in Biomedicine: Current Applications and Further Directions for Research 154

Figure 2. Framework for the integrated approach [17]

In recent years, numerous researchers intend to inte-

grate several data mining and artificial intelligence tech-
niques together to enhance the mining result and support
decision making. For example, Kuo et al. integrate the
clustering analysis and association rules mining tech-
nique to cluster the health insurance database and hence
discover the useful rules for each group [16]. In [17],
Zhuang et al. combine the data mining and case-based
reasoning (CBR) methodologies to provide intelligent
decision support for pathology test ordering by GPs.
They guarantee the integrated system can enhance the
testing ordering in term of evidence based, situational

relevance, flexibility and interactivity. In [18], Huang et
al. propose a model of a chronic diseases prognosis and
diagnosis (CDPD) system by integrating data mining and
CBR to support the chronic disease treatment. Compared
with traditional coronary artery diseases (CAD) diagnos-
tic methodologies, Tsipouras et al. integrate the decision
trees and fuzzy modeling to form a fuzzy rule-based de-
cision support system that obtain a significant improve-
ment compared with artificial neural networks and adap-
tive neuro-fuzzy inference system [19]. Example of such
integration can be found in Figure 2.

All in all, most of the existing data mining applications

Copyright © 2009 SciRes JSEA

Data Mining in Biomedicine: Current Applications and Further Directions for Research 155

are focused on exploring the pattern in sound biomedical
databases. With proper structure of the data collected via
different medical devices, data mining techniques can
serve as a promising tool to convert the information into
useful and valuable knowledge to physicians and re-
searchers.

4.3 Current Trend

4.3.1 Multimedia Mining
Classically, databases were formed by tuples of numeric
and alphanumeric contents, but with the widespread use
of medical information systems, information absorption
are now expands to different data types including text,
document, image, graphics, speech, audio, hypertext, etc.
At the same time, the growth in Internet information can
also be considered as a new dimension as a distributed
multimedia database of the largest useful information.
Concerning the tremendous amount of visual information,
it is obvious that the development of data mining tech-
niques in these multimedia data is the next generation in
biomedicine. With the widely advanced in digital multi-
media technology, numerous researchers introduce sev-
eral novel data mining techniques, namely image mining,
text mining, video mining, and web mining. Below we
will discuss these four technology revolution and how
does it impact the biomedicine area.

4.3.2 Text Mining
Apart from the medical images and signals, another

clinical data that physicians would like to interpret is the
unstructured free-text. Regarding there is a lot of infor-
mation presented in text or document databases, in form
of electronic books, research articles, digital libraries,
medical dictionaries, etc., several researchers developed
a novel data mining approach in extracting useful
knowledge from textual data or documents, so called the
text mining [28,29]. For example, we can employs text
mining techniques to extract the information of pro-
tein-protein interaction within three different documents.

In addition to the traditional data mining techniques,
text mining uses techniques from many multidisciplinary
scientific fields (e.g. text analysis techniques) to gain
insight and automatically reveal useful information to the
human users. In [30], Cohen and Hunter describe text
mining is “the use of automated methods for exploiting
the enormous amount of knowledge available in the
biomedical literature”. One of the examples of text min-
ing is to manage the health information in Internet and
response the needs for those who have health information
inquiry in HIV/AIDS [31]. Another common application
of text mining is used to extract the information of pro-
tein-protein interaction. When given the unstructured text,
Zhou et al. employ the semantic parsing and hidden vec-
tor state model to mine the knowledge within the text
[32]. By setting the annotation PROTEIN_NAME (AC-
TIVATE(PROTEIN_NAME), the system will automati-
cally generate the result as shown in Figure 3.

Figure 3. Semantic parsing employed in protein documents [32]

Copyright © 2009 SciRes JSEA

Data Mining in Biomedicine: Current Applications and Further Directions for Research 156

4.3.3 Image Mining
More and more medical procedures employ imaging as a
preferred diagnostic tool. Thus, there is a need to develop
methods for efficient mining in images databases, which
is completely different and more difficult than mining in
structured datatypes. Therefore, mining of image data is
a challenge problem. Meanwhile, with numerous imag-
ing techniques (such as SPECT, MRI, PET, and collec-
tion of ECG or EEF signals) can generate gigabytes of
data per day, and heterogeneous nature of image data
(like a single cardiac SPECT procedure of one patient
may contain dozens of 2D images), image mining has
become one of the emerging field in biomedical study.
Typically, most of the activities in mining image data are
based on the searching, retrieving and comparing of
query image with the stored image by its degree of simi-
larity or feature(s). In [22], Antonie et al. present the use
of different data mining techniques for tumor classifica-
tion in digital mammography and they find that associate
rule obtains a better result than neural networks. Fur-
thermore, in order to tackle the issue of complicated na-
ture of surrounding of breast tissue, the variation of MCs
in shape, orientation, brightness and size, Peng et al.
propose knowledge-discovery incorporated genetic algo-
rithm (KD-GA) to search for the bright spots in mam-
mogram and hence evaluate the possibility of a bright
spot being a true MC, and adaptively adjust the associ-
ated fitness values [34]. Another example, which intro-
duces a notion of image sequence similarity patterns
(ISSP) for discovering the possible Space-Occupying
Lesion (PSO) in brain images, is presented by [35].

4.3.4 Video Mining
With the advancement in streaming audio and digital TV,
more and more video data are stored in which this brings
the interest of researchers to discover and explore inter-
esting patterns in the audio-visual content. In order to
meet such demand, video mining is developed. In the
biomedicine area, it is observed that specialists intend to
use cameras to take the video in each operation, which
imply there are ample opportunities of applying data
mining principles in conjunction with the video retrieval
techniques. For example, Zhu et al. introduce a video
database management framework and strategies for video
content structure and events mining [36]. They first seg-
mented the video shot into groups and hence organized
the video shots into a hierarchical structure using clus-
tered scenes, scenes, groups, and shots, in increasing
granularity from top to bottom. With a sound structure,
audio and video processing techniques are integrated to
mine event information, such as dialog, presentation and
clinical operation, from the detected scenes.

4.3.5 Web Mining
Internet is growing at a tremendous speed. World Wide
Web (WWW) becomes the largest database that ever

existed. In particular, many medical literatures are writ-
ten in electronic format which are widely available and
accessible in the Internet nowadays. Therefore, the capa-
bility of knowledge discovery and retrieving information
from WWW is important to physicians. But, the com-
plexity of web pages and the dynamic nature of data
stored in the Internet make adoption of data mining tech-
niques difficult. In [37], web mining is the use of data
mining techniques to automatically retrieve, extract and
evaluate information for knowledge discovery from the
Internet. With its exploratory of hidden information abil-
ity, Yu and Jonnalagadda present an approach regarding
Semantic Web and mining that can improve the quality
of Web mining results and enhance the functions and
services and the interoperability of medical information
systems and standards in the healthcare field [38].

5. Discussions

Biomedicine has been evolved as a new application area
for data mining in recent year. As reflected by the brief
literature survey in this study, the current data mining
research concentrates on applying the data mining tech-
niques to manage the complex and unstructured data, and
in particular in form of visual and textual nature. Al-
though numerous studies resulting satisfactory result of
data mining adoption, it is found that data quality is one
of the major challenges on impacting the performance in
the biomedicine industry. In theory, data mining is a data
driven approach as the outcome of data mining heavily
depends on the quality and quantity of available data.
However, the data in the biomedicine area is rather com-
plex in nature. Thus, in order to enhance the performance
of data mining adoption in the domain area, concerns are
raised as follow:

a) Huge volume of data
Because of the sheer size of databases, it is unlikely

that any of the data mining methods will succeed with
raw data. In the field of biomedicine, it is particular true
that particular medical experts are required to pre-process
the data before adopting data mining. As different medi-
cal experts are professional in different medical aspects,
therefore it is time consuming and labor intensive to
handle the data beforehand.

b) Dynamic nature of data
Databases are constantly updated and adding new in-

formation at an alarming rate. For example, new SPECT
images (for the same or a new patient), or by replacement
of the existing ones (a SPECT had to be repeated because
of technical problems). This requires methods that are
able to incrementally update the knowledge learned so
far.

c) Incomplete or imprecise data
The information collected in a database can be either

incomplete or imprecise. To address this problem, fuzzy
sets and rough sets were developed explicitly.

Copyright © 2009 SciRes JSEA

Data Mining in Biomedicine: Current Applications and Further Directions for Research 157

d) Noisy data
It is very difficult for any data collection technique to

entirely eliminate noise. This implies that data mining
methods should be made less sensitive to noise, or care
should be taken that the amount of noise in data to be
collected in the future will be approximately the same as
that in the current data.

e) Missing attribute values
Missing values create a problem for most data mining

methods, since nearly all the methods require a fixed
dimension for each data object. In fact, this problem is
widely encountered in the medical databases because
most medical data are collected as a byproduct of patient
care activities, rather than for organized research proto-
cols; even in some large medical databases such as breast
cancer data set from University of Wisconsin Hospitals,
this problem are still existed. Typically, one approach to
remedy this problem is to ignore the missing values, or
omit any records containing missing values; whereas
another approach is to substitute missing values with
mostly likely values from obtaining values in the mode
or mean, or directly infer missing values from existing
values via artificial intelligence method (e.g. case-based
reasoning).

f) Redundant, insignificant data, or inconsistent data
The data set may contain redundant, insignificant, or

inconsistent data objects and attributes. Generally, medi-
cal data can be stored in numeric and textual format; in
which a large amount of preprocessing is required in or-
der to make the data useful. For example, misspelled of
medical terms is frequently occurred and one medication
or condition may be commonly referred to by a variety of
names (i.e. stomach and abdominal pain).

In addition to the data quality perspectives, several
considerations are also been made:

a) Quality of learning mechanism
Over- and under-learning will affect the performance

of data mining in which the learning mechanism will
misunderstand the human’s preferences and require hu-
man to adjust for achieving the goal state.

b) Quality of knowledge representation
Knowledge representation is an important element to

represent knowledge in an understandable manner to
facilitate the conclusions drawn from knowledge. If the
machine is insufficient to store the knowledge discovered,
it is also incapable to represent them; thus, such insuffi-
cient knowledge will make the machine less intelligent.

c) Nature of problem
When the problem is too complex, chaos, or has not

encountered before, the intelligent machine do not have
enough knowledge or time to deduce an appropriate re-
sult. Using the case of diagnostic decision support as an
example, if most of the learning cases and rules are re-
lated to some general diagnosis, when there is a new case

related to specific diagnosis encountered, the system
cannot provide a good solution since there are no rules
triggered inside in the system.

As a result, with this study at hand, we can conclude
that opportunities to use data mining truly in biomedicine
will happen only when the data quality is committed to
the level of standard and there are new methods or algo-
rithms to handle the complex data types. Furthermore,
adoption of data mining in biomedicine is quite a young
field with many issues that still need to be researched and
explored in depth. Some further research directions and
questions are summarized as follow:

a) An absurd and false model may fit perfectly if the
model has enough complexity by comparison to the
amount of data available. When the degrees of freedom
in parameter selection exceed the information content of
the data, this leads to arbitrariness in the final (fitted)
model parameters which reduces or destroys the ability
of the model to generalize beyond the fitting data. If
you've got a learning algorithm in one hand and a dataset
in the other hand, to what extent can you decide whether
the learning algorithm is in danger of over-fitting or un-
der-fitting? Almost all of the data mining research is
done on an ad-hoc base. The techniques are designed for
an individual problem. There is no unifying theory.

b) The storage of large multimedia databases is often
required to be in compressed form. Data compression if
the techniques to reduce the redundancies in data repre-
sentation. Reducing the storage requirement is equivalent
to increasing the capacity of the storage medium. The
development of the data compression technology will
play a significant role in terms of the performance of data
mining. However, it seems the data compression field
has so far been neglected by the data mining community.

c) In today’s networked society, data care not stored in
a single place. Internet has no doubt being the greatest
and largest databases that we have ever had. Information
inside the internet is often a mixed of text, image, audio,
speech, hypertext, graphics and video components. In
many cases, databases spread over multiple files in dif-
ferent disks or in different geographical locations. How
to handle or collaborate all kind of heterogeneous data in
a distributed environment will open up a newer area of
development.

d) More and more multimedia data mining systems
will be used by medical doctors or clinicians. The design
of the system needs to take into consideration of the hu-
man perceptual. How to develop a system work synergis-
tically is a subject of ongoing research. In order to
achieve the goal, biologist, medical doctors, clinicians
and the computing professional all need to work closely
together. Any little part missing may lead to the failure of
the system design.

Copyright © 2009 SciRes JSEA

Data Mining in Biomedicine: Current Applications and Further Directions for Research 158

6. Conclusions

The well use of the data mining tools in the biomedicine
should bring revolutionary impact to the field. The study
of biomedical processes is heavily based on the identifi-
cation of understandable patterns which are present in the
data. These patterns may be used for diagnostic or prog-
nostic purpose as well as the analysis of microarrays.
Data mining is at the care of the pattern recognition
process. Biologist, medical doctors, clinicians and com-
puting professionals should collaborate so that the two
fields can contribute to each other. The challenge is for
each to widen its focus to attain harmonious and produc-
tive collaboration to develop the best practices.

7. Acknowledgement

The authors would like to express their sincere thanks to
the Research Committee of The Hong Kong Polytechnic
University for financial support of the research work
presented in this paper.

REFERENCES
[1] W. Frawley, G. Piatetsky-Shapiro, and C. Matheus,

“Knowledge discovery in databases: An overview,” AI
Magazine, pp. 213–228, 1992.

[2] K. J. Cios, W. Pedrycz, R. W. Swiniarski, and L. A. Kur-
gan, “Data mining: A knowledge discovery approach,”
Springer, New York, 2007.

[3] J. T. Tou and R. C. Gonzalez, “Pattern recognition prin-
ciples,” Addison-Wesley, London, 1974.

[4] R. O. Duda, P. E. Hart, and D. G. Stork, “Pattern classi-
fication,” Wiley, 2001.

[5] T. Hastie, R. Tibshirani, and J. Friedman, “The elements
of statistical learning: Data mining, inference, and predic-
tion,” Springer, New York, 2001.

[6] J. W. Lee, J. B. Lee, M. Park, and S. H. Song, “An exten-
sive comparison of recent classification tools applied to
microarray data,” Computational Statistics & Data
Analysis, Vol. 48, No. 4, pp. 869–885, 2005.

[7] V. S. Tseng and S. C. Yang, “Mining multi-level associa-
tion rules from gene expression profiles and gene ontol-
ogy,” in Proceedings IEEE Workshop Life Science Data
Mining (held with IEEE ICDM), UK, November 2004.

[8] H. Chen, S. S. Fuller, C. Friedman, and W. Hersh,
“Medical informatics–knowledge management and data
mining in biomedicine,” Springer, 2005.

[9] C. D. Krivda, “Data-Mining Dynamine,” Byte, 1995.

[10] J. C. Prather, D. F. Lobach, L. K. Goodwin, J. W. Hales,
M. L. Hage, and W. E. Hammond, “Medical data mining:
Knowledge discovery in a clinical data warehouse,” in
Proceedings AMIA Annual Fall Symposium, pp. 101–
105, 1997.

[11] J. L. Breault, C. R. Goodall, and P. J. Fos, “Data mining a
diabetic data warehouse,” Artificial Intelligence in Medi-
cine, Vol. 26, pp. 37–54, 2002.

[12] A. M. Wilson, L. Thabane, and A. Holbrook, “Applica-
tion of data mining techniques in pharmacovigilance,”
British Journal of Clinical Pharmacology, Vol. 57, No. 2,
pp. 127–134, 2004.

[13] J. Lian, C. Cotrutz, and L. Xing, “Therapeutic treatment
plan optimization with probability density-based dose
prescription,” Medical Physics, Vol. 30, No. 4, pp. 655–
666, 2003.

[14] E. G. Susan and J. M. Warren, “Statistical modelling of
general practice medicine for computer assisted data entry
in electronic medical record systems,” International Jour-
nal of Medical Informatics, Vol. 57, No. 2-3, pp. 77–89,
2000.

[15] J. R. Warren, A. Davidovic, S. Spenceley, and P. Bolton,
“Mediface: Anticipative data entry interface for general
practitioners,” in Proceedings Computer Human Interac-
tion Conference 1998, pp. 192–199, 1998.

[16] R. J. Kuo, S. Y. Lin, and C. W. Shih, “Mining association
rules through integration of clustering analysis and ant
colony system for health insurance database in Taiwan,”
Expert Systems with Applications, Vol. 33, pp. 794–808,
2007.

[17] Z. Y. Zhuang, L. Churilov, F. Burstein, and K. Sikaris,
“Combining data mining and case-based reasoning for
intelligent decision support for pathology ordering by
general practitioners,” European Journal of Operational
Research, Vol. 195, No. 3, pp. 662–675, 2009.

[18] M. J. Huang, M. Y. Chen, and S. C. Lee, “Integrating
data mining with case-based reasoning for chronic dis-
eases prognosis and diagnosis,” Expert Systems with Ap-
plications, Vol. 32, No. 3, pp. 856–867, 2007.

[19] M. G. Tsipouras, T. P. Exarchos, D. I. Fotiadis, A. P.
Kotsia, K. V. Vakalis, K. K. Naka, and L. K. Michalis,
“Automated diagnosis of coronary artery disease based on
data mining and fuzzy modeling,” IEEE Transactions on
Information Technology in Biomedicine, Vol. 12, No. 4,
pp. 447–457, 2008.

[20] V. Megalooikonomou, J. Ford, L. Shen, F. Makedon, and
A. Saykin, “Data mining in brain imaging,” Statistical
Methods in Medical Research, Vol. 9, No. 4, pp. 359–394,
2000.

[21] S. E. Brossette, A. P. Sprague, W. T. Jones, and S. A.
Moser, “A data mining system for infection control sur-
veillance,” Methods of Information in Medicine, Vol. 39,
No. 4-5, pp. 303–310, 2000.

[22] M. L. Antonie, O. R. Zaiane, and A. Coman, “Application
of data mining techniques for medical image classifica-
tion,” in Proceedings Second International Workshop on
Multimedia Data Mining, pp. 94–101, 2001.

[23] D. M. Coulter, A. Bate, R. H. B. Meyboom, M. Lindquist,
and R. Edwards, “Antipsychotic drugs and heart muscle
disorder in international pharmacovigilance: Data mining
study,” British Medical Journal, Vol. 322, pp. 1207–1209,
2001.

[24] L. Li, H. Tang, Z. Wu, J. Gong, M. Gruidl, J. Zou, M.
Tockman, and R. Clark, “Data mining techniques for
cancer detection using serum proteomic profiling,” Arti-

Copyright © 2009 SciRes JSEA

Data Mining in Biomedicine: Current Applications and Further Directions for Research

Copyright © 2009 SciRes JSEA

159

ficial Intelligence in Medicine, Vol. 32, No. 2, pp. 71–83,
2004.

[25] D. Delen, G. Walker, and A. Kadam, “Predicting breast
cancer survivability: A comparison of three data mining
methods,” Artificial Intelligence in Medicine, Vol. 34, No.
2, pp. 113–27, 2005.

[26] C. T. Su, C. H. Yang, K. H. Hsu, and W. K. Chiu, “Data
mining for the diagnosis of type II diabetes from three-
dimensional body surface anthropometrical scanning
data,” Computers & Mathematics with Applications, Vol.
51, No. 6–7, pp. 1075–1092, 2006.

[27] G. Philips-Wren, P. Sharkey, and S. Morss, “Mining lung
cancer patient data to assess healthcare resource utiliza-
tion,” Expert Systems with Applications: An International
Journal, Vol. 35, No. 4, pp. 1611–1619, 2008.

[28] M. Hearst, “Untangling text data mining,” in the Pro-
ceedings ACL’99: The 37th annual meeting of the asso-
ciation for computational linguistics, University of Mary-
land, June 1999.

[29] H. Chen, “Knowledge management systems: A text min-
ing perspective,” Tucson, AZ, The University of Arizona,
2001.

[30] K. B. Cohen and L. Hunter, “Getting started in text min-
ing,” PLoS Computational Biology, Vol. 4, No. 1, doi:
10.1371/journal.pcbi.0040020, 2008.

[31] Y. Ku, C. Chiu, B. H. Liou, J. H. Liou, and J. Y. Wu,
“Applying text mining to assist people who inquire
HIV/AIDS information from Internet,” in Proceedings ISI
2008 Workshops, pp. 440–448, 2008.

[32] D. Zhou, Y. He, and C. K. Kwoh, “Validating text mining
results on protein-protein interactions using gene expres-
sion profiles,” in Proceedings International Conference on
Biomedical and Pharmaceutical Engineering 2006, pp.
580–585, 2006.

[33] Y. Peng, B. Yao, and J. Jiang, “Knowledge-discovery
incorporated evolutionary search for microcalcification
detection in breast cancer diagnosis,” Artificial Intelli-
gence in Medicine, Vol. 37, No. 1, pp. 43–53, 2006.

[34] H. Pan, Q. Han, X. Xie, Z. Wei, and J. Li, “A Similarity
retrieval method in brain image sequence database,” Ad-
vanced Data Mining and Applications, Vol. 4632, pp.
352–364, 2007.

[35] X. Zhu, W. G. Aref, J. Fan, A.C. Catlin, and A. K. Elma-
garmid, “Medical video mining for efficient database in-
dexing, management and access,” in Proceedings 19th
International Conference on Data Engineering, pp.
569–580, 2003.

[36] R. Kohavi, B. Masand, M. Spilipoulou, and J. Srivastava,
“Web mining,” Data Mining and Knowledge Discovery,
Vol. 6, pp. 5–8, 2002.

[37] W. D. Yu and S. R. Jonnalagadda, “Semantic web and
mining in healthcare,” in Proceedings 8th International
Conference on e-Health Networking, Applications and
Services, pp. 198–201, 2006.

[38] S. Mitra and T. Acharya, “Data mining: Multimedia, soft
computing and bioinformatics,” John Wiley & Sons, Inc.,
New Jersey, 2003.

J. Software Engineering & Applications, 2009, 2: 160-164
doi:10.4236/jsea.2009.23023 Published Online October 2009 (http://www.SciRP.org/journal/jsea)

Copyright © 2009 SciRes JSEA

A Solution Based on Modeling and Code Generation for
Embedded Control System

Guohua WU, Dongwu CHENG, Zhen ZHANG

School of Computer Science, Hangzhou Dianzi University, Hangzhou, China.
Email: wugh@hdu.edu.cn, cdw8411@163.com, zwhnz@zj165.com

Received April 2nd, 2009; revised May 30th, 2009; accepted July 4th, 2009.

ABSTRACT

With the development of computer technology, embedded control system plays an important role in modern industry.
For the embedded system, traditional development methods are time-consuming and system is not easy to maintain.
Domain-specific modeling provides a solution for the problems. In this paper, we proposed development architecture
for embedded control systems based on MIC. GME is used to construct meta-model and application model, model in-
terpreter interprets model and stores model information in xml format document. The final cross-platform codes are
automatically generated by different templates and xml format document. This development method can reduce time
and cost in the lifecycle of system development.

Keywords: Domain-Specific Modeling, Model Interpreter, Code Generation, Embedded Control System

1. Introduction

The processing capability of generous purpose micro-
processor is increasing and moving system development
emphasis from hardware to software. In order to meet the
embedded system requirements, software development
process becomes sophisticated. Developing embedded
control system with safety-critical and real-time charac-
teristics by the traditional method is time-consuming.

Matlab/Simulink [1] focuses on data visualization, al-
gorithms, analysis and numeric computing. The code can
be automatically generated from model. However, it is
not adequate for developing embedded control system.
Giotto [2] is a time-triggered language for embedded
control system which is developed by university of
Berkeley. It supports the automation of control system
designed by strictly separating platform-dependent func-
tionality from scheduling and communication. However,
developer must develop different virtual machines for
application, because application is interpreted on two
virtual machines: the scheduling and embedded machine.
In addition, the code generated by Giotto complier is
timing-code. Model-based development method is from
high level abstraction to build application. Currently,
unified modeling language (UML) [3] is the most popu-
lar modeling language. Although some diagrams are
suitable for automatic code generation, the implementa-
tion must be done by hand. As a general purpose model-

ing language, UML is unable to describe embedded con-
trol system characteristics such as deadline, and fault-
tolerance.

MIC [4–6] is a modeling framework based on models
and generation. It employs domain models to represent
system, its environment, and the relationships between
them. We use GME [7] for constructing meta-model and
application model. GME is a configurable toolkit and
supports domain-specific modeling. In the modeling
process, UML and Object Constraint Language (OCL) [8]
are used to express meta-model and constraints. The
BON2 [9] component is used to interpret model. In this
paper, we proposed an embedded control system devel-
opment framework based on domain-specific modeling.
The framework contains four layers: meta-meta model
layer, meta-model layer, model layer and implementation
layer. In the model interpreting process, we interpret
model and store information in xml format document.
The final code is generated by templates files and xml
document, implementing cross-platform codes automatic
generation.

The paper is organized as follows. In section 2, we il-
lustrate the embedded control system development ar-
chitecture. In section 3, we illustrate a meta-modeling
process and take an example of state machine in detail. In
section 4, we describe a method for model interpretation
and code generation. In section 5, we make a conclusion.

A Solution Based on Modeling and Code Generation for Embedded Control System 161

2. Embedded Control System Developments
Architecture

According to the characteristics of the embedded control
system and model-integrated computing (MIC), we di-
vided model architecture into four layers (see Figure 1).

1) Meta-meta model layer. Define meta-model model-
ing language, which is a general-purpose language and
independent on domain.

2) Meta model layer. This is the core and infrastruc-
ture of implementing domain model.

3) Model layer. Domain developers construct applica-
tion model according to domain knowledge and relevant
rules.

4) Implementation layer. This is the concrete imple-
mentation of application model. According to tasks dis-
tribution in the model, execute software and hardware
relevant operations.

3. Construct Meta-Model for Embedded
Control System

Meta-model is expressed by UML class diagrams and
OCL expressions, which specifies the static semantic and
syntax of domain-specific language. In the process of
meta-model modeling, the characteristics that impact sys-
tem function and performance such as currency, deadline
and the worst case execution time should be specified.

Figure 1. Embedded control system model architecture

Copyright © 2009 SciRes JSEA

A Solution Based on Modeling and Code Generation for Embedded Control System 162

Figure 2. The meta-model modeling process

Figure 3. State machines meta-mode

3.1 Meta-Model Modeling Processes

Formalization of modeling language to be the correspo-
nding meta-model is a recursive process (see Figure 2).

1) Identifying the characteristics and properties of the
embedded control system such as real-time, safety-criti-
cal and concurrent.

2) According to the abstract principles, acquiring suit-
able model from characteristic and properties.

3) Acquiring a higher level meta-model by formalizing
model which is used to construct domain models.

4) Synthesizing domain application model by domain
modeling language. If application model can not be cor-
rect constructed, retry to acquire meta-model until it is
successful.

5) Validating the application model against system
requirement. If the application model can not meet the
system requirements, retry to abstract domain model
again.

3.2 Meta-Model of FSM

State machine is an important component in the embed-
ded control system. The state machine model (see Figure
3), including initial state, terminal state, and state transi-
tion. Event triggers state transition and each state has
sequential behaviors. Initial state and terminal state de-
note the beginning and ending of the state machines re-
spectively. State transition is a common behavior and
each state may consist of multiple transitions.

The meta-model in form of class diagram together
with the constraints expressed in OCL provides a com-
plete formal definition for model.

3.3 Embedded Control System Modeling
Language

Domain specific modeling language (DSML) employs
domain-specific concept symbols to specify restrict yet
precise semantics. Formally, a modeling language is a
five-tuple of concrete syntax (C), abstract syntax (A),
semantic domain (S), semantic mapping (Mc) and syn-
tactic mapping (Ms) [10].

L=<C, A, S, Mc, Ms>

1) Abstract syntax (A), defining the concepts, rela-
tionships, and integrity constraints available in the lan-
guage.

2) Concrete syntax (C), defining the specific (graphi-
cal or textual) notation that is used to express models. It
may be graphical, textual or mixed.

3) Semantic domain (S), which is formal semantic de-
fined by mathematical formalism in terms of the meaning
of the model is explained.

4) Semantic mapping (Ms), A S mapping relates
syntactic concepts to the semantic domain.

5) Syntactic mapping (Mc), A C mapping syntactic
constructors (graphical, textual, or both) to the elements
of abstract syntax.

The primary participants in domain-specific modeling
are modelers. In the process of embedded control system
development, domain specific modeling language with
precise syntax and semantic will be defined from differ-
ent aspects.

4. Model Interpretation and Code Generation

Model interpreter plays an important role in the embed-

Copyright © 2009 SciRes JSEA

A Solution Based on Modeling and Code Generation for Embedded Control System 163

ded control system development. We can develop dif-
ferent interpreters for meeting requirements. The inter-
preter is similar to a complier of advanced programming
language. We take BON2 component to interpret model
which is provided by GME. BON2 consists of class and
interface, traversing objects in the model. The final
cross-platform codes are automatic generated by differ-
ent templates.

4.1 Model Interpretation

Model interpreter is a component of GME, which is used
to acquire objects’ information in application model.
Developers can build various interpreters according re-
quirements. The interpreters interpret model and store
model information in PIM document (see Figure 4), fa-
cilitating data transition and access.

Figure 4. Model Interpretation PIM document

Figure 5. Code generation architecture

Figure 6. Process of code generation

4.2 Based on Template Code Generation

In the process of code generation, we use different tem-
plates to meet the needs of different platforms, which is
similar to macros [11]. If there is no available template
for specific application, the application developer can
develop new templates according to the requirements. In
this way, we can guarantee that the code supports differ-
ent platforms (Figure 5).

The workflow of code generation engine consists of
two steps (see Figure 6). Firstly, invoking xml DOM
parser to parse PIM and building DOM tree. Secondly,
parsing template contents and replacing template con-
tents with DOM tree.

5. Conclusions

In this paper, we present a solution for developing the
embedded control system. Relevant meta-model and
model are expressed by class diagrams and a set of OCL
constraints. A model interpreter is developed and the
model information is interpreted, which is stored in PIM
document. According to the system requirements, if we
need new functions and want to support cross-platform,
we have to construct new templates. This solution speeds
up the application development and reduces the cost.
What’s more, the application is easy to maintain by the
modified meta-model.

REFERENCES
[1] P. Barnard, “Software development principles applied to

graphical model development,” In AIAA Modeling and
simulation Technologies conference an Exhibit, San
Francisco, August 2005.

[2] T. A. Henzinger and C. M. Kirsch, “The embedded ma-
chine: Predictable, portable real-time code,” Proceedings
of the International conference on Programming Lan-

Copyright © 2009 SciRes JSEA

A Solution Based on Modeling and Code Generation for Embedded Control System

Copyright © 2009 SciRes JSEA

164

guage Design and Implementation (PLDI), ACM press,
pp. 315–326, 2002.

[3] Object Management Group, “OMG unified modeling
language specification,” http://www.uml.org/, 2007.

[4] J. Sztipanovits and G. Karsai, “Model-integrated com-
puting,” IEEE computer, pp. 110–112, April, 1997.

[5] G. Karsai, A. Agrawal and A. Ledeczi, “A meta–model
-driven MDA process and its tool,” Workshop in software
Model Engineering, 2003.

[6] G. Karsai, J. Sztipaovits, A. Ledeczi and T. Bapty.
“Model-integrated development of embedded software,”
In processing of the IEEE, pp.145–164, 2003.

[7] A. Ledeczi, M. Maroti, G. Karsai, J. Garrett, J. Sprinkle,
et al., “The generic modeling environment,” Workshop on
Intelligent Signal Processing Budapest, Hungary, May 17,

2001.

[8] Object Management Group, “Object constraint language,”
http://www.omg.org/docs/ptc/03-10-14.pdf, 2003.

[9] General Modeling Environment, http://www.isis.vander-
bilt.edu/sites/default/files/GMEUMan.pdf, 2005.

[10] T. Clark, A. Evans, S. Kent and P. Sammut, “The MMF
approach to engineering object-oriented design lan-
guage,” Workshop on Language Description, Tools and
Applications, April 2001.

[11] C. Buckl, A. Knoll, and G. Schrott. “Model-based devel-
opment of fault-tolerant embedded software,” in second
International symposium on Leveraging Applications of
Formal Method, Verification and Validation, pp. 113–120,

2006.

J. Software Engineering & Applications, 2009, 2: 165-172
doi:10.4236/jsea.2009.23024 Published Online October 2009 (http://www.SciRP.org/journal/jsea)

Copyright © 2009 SciRes JSEA

165

Product Maintainability Design Method and Support
Tool Based on Feature Model

Yufeng DING

School of Mechanical and Electrical Engineering, Wuhan University of Technology, Wuhan, China.
Email: dingyf@whut.edu.cn

Received June 5th, 2009; revised June 29th, 2009; accepted July 7th, 2009.

ABSTRACT

Maintainability is an important character which is given by product design process. The maintainability design criteria
and measure index used in product maintainability analysis are summarized and discussed in this paper. A product
maintainability design method is studied by integrating the product feature model, maintainability design criteria with
measure index. Product feature model can be built on the basis of the product feature library quickly. Product feature
library for steam turbine design is created by using SolidWorks design library origination structure. A methodology
which supports the design and development of product maintainability design support tool (PMDSTs) is put forward.
The function of PMDSTs is designed by using UML (Unified Modeling Language) use case diagram, it is developed by
using VC++ 6.0. The maintainability analysis application case of steam turbine-generator system is given at last.

Keywords: Maintainability Design, Product Design Process, Steam Turbine, Solidworks

1. Introduction

If a product has poor maintainability, the maintenance
activities which have to be performed on it during its life
cycle are difficult, it will result in increasing the costs,
and also more time is required to accomplish the main-
tenance tasks. Designs for maintainability had played an
important role in the complex product deign process.
Maintainability is the probability that required mainte-
nance will be successfully completed in a given time
period. It is a design characteristic that affects accuracy,
ease, and time requirements of maintenance actions. It
may be measured by combining factors such as fre-
quency of maintenance, maintenance costs, elapsed
maintenance or repair times, and labor hours etc.

Design for maintainability requires a product that is
serviceable and supportable—better yet if the design in-
cludes a durability feature called reliability (absence of
failures) then you can have the best of all worlds [1].

Maintainability is an important character which is
given by product design, it makes easy to be repaired for
the mechanical system. It has a specific effect on the
maintenance cost of mechanical systems [2].

In order to realize product design for maintainability,
some approaches and software tools have been studied
and developed. A maintainability evaluation approach
based on fuzzy logic is presented in [3], fuzzy linguistic
variables are employed in order to represent and handle

the design data available early in the design process. The
measure tool of the product maintainability is developed.
Maintainability and safety indicators at design stage for
mechanical products are studied in [4]. The assessment
procedure uses product 3D (Dimension) CAD (Computer
Aided Design) model and associated semantic matrix
gathering information from the product components’
criticality and reliability.

2. Product Integration Maintenance Model

Product CAD model doesn’t include product mainte-
nance feature information; it can not provide support for
product maintenance. So it needs to build product inte-
gration model by combining CAD model and mainte-
nance feature information. Product integration model is
composed of shape feature Fs, heat treatment feature Fh,
management feature Fm and maintenance feature Fma.
They can be united altogether to build a whole product
feature model. The product feature classification is
shown in the Figure 1. Maintenance feature is used for
describing maintainability design and relevant informa-
tion. It includes maintenance organization feature, main-
tainability feature, maintenance resource, maintenance
process, fault feature, using demand, maintenance pro-
gram, maintainability qualitative demand, quantitative
demand, maintainability design analysis result, person
model info etc. Maintainability program includes objec-
tives, organization, maintainability design criteria, poli-

http://www.iciba.com/heat%20treatment/

Product Maintainability Design Method and Support Tool Based on Feature Model 166

cies and procedures, organizational interfaces, program
tasks, evaluation and subcontractor/supplier activity etc.
[5].

Product maintenance integration model is shown in
Figure 2. Ci means ith component. It can be a part or a
sib-assembly. R(i,j) represents the assembly relation be-
tween ith component and jth component. It is marked in
the link arc between ith component and jth component.

Every component has an attribute table, all attribute ta-
bles are saved in the attribute table. Every attribute table
file saves all feature informations of component Ci. Some
data files such as design parameter table (excel file), de-
sign intent (word file), maintenance plan (Microsoft pro-
ject file) are stored in design document data or mainte-
nance data. They have a link in the Tag file. Tag file will
look for the relevant file by the link [5].

Figure 1. Product feature classification

Figure 2. Product maintenance integration model

Copyright © 2009 SciRes JSEA

Product Maintainability Design Method and Support Tool Based on Feature Model 167

. Design for Maintainability

aintainability

 of design, can be de-

 combination of the following fac-

re several approaches to evaluate the main-
ta

 include
m

pair (MTTR)

very crucial and it

3 fined on the basis of a

3.1 The Principles of Design for M

The design engineer is anxious to verify if product main-
tenance tasks can be accomplished with the available
maintenance logistics and evaluate the performance of
these tasks in design stage. The designer must change
his/her design solution if the maintenance tasks are dif-
ficult, or even impossible to be accomplished in the
given conditions. Some of the important general design
guidelines that maintainability professionals have devel-
oped are shown in Figure 3 [6].

Maintainability criteria are composed of intrinsic cri-
teria and contextual criteria [4]. Intrinsic criteria includes
repairability, ability to be repaired after failure or damage;
accessibility, easiness to reach a component inside the
assembly; assemblability, ability to be assembled from
an assembly; disassemblability, ability to be removed
from an assembly; standardization, standard component
or equipment; interchangeability, ability to be replaced
with another component; survivability, ability of the
product to continue to work after the failure of a consid-
ered component. Contextual criteria includes redundancy,
for components existing in multiple equivalent occur-
rences; Competencies, human required to diagnose and
to repair; Toolings, maintenance equipments like keys,
screwdrivers...; Logistics, delivery of spare parts, trans-
portation of maintenance team...; Environment, working
conditions like lighting, temperature...; Delectability,
easiness to detect failure and components concerned with;
Testability, ability for a component or a sub-system to be
tested...; Maneuverability, ability for a component or
sub-system to be handled; Auto diagnostic: ability for a
system to perform self-testing procedures.

3.2 Maintainability Measure

Maintainability, as a characteristic

tors. They are Maintenance times, Maintenance fre-
quency and Maintenance cost. The three factors are de-
pendant on the fact that the system is operated and main-
tained in accordance with prescribed procedures and re-
sources. From a systematic perspective, maintenance
includes corrective maintenance and preventive mainte-
nance. And from a software perspective, maintenance
includes adaptive maintenance and perfective mainte-
nance.

There a
inability of a product at the design stage. They are

maintainability design checklists, maintainability evalua-
tion using physical mock-ups, maintainability evaluation
using digital mock-ups and virtual reality and maintain-
ability evaluation using quantitative approaches.

The measures used in maintainability analysis
ean time to repair, mean active preventive maintenance

time, and mean active corrective maintenance time,
maximum corrective maintenance time, and mean main-
tenance downtime [7].

3.2.1 Mean Time to Re

Maintenance time to repair (MTTR) is
depends mainly on the product configurations. MTTR
measures the elapsed time required to perform a given
maintenance activity and is subsequently used to calcu-
late system availability and downtime. Exponential, log-
normal, and normal probability distributions can all rep-
resent mean time to repair. The normal distribution is
normally assumed for mechanical or electromechanical
equipment with a remove-and-replace maintenance con-
cept.

() /
m m

mttr i i i
i i

T T    (1)

Figure 3. General maintainability design guidelines

Copyright © 2009 SciRes JSEA

Product Maintainability Design Method and Support Tool Based on Feature Model 168

.2.2 Mean Preventive Maintenance
inspections,

3 Time
Preventive maintenance activities such as
calibrations, and tuning keep equipment at a specified
performance level. The objective of a preventive main-
tenance program is to postpone the point at which the
equipment or any of its components wears out or breaks
down.

()()
k

mpi pti
i

mp k

pti
i

T F
T

F




 (2)

Tmp is the mean preventive time. Tmpi is the elapsed time

 Corrective Maintenance Time
nting

for preventive maintenance task i, for i= 1,2,3 k.Fpti

is the frequency of preventive maintenance task i, for i
=1, 2, 3 , . . . ,k. k is the number of preventive mainte-
nance tasks.

3.2.3 Median
Mean corrective time is a composite value represe
the arithmetic average of the individual maintenance cy-
cle times. Maintainability is the ability of a product to be
maintained. Calculation of the median corrective main-
tenance time depends on the distribution describing time
to repair. The median corrective maintenance time for
lognormal distributed repair time is given by

2/ exp()T Tmed mttr  (3)

2 is the variance around the mean val
log

ive Maintenance Time
tential

ue of the natural
arithm of repair time.

3.2.4 Maximum Correct
This measures the time required to complete all po
repair activities up to a given percentage, often the 90th
or 95th percentiles. The maximum corrective mainte-
nance time for lognormal distributed is

antilog(mcm mT T k)  (4)

Tmcm is the maximum corrective maintenance time. Tm is
the mean of the logarithms of the repair times.  is the
standard deviation of the logarithms of repair ti es. k is
equal to 1.28 or 1.65 for the 90th and 95th percentiles.

3.2.5 Mean Maintenance Downtime

m

restore equipment

 (5)

Tmmd is the mean maintenance down

ad ld

repair, beginning at time t = 0, will be
aintainability function,

t is time.fr(t) is the probability density function of the
repair time.

ipment can be reached for service, replace-
 important

of
ility can lead to
. For example, a

a

Accessibility ValueThis is the total time needed either to
to a specified performance level or to maintain it at that
level of performance. Thus it includes active corrective
and preventive maintenance times, administrative and
logistic delay times.

mmT d mam ad ldT T T  

time. Tmam is the
mean active maintenance time, or mean time required to
conduct corrective and preventive maintenance related
tasks. T is the administrative delay time. T is the lo-

3.2.6 Maintenance Function
The maintainability functions are used to predict the
probability that a

gistic delay time.

accomplished in a time t. The m
m(t) for any distribution is expressed by

0

()
t

t rm f t dt  (6)

3.2.7 Maintenance Accessibility Evaluation
Accessibility is the relative ease with which a part or
piece of equ
ment, or repair. The lack of accessibility is an
maintainability problem and a frequent cause of ineffec-
tive maintenance.

The evaluation may also be performed by assigning to
each maintainability criterion, a numerical value between
0 and 1 using a table, like the one listed in Table 1 [3].

3.3 Maintainability Cost Analysis

Maintainability is an important factor in the total cost
equipment. An increase in maintainab
reduction in operation and support costs
more maintainable product lowers maintenance time and
operating costs. Furthermore, more efficient maintenance
means a faster return to operation or service, decreasing
downtime.

The data to be input into a life cycle cost model in-
clude the purchase price of the product, mean time be-
tween failures (MTBF), MTTR, average material cost of

failure, labor cost per preventive maintenance action,
labor cost per corrective maintenance action, installation
costs, training costs, the warranty coverage period cost of
carrying spares in inventory, and shipment forecasts over
the course of the product's useful life [8].Corrective
Maintenance cost estimation model estimates the correc-
tive maintenance labor cost for a piece of equipment. The
annual cost is expressed by

Table 1. Accessibility evaluation

All the parts a e same
area

1
re directly accessible and placed in th

All the parts are directl erent ar-y accessible and placed in diff
eas

0.8

Some parts are not directly accessible, but those parts are
maintenance free

0.6

Some parts are accessible after disassembling a fast disassem-
bling entity (a screw, etc.)

0.4

The majority of the parts is accessible by disassembling one or
more entities

0

Copyright © 2009 SciRes JSEA

Product Maintainability Design Method and Support Tool Based on Feature Model 169

L mttr(SOH)(C)(T)
CMC 

mtbfT

SOH represen

)

ts the scheduled operating hours of the
equipment. CL is the maintenance la
Tmtbf is the mean time between failures for the equipm
Tm

e under
Implied in this defi-

The system reliability,

 (7

bor cost per hour.
ent.

ttr is the mean time to repair for the equipment.

3.4 System Reliability Analysis

Reliability can be defined as the probability that a system
will perform properly for a specified period of tim
a given set of operating conditions.
nition is a clear-cut criterion for failure.

Let Ri be the reliability of subsystem i and rij be the re-
liability of component, in subsystem j,

1 ij n  i=1,2, …,k. Then

1
() ()in

i ijj
R t r t


 (8)

 say R(t), is given by

 1 1
() 1 1 ()ik n

i ii j
R t r t

 
    j

ted in par-
allel, with subsystem i consisting of ni

series for i=1,2,y,k. Such a system i
ries–parallel sy

 (9)

The system consists of k subsystems connec
 components in
s called a se-

stem [9]. Figure 4 shows the diagram of a
series–parallel system [10].

The system mean time to failure (MTTF) can be
derived in the following form:

1

()
1 1 ...

i

mttf l
l i k n    

 (10)
11 (1)lk

T


 

4. The Development and Application of
Product Maintainability Desi
Software

A i-
na Many features can be created once and

gn Support

4.1 Product Feature Library

library feature is a frequently used feature, or comb
tion of features.

then save in a library for future use. Product feature is
organized according to product feature classification of
Figure 1.The product feature can be built and saved in

Figure 4. Series–parallel system

design library of Solidworks. The directory structure can
be built in the directory of install_directory\data\design
library. To create a library feature that includes
references, it is needed to dimension the library feature
relative to the base part on which designer create it. Ref-
erences create dimensions used to position the library
feature (*.sldlfp) on the model (*.sldprt). Steam turbine
feature library in the SolidWorks is shown in Figure 5.

4.2 Product n Feature

e

into they are front axis feature(AFA), front seal

 Feature Modelling Based o
Library

Industry steam turbine is composed of about tens of
thousands of parts. The rotor, blade and cylinder of steam
turbine work under the condition of high temperature and
impulsion. They have high manufacture precision. The
rotor of steam turbine is the most important, highest pre-
cision and most complicated part in the steam turbin
product. Rotor includes thousands of dimensions.

For example, steam turbine rotor axis can be divided
 five parts,

feature(AFGS), whole blade wheel feature(ABW), back seal
feature(ABGS) and back axis feature(ABA) .It can be rep-
resented in equation (11).

FA FGAFr A CA BGA BAA A A A     (11)

All features of steam turbine rotor can be organized in
the design feature library in the SolidWorks. But the first
st

le which is integrated with the
geometry feature. Steam turbine feature libr
SolidWorks is shown in Figure 5.

ep must be done is to classify the features according to
component classification and recognize the feature di-
mension. Some dimension relation can be built in some
equation. The maintenance feature information had been
organized into attribute tab

ary in the

Figure 5. Steam turbine feature library in the SolidWorks

Copyright © 2009 SciRes JSEA

Product Maintainability Design Method and Support Tool Based on Feature Model

Copyright © 2009 SciRes JSEA

170

Figure 6. The use case diagram of p oduct maintainability design support tool

4.3 The Development Process of PMDSTs

PMDSTs is a typical customization software. It can not
be run without 3D CAD software SolidWorks platform.
The development process of product maintainability de-
sign support software obeys following methodology.

1) Design the function of product maintainability, de-
sign support tool by using use case diagram.

2) Build main framework DLL (dynamic link library)
using SolidWorks COM Add-In Wizard.

3) Build every function module DLL in C++ language.
4) Call every function module DLL in main DLL

framework by using LoadLibrary method.
5) Test software function and performance by using

SolidWorks Add-in interface.
The use case diagr

ign support tool is shown in Figure 6.The PMDSTs in-
ity and
odel is

 by
us

maintainability
de
co

re is a kind of
C

d in the server computer.
W

The function StartApplication and TerminateApplica-
tion which is used to connect the solidWorks and termi-
nate the PMDST are as follows.

bool CSteamTurbineSysApp::StartApplication(void)
{ // add menus to the active document
 AddMenus();
 //Add toolbars
 AddToolbars();
 // create a control item to handle application-level

events
 swAppEvents* eventApp = new swAppEvents;
 eventApp->OnCreate(m_pSldWorks);
 return TRUE;
}

{ if (m_pSldWorks == NULL)

veToolbars();

 if (m_pActiveDoc != NULL)
 m_pActiveDoc->Release();

r

am of product maintainability de-
void CSteamTurbine-

SysApp::TerminateApplication(void)
s
clude feature modeling, design for maintainabil
reliable analysis use case etc. Product feature m
built in the 3D CAD software Solidworks. Design for
maintainability and reliable analysis is carried out based
on the product feature modeling. The part feature infor-
mation and assemble feature relation can be extracted

ing Solidworks API (Application Program Interface)
function.

The system is developed by using Visual C++ 6.0 and
Microsoft SQL Server 2000. Product

sign criteria are stored in the Database. The database is
nnected using ODBC (Open database Connectivity).

The maintainability design support softwa
/S (Client/Server) software. Windows 2000 Server OS

(Operation system) is installe
indows XP OS is installed in Client computer. The

main framework DLL is created into a visual C++ DLL
or visual C++ .NET DLL add-in using the SolidWorks
COM Add-In Wizard included in the SolidWorks API
SDK (Software Development Kit) [11].

 return;
 // remove all menus
 RemoveMenus();
 //remove the toolbars
 Remo
 // release the PropertyManager object
 ReleasePage();
 LPMODELDOC pModDoc = NULL;
 HRESULT res = TheApplica-

tion->GetSWApp()->get_IActiveDoc(&pModDoc);
 if(pModDoc == NULL)
 TheApplication->m_pActiveDoc = NULL;
 int count = m_EventList.GetCount();
 for (int i=0; i<count; i++)
 { CObject* headEvent =

m_EventList.GetHead();
 delete headEvent;

Product Maintainability Design Method and Support Tool Based on Feature Model 171

 in main DLL
fr ::LoadLibrary method is as follows.

tyAnalysis ()
nalysis interface function

AppPath=GetAppPath();

CADServer";
_pSldWorks= TheApplication->GetSWApp();

odDoc = NULL;

m &pModDoc);
OC pPartDoc = NULL;

D D_IPartDoc,(LPVOID
*)

I * SeriousDe-
gr SLDWORKS)
;

:\\Steamturbine Main-

s.dll
ca

oc ProcAddress(hmod,"
);

ULL)
,m_pSldWorks);

4. Index Analysis Case

Th rocess block diagram of a steam turbine-generator

.
M rator
sy

 // disconnect from SolidWorks
 m_pSldWorks->Release();
 m_pSldWorks = NULL;
}
Every function module DLL is called

amework by using
void Maintainabili
{// MaintainabilityA
 CString m_AppPath;
 m_
 CString strConnect;
 LPSLDWORKS m_pSldWorks;
// strConnect="MT
 m
 LPMODELDOC2 pM
 HRESULT res =
_pSldWorks->get_IActiveDoc2(
 LPPARTD
 res = pMod-

oc->QueryInterface(II
&pPartDoc);
 typedef void (WINAP
ee)(LPMODELDOC2,LPPARTDOC,LP

 HINSTANCE hmod;
 hmod = ::LoadLibrary(_T("D

tenanceSoft\\ MaintainabilityAnalysis.dll"));
 if(hmod==NULL)
 {AfxMessageBox(_T("MaintainabilityAnalysi
n not be found in current directory!")); }
 SeriousDegree lpproc;
 lppr = (SeriousDegree)Get

MaintainabilityAnalysis "
 if(lpproc!=(MaintainabilityAnalysis)N
 (*lpproc)(pModDoc,pPartDoc
 FreeLibrary(hmod);
}

4 Maintainability Measure

e p
system is shown in Figure 7 [12]. In the design process
of steam turbine-generator system, MTTR and MTBF etc

aintainability measure index of steam turbine-gene
stem is calculated as follows.

39
() /

m m

iT T    227
105.9

370.43i


mttr i i

i

610
9 2.69mtbfT


 


96.2mtbfT
A

T T
 



mtbf mttr

easure
inde is shown in Fig-
ure 8. Every Sub-system/assembly MTBF value must be

The calculation process of maintainability m
x of steam turbine-generator system

Figure 7. Process block diagram of a steam turbine-gen-
erator system

Figure 8. The calculation of maintainability measure index

ca

5. Conclusions

In this paper, the maintainability design criteria and
measure index used in product maintainability analysis
are discussed. A product feature library for steam turbine
design is built. The feature library can support steam
turbine product feature modeling quickly. Product main-
tainability design method based on feature modeling can
help to analyze product maintainability in the product
design process. PMDSTs is developed by using Visual

tainability design criteria and maintain-
bility measure index in the design stage. This method

will help to enhance product maintainability efficiently.
PMDSTs will be used to product computer support col-
laborative design (CSCD) process through the next step

lculated at first in order to get MTTR, MTBF and
availability etc. index of steam turbine-generator system.
The designer can read Solidworks 3D feature model of
current subsystem by pressing ‘View 3D Model’ button.

C++ 6.0 and Microsoft SQL Server 2000. PMDSTs can
support designer to evaluate product maintainability by
applying main
a

Copyright © 2009 SciRes JSEA

Product Maintainability Design Method and Support Tool Based on Feature Model

Copyright © 2009 SciRes JSEA

172

of developing new collaborative support function.

6. Acknowledgment

This paper is supported by the Key Technologies R&D
Program of Wuhan City (No. 200810321153）and Wuhan
Youth Science and Technology Chenguang Pro
(No.200750731289).

REFERENCES
[1] http://www.barringer1.com/jul01prb.htm.

[2] B. Abdullah, M. S. Yusoff, and Z. M. Ripin, “Integration
of design for modularity and design for assembly
hance product maintainability,” Proceddings of 1st Inter-
national Conference 7th AUN/SEED-Net Fieldwise
seminar on Manufacturing and Material processing, pp.
263–269, University Malaya, 2006.

proach for maintainability evaluation in the design proc-

nt (IEEM) 2009.

[6] M. Pecht, “Pr ainability, support-
ability handbo Raton, Florida, pp.

gram 191–192, 1995.

[7]

to en- [9] W. Kue, V. R. Parsad, F. A. Tillman and C. Hwang, “Op-
timal reliability design: Fundamentals and applications,”
Cambridge University Press, 2001.

[10] A. M. Sarhan, “Reliability equivalence factors of a gen-

[3] C. A. Slavila, C. Decreuse, and M. Ferney, “Fuzzy ap-

ess,” Concurrent Engineering, Vol. 13, No. 4, pp.
291–300, 2005.

[4] A. Coulibaly, R. Houssin and B. Mutel, “Maintainability
and safety indicators at design stage for mechanical
products,” Computers in Industry, Vol. 59, No. 5, pp

[12

438–449, 2008.

[5] Y. F. Ding and B.Y. Sheng, “Study on product mainte-
nance integration model,” Submit to The IEEE Interna-
tional Conference on Industrial Engineering and Engi-
neering Manageme

oduct reliability, maint
ok,” CRC Press, Boca

 B. S. Dhillon, “Engineering maintainability,” Eelservier,
2008.

[8] H. Reiche, “Life cycle cost in reliability and maintain-
ability of electronic systems,” Computer Science Press,
Potomac, Maryland, pp. 3–23.1980,

eral series–parallel system,” Reliability Engineering and
System Safety, Vol. 94, No. 2, pp.229–236, 2009.

[11] SolidWorks Corporation. “Solidworks 2000 API help,”
2006.

] Stapelberg and R. Frederick, “Handbook of reliability,
availability, maintainability and safety in engineering de-
sign,” Springer, 2009.

http://portal.acm.org/author_page.cfm?id=81330489908&coll=GUIDE&dl=GUIDE&trk=0&CFID=27118817&CFTOKEN=98347790

J. Software Engineering & Applications, 2009, 2: 173-194
doi:10.4236/jsea.2009.23025 Published Online October 2009 (http://www.SciRP.org/journal/jsea)

Copyright © 2009 SciRes JSEA

173

Research on Software Production Support Structure

Jiangping WAN1,2

1School of Business Administration, South China University of Technology, Guangzhou, China; 2Institute of Emerging Industrializa-
tion Development South China Univ. of Tech., Guangzhou, China.
Email: csjpwan@scut.edu.cn

Received March 11th, 2009; revised July 10th, 2009; accepted 12th, 2009.

ABSTRACT

Firstly, it is found that process design is necessary for software process improvement after analyzing its complexity.
Then, research methods and concepts framework are put forward, and the research content is also provided. The find-
ings of research, including propositions of complexity of software process, the work program of complexity of software
process improvement, software enterprise model and software production support structure are clarified. Finally, the
demonstration, including mindbugs (cognitive barriers) in software process and the knowledge integration support
structure of quality software production, is illustrated with case study. It is concluded that the research is useful for
both software production and knowledge economy in the future.

Keywords: Complexity, Mindbugs, Software Process, Work Program of Complexity, Software Enterprise Model, Inter-

active Management, Quality Software Production, Knowledge Integration

1. Introduction

Since the computer software is a kind of logical product,
its quality improvement is difficult and complex. Many
researchers are trying to reduce the hardship and the cost
as well. Nowadays, it is going to focus on the software
process of software production. Software process is the
set of tools, methods, and practices used to produce a
software product. The objectives of software process
improvement (SPI) are to produce products according to
the plan while simultaneously improving the organiza-
tion's capability to produce better products. It is clear that
a fully effective software process must consider the rela-
tionships of all the required tasks, including the tools and
methods used, the skill, training, and motivation of the
people involved [1–2].

An economist, Howard Baetjer, commented on the
software process as following [3]: as software likes all
capital, it is concrete knowledge, and because that
knowledge is initially dispersed, tacit, latent, and incom-
plete in large measure, software development is a social
learning process. The process is a dialogue in which the
knowledge on the software is brought together and em-
bodied in the software. The process enables interaction
between users and designers, between users and evolving
tools, and between designers and evolving tool (technol-

ogy). It is an iterative process in which the evolving tool
itself serves as the medium for communication, with each
new round of the dialogue eliciting more useful knowl-
edge from the people involved. It is obvious that soft-
ware process is also an organizational knowledge-intens-
ive learning process and needed to be supported with
knowledge management.

Warfield argued that normal problems involved local
or occasionally intermediate logics, but complex prob-
lems involved deep logic. Since deep logic is generally
absent from representations, or if present was often
masked by being embedded in thicket-like prose, the
consequence often was under-conceptualization and un-
der-documentation, as well as poor communication. Just
as Aristotle said that logic was measure to reach knowl-
edge, and it was necessary to enhance organizational
learning with process design for knowledge management.
The variety of fundamental operations that can be carried
out with ideas is quite limited. Almost everything that
needs to be done can be conceived as 1) generating ideas,
2) clarifying ideas, 3) structuring ideas, 4) interpreting
structures of ideas, and 5) amending ideas. The limited
number of “idea actions” means that the variety of proc-
esses needed can also be quite limited. One only needs to
get processes for clarifying ideas, structuring ideas, and
interpreting the structures produced. Design consists
primarily of three types of intellectual activity: conceptu-
alization, choice, and documentation. The implementa-
tion of design is its most concrete phase, but the failure

This research was supported by Key Project of Guangdong Province
Education Office (06JDXM63002), Soft Science project of Guang-
dong Province(2007B070900026), NSF of China (70471091), and
QualiPSo (IST- FP6-IP-034763).

Research on Software Production Support Structure 174

of any one of these three prior types will usually assure
the failure of the implementation. Intelligence, analysis,
and synthesis make up conceptualization. Communica-
tion and interpretation make up documentation [4].

Interactive Management is a system designed specifi-
cally and painstakingly for the purpose of helping people
resolve complexity in organizations [5]. And 20 laws of
complexity were put forward [6]. A science of complex-
ity integrates all of the material in order to show both the
theory of complexity and the empirical evidence that has
been accumulated to show the validity of the theory. A
principal outcome of the science of complexity is called
the work program of complexity (WPOC). This WPOC
consists of two main steps: discovery and resolution of
complexity. Discovery consists of description and diag-
nosis. Resolution consists of design and implementation
[7]. WPOC was applied by a large cross-functional team
of Ford engineers and system developers in the
mid-1990s as an enabler to create an enterprise-wide
information system [8].

2. Software, Software Production and Their
Complexity

Recall that this title of Brooks's article is “No Silver Bul-
let” [9]. Brooks's theme is that the very nature of soft-
ware makes it highly unlikely that a silver bullet will be
discovered that will magically solve all the problems of
software production, let alone help to achieve software
breakthroughs that are comparable to those that have
occurred with unfailing regularity in the hardware field.
He divides the difficulties of software into two Aristote-

lian categories: essence, the difficulties inherent in the
intrinsic nature of software, and accidents, the difficul-
ties that are encountered today but are not inherent in
software product. He lists four, which he terms complex-
ity, conformity, changeability, and invisibility. In the
context of his article, Brooks uses the word complex in
the sense complicated or intricate. In fact, the names of
all four aspects are used in their non-technical sense.

Complexity. It is an inherent property of software.
Brooks points out that complexity phenomena can be
described and explained in disciplines such as mathe-
matics and physics. In contrast, if software is simplified,
the whole exercise is useless; the simplifying techniques
of mathematics and physics work only because the com-
plexities of those systems are accidents, not essence, as is
the case with software products.

Conformity. The first type of conformity identified by
Brooks, software acquires an unnecessary degree of
complexity as it has to interface with an existing system.
The second type identified by Brooks, where software
acquires an unnecessary degree of complexity because of
the misconception that software is the component that is
the most conformable. In other words, it makes the com-
plexity of software be escalated.

Changeability. The functionality of a system embod-
ied in its software, and functionality changes are
achieved through changing the software. Boorks points
out that that changeability is a property of the essence of
software and an inherent problem that cannot be sur-
mounted.

Software Production Improvement

Managing the Complexity of Software

Conformity Changeability Invisibility

Figure 1. Approach of software production improvement by brook

Software technology
High Level Language, Time Sharing, and Software Development Environment

Great Software Designers

Conformable New
Demand

Easy
Modify

Interface
New

Hardware
Hard

Current Visibility

Information
Missing

Copyright © 2009 SciRes JSEA

Research on Software Production Support Structure 175

Invisibility. The result of this inability to represent
software visually not only makes software difficult to
comprehend, it also severely hinders communication
among software professionals which causes that there
seems no alternative to handing a colleague a 150-page
listing together with a list of modifications to be made.

Brooks considers the three major breakthroughs in
software technology, namely, high level language, time
sharing, and software development environment, but
stresses that they solved only accidental, and not essen-
tial difficulties. For Brooks, the greatest hope of a major
breakthrough in improving software production lies in
training and encouraging great designers. It can be illus-
trated in Figure 1.

In J. N. Warfield’s words [4], we could manage the
complexity of software product through process design.
Processes reduce personal mindbugs (cognitive barriers)
primarily through the way in which information is se-
quenced. If members of groups are given rein to choose
the topic of their discussion at random, and if several
members speak at the same time, sensible discussion that
leads to some organized product is hard to obtain. But if
the process is designed so that the subject is broken down
into a series of carefully designed questions which are
presented under computer control for group discussion
and resolution, the dialog becomes focused and the
products of the dialog can be aggregated and organized
with ease. Such a design will meet with group approval,
provided the group is assured that important subjects will
not thereby be excluded, and that their contributions will
ultimately be incorporated on all matters perceived by
group members to be relevant.

3. Research Methods

The complexity of SPI was studied through investigation
on spot and literature reading. There are three problems
as following: 1) What is the theory foundation of WPOC
being applied to SPI? 2) How to design the WPOC of
SPI? What kind of knowledge technology is necessary? 3)

How to combine WPOC of SPI with the business goals
of software enterprise?

The concept framework of study is established through
learning Warfield’s complexity theory, software engi-
neering and quality management. The theory hypothesis
is put forward that WPOC can be applied to SPI, and
then the propositions of complexity of software process
are educed. The propositions are theory foundation of
WPOC of SPI. Basing on Warfield’ WPOC, WPOC of
SPI is designed. So do software enterprise model based
on Microsoft's enterprise model and Infosys' knowledge
management. Finally, software product support structure
is established and its rationality and validity are illus-
trated by demonstration study [10].

The research concept framework is illustrated in Fig-
ure 2. It is established according to generating ideas,
clarifying ideas, structuring ideas, interpreting structures
of ideas and amending ideas. At first, the goal of soft-
ware quality improvement is essential to SPI, and SPI is
abstract to the theory of SPI, and the theory of SPI is
structural to WPOC of SPI, and WPOC of SPI is organ-
izational to software enterprise model and at last soft-
ware enterprise model is commercial to market competi-
tion by business operation [10–18].

4. Research Content

The logical structure of the research content is illustrated
in Figure 3. The contents which dashed frames repre-
sented are involved in the research. The research finds
that four software essence aspects are similar to War-
field’s complexity and Warfield’s complexity theory can
be applied to SPI to conclude five propositions of soft-
ware developmental process and seven propositions of
software support process whose rationality and valid-
ity are proved by successful practices of software
enterprises.

Software process model regulates not only every phase
task and activity in details, hierarchical sequences among
tasks and activities, but also establishes the order and

Figure 2. Diagram of concept framework

Software Process Improvement (SPI)

Software Quality Improvement

Market Competition Commercial

The Theory of Software Process

Software Enterprise Model

WPOC of SPI

Essential

Goal

Structural

Organizational

Abstract

Copyright © 2009 SciRes JSEA

Research on Software Production Support Structure 176

Figure 3. Diagram of the research content

Figure 4. Class diagram of sigma-7

restrictions in every phase of software development and
evolution and specifies the guideline from one phase to
another. Meanwhile, it also gives the restrictions of the
policy which should be followed in software develop-
ment.

It is necessary to combine WPOC of SPI with software
project management to realize the business goals of en-
terprise. The enterprise model can provide support to
business operation by project because the concrete soft-
ware process is determined by product including service
in software engineering project management [10,18].

5. Propositions of Complexity of Software
Process

The software process can be classified to software de-
velopment process (SDP) and software support process
(SSP) according to M. Porter's value chain model. Five

complexity propositions of SDP are put forward through
applying principle of generic design to seven principles
of software engineering by B. W. Boehm [19]. Finally,
seven complexity propositions of SSP are educed
through applying principle of generic design to six prin-
ciples of SPI by W. S. Humphrey [1,10].

5.1 Sigma-N Concepts

The Sigma represents the idea of integration [4], and the
N represents factors to be integrated in order to achieve
success. It is illustrated in Figure 4.

To make this clear, supposing that in some particular
design situation, context makes it clear that financial
support and component availability are readily available,
but the critical factors of leadership, design environment,
designer participation, documentation support and design
processes have not been integrated. Then we would say

Sigma-7

Component
Availability

Financial
Support

Documentation
Support

Leadership Designer
Participation,

Design Envi-
ronment

Design
Processes

Efficiency
Effectiveness
Changeability

Situation
Complexity

Cognition
Complexity

Project Management of Software Engineering

Time Shortest
Resource Least

Quality Best

Software Enterprise Model

Support Structure

Product Process

Theory of Complexity of Software Process

Warfield’ Complexity Theory

Practices in Software Process

Theory Foundation

Practices in Organization Management

Work Program of Complexity of Software Process Improvement

Software Process Performance

Cognition Issues
Knowledge Intensive

People Intensive

Software Talent Design Method Human Resource
Development

Design Method
Study

Design

Organization, Project
Process, Technology

Copyright © 2009 SciRes JSEA

Research on Software Production Support Structure 177

that we are dealing with a potential Sigma-5 situation. It
has been found in practice that the Sigma-7 and Sigma-5
concepts are the most significant, with other numerical
values such as Sigma-1 and Sigma-2 representing situa-
tions that are normally ineffective in dealing with com-
plex issues.

5.2 Five Complexity Propositions of Software
Development Process

The basic principles of software engineering by B. W.
Boehm are in the following [19]:

Principle of plan (BP1): Manage using a phased
life-cycle plan.

Principle of review (BP2): Perform continuous valida-
tion.

Principle of control (BP3): Maintain disciplined prod-
uct control.

Principle of technology (BP4): Use modern program-
ming practices.

Principle of visualization (BP5): Maintain clear ac-
countability for result.

Principle of performance (BP6): Use better and fewer
people.

Principle of process (BP7): Maintain a commitment to
improve the process.

The relationship of six principles of software engi-
neering with Sigma-5 are illustrated in Figure 5.

The principles that have related with design environ-
ment include BP4, BP6 and BP7.

The principles that have related with designer partici-
pation include BP4, BP6 and BP7.

The principles that have related with documentation
support include BP1, BP2, BP3, BP4, BP5, BP6 and BP7.

The principles that have related with design processes
include BP1, BP2, BP3, BP4, BP5, BP6 and BP7.

The principles that have related with leadership in-
clude BP1, BP3, BP4, BP6 and BP7.

There are two ubiquitously critical factors among
Sigma-5: documentation support and design processes. It
is necessary for software engineering to design processes
of reducing the cognitive barriers (mindbugs) to improve
intelligence activities’ efficiency and quality, and visual-
ize intellectual activities for management.

There are three ubiquitously principles among the
seven principles of software engineering: technology
principle, process principle, and performance principle. It
is necessary for software engineering to learn new tech-
nology and make continuous improvement because of
intelligence-intensive teamwork.

Five propositions of complexity of SDP are as follow
(Figure 6): 1) Proposition of capability (SDP1). SDP is
required continuously organizational learning in order to
improve SDP capability of organization; 2) proposition of
quality (SDP2). SDP is required to have high quality prod-
ucts and services through efficient cooperation; 3) Proposi-
tion of process (SDP3). SDP is required to adopt carefully
design processes in order to reduce personal cognitive bur-
den and improve group cognitive activities effectively and
efficiently; 4) Proposition of documentation (SDP4).

Figure 5. Relationship seven principles with sigma-5

Figure 6. Five propositions of complexity of SDP

SDP1 (Description)

SDP2 (Diagnosis)

SDP3 (Design) SDP4 (Implementation)

Resolution

Discovery

SDP5

Process Plan Technology Prefermance Control Review Visualization

Documentation
Support

Leadership Designer
Participation

Design
Environment

Design
Processes

Copyright © 2009 SciRes JSEA

Research on Software Production Support Structure 178

Financial
Support

Documentation
Support

Design
Processes

Design Designer Component Leadership
Availability Environment Participation

Figure 7. Relationship six principles of SPI with sigma-7

SDP is required to make documentation to communicate
and interpret to visualize activities of SDP in order to
control them; 5) Proposition of technology (SDP5). SDP
is required to use modern software technology. The
SDP1 (capability) and SDP2 (quality) are mostly based
on behavioral science and goals of software engineering,
but SDP3 (process), SDP4 (documentation) and SDP5
(technology) are mostly based on deep logic and soft-
ware formal technology, their relationship are illustrated
in Figure 6 (The hollow triangle represents inherited re-
lation, e.g. if the child is similar to his parent, the child
inherits his parent's characters. Here is to embody the
proposition. e. g. the SDP1 is embodied in SDP2, SDP2
is embodied in both SDP3 and SDP4, and both SDP3 and
SDP4 are embodied in SDP5. The hierarchy of concept is
analyzed with object technology here, the proposition is a
kind of abstract concept, and the embodying can be con-
sidered as implementation of lower abstraction). It is
necessary to apply WPOC to software engineering with
the propositions of SDP. Discovery is needed by SDP1
(description) and SDP2 (diagnosis), and resolution is
needed by SDP3 (design) and SDP4 (implementation).
WPOC must apply modern software technology accord-
ing to SDP5.

5.3 Seven Complexity Propositions of
Software Support Process

The basic principles of SPI by Watts S. Humphrey are in
the following [1]:

Principle of leadership (HP1). Major changes to the
software process must start at the top. Senior manage-
ment leadership is required to launch the change effort
and to provide continuing resources and priority.

Principle of teamwork (HP2). Ultimately, everyone
must be involved. Software engineering is a team effort,
and anyone who does not participate in improvement will
miss the benefits and may even inhibit progress.

Principle of map (HP3). Effective change requires a
goal and knowledge of the current process. To use a map,
you must know where you are.

Principle of process (HP4). Change is continuous.
Software process improvement is not a one-shot effort; it
involves continual learning and growth.

Principle of performance (HP5). Software process
changes will not be retained without conscious effort and
periodic reinforcement.

Principle of investment (HP6). Software process im-
provement requires investment. It takes planning, dedi-
cated people, management time, and capital investment.

The relationship six principles of SPI with Sigma-7 are
illustrated in Figure 7.

The principles that have related with financial support
include HP1, HP2, HP4, HP5 and HP6.

The principles that have related with design environ-
ment include HP2, HP4 and HP6.

The principles that have related with designer partici-
pation include HP2, HP4 and HP6.

The principles that have related with documentation
support include HP2, HP3, HP4, HP5 and HP6.

The principles that have related with design processes
include HP2, HP3, HP4, HP5 and HP6.

The principles that have related with leadership in-
clude HP1, HP2, HP3, HP4, HP5 and HP6.

The principles that have related with component avail-
ability include HP2, HP4, HP5 and HP6.

There are four ubiquitously critical factors among
Sigma-7: financial support, documentation support, de-
sign processes and leadership. It is necessary for SPI to
design processes through documentation with financial
support.

There are four ubiquitously principles among the six
principles of SPI: team principle, process principle, per-
formance principle and investment principle. It is neces-
sary for SPI to organize teamwork with carefully design
processes through both excellent leadership and enough
investment to get satisfactory performance.

Seven propositions of complexity of SSP (Figure 8) are
in the following: 1) Proposition of capability (SSP1). SSP
is required to make continuously organizational learning in
order to improve software process capability of organiza-
tion; 2) Proposition of performance (SSP2). SSP will not
be retained without conscious effort and periodic rein-
forcement; 3) Proposition of leadership (SSP3). SPI must
start from the top. Senior management leadership is re-
quired to launch and participate in SSP; 4) Proposition of
process (SSP4). SSP is required to adopt carefully design
processes in order to reduce personal cognitive burden

Leadership Process Investment Map Teamwork Performance

Copyright © 2009 SciRes JSEA

Research on Software Production Support Structure 179

Figure 8. Seven propositions of complexity of SSP

and improve group cognitive activities effectively and
efficiently; 5) Proposition of documentation (SSP5). SSP
is required to make documentation to communicate and
interpret for visualizing activities of SPI to control them;
6) Proposition of teamwork (SSP6). Everyone must be
involved. SSP is a team effort, and anyone who does not
participate in SPI will miss the benefits and may even
inhibit progress; 7) Proposition of investment (SSP7).
SSP is required to be projected, assigned full time stuffs,
managed time and to be invested.

Watts S. Humphrey said that the key topics to focus on
once the decision has been made to invest in process im-
provement are in the following [1] : 1) To improve the
software process, someone must work on it (SSP3, SSP6,
SSP7); 2) Unplanned process improvement is wishful
thinking (SSP4, SSP5); 3) Automatic of a poorly defined
process will process poorly defined results(SSP1, SSP2,
SSP3); 4) Improvements should be made in small, tested
steps(SSP1, SSP2, SSP3); 5) Train, train, train(SSP1,
SSP3, SSP7).

According to a systematic survey of CMM experience
and results by SEI (Software Engineering of Institute),
there are seven empirical principles of successful SPI in
the following [2]:

EP1. Management control is tightly related with the
successful SPI (SSP2, SSP4, SSP5).

EP2. To establish software process group, which in-
cludes technicians, correctly, and assign SPI responsibil-
ity clearly and enough (SSP4, SSP6).

EP3. To take SPI carefully and retain experienced spe-
cialists and refer outside seriously (SSP1, SSP7).

EP4. To estimate the progress and cost of engineering
correctly (SSP1, SSP2, SSP4, SSP7).

EP5. Managers consider seriously the influences,
which come from software organizational culture, exter-
nal business environment and internal environment, on
SPI (SSP1, SSP2, SSP3).

EP6. To conduct operation of software correctly (SSP4,
SSP5, SSP6, SSP7).

EP7. To establish software quality plan perfectly

(SSP1, SSP2, SSP3, SSP4, SSP5, SSP6, SSP7). SSP1 (Description)

6. Work Program of the Complexity of
Software Process Improvement SSP2 (Diagnosis)

The WPOC of SPI consists of two phases (Figure 9):
discovery and resolution [10].

Discovery includes two steps: 1) Describing the soft-
ware process, the basic activities of software process are
described and their mindbugs are identified and classified.
It is necessary to consider the mindbugs, because soft-
ware process is usually a complexity group cognitive
process. Object technology, a kind of knowledge tech-
nology, is useful since it conforms to human cognitive
habits and can reduce cognitive burden effectively. It
suggests that the basic activities of software process are
firstly described with object technology to understand
enough the architecture and concretely activities in de-
tails, the mindbugs of software process are identified and
classified for diagnosing software process. 2) Diagnosing
the software process, Software Capability Maturity
Model (SW-CMM) by SEI is an effective method and
tool. SW-CMM can be analyzed with object technology
to understand its essence that software process perform-
ance is the core of SW-CMM and SW-CMM can be used
to illuminate performance structure and target of soft-
ware process.

SSP4 SSP5

SSP3 (Design & Implementation)

SSP6 SSP7

Discovery

Resolution

Resolution also consists of two steps. 1) Designing SPI,
three popular SPI models are IDEAL model (process
model includes Initial, Diagnosis, Establishment, Action
and Learning five steps and is a de fact implementation
methodology of SW-CMM) by the HP corporation and
SEI, three-phrase method (product model includes Un-
derstanding, Assessing, and Packaging three steps) by

Work Program of Complexity of SPI

Figure 9. Work program of complexity of SPI

Description
SP Basic Activities &
its Cognitive Barriers

Diagnosis
SW-CMM and
SP Performance

Implementation
PMBOK, PDCA,

SWEBOK

Discovery Resolution

Design
Process Model,
Product Model

and Object Model

Copyright © 2009 SciRes JSEA

Research on Software Production Support Structure

Copyright © 2009 SciRes JSEA

180

HR, Finance, Intranet

C
M

Q
M

P
M

K
M

Know.
Portal

Software Production

Market/
Sales

CRM/CS
Support

Market

R&D
Technology/

Administrative
Support

R&D

Infrastructure
Resources

Software Process Improvement

Require-
ment
Analysis
Design
Construc-
tion
Testing

Product

Service

Suppliers

Government

Market

Owners

Capital

Capital

Knowledge

People

Enterprise’s

Knowledge

Capital

Services & Products

Info.& Knowledge

T

O

Service

Product

Figure 10. Knowledge enabling enterprise model for software production

NASA, and Rational Unified Process (object model in-
cludes Inception, Elaboration, Construction and Transi-
tion four phases and nine core process workflows, which
are business modeling, requirement, analysis and design,
implementation, testing, project management, configura-
tion, change management and environment etc.). It is
important to understand the essence that there are both
merits and demerits in three models. When designing
software processes, it is necessary to actively think about
real contexts and issues in order to apply the models in a
creative way, not in a rote way. 2) Implementation SPI.
The first important knowledge is project management,
which is often achieved with half effort to do SPI ac-
cording to project management in real world. The second
is method of quality management used in traditional in-
dustry, e.g. PCDA cycle by W. E. Deming, which is used
in SPI by NEC do Brazil (NDB), but the traditional in-
dustry is quite different from software industry, which is
knowledge-intensive and brain-intensive, so IEEE
SWEBOK (Software Engineering Body of Knowledge)

is necessary. These are knowledge technologies needed
to implement SPI.

7. Knowledge Enabling Enterprise Model for
Software Production

A model is an abstract representation of reality expressed
in terms of some formalism. An enterprise model may be
used for various purposes such as facilities design, sys-
tems architecture, organization, simulation, optimization,
performance measurement and benchmarking. Here it
will be used to describe and understand the operational of
a software organization [13,18].

A knowledge enabling model for software enterprise
with generic structure is illustrated in Figure 10. The
notation of UML is used. The outer boundary frames
business operation. Inputs are services and products,
capital, information and knowledge. Outputs are services
and products, capital, information and knowledge. Gov-
ernmental regulations and other frame conditions may be
regarded as control. Owners and external organizations

Research on Software Production Support Structure 181

comprise the mechanism. Software production box in-
cludes market, sale, Customer Relationship Management
(CRM) and Customer Service (CS). Research and De-
velopment (R&D), technological and administrative
support functions, infrastructure resources (any kind, e.g.
Human Resources and Intranet etc.), organizational
knowledge portal (the knowledge keys to successfully
software project), as well as SPI. The market is goal,
while sale is means and CRM & CS are assurance. R&D
is the core element, technological and administrative
supporting are interfaces and infrastructure resources.
The inner box, software process improvement (develop-
ment), includes software process (inception, elaboration,
construction and transition, them are not illustrated in the
Figure 10) and core workflows and activities supporting.
The core workflows are in the following: requirement,
analysis, design, construction and testing. All of the de-
velopment activities are architecture based (OT, object
technology), including configuration (change) manage-
ment (CM), project management (PM, plan, control, co-
operation and standard etc.), quality management (QM,
including analysis and assurance), knowledge manage-
ment (KM) in SPI, Knowledge portal is facility for
knowledge accumulating, sharing and communication in
organization scope, KM should be supported by HR,
Finance, Intranet etc.

8. Software Production Support Structure

Basing on interactive management support structure
[5,12], software production support structure can be il-
lustrated in Figure 11.

Figure 11. Software production support structure

It consists of boxes that contain text and arrows that
connect the boxes. The arrows are all oriented upward.
They show the directional flow of support. If there is a
directed path from some box to some higher level box,
the one below supports the one at the other end of the
path. This is the basic rule for understanding this support
structure. The word “support” is the key point. It means
that you will find necessary information in the lower box
for the development of what appears above. In this in-
stance, you can see, for example, that software produc-
tion support structure is supported by two sciences and
one theory and one process and one model. The two sci-
ences are all supported by these three principal compo-
nents: 1) Thought about thought (which J. N. Warfield
called “second-order thought”); 2) Language; 3) Be-
havioural pathologies (which is the information about
human limitations, individually, in small groups, and in
larger organizations; the information coming from the
research in psychology, sociology, and organizational
studies).

The date 350 B.C. corresponded roughly to the period
of Aristotle's work in logic, in which he developed the
first formal statement of deductive logic, along with the
concept of categorizing topics so that it would be possi-
ble to work with and compare collections of ideas, as
well as with the individual ideas themselves. Prof. War-
field has described the pattern that evolved over the
many centuries that brought thought about thought into
our view today, so that those ideas find their ways into
SPI, where they help people resolve complexity of SPI.
The idea is applied to Chinese enterprise on the condition
that Warfield's theory must be combined with Chinese
traditional culture and thought, such as Change of Book
and “Shili-Wuli-Renli” etc.

A Science of Generic Design [4]: This science focused
upon the use of information coming from a high- quality
description to develop a set of options from which an
alternative design could be chosen for implementation. It
focuses upon the design of socio-technical systems.
Software engineering, which is also socio- technical sys-
tems, can be applied the science of generic design. The
propositions of SDP and SSP are educed and become the
theory foundation of SPI. This theory can guide the de-
sign of WPOC of SPI (structural presentation).

When working on a software project, software engi-
neers apply principles based on the foundation to soft-
ware developing processes and the product through
forming specific and pragmatic methods and tools [18]. It
is necessary for complexity interactive cognition proc-
esses because that SPI should be combined with software
project management, which is needed to conform to en-
terprise business goals. Software enterprise model can be
considered as an application model of e-business for
software enterprise [10, 15, 18, 20].

Science of Generic Design

Science of Description

Behavioural

Pathologies

Thought about

Thought
Language

Work Program of Complexity of SPI

Propositions of Complexity of SP

Software Production

Software Enterprise Model

Copyright © 2009 SciRes JSEA

Research on Software Production Support Structure

Copyright © 2009 SciRes JSEA

182

9. Demonstration

Demonstration includes two parts as following: 1) Prof. J.
N. Warfield has tried to identify and name each distinc-
tive origin of one or more behaviorally related symptoms.
Mindbugs (cognitive barriers) according to SW- CMM
are studied. The research finds that the most common
mindbugs of SPI is misattribution of consensus. 2) The
knowledge integration support structure of quality soft-
ware production is illustrated with case study.

9.1 Mindbugs in Software Process

9.1.1 The Identification and Classification of
Mindbugs

Warfield have tried to identify and name each distinctive

origin of one or more behaviorally-related symptoms (as
“mindbugs” to bring the language in line with contem-
porary computer languages) [21]. So far, twenty-five
mindbugs have been identified, which are grouped into
four categories: Mindbugs of Minsinterpretation: those
where concepts are misconstrued or misattributed, be-
cause of faulty interpretation, Type M; Mindbugs of
Clanthink: those where concepts are very widely per-
ceived to be correct, but are demonstrably incorrect,
Type C; Mindbugs of Habit: those which involve in-
grained behavior, evinced with essentially no conscious
thought, Type H; and Mindbugs of Error: just plain mis-
takes, Type E. It can be summarised in Table1 (Where a
Mindbugs is at least assigned to more than one type, and
several types are separately acknowledged).

Table 1. The identification and classification of mindbugs

M C H E

M1, Misinterpretation of Lin-
guistic Adequacy of Natural
Language , C1

C1, Misinterpretation of Linguis-
tic Adequacy of Natural Lan-
guage, M1

H1, Indistinguished Affinity to
Unstructured Discussion, C6, E3

E1, Susceptibility to the Fad of
the Month, H6

M2, Misinterpretation of Lin-
guistic Adequacy of Object
Languages, C2

C2, Misinterpretation of Linguis-
tic Adequacy of Object Lan-
guages, M2

H2, Adversity to Budgeting for
Interface Expenses, C7, E4

E2, Unawareness of Imputed
Structure, H10

M3, Confusing Prestige with
Authoritativeness

C3, Misconstruing Technology
as Science (and vice versa), M4

H3, Affinity to All-Encompass-
ing Dichotomies

E3, Indistinguished Affinity to
Unstructured Discussion, C6,H1

M4, Misconstruing Technology
as Science (and vice versa), C3

C4, Insensitivity to Conceptual
Scale

H4, Leaping to Misassociation
E4, Adversity to Budgeting for
Interface Expenses, C7, H2

M5, Misconstruing Structural
Incompetence as Innate In-
competence

C5, Insensitivity to the Presence
and Origins of Human Fallibility

H5, Insensitivity to Role Distinc-
tion

E5, Mistaken Sense of Unique-
ness

M6, Misattribution of Consen-
sus

C6, Indistinguished Affinity to
Unstructured Discussion, H1,E3

H6, Susceptibility to the Fad of
the Month, E1

E6, Mistaken Sense of Similarity

M7, Misconstruing Persistence
as Validity

C7, Adversity to Budgeting for
Interface Expenses, H2, E4

H7, Insensitivity to the Signifi-
cance of Information Flow Rates

E7, Misconstruing Philosophy as
Ideology(and vice versa)

 H8, Adversity to Deep Though
E8, Misassignment of Relative
Saliency

H9 Failure to Distinguish among
Context, Context, and Process

E9, Irresponsible Propagation of
Underconceptualized Themes

H10, Unawareness of Imputed
Structure, E2

E10, Unawareness of the Cumu-
lative Impact of Many Collo-
cated Mindbugs

Research on Software Production Support Structure 183

Levels of SW-CMM（2 up to 5）

Index of Software Process Performance (Disciplines, Standard, Predictable and Optimizing)

Figure 12. Class diagram of index system of software process performance

Figure 13. Class diagram of mindbugs of process management of SPI

Table 2. The reliability of mindbugs questionnaire

Mindbugs P1 P2 P3 P4 P5 P6 P7 P8 P9

Reliability 0.8447 0.8816 0.8570 0.8701 0.8882 0.9190 0.9031 0.9185 0.8934

9.1.2 Framework of Software Capability Maturity

Model
SPI actions are divided into 15 categories, which are fur-
ther grouped into 4 major topics, namely organization,
project management, process management and technol-
ogy. They are summarised in Figure 12 (The four views
are integrated into one figure to illustrate that the four
views is a whole) [1].

9.1.3 Research Design
The five levels Likert scale is taken. The process man-
agement of SPI is selected referring to key areas of
SW-CMM. The process management of SPI involves
process definition, process execution, data gathering and
analysis, and process control. The process definition pro-
vides a standardized framework for task implementation,
evaluation, and improvement. Process execution defines
the methods and techniques used to produce quality
products. Analysis deals with the measurements, includ-
ing software products and processes, and uses this data.
Process control concerns the establishment of mecha-
nisms to assure the performance of the defined process
and process monitoring and adjustment where improve-
ments are needed [1].

The major mindbugs of SPI are mindbugs of M and
mindbugs of H through literature review and investiga-

tion on spot. The overlap mindbugs of M and H are re-
moved. There are nine mindbugs in the following to be
selected for study: Confusing Prestige with Authorita-
tiveness (M3, P1), Misconstruing Structural Incompe-
tence as Innate Incompetence (M5, P2), Misattribution of
Consensus (M6, P3), Misconstruing Persistence as Va-
lidity (M7, P4), Leaping to Misassociation (H4, P5), In-
sensitivity to Role Distinction (H5, P6), Insensitivity to
the Significance of Information Flow Rates (H7, P7),
Adversity to Deep Though (H8, P8), and Failure to Dis-
tinguish among Context, Context, and Process (H9, P9).
The first four mindbugs are in the type of minsinterpreta-
tion, and others of habit. The Pi (I=1, 9) is taken for easy
documentation, It can be illustrated in Figure 13.

9.1.4 Statistic Analysis
The questionnaire survey was carried in Guangdong
Province of China, including Center of BSS&OSS Sup-
port of China Telecom Corporation Ltd. Guangzhou Re-
search Institute, Zhongshan Mobile Telecom Corporation,
China Industry and Commercial Bank Guangzhou
Branch, Asia Info et al. The number of the total ques-
tionnaire is 59, and there are 41 effective ones.

According to the above nine kinds of mindbugs, reli-
ability analysis result is illustrated in Table 2. P6 is the
top one (0.9190) and P1 is at the bottom (0.8447), but all

Analysis, 9

Mindbugs (M & H)

Execution, 9Definition, 9 Control, 9

Organization Project Mgt. Process Mgt. Technology

Leadership Controllable Stabilization Advance

Policy
Resources
Oversight

Communication
Training

Planning
Tracking

Project Control
Subcontracting

Definition
Execution
Analysis
Control

Insertion

Environments

Copyright © 2009 SciRes JSEA

Research on Software Production Support Structure 184

are bigger than 0.8. The internal consistency of ques-
tionnaire is very good.

Table 3 illustrates the following information:
a) The minimum of mindbugs are all 1, except P8

(1.25). The maximum of first five mindbugs are all 5.
The other mindbugs are in the following respectively: the
P6 is 4.00, and the P7 is 4.75, and the P8 is 4.00, and the
P9 is 4.75.

b) The maximum mean is P3 (3.4634), and the mini-
mum mean is P6 (2.7966), the average of the means is
about 3. The descending order is as follows: P3 (3.4634),
P4(3.2561), P2(3.2012) and P1(3.1890). Every type M of
mindbugs is above the type H of mindugs.

One-sample T Test is taken for every hypothesis
(There is some kind of mindbugs in process management
of SPI). Test Value sets 3 (basing on descriptive statistics)
and 95% confidence interval of the difference is taken,
The T test is passed. The result is illustrated in Table 4.

a) The mean of the mindbugs of M is 3.2774, and the
mean of the mindbugs of H is 2.9707.

b) In the process definition, the mean of mindbugs of
M is 3.2256 and the mean of the mindbugs of H is

2.9707. In the process execution, the mean of the mind-
bugs of M is 3.2500 and the mean of the mindbugs of H
is 2.9951. In the process analysis, the mean of the mind-
bugs of M is 3.3049 and the mean of the mindbugs of H
is 2.9707. In the process control, the mean of the mind-
bugs of M is 3.3293 and the mean of the mindbugs of H
is 2.9463. The biggest of mindbugs of M is the process
control, and the following is process execution. The big-
gest of mindbugs of H is the process execution, and the
following are both process definition and process analy-
sis. The mindbugs of M is more serious than the Mind-
bugs of H. These are consistent with the results of both
literature review and field study

It is necessary to research on SPI in the view of cogni-
tion. The research finds that the most common mindbugs
of SPI is Misattribution of Consensus (M6), and the
finding is consistent with literature review and investiga-
tion on spot. It is suggested to resolve the mindbugs in
Type M, including M6 in the first place, then framebreak
and remodel to resolve the mindbugs of Type H in SPI.

Table 5 illustrates the following information:

Table 3. The descriptive statistics of mindbugs

Mindbugs N Minimum Maximum Mean Std. Deviation

Confusing Prestige with Authoritativeness (P1) 41 1.00 5.00 3.1890 .9300

Misconstruing Structural Incompetence as Innate Incompetence (P2) 41 1.00 5.00 3.2012 .9000

Misattribution of Consensus (P3) 41 1.00 5.00 3.4634 .8112

Misconstruing Persistence as Validity (P4) 41 1.00 5.00 3.2561 .7593

Leaping to Misassociation (P5) 41 1.00 5.00 3.0122 .9202

Insensitivity to Role Distinction (P6) 41 1.00 4.00 2.7866 .9962

Insensitivity to the Significance of Information Flow Rates (P7) 41 1.00 4.75 3.0427 .9697

Aversity to Deep Though (P8) 41 1.25 4.00 3.0000 .9066

Failure to Distinguish among Context, Context, and Process (P9) 41 1.00 4.25 3.0122 .8695

Table 4. One-sample T test

 Test Value = 3 95% Confidence

 t df Sig. (2-tailed) Mean Difference Interval of the Difference

Mindbugs Lower Upper

Confusing Prestige with Authoritativeness(P1) 1.301 40 .201 .1890 -.1045 .4826

Misconstruing Structural Incompetence as Innate Incompetence (P2) 1.432 40 .160 .2012 -8.2866E-02 .4853

Misattribution of Consensus (P3) 3.658 40 .001 .4634 .2074 .7195

Misconstruing Persistence as Validity (P4) 2.160 40 .037 .2561 1.644E-02 .4958

Leaping to Misassociation (P5) .085 40 .933 1.220E-02 -.2782 .3026

Insensitivity to Role Distinction (P6) -1.372 40 .178 -.2134 -.5278 .1010

Insensitivity to the Significance of Information Flow Rates (P7) .282 40 .780 4.268E-02 -.2634 .3488

Aversity to Deep Though (P8) .000 40 1.000 .0000 -.2861 .2861

Failure to Distinguish among Context, Context, and Process (P9) .090 40 .929 1.220E-02 -.2623 .2867

Copyright © 2009 SciRes JSEA

Research on Software Production Support Structure 185

Table 5. Compare minsinterpretation mindbugs with habit mindbugs

 N Minimum Maximum Mean Std. Deviation

Process Definition (M) 41 1.00 5.00 3.2256 .8020

Process Definition (H) 41 1.00 4.40 2.9707 .8241

Process Execution (M) 41 1.00 5.00 3.2500 .8422

Process Execution (H) 41 1.00 4.20 2.9951 .8781

Process Analysis (M) 41 1.00 5.00 3.3049 .7876

Process Analysis (H) 41 1.20 4.20 2.9707 .8301

Process Control (M) 41 1.00 5.00 3.3293 .8449

Process Control (H) 41 1.20 4.00 2.9463 .8025

Means (M) 41 1.00 5.00 3.2774 .7514

Means (H) 41 1.20 4.10 2.9707 .7943

Figure 14. Software project process model of XXX corp

9.2 Case Study

XXX Corp. was established in 1995 and is a high-tech
enterprise of Guangzhou. Its mindbugs in software proc-
esses, software project organization, and keys to software
project management are analyzed. Finally, knowledge
integration support structure of quality software produc-
tion is put forward.

9.2.1 Primary Activities of Software Process
Software project usually is carried through five steps in
the following: (1) Acceptance commission; (2) Analyzing
requirement; (3) Design outline; (4) Building; (5) Verifi-
cation and validation, It can be illustrated in Figure 14.

(1) Acceptance commission. Including pre-sales, in-
vestigation, requirement investigation, submitting re-
quirement investigation report, feasibility study report,
assignment software development tasks; (2) Analyzing
requirement. Requirement specification, which is V&V
to be effective, is submitted. It is both the baseline of
software engineering management and the most impor-
tance gist for check and acceptance. (3) Design outline.
Including outline design and database design. (4) Build-

ing. Detailed design based outline design according to
coding specification, interface design specification and
API specification etc. (5) Verification and Validation.
Check and accept the system, including a series of testing,
trial running and evaluation, submitting testing analysis
report, trial running report, check and accept report and
project development summary report.

9.2.2 Mindbugs in Software Process
Because of the programmers failing to rationally orga-
nizing the development team, there are problems in the
following: (1) Working following feeling in the first
place, working following the operator’s scattered ideas in
the end (no well-done requirement description, Type M);
(2) Think hard, working while thinking, including writ-
ing documentation (no well-done project plan, Type C &
H); (3) Think hard without guidance, it is often to dis-
cover that the system couldn’t be integrated at last (no
well-done process specification, Type H & E); (4) It of-
ten lose money in business when the project is finished
(no well-done milestones, four types). The programmers
often feel weariness, distress, at sea and no achievement
(complexity, mindbugs). The phenomena are very com-

Analysis

Requirement
Specification

Design

Outline
Database

Building

Coding

V & V

Testing Report
Trial Running
Report,
V&V Report
Summary Report

Interface Design
API
Testing
Maintenance
User Manual
Modular Manual

Acceptance

Delivery List
Schedule
Milestones
Roles
Communication
Resources

Copyright © 2009 SciRes JSEA

Research on Software Production Support Structure 186

mon among software enterprises in China.

9.2.3 Software Project Organization
Developing organization scientifically is the foundation
of highly efficient and stable project operating. In accor-
dance with the CMM model, the company established
SEPG (Software Engineering Process Group, similar to
the Technical Group), SQA (Software Quality Assurance)
and SEG (Software Engineering Group), and this led to
form a balanced system including the legislation, super-
vision and law enforcement and realize the organization
theme of the software process improvement performance
model. It is illustrated in Figure 15. By 2002, the com-
pany had developed relatively complete and formal doc-
uments to manage software processes, and set up a kno-
wledge management center.

9.2.3.1 Technical Group
In the software development processes, SEG has to ob-
tain large amount of technical resources which relies on
the day-to-day accumulation and constantly bringing in
external technical resources. At the same time, by estab-
lishing development standards and norms, and complet-
ing technical proposal verification and technical person-
nel evaluation as well as the evaluation of researches
which do not belong to any R&D development team, the
development team’s working efficiency can be assured
and duplication of enterprises investment can be avoided.
Consequently, the technical resources can be fully used.
It can be illustrated in Figure 16.

The characteristics of the technical group include: 1)
involving the functions of SEPG; 2) never directly un-
dertaking the entire project tasks; 3) mastering the core
technology, managing the technical capability of enter-
prises, and achieving processes management and tech-

nology introduction.
The functions of the technical group include: 1) tech-

nical standards: drawing up technical standards and
specifications to form a unified internal technical lan-
guage which is conducive to initial learning, technology
communication and mutual supports among the teams. 2)
technology accumulation: drafting technical plans, en-
suring there are plans to introduce new technologies and
organizational research and development so as to realize
technology sharing as well as assessment and enhance-
ment of the technological capability.3) knowledge resu-
ing: managing the achievement of technology and
knowledge base to ensure maximum reuse of knowledge
and shortening the development cycle. 4) the quality of
personnel: organizing technology training, technology
communication and technology assessment to speed up
the improvement of the quality of personnel. 5) technol-
ogy quality: organizing technical evaluation and proposal
verification to ensure the quality of technology.

The positions of the technical group include: 1) Tech-
nical manager is the person who is in charge of technol-
ogy planning, technology assessment and the develop-
ment of technology management system. 2) System ana-
lyst is responsible for technical analysis, program review
and project assessment. 3) R & D engineer is responsible
for the development of public components. 4) File Man-
ager manages product base and shares modules base,
knowledge base and database.

Many companies are not sizeable enough to establish
the group, but these duties are so important that they
must be managed by somebody who can be substituted
by virtual teams composed of the department manager,
file managers, some technical experts. However, the re-
sults are often not so satisfactory.

Software development organization

Technical Group Development Group

Quality Assurance

Figure 15. Class diagram of software development of XXX corp

Figure 16. Structure diagram of software technology group of XXX corp

(a)Technology training& communication
(b)Technology assessment

Project Technology Supporting Technology Accumulation Personnel Quality

Organization Technical Resources

(a)Technology V&V
(b)Technology recycling技术规划

(a) Technology introduction and R&D
(b)Technology planning

(b) (a) (b) (b) (a) (a)

Copyright © 2009 SciRes JSEA

Research on Software Production Support Structure 187

Figure 17. Software project organization of XXX corp

Figure 18. Software quality factors of XXX corp

9.2.3.2 Development Team
Development team can be further divided into a number
of different conventional technology groups, such as
network technology, Java technology, VB technology
and PB technology. When the specific project is to be
carried out, the project manager arranges temporary pro-
ject teams according to the technical requirements. The
organization of the project team is very important, so it
should be decided by specifically analyzing the scale and
technical characteristics of the project. The project or-
ganization is shown in Figure 17 (using the object-ori-
ented technology, emphasizing on software system ar-
chitecture, integrating the process model, product model
and the object model, and describing that SPI needs pro-
ject management knowledge, quality management exper-

tise and software engineering knowledge and technol-
ogy). If necessary, a project director can be set up to be
responsible for total project control, cross-organizational
coordination and policy management in order to achieve
the project management and process management themes
of the software process performance model.

9.2.3.3 Quality Assurance Group
The specific objectives of quality vary from different
projects. It should be balanced between the investment in
quality assurance and quality losses. Furthermore, it is
important to keep the concept of quality and cost and
customer satisfaction in mind so as to conduct the quality
assurance in proper direction and eliminate the problems
in the early phase. It is necessary to distinguish between
products and customized projects in the quality require-
ments, and in the customized projects, the quality assur-
ance can be agreed to be achieved by the cooperation
with clients. Quality assurance activities include the
quality planning, test plan, test analysis reporting, testing
activities, proposal verification and process assessment
and so on.

Many factors affect the quality, mainly in terms of the
quality of development process, testing tools, testing
methods, the quality of testing personnel, testing envi-
ronment and quality of design (Figure 18). Through an

Software quality factors

Testing
tools

Personnel
quality

Testing
Enviro-
nment

Testing
meth-
ods

Quality of
design

Develop-
ment
process

Tester

Project manager

System analyst Architecture
engineer

Programmer

QA engineer

Configuration manager

Project management

process model
Quality
control

Product model
Analytical
level

Management
level

Realizing

objection technology

SE technology
level

Supportin
level

and environment

Process Management

Quality Management

Project Management
g

Copyright © 2009 SciRes JSEA

Research on Software Production Support Structure 188

organic integration of processes, technology and person-
nel to achieve the process management theme of the
software process performance model.

9.2.4 Keys to Software Project Management

9.2.4.1 Make Full Use of Available Resources
Development team is only one of the development ex-
ecutive team, the development standards and protocols,
the power of the quality test, the accumulation reusable
resources of enterprise (components, technology, meth-
ods, document templates, analogous case, business ex-
perts and the experience of members, etc.), are off-the-
shelf resources that the development team can use, the
project managers must make better use of these resources,
especially good at excavating hidden resources, so as to
shorten the development cycle.

9.2.4.2 Strengthen the Planning
Some people think that “program can’t keep up with
changes”, so they hold a negative attitude to plans. But as
long as we emphasis on planning and strengthen the
management of a variety of changes, we can get two
major benefits:

1) To reduce uncertainties. When people prepare plans,
it is usually difficult to plan some problems. In fact, the
uncertainties are on the exposed, we only need to assess
the potential consequences of these uncertainties, and
then formulate corresponding contingency measures.
When people form a new version of each plans, the ear-
lier uncertainties will be less. The evolution versions of
plans are in fact clear step by step processes to the target.

2) Help to improve efficiency. Plans enhance a sense
of urgency to reduce the waiting time for each other.
Project team members are in a project, the plans make
members all identify with the target, the process of for-
mulating plans are actually the process of members' un-
derstanding, also is to clarify their own roles, responsi-
bilities and the process of tasks. It is conducive to get
members’ psychological together, do what they should
do, thereby enhancing the efficiency of the entire team.

9.2.4.3 Control Project Changes
We must control the project’s direction of change toward
favorable conditions, prevent adverse changes and
eliminate a vicious circle. According to the control stage,
control changes can be divided into three types:

1) Prior to control. The crucial issues must be ascer-
tained in order to avoid opening the Pandora’s Box. For
example, the validity and the requirement-bound of the
project contract documents must be confirmed, and the
relevant documents should be signed in time in order to
prevent a lot of projects change from time to time later
because of people or time.

2) Control when it is in progress. For a variety of
things appearing in reasonable changes, to format a le-
gitimate change records after the deliberations of the

relevant aspects, and have the same effect as the original
legal documents. These records will serve as the basis for
other related changes and later verification.

3) After control. In the circumstances that issues have
emerged, we should properly handle them to prevent
further deterioration of the problem, from big to small,
small to little. At the conclusion of the project, projects
changes arising in the course must be analyzed to guide
future project planning and project control. Let members
learn from the changes and improve the team's ability to
cope with the changes.

9.2.4.4 Strengthen Requirement Management
Large applications need business experts, technical ex-
perts and other key personnel, to spend a great deal of
energy to find it out, so it absolutely can't be ignored.
The failure of most projects is not to find clear require-
ment. The purpose of requirement analysis is to ascertain
needs, recognize the requirement and define boundaries,
as well as to reduce rework due to requirement uncer-
tainty. The following are requirement access steps:

1) Select staff. It is important for the entire quality as-
surance to choose the appropriate staff. Research and
analysis staff needs to be better with rich experience and
professional knowledge. Because the customer's re-
quirement is often not clear, it is necessary to deal with
requirement as a separate item as much as possible.

2) Research. Due to business customers often do not
know how to tie in with the software development re-
search, research methodology is very critical. We must
grasp the whole, understand the details and then take the
line of top-down. From the horizontal view, staff must
research in accordance with the business processes from
downstream to upstream backward (output and then im-
port). It would be better to access needs from variety
ways, such as form, face-to-face communication etc.

3) Writing. Write the requirement specifications.
4) Confirm. Recognizing the requirement, the two

sides sign and generate an effective basis.
5) Change management. When management needs

change, people must fill the requirement change list. It
must be confirmed and then formatted the requirement
tracking specifications.

9.2.4.5 Communication Management
Communication targets: project internal members, super-
visors, customers, suppliers and supervisory company
and so on. The regular medium of internal communica-
tions often is report forms and conference.

Communication forms: e-mail, fax, telephone and
face-to-face and so on.

Five kinds of meeting: the project assessment confer-
ence, the demand review conference, the design review
conference, and the product release conference.

To achieve the desired effect of communication, use
e-mail or telephone and other forms in order to improve

Copyright © 2009 SciRes JSEA

Research on Software Production Support Structure

Copyright © 2009 SciRes JSEA

189

the efficiency of communications as much as possible.
For common resolutions and the content that must be
addressed as an important basis of the communication, it
is necessary to use fax and other written forms in order to
improve the quality of communication. Written form
communication is also a good way to reduce the commu-
nication misunderstanding, while oral communication is
the most unreliable, which is mainly used to discuss, and
its results ought to be recorded. The whole project writ-
ten formal documents must be unified managed and ar-
chived collectively, having unified entrance and exit.
Projects communications also need the right level and
confidentiality rules.

9.2.4.6 Document Strategy
In accordance with the classification of software engi-
neering methods, the development document can be di-
vided into feasibility studies and planning category, re-
quirements analysis category, outline design category,
detailed design category, construction category, assembly
and testing category, validation testing category, operation
and maintenance category and so on. If there are too many
documents, most people just cope with them in haste and
pay no attention to the quality of documentation. Because
a wide range of documents will increase the project cost,
therefore, how to improve the efficiency to write docu-
ments is very important. The ways to enhance the man-
agement of documents are in the following:

Normative. We should establish a unified document
language specification, edit, audit, grant, release, change
rules. Build a complete documents list so that project
staff can easily locate the right one.

Learn easily. We should establish document written
guidelines and allow developers to share the document
template, which can enhance the document’s learn easily.

Readability. We should use charts, from the coarse-to-
fine, surface to inner. Improve the document granularity.
Facilitate supervision, accreditation and quality assur-
ance personnel to participate. Write the document in ac-
cordance with the document and the reader (the devel-
opment, use, training, implementation, sales, service and
testing services), occupational characteristics and profes-
sional characteristics to reduce misunderstanding and the
hardship to be understood.

Portability. We should pay attention to the document
structure to facilitate the transplantation to other projects.

Tool support. We should use documentation tools
(such as: UML tools, etc.) to automatically generate doc-
umentation.

Continuous improvement. We should provide the staff
who writes documents with the continuous improving
methods of document written.

9.2.4.7 Knowledge Management
The goal of knowledge management: Knowledge is the
most valuable wealth in software companies. The stock,
flow and network of knowledge reflect the accumulation
and circulation of knowledge. Knowledge management is
to collect the existing knowledge and skills in enterprise,
and then to send them where it is needed and help enter-
prises maximize the benefits. The goal is to transfer the
most appropriate knowledge in the most appropriate time
to those most in need and help them make deci-
sion-making.

Table 6. The content of knowledge management

Classify Item Details

Interior knowledge

1. The technical standards and management standards
2. Case-base
3. Questions-base
4. Knowledge-base
5.The public library module
6.The technical exchange activities
7.The registration of intellectual property rights (copyright registration)

Exterior knowledge

1. Establish the feedback information base to provide the product development requirements
for new technologies
2. The supplier information database: For example, training institutions, the servers, match
software, etc.
3. Competitor information base
4. The expert knowledge base (explain how to obtain the means of knowledge if it doesn't
have electronic document)
5. Outsourced staff expertise
6. The latest technology terms
7. The relevant knowledge Web address

Staff knowledge
creation

1. Staff expertise library, that can be easily convened to discuss technical problems
2. Staff recommends library
3. Troubleshooting

Research on Software Production Support Structure 190

Figure 19. Class diagram of keys to software project management of XXX corp

The existing forms of knowledge: archives (documents,

manuals and drawings of knowledge), the tacit knowl-
edge in human brain, solidified process knowledge (sys-
tem and methods agglomerated in the products, work
processes, business processes, which are used continu-
ously).

Knowledge management tasks: To build the knowl-
edge store, improve the knowledge acquisition methods
and the knowledge environment, manage knowledge
assets. Set up knowledge management positions to col-
lect and organize knowledge. Establish knowledge net-
works to provide the access for the project team at any
time. Brainstorming, take full advantage of the tacit
knowledge in organizations.

We should pay attention to sum up the project, analyze
and extract useful knowledge archive. Table 6 is the
classification and illustration of knowledge management
that contribute to knowledge management. Figure 19
shows the key issues and points to implement software
project management.

9.2.5 Knowledge Integration Support Structure of
Quality Software Production

9.2.5.1 Japanese Knowledge Science
Ikurjiro Nonaka argued that knowledge is created and
used in organization through knowledge transforming
process, including four patterns: socialization, externali-

zation, combination, and internalization. All four of these
patterns exist in dynamic interaction, a kind of spiral of
knowledge. Knowledge is truly created and used effec-
tively and depending on established dynamic business
system [22–23]. Nine questions are put forward to the
following [23]: 1) What is the status of “truth” in the
definition of knowledge? 2) Do tacit and explicit knowl-
edge fall along a continuum? 3) Is the tacit/explicit
knowledge distinction along the continuum valuable for
organization science? 4) What is the conceptual basis of
knowledge conversion? 5) Given the relationship be-
tween tacit knowledge and social practices, how can the
concept of knowledge conversion be upheld? 6) What is
the outcome of knowledge conversion? 7) What is the
relationship between organizational knowledge creation
and social practices in organizations? 8) When and why
do social practices contribute to the conservation of ex-
isting tacit knowledge and existing routine rather than
organizational knowledge creation and innovation? 9)
How can leadership motivate and enable individuals to
contribute to organizational knowledge creation by tran-
scending social practices? College of Know- ledge Sci-
ences was established in Japan Advanced Institute of
Science and Technology (JAIST) to investigate and study
how to establish and develop knowledge science in the
world [24].

Use resource

Components
Technology
Methods
Document
templates,
similar case
Experts and
members ex-
perience

The project
managers must
make better use
of these re-
sources, espe-
cially good at
excavating
hidden resources,
so as to shorten
the development
cycle

Reduce
Uncertainty
Improvement
Efficiency

The whole project
written formal
documents must to
be unified central-
ized management
and archived,
unified entrance and
exit. Projects
communications
also need to provide
for the right level
and confidentiality
rules

Project management key

Communication
management

Control change Requirement Document
management

Knowledge
management

Enhance plan
management

Prior to control
Select staff Communication

targets
Documents,
manuals and
drawings of
knowledge

Control when it
is in progress

Normative.
Learn easily
Readability
Portability
Tool support
Continuous
improvement

Research
Written
Confirm
Change

Communication
forms
Project assessment
conference
Demand review
conference

After control

Solidified
process knowl-
edge

management
The possibility to
complete the whole
project according to
the plan is very little,
while people only
focus on the scheme
and avoid the
changes will not
work. We must
control the project's
direction of change
toward favorable,
prevent adverse
changes and elimi-
nate a vicious circle

System and
methods ag-
glomerated in
the products

Design review
conference
Product release
conference Work processes,

business proc-
ess, used con-
tinuously

Key and Difficult point

Emphasis on plan
and strengthen
management of a
variety of
changes

The most failure
projects are due
to demand. The
purpose of
demand analysis
is to ascertain
the demand and
reduce rework
because of
demand uncer-
tainty, confirm
the demand
clear border.

The development
document can be
divided into feasibil-
ity studies and
planning category,
needs analysis
category, outline
design category,
detailed design
category, construc-
tion category,
assembly and testing
category, validation
testing category,
operation and
maintenance cate-
gory and so on

Knowledge
management is
collective
knowledge and
skills acquisition
in enterprise, and
then to send them
to where it is
needed and help
enterprises
maximize the
benefits

Copyright © 2009 SciRes JSEA

Research on Software Production Support Structure 191

9.2.5.2 Chinese Knowledge Engineering
Prof. Wang Zhongtuo defined the knowledge technology
as the following: knowledge technology is the discipline
about the methodologies, methods, procedures and tools
of knowledge identification, acquisition, storage, proc-
essing, dissemination, and creation for the purpose of
adding value to human economic and social activities.
The object of knowledge technology is not only the ex-
plicit knowledge, but also tacit knowledge and their in-
terrelations. The approaches are not only technique-ori-
ented, but also human-behavior-oriented. The knowledge
management involves primarily the knowledge process-
ing cycle that includes the capture, analysis and commu-
nication of knowledge within organization. It also in-
volves problems of searching and finding useful infor-
mation. But the most important thing is the creation of
new knowledge. He suggested that knowledge system
engineering is the discipline of organization and man-
agement of knowledge systems. The architecture of kno-
wledge systems, operation process of knowledge systems,
engineering project development, systems intuition and
knowledge fusion are under studying. Research center of
knowledge science and technology was established in

Dalian University of Technology (DUT) in 2000 [24].

9.2.6 The Domain of Science Model and the Domain
of Knowledge Model

9.2.6.1 The Domain of Science Model
Figure 20 illustrated the domain of science model by Prof.
Warfield in 1986.The two blocks consist of the corpus of
the science. The two blocks consisting of the methodol-
ogy and applications make up what is called arean. The
arean is, of course, where the action is, which is often
identified with “action research”: a kind of research bas-
ing on the view that there is no substitute for becoming
oneself in the problem as it occurs in a particular situa-
tion. The corpus refers to a body of knowledge but not to
application-specific knowledge. The domain of science
model is initially divided to reflect four components or
blocks. There are: foundations, theory, methodology, and
applications. The first three of these make up the science.
The model represents a relationship of steering in that the
foundations steer the theory, the theory steers methodol-
ogy, and methodology steers applications (and through
the foundations the other blocks of the science) [4].

Figure 20. The domain of science model

Copyright © 2009 SciRes JSEA

Research on Software Production Support Structure 192

The Business of Software

Software Enterprise Model

Figure 21. Knowledge integration support structure of quality software production

The foundations in the model have the specific func-

tion of providing the decision-making basis for the sci-
ence. Whenever issues arise in the theory or the method-
ology, it must be possible to refer them to the founda-
tions for resolution. If it is not possible to resolve an is-
sue in this way, one must assume that the foundations are,
in some way, lacking and must be upgraded. In order to
fulfill its function, the foundations must incorporate the
Universal Priors (the human being, language, reasoning
through relationships, and archival representations) in a
way that is directly relevant to the particular science be-
ing constructed. The foundation also must incorporate th-
ose particular concepts (the essences) that are required to
distinguish the particular science from other sciences [4].

In order for the foundations to steer the theory, it is
clear that the foundations must be prior to the theory, i.e.,
they must contain concepts and propositions that do not
depend on still deeper ideas foreign to the science and
they must not depend on the theory. The dependence
must be from the foundations to theory. A certain parsi-
mony is necessary; but matters must be excluded that are
not so established. To fulfill the function of being a fount
of resolution for issues arising in the Science, the Foun-
dations must not too great in number. To the extent pos-
sible, ideas should move out of the foundations toward
the theory and out of the theory toward the methodology,
where greater volumes of information can be tolerated [4].

If the various sciences were clearly organized in terms
of the three blocks of the Domain of Science Model,
people who have to work across the sciences would find
the task of drawing upon them much easier. And this
would permit the integration of parts of the recognized
scientific disciplines into newer integrative sciences [4].

9.2.6.2 The Domain of Knowledge Model
In our understanding, philosophy beliefs, which steer
what type of theory being established by knowledge
workers, must be involved. The “methodology” origi-
nally refers route in which one traces another and it
evolves the principles and program to do work. Methods
must divorce from methodologies and becomes new
layer. In addition, the foundation of a given discipline
can be merged with its relative theory layer. The domain
of knowledge science is established referring the domain
of science model, including philosophy belief, theory,
methodology, methods and applications. Of course, the
applications are also counteractive on the philosophy
belief. Because the philosophy does not belong to the
science category, it is referred to as the domain of
knowledge model [10].

9.2.7 Knowledge Integration Support Structure of
Quality Software Production

Software process is a collection of complex activities that
have strict time sequences, some are currently asynchro-

Task (Project)

Software Project Management

Knowledge Integration
Knowledge Application

Internalization

Business Operation by Project

Resource (Organization)

Relationship (Environment)

Eastern mgt. philosophy Western mgt. philosophy

Theory (Complexity Propositions of software process)

Methodology (WPOC of software process)

Method (PMBOK, PDCA, SWEBOK, etc.)

Knowledge

Fusion

Major in Tacit

Knowledge

Epistemology

Socialization

System intuition

Process Imp.

Major in Explicit

Knowledge

Methodology

Combination

Externalization

Process Design

(People) Sensible Understanding (Software Psychology)

(Earth) Management Thought (Software Management)

(Sky) Rational Analysis (Software Economics)

Copyright © 2009 SciRes JSEA

Research on Software Production Support Structure 193

nous, and some are condition each other and some inter-
act with each other. In fact, the activities in software
process have complex network relationship. Software
development are highly dynamic processes, and the dy-
namic change can be found in all phases in software
processes, such as requirement specification, assignment
tasks, debugging, development policy, tools and support
environment etc. These changes are often unpredictable
and their influences often couldn't be identified because
software process is people-oriented and software product
is intangible itself, and this results in that the software
processes are hard to control and theirs work quality are
not easy to assess. Software process has great complexity.
What philosophy beliefs are necessary for knowledge
economy? How to design methodology of quality soft-
ware production management? How to align quality
software production management with software enter-
prise business objects to compete in both domestic mar-
ket and overseas, which are rapidly changing?

Basing on both the domain of knowledge model and
support structure of interactive management, knowledge
integration support structure of quality software produc-
tion is illustrated in Figure 21.

Figure 21 illustrates that managing the complexity of
quality software production can be abstract through es-
sence (e.g. the complexity propositions of knowledge
management of software process etc.), and the abstract
problems can be embodied through interactive cognition
process (process design, e.g. work program of complex-
ity of knowledge management of software process etc.),
and the embodied problems to be structured through
learning process continuously (process implementation,
e.g. PMBOK, PDCA and SWEBOK etc.), and the struc-
tural problems to realize the business of software through
business operation by project (e.g. knowledge integration
model of software enterprise etc.).

The keys to knowledge integration support structure of
quality software production may be knowledge fusion
among Eastern management philosophy, Western man-
agement philosophy, sensible understanding (People,
Ren-li and Software Psychology), management thought
(Earth, Wu-li and Software Management) and rational
analysis (Sky, Shi-li and Software Economics). In other
words, tacit knowledge of software is socialized. At the
same time, the business of software is also reaction on its
support elements. “Sky-Earth-People” is the “Three-Cai”
of Change of Science [25], which is origin of Chinese
traditional philosophy, and “Shi-li Wu-li Ren-li” is put
forward by Prof. Gu jifa and Prof. Zhu zhichang. “Soft-
ware Psychology – Software Management – Software
Economics” is adopted from software terms.

Prof. Cheng Zhongying argued that management al-
ways depends on a structure and evolves to an adaptable
process [25]. In our understanding, quality software pro-
duction depends on knowledge integration support struc-

ture which is illustrated in Figure 21, and evolves to de-
sign process with continuously transforming, creating
and integrating process between explicit knowledge and
tacit knowledge, and it's also an organizational learning
process to resolve cognitive complexity continuously
from system intuitions, and knowledge fusion, and proc-
ess’s design and process's implementation, and business
operation by project to the business of software. Because
software industry is the core of knowledge economic, the
knowledge integration support structure of quality soft-
ware production is also generic resolution for managing
complexity of knowledge systems.

10. Conclusions

Based on our understanding, there is a long way to go for
knowledge integration support structure of quality soft-
ware production in both theory and practice according to
the domain of science model (Warfield), knowledge sci-
ence (Ikujiro Nonaka) and knowledge technology (Wang
Zhongtuo), but it will certain that the research is useful
for both software production and knowledge economy in
the future.

11. Acknowledgment

Thanks for the helpful discussion with Prof. Warfield,
Prof. Wang Zhongtuo, Prof. Yang Jianmei, Mr. Li Ji-
angzhuang, Mr. Hou Yawen, Mr. Zhou Qiyang, Mr.
Zhou Zhijun and my studtets Liu Qingjing, Wan Dan etc.

REFERENCES

[1] W. S. Humphrey, “Managing the software process,”
Reading. MA: Addison-Wesley, pp. 19–24, 1989.

[2] J. D. Herbsleb and D. R. Goldenson, “A systematic sur-
vey of CMM experience and results,” in Proceedings 18th
Intennational Conference on Software Engineering, Ber-
lin, Germany, pp. 323–330, March 1996.

[3] R. S. Pressman, “Software engineering: A practitioner’s
approach,” Vol. 5, McGraw-Hill Companies, Inc., pp. 19,
2001.

[4] J. N. Warfield, “A science of generic design: Managing
complexity through systems design,” IOWA State Uni-
versity, pp. 142–146, 187–188, 1994.

[5] J. N. Warfield and A. R. Cardenas, “A handbook of in-
teractive management,” AJAR Publishing Company,
1994.

[6] J. N. Warfield, “Twenty laws of complexity: Science
applicable in organizations,” Systems Research and Be-
havioral Science, Vol. 16, No. 1, pp. 3–40, 1999.

[7] J. N. Warfield, “Understanding complexity: Thought and
behavior,” AJAR Publishing Company, 2002.

[8] M. Scott and J. N. Warfield, “Enterprise integration of
product development data: Systems science in action,”

Copyright © 2009 SciRes JSEA

Research on Software Production Support Structure

Copyright © 2009 SciRes JSEA

194

Enterprise Information Systems, Vol. 1, No. 3, pp. 269–
285, August 2007.

[9] Brooks and P. Frederick, “No silver bullet: Essence and
accidents of software engineering,” Computer, Vol. 20,
pp. 10–19, April 1987.

[10] J. P. Wan and J. M. Yang, “Research on the work pro-
gram of complexity of software process improve-
ment—Methodology for implementation of SW-CMM,”
Science Press, Beijing, 2004. (in Chinese)

[11] J. P. Wan and J. M. Yang, “On the meanings of complex-
ity, generic design science and work program of com-
plexity,” Journal of Systemic Dialectics, Vol. 10, No. 4,
pp. 41–44, December 2002. (in Chinese)

[12] J. P. Wan and J. M. Yang, “Interaction management and
its application,” International Journal of Knowledge and
Systems Science, Vol. 2, No. 1, pp.25–32, March 2005.

[13] J. P. Wan and J. M. Yang, “Knowledge management in
software process improvement,” Application Research of
Computer, Vol. 19, No. 5, pp. 1–3, May 2002. (in Chi-
nese)

[14] J. P. Wan and J. Z. Li, “Some considerations on knowl-
edge management in software enterprise,” Application
Research of Computer, Vol. 20, No. 1, pp. 13–16, Janu-
ary 2003. (in Chinese)

[15] J. P. Wan and Y. L. Zhuo, “The e-business challenge,”
Application Research of Computer, Vol. 20, No. 9, pp.
9–10, September 2003. (in Chinese)

[16] J. Z. Li and J. P. Wan, “Considerations on project man-
agement in small and middle software organization,” Ap-
plication Research of Computer, Vol. 20, No. 9, pp.
14–17, September 2003. (in Chinese)

[17] J. P. Wan and J. M. Yang, “Research on the complexity
of software process improvement,” In Proceedings of
2003 International Conference on Management Science &
Engineering, Moscow, USA, pp. 168–172, August 15-17,
2003.

[18] J. P. Wan, J. M. Yang, and H. Y. Han, “Support structure
of knowledge management in software process improve-
ment,” In Information Systems: e-business Challenge,
IFIP 17th World Computer Conference, Montreal, Can-
ada, pp. 17–29, August 25-30, 2002.

[19] B. W. Boehm, “Seven basic principles of software engi-
neering,” Journal of Systems and Software, Vol. 3, pp.
3–24, March 1983.

[20] Z. Y. Zhou, “CMM in uncertain environments,” Commu-
nication of the ACM, Vol. 46, No. 8, pp. 8–27, August
2004.

[21] J. N. Warfield, “Mentomology: The identification and
classification of mindbugs,” http://mars.gmu.edu:8080/
dspace/bitstream/1920/3199/1/Warfield%20_20_20_A1b.
pdf, 1995.

[22] Nonaka and Ikjurio, “Dynamic theory of organizational
knowledge creation,” Organization Science, Vol. 5, No. 1,
pp. 14–36, 1994.

[23] Ikujiro Nonaka and Georg von Krogh, “Perspective—
Tacit knowledge and knowledge conversion: Controversy
and advancement in organizational knowledge creation
theory,” Organization Science, Vol. 20, No. 3, pp.
635–652, 2009.

[24] Z. T. Wang, Knowledge Systems Engineering, Beijing,
Science Press, 2004. (in Chinese)

[25] Z. Y. Cheng and C. Theory, The Management Philosophy
of China, Shanghai, XueLin Press, Vol. 315, 1999. (in
Chinese)

J. Software Engineering & Applications, 2009, 2: 195-199
doi:10.4236/jsea.2009.23026 Published Online October 2009 (http://www.SciRP.org/journal/jsea)

Copyright © 2009 SciRes JSEA

195

Formal Derivation of the Combinatorics Problems with
PAR Method

Lingyu SUN1, Yatian SUN2

1Department of Computer Science, Jinggangshan University, Ji’an, China; 2School of Chemistry and Materials Science, University of
Science and Technology of China, Hefei, China.
Email: sunlingyu@jgsu.edu.cn

Received May 12th, 2009; revised June 13th, 2009; accepted June 17th, 2009.

ABSTRACT

Partition-and-Recur (PAR) method is a simple and useful formal method. It can be used to design and testify algo-
rithmic programs. In this paper, we propose that PAR method is an effective formal method on solving combinatorics
problems. Furthermore, we formally derive combinatorics problems by PAR method, which cannot only simplify the
process of algorithmic program's designing, but also improve its automatization, standardization and correctness. We
develop algorithms for two typical combinatorics problems, the number of string scheme and the number of error per-
mutation scheme. Lastly, we obtain accurate C++ programs which are transformed by automatic transforming system
of PAR platform.

Keywords: PAR Method, Formal Derivation, Combinatorics, Algorithmic Programs

1. Introduction

Computer Science is a science of developing correct and
efficient algorithms. Its main research object is discrete
data handled by computer. As long as the algorithm in-
volves iterant calculation, each traditional strategy of
algorithm design can embody the principle of partition
and recurrence. Partition is a general approach for deal-
ing with complicated objects and is typically used in di-
vide-and-conquer approach. Recurrence is used in algo-
rithm analysis and dynamic programming approach. PAR
method is a unified approach of developing efficient al-
gorithmic programs and its key idea is partition and re-
currence. Using PAR method, we begin from the formal
specification of a specified problem, partition the prob-
lem into a couple of sub problems, and develop an effi-
cient and correct algorithm represented by recurrence and
initiation [1-3].

Combinatorics is a science of studying discrete objects.
In general, it includes basic theories, counting methods
and algorithms widely used in combination. Combina-
torics algorithms are based on combinatorics and make
people feel that computer may have its own thought.

 However, many programming teaching materials can
only present combinatorics algorithms but cannot pro-
vide the formal derived procedures that design the spe-
cific algorithms from the unresolved combinatorics
problems. So algorithm designers cannot understand the

essence of algorithms and cannot improve their capabil-
ity of algorithm design [4].

PAR method embodies rich mathematic ideology, it
provides many powerful tools and appropriate develop-
ing environment. We can avoid making a choice among
various design methods by adopting PAR method to de-
velop combinatory algorithms. It can also change many
creative labor to mechanized labor, and can finally im-
prove algorithmic programs design’s automatization,
standardization and correctness [5,6].

In this paper, we propose that PAR method is an effec-
tive formal method on solving combinatorics problems.
We formally derive several typical algorithms of combi-
natorics problems by PAR method, which cannot only
solve the above problems, but also can assure their cor-
rectness on logic. These combinatorics problem instances
include the number of string scheme, the number of error
permutation scheme, maximum summary [4], the longest
common subsequence [4], minimum spanning tree [4,7]
and the Knapsack problem [4], etc. Because of the lim-
ited space, we only describe the whole developing proc-
ess of two specific combinatorics problem instances, the
number of string scheme and the number of error permu-
tation scheme, which are derived by PAR methods.

2. The Developing Steps of the Number of
String Scheme Derived by PAR Methods

Suppose that A= , , ,a b c d , n is given, and we want to

Formal Derivation of the Combinatorics Problems with PAR Method 196

select n elements to compose string, in which element a
and b cannot be adjacent elements. How many schemes
are there in a string with n elements? [4]

2.1 The Formal Function Specification of the
Number of String Scheme

PQ: Given integer n, set A= , , ,a b c d , string S stores n

elements of set A.

PR: Let        String n = S S k = a S k = b S k 

  1c S k d k n      and   , :F S i j i j  

1 ba 

, then  : .. 1n S j j ab S j     .. j

(: () :Z N S S String nn  

(:1 : [1] [1]))j j n S j j ab S j j ba        

= {According to the definition of }  ,F S i

(: () : (,1))N S S String n F S

= {equivalent transformation of quantifier}

(: () (,1) :1)S S String n F S  (1)

2.2 Partition the Problem Based on the
Post-Assertion

We partition computing Zn into computing Xn and Yn ,
each of that has the same structure with Zn.

(: () (,1)X S S String n F Sn   

([1] [1]) :1)S a S b    (2)

In Equation (2), Xn denote the number of n elements’
string scheme that element a and b cannot be adjacent
elements and the initial element is a or b.

(: () (,1)Y S S String n F Sn   

([1] [1]) :1)S c S d    (3)

In Equation (3), Yn denote the number of n elements’
string scheme that element a and b cannot be adjacent
elements and the initial element is c or d.

(: () (,1) :1)Z S S String n F Sn   

(: () (,1)S S String n F S  

([1] [1] [1] [1]) :1)S a S b S c S d       

={Range Disjunction}

(: () (,1) ([1] [1]) :1)S S String n F S S a S b     

(: () (,1) ([1] [1]) :1)S S String n F S S c S d     



= {According to the definition of Xn and Yn}

X Yn n (4)

According to the equation (4), we can partition com-

puting Zn into computing Xn and Yn.

2.3 Construct the Recurrence Relation

Suppose Xn-1 denotes the number of n-1 elements’ string
scheme that satisfy the condition and the initial element
is a or b. Yn-1 denotes the number of n-1 elements’ string
scheme that satisfy the condition and the initial element
is c or d.

(: () (,1)X S S String n F Sn   

([1] [1]) :1)S a S b   

(: () (,1) ([1]S S String n F S S   

[1]) ([2]a S b S   

[2] [2] [2]) :1)a S b S c S d      

= {Range Disjunction}

(: () (,1) ([1] [2])S S String n F S S S   

([2] [2]) :1)S a S b    

(: () (,1) ([1])S S String n F S S a   

([2] [2]) :1)S c S d    

(: () (,1) ([1])S S String n F S S b   

([2] [2]) :1)S c S d   

= {According to the definition of }  ,F S i

(: () ([1] [2]) (, 2)S S String n S S F S   

([2] [2]) :1)S a S b    

(: () ([1]) (, 2)S S String n S a F S   

([2] [2]) :1)S c S d    

(: () ([1]) (, 2)S S String n S b F S   

([2] [2]) :1)S c S d   

= {According to the definition of Xn-1 and Yn-1 }

21X Yn   1n  (5)

According to the equation (5), we can partition com-
puting Xn into computing Xn-1 and 2×Yn-1.

(: () (,1)Y S S String n F Sn   

([1] [1]) :1)S c S d   

(: () (,1) ([1]S S String n F S S   

[1]) ([2] [2]c S d S a S     

[2] [2]) :1)b S c S d    

Copyright © 2009 SciRes JSEA

Formal Derivation of the Combinatorics Problems with PAR Method 197





















= {Range Disjunction}

(: () (,1) ([1] [2])S S String n F S S c S d    

([2] [2]) :1)S a S b   

(: () (,1) ([1] [2])S S String n F S S c S d    

([2] [2]) :1)S c S d   

= {Range Disjunction}

(: () (,1) ([1])S S String n F S S c  

([2] [2]) :1)S a S b   

(: () (,1) ([1])S S String n F S S d  

([2] [2]) :1)S a S b   

(: () (,1) ([1])S S String n F S S c  

([2] [2]) :1)S c S d   

(: () (,1) ([1])S S String n F S S d  

([2] [2]) :1)S c S d   

= {According to the definition of  ,F S i }

(: () ([1]) (, 2)S S String n S c F S   

([2] [2]) :1)S a S b    





1n

(: () ([1]) (, 2)S S String n S d F S   

([2] [2]) :1)S a S b   

(: () ([1]) (, 2)S S String n S c F S   

([2] [2]) :1)S c S d   

(: () ([1]) (, 2)S S String n S d F S   

([2] [2]) :1)S c S d   

= {According to the definition of Xn-1 and Yn-1 }

2 21X Yn   (6)

According to the equation (6), we can also partition
computing Yn into computing 2×Xn-1 and 2×Yn-1.

2.4 Developing Loop Invariant

Suppose variant x stores the value of Xi, variant u stores
the value of Xi+1, variant y stores the value of Yi, variant v
stores the value of Yi+1, variant z stores the value of Zi,
where X1=2, Y1=2, Z1=4.

LI: 1 1x X u X y Y v Y z Zi ii i         
(1)i n  

i

2.5 Developing Corresponding RADL Program

The Recurrence-based Algorithm Design Language

(RADL) program of the number of string scheme, derived
by PAR methods, is shown in Algorithm 1. By the auto-
matic program transforming system of PAR platform, we
can get the Abstract Programming Language (APLA)
program of the number of string scheme which is trans-
formed from the RADL program and is shown in Algo-
rithm 2. Finally, we transform the APLA program of the
number of string scheme to C++ program, which can get
accurate running result.

Algorithm 1 (The RADL program of string scheme)
|[in n:integer; i:integer; x,y,u,v: integer; out

z:integer;]|
{PQ∧PR}
Begin: i=1++1; x=2; y=2; z=4;

A_I:     1 x x i u x i y y i      

    1 1v y i z z i i n      

Termination: i=n;
Recur: u=x+2*y; v=2*x+2*y;
z=u+v; x=u; y=v;
End.
Algorithm 2 (The APLA program of string scheme)
var: n:integer; i:integer; x,y,u,v: integer; z:integer;
begin:
 write(“Please input integer n value”);
 read(n);
 i:=1;x:=2;y:=2;z:=4;
 do (﹁(i=n)) →
 u:=x+2*y;
 v:=2*x+2*y;
 z:=u+v
 x:=u;
 y:=v;
 i:=i+1;
 od
 write(“The Number of string scheme:”, z);
end.

3. The Developing Steps of the Number of
Error Permutation Scheme Derived by
PAR Methods

Suppose that the original arrange scheme is A
=[a1…ai…an], which is satisfied with each element is
different. We want to interlace n elements of original
permutation scheme A to compose new permutation
scheme B, in which each element cannot be the same
position in A. How many schemes are there in error per-
mutation with n elements? [4]

3.1 The Formal Function Specification of the
Number of Error Permutation Scheme

PQ: Given the original permutation scheme A
=[a1…ai…an] , which is satisfied with (, :i j

Copyright © 2009 SciRes JSEA

Formal Derivation of the Combinatorics Problems with PAR Method 198

(1) : ([] []))i j n A i A j   
() { |Perm A B B

1 , , }i j k n j k    



.
PR: Let [] [] [] []j A i B j B k   

, then

      : :1 :D N B B Perm An   



j j n B j A j   

= {equivalent transformation of quantifier}

      : :B B Perm A j 



1 :j n B j A j   :1

=     :1 :i i n B n  

 
A i true 

    1 :j n B j A j   : :B B Perm A j 

 ' :1 :i i n B  



   :1n A i (7)

3.2 Partition the Problem Based on the
Post-Assertion

We partition computing Dn into computing Un and Vn,
each of that has the same structure with Dn.

     U B B Perm An  

 ' :1 :i i n B n   

In Equation (8), Un denotes the
err

: :1 :j j n B j A    j

 (8)

number of n elements’

       :1A i B i A n 

or permutation scheme in which an must be the ith
element in new permutation B.

       :V B B Perm A j   :1 :j n B j A  

j

 (9)

e number of n elements’

n

 ' :1 :i i n B n   

In Equation (9), Vn denotes th
err

      :1A i B i A n  

or permutation scheme in which an cannot be the ith
element in new permutation B.

       : :1 :D B B Perm A j   j n B j A j   n

 ' :1 :i i n B n   

= {Range Disjunction}

   :1A i

      :B B Perm A  :1 :j n B j A j   j

 ' : 1 :i i n B n   

 

       :1A i B i A n  

    1 :j n B j A j   : :B B Perm A j 

 ' :1 :i i n B n   

= {According to the definition of

According to the equation (1
puting Dn into computing Un and

       :1A i B i A n 

 Un and Vn }

 (10)

Vn.

3.

n-1 elements’ er-
ber of n-2

U Vn n

0), we can partition com-

3 Construct the Recurrence Relation

Suppose Dn-1 denotes the number of
ror permutation scheme, Dn-2 denotes the num
elements’ error permutation scheme.

       : :1 :U B B Perm A j j n B j A jn      

         ' :1 : :1i i n B n A i B i A n     

= {Generalized Range Disjunction}

   :1 : : :1i i n B B Perm A j j n      

    [] :1A n :) [] [] []B j A j B n A i B i    

  :1 : :i i n B B Perm A     

     :1 : :1j j i i j n B j A j       
= {According to the initial definition of D } n

 :1 :)2i i n Dn  

(1) 2n Dn    (11)

According to the equation 1), we can partition com-
puting Un into computing (n-1)× Dn-2.

(1

       : :1V B B Perm A jn     :j n B j A j 

         ' :1 :i i n B n A i B     :1i A n

= {Generalized Range Disjunction}

   :1 : : :1i i n B B Perm A j j n      

    [] :1A n :) [] [] []B j A j B n A i B i   

  :1 : :i i n B B Perm A     

  :1 : [] [] :1j j n B j A j   

= {According to the initial definition of Dn }

 :1 :)1i i n Dn  

(1) 1n Dn    (12)

According to the equation (12), we can partition com-
puting Vn into computing (n-1) × Dn-1.

According to the equation (10)
recurrence: D =U + V = (n-1) × (D +D), where

Suppose variant s1 stores the value of d(i-2), variant s2

, (11), (12), we have the
n n n n-1 n-2

D1=0, D2=1. That is to say, we can partition computing
Dn into computing (n-1) × D and (n-1n-1) × Dn-2.

3.4 Developing Loop Invariant

Copyright © 2009 SciRes JSEA

Formal Derivation of the Combinatorics Problems with PAR Method

Copyright © 2009 SciRes JSEA

199

)

scheme which are typical combinatorics problems. It is
revealed that PAR method has particular merit. It is apt
to understand and demonstrate the ingenuity and cor-
rectness of an algorithm by formula deduction. Com-
pared with other derivation, our algorithmic programs are
more precise and simple than the representation of algo-
rithm in natural language, flowchart and program. It also
shows that using PAR method in developing combina-
torics problem is a very natural meaningful research
work. This can not only expand the application of PAR
method, but also prove that the PAR method is a unified
and effective approach on solving combinatorics prob-
lems.

5. Acknowledgment

stores the value of d(i-1), variant d stores the value of
d(i), where D1 =0, D2=1.

LI: 1 (2) 2 (1)s d i s d i     
(1)i n  

(d d i

3.5 Developing Corresponding RADL Program

Th DL program of the ne RA
heme n

umber of error permutation
sc , derived by the PAR methods, is show in Algo-
rithm 3. By the automatic program transforming system

 of PAR platform, we can get the APLA program of the
number of error permutation scheme which is trans-
formed from the RADL program and is shown in Algo-
rithm 4. Finally, we transform the APLA program of the
number of error permutation scheme to C++ program,
which can get accurate running result.

Algorithm 3 (The RADL program of error permutation
scheme)

|[in n:integer; i,s1,s2: integer; out d:integer;]|
{PQ∧PR}
Begin: i=3++1; s1=0; s2=1;

A_I:      1 2 2 1s d i s d i d d i      

 3 i n 

=n+1; Termination: i
Recur: d= (i-1)*(s1+s2

;s2=d;
);

Algorithm The APLA program of error permu
sc

nteger; d:integer;

ase input integer n value”);

d= (i-1)*(s1+s2);

rrange Scheme:”, z);

4. c

We oped algorithmic programs for the number
st

 the international cooperation
ience and Technology of PR

[1] J. Y. Xue, “A ing efficient
algorithmic pr computer Science

om-

orithmic programs [C],” The Proceedings of

rmal University,

 program [J],” Journal of Yunnan University

Vo1. 27,

rithm with PAR Method [J],”

This paper is supported by
project of Ministry of Sc
China, grant No. CB 7-2-01, and by Science and Tech-
nology research project of Jiangxi Municipal Education
Commission under Grant No. GJJ09590.

REFERENCES
 unified approach for develop
ograms [J],” Journal of

s1=s2
End.

 4 (tation puter Sciences and Technology, Vol. 13, No. 6, pp. 95–
102, 1998.

[3] J. Y. Xue, “A practicable approach for formal develop-
ment of alg

and Technology, Vol. 12, No. 4, pp. 103–118, 1997.

[2] J. Y. Xue, “Formal derivation of graph algorithmic pro-
grams using Partition-and-Recur [J],” Journal of C

heme)
var: n:integer; i:integer; s1,s2: i
begin:

te(“Ple The international Symposium on Future software Tech-
nology (ISFS'99), Published by Software Engineers As-
sociations of Japan, pp. 212–217, 1999.

[4] L. Y. Sun, “The applied research of PAR method on
combinatorics problems [D],” Jiangxi No

 wri
 read(n);
 i:=2;s1:=0;s2:=1;
 do (﹁(i=n)) →
 2007.

[5] J. Y. Xue, “Research on formal development of algo-
rithmic

 s1:=s2;
 s2:=d;
 i:=i+1; (natural sciences), Vol. 19, pp. 283–288, 1997.

[6] Y. Q. Li, “Partition-and-recur method and its applications
[J],” Computer Engineering and Applications,

 od
 write(“The Interlaced A
end.

 Con lusions

devel of

C

No. 11, pp. 77–79, 2000.

[7] L. Y. Sun and J. Y. Xue, “Formal derivation of the mini-
mum spanning tree algo

omputer Engineering, Vo1. 32, No. 21, pp. 85–87,
2007. ring scheme and the number of error permutation

J. Software Engineering & Applications, 2009, 2: 200-205
doi:10.4236/jsea.2009.23027 Published Online October 2009 (http://www.SciRP.org/journal/jsea)

Copyright © 2009 SciRes JSEA

Sharing and Implementation of Heterogeneous
Database for Education Resource Based on XML

Shixi TANG

YanCheng Teachers University College of Science & Technology, Yancheng, China.
Email: tsxlyh@163.com

Received May 11th, 2009; revised July 1st, 2009; accepted July 15th, 2009.

ABSTRACT

The problem of sharing heterogeneous database for accessing different educational resources has to be considered. The
study is carried out to realize the heterogeneous database sharing for educational resources using multi-media educa-
tional resources as the researching object. XML is applied as middleware for the practical requirements of education.
The study has important practical significance for the intellectualization of educational and teaching resource platform.

Keywords: Heterogeneous Database, XML, Education Resource

1. Introduction

Nowadays, material resource, energy resource and in-
formation resource are three pillar resources during the
development of technology and economics. Educational
information resource, as an important part of information
resource, plays an important role in improving the teach-
ing quality and mining the potential of education. There-
fore, many countries have set up national educational
resources centers, such as the National Educational Re-
sources Information Center of United States, the National
Network for Basic Education Resource held by Basic
Education Curriculum Development Center of Ministry
of Education and Central Audio-Visual Education Center
of China. The construction of educational resources base
with corporations such as Resource of China School,
K12, Clever, ZhongJiaoYuxing, Cisco Tong Fang,
Tuteng, Tinghua Tangfang, becomes more and more
mature. Education resource has already become an im-
portant part of network resource. It plays important role
in solving the problems such as information selection,
information identification, information digestion, and
information individuation when users get amount of in-
formation through education resource base.

It turns out to be the most potential resource for global
information transferring and sharing with the rapid de-
velopment of WWW. The requirements and development
of new fields, such as e-commerce, e-books and distance
education have made Web data more complex and di-
verse. Therefore, it is difficult to store and manage all the
different Web data by traditional database technology.
XML is becoming the data description and exchange

standard on Internet. Meanwhile, XML and a series of
related standards have been widely accepted and used,
including the generation, storage, analysis of XML
documents, which lay the foundation for XML as data-
base, as well as offer the possibility to realize the sharing
of data in heterogeneous databases. The automatic trans-
forming XML into different relational databases effec-
tively has different ways. Oracle XML SQL Utility mod-
els XML documents element as a group of nesting tables,
through the element that oracle object data type modeled;
IBM DB2 XML Extender saves the XML documents as
BLOB type object, decomposes them to a group of tables,
and defines the XML collection by the XML1.0 grammar.
Microsoft solves the problem through expanding SQL-92
and involving the OPENXML line collection; Sybase
Adaptive Server takes ResultSetXml Java class as the
foundation of processing XML documents in two direc-
tions [1-3].

However, all manufacturers have a general character
that the XML durability establishes in a special founda-
tion, and there is no general facility to save all the XML
documents. If the XML documents use a new grammar,
it needs a special mapping. This is very disadvantageous
for the visiting and sharing the different heterogeneous
education resource. Firstly, education resource’s descrip-
tion is very complex, each education resource’s compre-
hensive description reaches more than 160 terms based
on international standard, which has the internationaliza-
tion request, and needs a standardized description frame.
Secondly, the existing education resource’s description is
not normal, on the one hand we need to preserve its
original description; on the other hand, we need a stan-

Sharing and Implementation of Heterogeneous Database for Education Resource Based on XML 201

dardized description mapping. Thirdly, when users use
an education resource, its description must personalize to
meet the users’ especial requirements by cutting out and
transforming its description. Fourthly, education re-
source’s description attribute value is dissimilar from
different understanding aspects based on education re-
source belonging to different disciplines. Fifthly, the
education resource has very wide manifestation, includ-
ing text, image, sound, video, animation and so on. Its
respective description must reflect both the general char-
acter and the difference. Only using existing tools given
by manufacturers can not solve these problems. This ar-
ticle takes the XML documents as the middle data ex-
changing model to study the sharing problem of educa-
tion resource heterogeneous database by taking the mul-
timedia education resource as the study object, embarked
from the actual requirements of education teaching.

2. Sharing Technology Selecting for
Heterogeneous Database of
Education Resource

Heterogeneous database systems [4] are collections of
many related database systems which could achieve
sharing and transparent accessing the data. Each database
system with its own DBMS has already existed before
adding in the heterogeneous database system. All com-
ponents of the heterogeneous database have their own
autonomy; each database system still remains its own
application characteristics, the integrity control and secu-
rity control when sharing the data. After carrying out
data conversion, on the one hand, all the information to
be shared is converted from source database to the desti-
nation database; on the other hand, such a conversion can
not contain related redundant information. We use the
interoperability technology and data integrity technology
of heterogeneous database to achieve the tasks of data
sharing in heterogeneous database. Heterogeneous data-
bases interoperability is a prerequisite for data integration.
The core is data accessing, so as to provide underlying
technology for achieving data integration [5–6].

The methods used to achieve the exchanging of data
among databases are various. Development tools with
data transfer tool, such as data pipeline in the Power-
Builder, can be used, but it relies on the database struc-
ture, and its flexibility is poor. E-mail system can not
meet the data exchange requirement between heteroge-
neous database systems, but you must connect two data-
bases before data transmission, which in turn lower its
flexibility. We solve the referred problems by using
XML as a middleware of heterogeneous databases sys-
tem. First of all, as a middleware, XML makes heteroge-
neous database system independent, and incompatibility
of heterogeneous database systems is solved. If only
front desk application can support XML, it can transfer

the exchange of information among heterogeneous data-
base systems to mapping relationship between XML.
Secondly, XML documents are easy to read and modify.
XML documents could be opened and modified by an
ordinary WordPad, and the structure is relatively simple
which is easy to read, modify and convert. All these in-
crease the flexibility of information exchanging hetero-
geneous database system and the scalability of XML.
Thirdly, XML document format is simple, which reduces
the complexity in the process of programming procedure,
lowers the workload of programmers, and XML docu-
ments’ code is easy as well. In view of this, we choose
XML as a middleware to achieve data exchange among
heterogeneous database systems [7–9].

In this research, education resource in the database in-
cludes image, text, video, music, flash and so on. Data-
base’s heterogeneities are mainly the DBMS heteroge-
neities including Oracle database, IBM DB2, Sybase
database, Microsoft SQLserver2000 and MySQL. These
already operated database systems display differently in
many aspects, including data type definition, data access
mode, data manifestation and so on. Therefore different
database management systems cannot be connected di-
rectly to exchange the information. Oracle database, IBM
DB2, Sybase database, Microsoft SQLserver2000 and
MySQL have provided powerful support to XML. We
transform the communication between various business
databases into the data transformation between various
business databases and the XML, and take image, video,
text, music and flash deposited in various business data-
bases into XML documents and import all the data into
the dynamic standard database. Therefore, we adopt the
following technical option. We preserve the normal
primitive tree data by using various manufacturers map-
ping rule. The data processing frame is established. The
database clusters are controlled by code distributing in
the pure application procedure, business process, the da-
tabase level and the application logic between the storage
process, and the data processing frame guiding layer is
formed by taking the education resource international
standard as the foundation. The dynamic unification
education resource database is established based on edu-
cation resource’s multiplicity and the education resource
description’s multiple perspectives of different discipline.
User’s personalized request is obtained by cutting out
unification education resource database with data proc-
essing frame.

3. Education Resource Database System
Heterogeneous structure

The design of the system structure is divided into three
points: the presentation layer, the database layer and the
logic layer, as shown in Figure 1.

Copyright © 2009 SciRes JSEA

Sharing and Implementation of Heterogeneous Database for Education Resource Based on XML

Copyright © 2009 SciRes JSEA

202

Figure 1. The design of system structure

imaID Type Major Object Source Author TTime Key Word Formats Lenght resolution Sweep Color

01001 animal
Bio-engine

ering
Graduate
 Students

Southeast
University

Na Tang 2007/05
yeast,

bacteria
gif 36 640*480 72 002244

01002 figures history
Undergraduate

 Students
Nanjing

University
Wei ZHAO 2004/06

background,
achievements

jpeg 80 1024*768 300 FF0022

01003 equipment sports
Undergraduate

 Students
Suzhou

University
Liang-Qian

 Li
2002/06

function,
using methods

jpeg 45 320*240 72 000044

01004 board computer
Graduate
Students

Yancheng
Teachers

University
Xia Wang 2007/06

CPU, graphics,
memory

jpeg 68 1024*768 350 110033

01005 monitor computer
Undergraduate

Students
Wuhan

University
Xiaoli
Wang

2001/06
LCD,

brightness
jpeg 55 1024*768 300 2244CC

01006 natural geography
Graduate
 Students

Southeast
University

Yao Wu 2000/06
Earthquake,

plate movement
gif 38 640*480 72 320C14

01007 plant medicine
Graduate
 Students

Southeast
University

Hang SUN 2005/02
panda, artificial

 rearing
gif 74 1280*1024 300 05232B

01008 animal computer
Undergraduate

 Students
Peking

University
Xia Li 2005/06

lily,
photosynthesis

jpeg 38 750*453 72 204A15

Figure 2. Education resource data

The presentation is the browser. Users view the results

and the displaying form through browser.
The database layer is composed by Oracle database,

IBM DB2, Sybase database, Microsoft SQLserver2000,
MySQL, dynamic standard database and the XML
documents. We attribute XML document to this layer
although XML itself is not a database, since it can be
seen as a complete database system with some other
tools.

Logic layer consists of two modules: data export/im-
port module and the education resource data frame mod-
ule. Data export module’s function is to export various
business databases data and produce corresponding XML
documents. Data import module’s function is to analyze
XML documents and import the data to various business
databases. The education resource data frame modular
controls all database clusters, and it is responsible to es-
tablish the dynamic unification education resource data-
base.

4. Implement of Heterogeneous Database of
Education Resource

Oracle XSU draws the XML documents to DOM, and
decomposes the XML documents into a group of
sub-documents by using XSLT. IBM DB2 XML Ex-
tender establishes the mapping through DAD between
the database table and the XML documents’ structure,
storing by DB2 CLOB data type. Microsoft SQLserver
OPENXML uses sp_xml_preparedocument as storing
process, gaining a XML documents handle through
translating XML documents into the internal DOM ex-
pression. Sybase uses XML documents type ResultSet to
describe a XML documents metadata and the actual line
data. The selected data is shown in Figure 2.

Document Object Model is a set of standards set by
W3C, which provides an interface parsing the document.
Various program languages achieve these interfaces in
accordance with the DOM standards, and the parser is

 Logic Layer

 Database Layer

Presentation Layer

Oracle
database

IBM
DB2

Sybase
database

Microsoft
database

Dynamic
standard
database

Data export/import module Frame module

Internet
Explorer

XML

DOC

Sharing and Implementation of Heterogeneous Database for Education Resource Based on XML 203

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
-<image>

-<imageinformation>
 <imaID.> 01001</imaID>
 <Type> animal</Type>
 <Major> Bio-engineering</Major>
 <Object> Graduate Students</Object>
 <Source> Southeast University</Source>
 <Author> Na Tang</Author>
 <TTime>2007/05</TTime>
 <Key Word>yeast,bacteria</Key Word>
 <Formats> gif</Formats>
 <Lenght> 36</Lenght>
 <Resolution>640*480</Resolution>
 <Sweep> 72</Sweep>
 <Color> 002244</Color>
 <Address>..\\DataSharing\src\image\1.gif</ Address >
 </imageinformation>

-<image>
-<imageinformation>
 <imaID.> 01002</imaID>
 <Type> figures</Type>
 <Major> history</Major>
 <Object> Undergraduate Students</Object>
 <Source> Nanjing University</Source>
 <Author>Wei Zhao</Author>
 <TTime> 2004/06</TTime>
 <Key Word> background, achievements</Key Word>
 <Formats> jpeg</Formats>
 <Lenght> 80</Lenght>
 <Resolution> 1024*768</Resolution>
 <Sweep> 300</Sweep>
 <Color> FF0022</Color>
 <Address> ..\\DataSharing\src\image\2.gpeg</ Address >
 </imageinformation>

Figure 3. Education resource spanning tree

given to parse the documents. The parser establishes a
tree in memory through reading XML documents. The
tags of XML document, tagged text content and entities
correspond to a certain node of the tree in the memory.
It’s easy to deal with XML documents, to read, traverse,
modify, add and delete the documents through operating
the node of tree in memory. We use DOM parser to do
XML programming for an application, which can easily
handle XML documents by operating the node of tree in
memory to obtain the data needed.

DocumentBuilderFactory class is responsible for cre-
ating the instance. DocumentBuilderFactory class calls
its newInstance () method to instantiate a Document-
BuilderFactory object. Factory object calls newDocu-
mentBuilder () method to return a DocumentBuilder ob-
ject. And finally the builder object calls newDocument ()
method to achieve instantiating Document interface.

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
DocumentBuilder builder =
factory.newDocumentBuilder();
Document doc = builder.newDocument();
doc.setXmlVersion("1.0");
Element root = doc.createElement("image");

doc.appendChild(root);
The CreateXML.xml documents are produced as fol-

lows:
File file = new
File("F:/temp/MatPrj/WebRoot/CreatXml.xml");

if(!file.exists()||!file.isFile()){
new FileOutput-

Stream("F:/temp/MatPrj/WebRoot/CreatXml.xml");
file = new
File("F:/temp/MatPrj/WebRoot/CreatXml.xml");
}

StreamResult streamResult = new StreamResult(file);

Source inputSource = new DOMSource(doc);
TransformerFactory transformerFactory =
TransformerFactory.newInstance();
Transformer transformer =
transformerFactory.newTransformer(); trans-

former.transform(inputSource, streamResult);
The XML documents are produced, and the data is

imported to XML documents, its education resource
spanning tree is shown in Figure 3.

The data processing frame is established to control the
database clusters, and the dynamic uniform education

Copyright © 2009 SciRes JSEA

Sharing and Implementation of Heterogeneous Database for Education Resource Based on XML 204

WU.dbo.image table

imaID Type Major Object Source Author TTime Key Word Formats Lenght resolution Sweep Color

01001 animal Bio-engineering
Graduate
Students

Southeast
University

Na Tang 2007/05
yeast,

bacteria
gif 36 640*480 72 002244

01002 figures history
Undergraduate

Students
Nanjing

University
Wei ZHAO 2004/06

background,
achievements

jpeg 80 1024*768 300 FF0022

01003 equipment sports
Undergraduate

Students
Suzhou

University
Liang-Qian

Li
2002/06

function,
using methods

jpeg 45 320*240 72 000044

WU.dbo.text table
TxtID TxtType TxtMajor TxtObject TxtSource TxtAuthor Txt Time TxtKey Word

02001 Economics Paper International economic Graduate Students Economics Li Zhang 2007/05
Bubble economy,

 Economic globalization

02002 Economics Paper China's economy
Undergraduate Stu-

dents
Economics Ke Ban 2004/06

China imported inflation,
Real estate and living

02003 Management Paper Business Management
Undergraduate Stu-

dents
Management Xiao-ming WU 2002/06 Enterprise Project Management

WU.dbo.vedio table
VedID VedType VedMajor VedObject VedSource VedAuthor VedTime VedKey Word
05001 Computer An Introduction to Computer Graduate Students Southern Yangtze University Kequn Wang 2006/05 computer, chip

05002 Computer Computer Application Graduate Students Suzhou University Liang Ke 2004/06
computer,
NET,J2EE

WU.dbo.flash table
FlaID FlaType FlaMajor FlaObject FlaSource FlaAuthor FlaTime FlaKey Word

03001 Computer Software Engineering Graduate Students Shenyang Polytechnic University Xing Liu 2005/05
computer,

C++

03002 Education
Chinese Language &

 Literature
Underraduate Students Central China Normal University Chuan Zhao 2004/06

literature,
education

WU.dbo.music table
MusID MusType MusMajor MusObject MusSource MusAuthor MusTime MusKey Word
04001 Education Chinese Language and Literature Graduate Students Southeast University Keyi Zhang 2007/05 literature, education

04002 Education Chinese Language and Literature Undergraduate Students Nankai University
Guosheng

Huang
2003/06 literature, education

Figure 4. Dynamic uniform education resource database

resource database is also established as shown in Figure
4 according to the multiplicity of education resource's
manifestation and the multiple perspective of the educa-
tion resource description of different discipline based on
international standard of education resource.

The personalization description of education resource
is obtained by cutting the dynamic unification education
resource database using the data processing frame ac-
cording to the user's personalized request, as shown in
Figure 5.

Imageinformation 0
 imaID 01001
 Type animal
 Major Bio-engineering
 Object Graduate Students
 Source Southeast University
 Author Na Tang
 Ttime 2007/05
 Key Word yeast, bacteria
 Formats gif
 Length 36
 Resolution 640*480
 Sweep 72
 Color 002244

Address ..\\DataSharing\src\image\1.gif

Figure 5. The personalization education resource result in
client after cutting out

5. Conclusions

The paper defines a XML document which describes the
database structure. We fill the information of the educa-
tion resource database into self-explanatory XML docu-
ments in order to let users create database friendly. And a
scheme is made as designing a middleware between the
database and its outside. A data processing frame is ad-
vanced to process each kind of actual problems which are
brought by the complexity, the dynamic and the person-
alization of the education resource data. The exchanging
requests of internal or external education resource data
are submitted to the middleware with XML. The interac-
tion of specific education resource database is realized by
the middleware and the results are fed back to the re-
quester through XML. All the details in the process have
been shielded to achieve transparent sharing access of
heterogeneous education resource database.

REFERENCES
[1] Oracle XML-SQL Utility, http: // www. oracle.com

/technology/ index.html. Last accessed on July 27, 2009.

[2] IBM DB2 XML Extender, www.ibm.com/ software/ data/
db2/ extenders/xmlext. Last accessed on July 27, 2009.

Copyright © 2009 SciRes JSEA

Sharing and Implementation of Heterogeneous Database for Education Resource Based on XML 205

[3] XML Perspective, In control with FOR XML Explicit.
SQL Server Magazine, http://msdn.mcrosoft. com/ li-
brary/ periodic/. Last accessed on July 27, 2009.

[4] A. P. Sheth and J. A. Larson, “Federated database sys-
tems or managing distributed, heterogeneous, and
autonomous databases,” ACM Computing Survey, Vol.
22, No. 3, pp. 183–236, 1990.

[5] Q. Feng, H. Q. Lv and H. Feng, “The connection of Het-
erogeneous databases,” Computer and Information Tech-
nology, Vol. 9, 2001.

[6] X. Wang and S. M. Wei, “Java technology-based distrib-
uted heterogeneous database Web access technology,”
Computer Engineering and Applications, pp. 135–138,
2000.

[7] D. Martin, “XML High-level Programming,” Beijing
Machinery Industry Press, pp. 77–103, 2001.

[8] D. Motton, “XML programming technology [M],” Bei-
jing Machinery Industry Press, pp. 134–200, 2001.

[9] X. H. Dong [EB/OL], http://www.XML.org.cn, Applica-
tions to build XML.

Copyright © 2009 SciRes JSEA

J. Software Engineering & Applications, 2009, 2: 206-208
doi:10.4236/jsea.2009.23028 Published Online October 2009 (http://www.SciRP.org/journal/jsea)

Copyright © 2009 SciRes JSEA

MicrobIdentifier: A Microbial Identification Software
Based on Mass-Spectrometry

Feng LIU, Lu LI, Chi ZHANG, Lingbing WANG, Pei LI

International School of Software, Wuhan University, Wuhan, China.
Email: wolflf@126.com, {lulu.li1989, chzhcn88}@gmail.com

Received May 18th, 2009; revised July 5th, 2009; accepted July 16th, 2009.

ABSTRACT

As the technology of microbial identification by mass cataloging has been widely used, we have developed the microbi-
al identification software, MicrobIdentifier, which integrates and automates different steps in the procedure of rapid
species identification based on mass-spectrometry. This software is written in Java for cross-platform intention.

Keywords: Microbial Identification, Mass-Spectrometry

1. Introduction

With the development of the technology, microbial iden-
tification by mass cataloging has attracted considerable
attention due to its high efficiency and automation. In
order to improve efficiency and automation of this tech-
nology, we’ve developed this microbial identification
software based on the spectral coincidence function pro-
posed in [1]. The software has two major functions: First,
it can be used to search for all the possible primer pairs
among the given genes of different species, and evaluate
these primer candidates by giving each pair a score. This
is proved to be a useful reference during primer design.
Second, it takes advantage of the spectral coincidence
function to compare mass spectrometric observables with
theoretical fragmentation patterns, and further to deter-
mine the genetic affinity between the sample gene and
genes of known species in the database. This will free
researchers from the effort of comparing the fragmenta-
tion patterns manually.

2. Algorithm

The core algorithm our work has been based on is a
spectral coincidence function proposed in [1] as follow:

  i j
ij i j

i i j j

2 M M
C C M , M

(M M) (M M)

 
 

  

The dot-product in the coincidence function is defined as

 
1 2N N

i j
i=1 j 1

M, M M M δ m - m


        

where M is the mass vector of one sample’s fragmenta-

tion, which has N1 elements with mi standing for the ith
element, while M’ is the mass vector of the other sample,
which has N2 elements with m’j standing for the ith ele-
ment. The discrete delta function  is:

1 0
()

0

k
k

otherwise



 


Based on the formulas, the inner-product is greater if
the two samples have more fragmentation of the same
mass. The coincidence function normalizes the inner-pro-
duct value to a range between zero and one, and a high
value of the coincidence function indicates more similar-
ity between the two genes in comparison. Therefore, this
function can be used to score the similarity in both the
primer search process and the identification process.

The algorithm in primer search process is as follow:
1) Align all the gene sequences with ClustalW algo-

rithm [3].
2) Find regions where all the sequences have more

than N nucleotides at the same place and in the same or-
der, which are the conserved regions. If the regions are
less than two, then exit.

3) Take two conserved regions and check whether the
number of nucleotides is more than M. Take another pair
of regions if otherwise.

4) Cut the regions between two conserved regions
(conserved regions included) after every “G”, filtering
the fragments which have less than L nucleotides.

5) Calculate the mass of all fragments of each se-
quence, and then form the sequence’s mass vector.

6) Take the mass vectors of one pair of gene sequences
and calculate the score indicating their similarity by us-
ing the coincidence function.

MicrobIdentifier: A Microbial Identification Software Based on Mass-Spectrometry

Copyright © 2009 SciRes JSEA

207

7) Repeat Step 6 until any pair of all the gene se-
quences has been compared. Calculate the average value
of all the scores calculated in Step 6. The average value
is the final score of the primer pair chosen in Step 3.

8) Repeat the steps from 3 to 7 until all the combina-
tions of the conserved regions are considered.

Optimal primer pairs are those conserved regions with
very variable regions in between. A primer pair with a
lower score is better than the ones with higher scores,
since there is less similarity between the primer pairs,
thus the test samples could be identified with much more
ease in the identification process.

The algorithm in identification process is almost the
same as the Steps from 3 to 6 in the primer search proc-
ess with one exception that, in identification process, it is
the comparison of experimental data and the computed
mass vector in the database. A higher score indicates
more genetic affinity, suggesting a higher possibility of
being the same species.

Given inevitable experimental inaccuracy, the discrete
delta function  is further modified to be:

1
()

0

k tolerance
k

otherwise


  


Thus, tolerable difference between masses is ignored.

3. Software

The software accepts a fasta file as input, then invoke a
new process running clustalw that also takes the .fasta
file. As long as the .fasta file is valid in format, a .aln file,
the result of clustalw’s pairwise alignment, is created and
afterwards captured. Through parsing both the fasta file
and .aln file, a data group is fabricated. In the software, a
data group is a concept of a pool of sequences with user
configuration that is identification-ready. Typically users
need to assign four thresholds: the minimum length of a
sequence fragment after simulated cutting; the minimum
length of a primer; the minimum and maximum length of
the variable region between primer pairs. The same se-
quence pools with different configurations are different
data groups. The software ensures users only work on
one data group at a time given that the concept of data
group supports sufficiently in flexibility and reusability
for users to handle microbial identification merely on one
data group in most situations. During this preprocessing
phase, the software stores user configurations as well as
the data group sequences into the database for the pur-
pose of 1) enabling access to previously processed data
groups in later cases 2) providing thresholds reference
for identification process.

Figure 1. MicrobIdentifier screenshot

MicrobIdentifier: A Microbial Identification Software Based on Mass-Spectrometry

Copyright © 2009 SciRes JSEA

208

The user interface shows the sequences in the pool;

primer selection thresholds and primer pair candidates
are also given out if current data group is loaded from
database, whose primer pair candidates have already
been worked out after proper configuration in previous
use. The more usual case, however, is the user sets up
basic configuration after a new pool is given, parsed
down and shown on UI, to calculate potential primers
pairs. The list of primer pairs is sorted by score in as-
cending order. The configurations are saved into the da-
tabase in associate with the working data group.

To perform microbial identification, the software uses
exported ASCII Spectrometry .txt file from DataExplorer,
whose data is the mass spectrometry result from
MALDI-TOF. Users are free to customize proposed
primer pair candidates to choose a subset, however man-
datory to provide some parameters about the conditions
in their mass-spectrometry experiment, including: in vi-
tro transcription enzyme, either SP6 or T7; mass toler-
ance and minimum intensity threshold; whether the elec-
tric charge is positive of negative during MALDI-TOF
experiment. The software parses the input file, generates
peek list after filtering peak values below the intensity
threshold, taking into account the experimental inaccu-
racy by means of adopting tolerance and finally provides
the identification consequence.

Figure 1 shows the interface of MicrobIdentifier.

4. Acknowledgements

This paper is sponsored by the National Science and Te-
chnology Major Project 2009ZX10004-107 and The Na-
tural Science Founds of Wuhan University F020504.

REFERENCES
[1] G. W. Jackson, R. J. McNichols, G. E. Fox and R. C.

Willson, “Bacterial genotyping by 16S rRNA mass cata-
loging”, BMC Bioinformatics, vol.7, pp. 321–335, June
2006.

[2] Z. D. Zhang, G. W. Jackson, G. E. Fox, and R. C. Willson,
“Microbial identification by mass cataloging,” BMC
Bioinformatics, Vol. 7, pp. 117–135, Match 2006.

[3] J. D. Thompson, D. G. Higgins, and T. J. Gibson,
“CLUSTAL W: Improving the sensitivity of progressive
multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice,”
Nucleic Acids Research, Vol. 22, pp. 4673–4680, Sep-
tember 1994.

[4] C. Honisch, Y. Chen, C. Mortimer, C. Arnold, O.
Schmidt, D. van den Boom, C. R. Cantor, H. N. Shah,
and S. E. Gharbia, “Automated comparative sequence
analysis by base-specific cleavage and mass spectrometry
for nucleic acid-based microbial typing,” Proceedings of
the National Academy of Sciences, Vol. 104, pp.
10649–10654, June 2007.

[5] H. Steen and M. Mann, “The abc’s (and xyz’s) of Peptide
Sequencing,” Molecular Cell Biology, Vol. 5, pp. 699–
711, September 2004.

J. Software Engineering & Applications, 2009, 2: 209-220
doi:10.4236/jsea.2009.23029 Published Online October 2009 (http://www.SciRP.org/journal/jsea)

Copyright © 2009 SciRes JSEA

1

An Exploratory Case Study in Designing and
Implementing Tight Versus Loose Frameworks

Manjari GUPTA1, Ratneshwer GUPTA2, A. K. TRIPATHI3

1Department of Computer Science, Faculty of Science, Banaras Hindu University, Varanasi, India; 2Department of Computer Science,
MMV, Banaras Hindu University, Varanasi, India;3Department of Computer Engineering, Institute of Technology, Banaras Hindu
University, Varanasi, India.
Email: {manjari, ratnesh, anilkt}@bhu.ac.in

Received May 5th, 2009; revised June 20th, 2009; accepted June 24th, 2009.

ABSTRACT

Frameworks provide large scale reuse by providing skeleton structure of similar applications. But the generality, that a
framework may have, makes it fairly complex, hard to understand and thus to reuse. Frameworks have been classified
according to many criteria. This paper proposes two types of framework (based on the concept of ‘generality’) named
as: tight framework and loose framework. A case study is done by developing loose and tight frameworks for the appli-
cation sets of Environment for Unit testing (EUT) domain. Based on the experience that we got by during this case
study, we tried to find out the benefits of one (tight or loose) framework over the other. This work attempts to provide an
initial background for meaningful studies related to the concept of ‘Design and Development of Framework’.

Keywords: Framework Reuse, Environment for Unit Testing, Condition Coverage Criteria

1. Introduction

“Frameworks are reusable designs of all or part of a
software system described by a set of abstract classes and
the way instances of those classes collaborate”. It is al-
ways the result of domain analysis [1]. Frameworks may
be classified according to many criteria such as manner
of deployment in different applications, level of support
that provides to applications, type of services they have
(entity framework, control framework), level of abstrac-
tion they have (white box framework, black box frame-
works) etc. Frameworks are normally developed by
keeping in mind requirements of multiple similar appli-
cations. Frameworks should be developed and delivered
in such a manner so that problems in instantiation (like
determining the applicability of a framework, under-
standing and modifying if necessary, architectural mis-
match etc. [2]) do not arise and overheads (requirements
that are not required in a particular application), do not
get transported with the framework. In order to develop a
framework, its scope must not be an afterthought and it
should be considered at the beginning i. e. at the time of
designing frameworks. When one talks about frame-
works, its scope and generality are necessary to consider.

Here, we classify frameworks by considering the gen-
erality they have. In software engineering literature, we
could not find the formal categorization of frameworks

based on ‘generality’ concept. We classify frameworks in
two categories by considering their generality as follows.

A loose framework is a framework that does not fix
the way of performing many activities (that may be per-
formed differently in similar applications in a domain) in
the framework itself. It only provides the control abstrac-
tion and thus may need to work together with other
frameworks for some activities that will extensively in-
teract with it. Such frameworks may be useful for those
applications that have many possible variations in their
requirements for example business application systems,
E-governance systems etc.

A tight framework fixes the way of performing most
of such activities in the framework itself. Thus, these
frameworks are highly useful for (only) those similar
applications that require performing those activities in a
particular way as defined and implemented in the
framework. Such frameworks may be useful for those
applications that have very few variations in their proper-
ties like embedded systems, pervasive systems etc.

During design of a framework certain roles and re-
sponsibilities amongst the classes along with their col-
laboration are fixed. Variability among applications is
represented as hot spots. Thus, by comparing the already
fixed roles and responsibilities as well as the variability
(hotspots) of different frameworks, for the same domain,
one can say “what is the scope of a framework?” and

An Exploratory Case Study in Designing and Implementing Tight Versus Loose Frameworks 210

thus “whether a tight or a loose framework development
would be beneficial for that domain?”

To the best of our knowledge, there is lack of such
study/work in which tight and loose frameworks, for a
same domain, are compared so that one can list the cases
in which one (tight or loose framework) would be better
than the other. In this paper, a tight and a loose framework
for ‘Environment of Unit Testing’ have been developed
and a comparative study has been made between the two
types of frameworks. Based on the observations of this
study, we tried to answer the following questions:

1) Which framework (tight or loose) is more reusable
in terms of “ease of reuse”?

2) Which one is more reusable in terms of “number of
reuses”?

3) Which one is easy to develop?
4) Which one is heavier in terms of size?
5) Which one is more complex?
Reminder of this paper is organized as follows. The

section 2 attempts to present, in a concise manner, the
research efforts related to the topic of discussion. In sec-
tion 3, we briefly describe the domain ‘EUT’ for which
frameworks have been developed. Designs of a loose and
a tight framework for “EUT” have been described in sec-
tion 4 and 5 respectively. A comparative study of loose
and tight frameworks has been discussed in section 6.
Finally, we conclude in section 7.

2. Related Work

Software engineering, over the last decades, has been
promoting the development of software systems with
software frameworks. Researchers and practitioners have
been considering various aspects of framework devel-
opment and related issues. Software frameworks are
classified according to several criteria.

There are two styles of frameworks that are commonly
used: called and calling frameworks. Sparks et al. [3]
showed the reuse with Called and calling frameworks.
Called frameworks are very much like traditional librar-
ies in that the application code calls the framework when
some framework service is needed. Calling frameworks
on the other hand, reverse the role of the framework and
the application, because the framework calls the applica-
tion code, rather than the other way around. Some au-
thors defined frameworks according to domain depend-
ency: vertical and horizontal frameworks [4]. A frame-
work dependent on specific domain is referred to as ver-
tical framework. A framework independent on specific
domain is referred to as horizontal framework. Accord-
ing to Taligent, Inc (now IBM) [5]) the problem domain
that a framework addresses can encompass application
functions, domain functions, or support functions. Ap-
plication frameworks encapsulate expertise applicable to
a wide variety of programs. These frameworks encom-
pass a horizontal slice of functionality that can be applied

across client domains. Current commercial graphical user
interface (GUI) application framework, which supports
the standard function required by all GUI applications, is
one type of application frameworks. Domain frameworks
encapsulate expertise in a particular problem domain.
These frameworks encompass a vertical slice of func-
tionality for a particular client domain. Examples of do-
main frameworks include: a control systems framework
for developing control applications for manufacturing,
securities trading framework, multimedia framework, or
data access framework. Support frameworks provide
system-level services, such as file access, distributed
computing support, or device drivers. Several authors
defined Frameworks based on the techniques used to
extend them: White-box, Black-box and gray-box
frameworks [4]. In a white box framework, the frame-
work user is supposed to customize the framework be-
haviour through sub-classing of framework classes. On
the other hand, a black box framework user does not
have access to framework code. Gray-box frameworks
lie between white and black box framework. Frameworks
are also classified by their scopes: System infrastructure
frameworks, Middleware integration frameworks and
Enterprise application frameworks. System infrastructure
frameworks simplify the development of portable and
efficient system infrastructure. Communication frame-
works, proposed by Schmidt [6], also belong to System
infrastructure frameworks. Middleware integration
frameworks are commonly used to integrate distributed
applications and components. Common examples include
ORB frameworks, message-oriented middleware, and
transactional databases. Enterprise application frame-
works, proposed by Fayad et al. [7], address broad appli-
cation domains such as telecommunications, avionics,
manufacturing, and financial engineering.

However, no such study has been done till now to de-
velop different types of frameworks for a domain and
compare them to show in which situation which one is
more applicable for reuse. We had earlier done risk
analysis in framework development and its reuse [8].
This paper attempts to extend the above contributions
further by considering the comparative differences of
loose and tight frameworks.

3. Environment for Unit Testing

We briefly explain the domain “EUT” for which frame-
works are developed in the next sections. To develop a
framework, it is necessary to understand the domain for
which it is to be developed. Thus, first we briefly de-
scribe the unit testing process.

Unit testing is a dynamic method for verification,
where the smallest unit of software design- the software
component or module (unit code) is actually compiled
and executed. The unit testing focuses on the internal
processing logic and data structures within the boundary

Copyright © 2009 SciRes JSEA

An Exploratory Case Study in Designing and Implementing Tight Versus Loose Frameworks

Copyright © 2009 SciRes JSEA

211

Figure 1. Use case diagram for tight framework

of a component [9]. As the focus of this testing level is
on testing the code, structure testing is best suited for it.
Unit testing commences with generating test drivers and
stubs for the unit. Next, test cases are generated. A test
case is a set of test inputs, on which the unit code, to be
tested, is executed. The output of the program for each
test case is evaluated to verify compliance with the cor-
responding requirement using test oracles. During unit
testing several test deliverables (test case specification,
error report and test log etc.) are generated. At last, test
summary report is generated that specify the result of
testing process.

To test the structure of a program, structure testing
aims to achieve test cases that will force the desired cov-
erage of different structures. Various criteria have been
proposed for this. Most common structure based criteria
are based on the control flow of the program for example
statement coverage, branch coverage, decision/condition
coverage and path coverage.

We developed both of these (tight and loose frame-
works) for the domain of ‘EUT’. Both of these frame-
works test a unit written in C language. In the tight
framework we fixed the test case generation activity
(based on condition coverage criteria). Because of that,
this framework can only be used if the unit testing crite-
ria is ‘condition coverage’. For rest of the unit testing
criteria, this reusable framework is useless. However, the
test case generation activity was not fixed in the loose
one and thus any test case generator (developed by con-
sidering any unit testing criteria) that can generate test
cases to test a C unit can be integrated with the loose
framework. Both the frameworks (tight and loose) have
been developed in C++ language.

4. The Proposed Tight Framework for ‘EUT’

We first describe the design and implementation of tight
framework for ‘EUT’.

The tight framework is developed by considering the
test cases generation based on the condition coverage
criterion. Thus, this framework supports the development

of a family of applications that would test a unit based on
the condition coverage criteria but differ in the way of
getting unit, driver, stubs. For example, a system devel-
oped by using this framework may accept these from a
human being while others may get these from software
systems (that will be generating these automatically).

As we know, any object oriented software and in par-
ticular any object oriented framework is a collaboration
of domain, control logic, utility and interface classes. In
this remaining section and in the next section, we iden-
tify these classes for both tight and loose framework for
‘EUT’ and show how they collaborate with each other.

4.1 Analyzing the Requirements of Tight
Framework for ‘EUT’

By studying the above problem statement, we specify
how a user will interact with this tight framework in the
use case diagram shown in Figure 1. Gray ovals show
the functionalities that are needed to be customized and
black ovals show functionalities that are prefixed in the
framework. Way to provide unit to be tested, drivers and
stubs (if any) to the framework (manually by the tester or
automatically using a software system) may be different
for different applications that will be developed by using
this framework. Thus, in the use case shown on the left
hand side of Figure 1, actor may either be a human being
or a software system and that’s why has shown as gray
(as per the convention usually used to describe a frame-
work). As shown in the use case on the right hand side of
Figure 1, each condition, to be tested, is displayed to the
tester and then a tester provides test cases corresponding
to each condition. These test cases are run and test sum-
mary report is delivered to the tester after the completion
of the testing process.

From the problem specification, described above, we
can identify the following classes:

Unit – is an important class that would be tested using
this framework,

Driver – would invoke and provide environment for
he execution of the unit (if required), t

An Exploratory Case Study in Designing and Implementing Tight Versus Loose Frameworks 212

Unit
name
noofInputParameters
noofOutputParameters
IsDriverRequired
PointertoDriver
PointertoSub

display()
execute()

Testcase
testcaseId
noofInputParameters
inputParameters
inputParameterValues
noofOutputParameters
outputParameters
expectedOutputParameterValues

display()

TestSummaryReport
File

create()
open()
appendTestcaseId()
appendInputParameterValues()
appendExpectedParameterValues()
appendActualOutputValues()
appendTestcaseEvaluation()

Driver
name
noofInputParameters
noofOutputParameters
PointertoUnit

display()
execute()

Stub
name
noofInputParameters
noofOutputParameters
Pointertounit

display()
execute()

Condition
conditionId
conditionValue
isTested

display()

Figure 2. Domain classes for tight framework

Stub – would be called by the unit during its execution

(if required),
Test case – is a class that would represent a test case,
Condition – is a class that represents a condition to be

tested and
Test summary report – represents the test summary

report delivered to the tester after testing. These domain
classes along with their attributes and methods are shown
in Figure 2.

4.2 Designing the Tight Framework for ‘EUT’

To represent the abstract dynamic behavior of the system
developed as a tight framework, we first describe sce-
narios.

The success scenario is as follows:
1) Unit is provided (way would be specific to the ap-

plication) to the system.
2) If driver is needed, it is provided (way would be

specific to the application) to the system.
3) If stubs are needed, these are provided (way would

be specific to the application) to system.
4) Until all the conditions, in the unit, are tested

a) Next condition is identified.
b) System displays this condition to the tester and

asks the number of test cases (N) that need to be gener-
ated to test this condition.

c) For this number (N) of times
i) System asks the next test case.
ii) Tester inputs the test cases.
iii) System executes this test case and redirects

the output value of the execution to a file.
iv) The actual output value is compared with the

expected output value and is shown to the tester.
v) System appends the testing result of this test

case (condition, corresponding test case, actual output

value, execution status of the test case (success-
ful/unsuccessful, executed or not) etc.) in the test sum-
mary report.

vi) System asks whether to proceed further or quit.
vi) If tester wants to quit (in case of getting

wrong result to correct the unit), the path and name of the
Test Summary Report is displayed to the tester and sys-
tem stops.

d) System asks whether to proceed further or quit.
e) If tester wants to quit, the path and name of the

Test Summary Report is displayed to the tester and sys-
tem stops.

5) A message “all the conditions have been tested” and
the path and name of the Test summary report is dis-
played to the tester.

An exception scenario could be: if the format of any of
the information related to the program (unit, driver or
stub) is unacceptable by the system, for example if the
values of the input parameters, needed as a string con-
taining all these values separated by a space, is not pro-
vided in the required format. In all these types of situa-
tions, system would display different error messages ac-
cording to the situation.

Another abnormal scenario could be: if a test case
cannot be run successfully and thus the execution fails.
System will display an error message to show this situa-
tion.

The activity diagrams (Figure 3 (a) and Figure 3 (b))
show the sequence of activities performed during test
case generation and execution and comparison of actual
and expected output activities in the framework. All the
activities in this tight framework for ‘EUT’ are shown in
Figure 3 (c).

Copyright © 2009 SciRes JSEA

An Exploratory Case Study in Designing and Implementing Tight Versus Loose Frameworks 213

(a) (b)

(c)

Figure 3. (a): Activity diagram for generating test case for tight framework, (b): Activity diagram for executing and
comparing output for tight framework, (c): Activity diagram for tight framework

Copyright © 2009 SciRes JSEA

An Exploratory Case Study in Designing and Implementing Tight Versus Loose Frameworks 214

DriverLoader
PointertoCurrentDriver

askDriverName()
setDriverName()
askNoofInputparameters()
setNoofInputParameters()
askNoofOutputParameters()
setNoofOutputParameters()
loadDriver()
getDriver()

TestSummaryReportGenerator
PointertoTestcase
PointertoComprator

generateReport()

TestcaseGenerator
PointertoTestSummaryReportGen
PointertoExecutor
PointertoCurrentTestCase
PointertoComparator
NoofTestCasesPerCondition
PointertoGUIforGettingTestcase

generateTestcase()

Comprator
PointertoTestcase
actualOutput

compare()

UnitLoader
PointertoCurrentUnit

askUnitName()
setUnitName()
askNoofInputParameters()
setNoofInputParameters()
askNoofOutputParameters()
setNoofOutputParameters()
loadUnit()
getUnit()

ConditionFileGenerator
PointerToUnit

scanNextCondition()
generateConditionFile()

Executor
pointertoProgram
pointertoCurrentTestcase

executeProgram()

StubLoader
PointertoCurrentStub

askStubName()
setStubName()
loadStub()
getStub()

Figure 4. Control logic classes for tight framework

TestcaseInputGetter
PointerToTestcase

getTestcaseInput()
setTestcase()

UnitGetter
isDriverRequired
isStubRequired
pointertoCurrentDriver
pointertoCurrentStub

askIsDriverRequired()
askIsStubRequired()
askPointertoCurrentDriver()
askPointertoCurrentStub()

DriverGetter
PointertoCurrentUnit

askPointertoCurrentUnit()

StubGetter
pointertoCurrentUnit

askPointertoCurrentUnit()

Figure 5. Graphical user interface class for tight framework

Scenarios and activity diagram, described above, hint

for the following control logic classes:
UnitLoader – responsible for loading the unit to be

tested,
DriverLoader – responsible for loading a driver (if

any),
StubLoader – responsible for loading a stub (if any),
TestcaseGenerator – responsible for generating test

cases with the help of tester,
ConditionFileGenerator – responsible for identifying

all the conditions, in the unit, to be tested,
Executor – responsible for executing the unit (if there

is no driver) or driver,
Comparator – responsible for comparing the actual

output from the expected output parameter values for a
given test case and

TestSummaryReportGenerator – responsible for
generating test summary report.

These control logic classes along with their attributes
and methods are shown in the Figure 4.

Following are the interface classes that are designed
for this tight framework. These classes with their attrib-
utes and methods are shown in Figure 5.

UnitGetter – responsible for providing unit, to be
tested, to the rest of the system.

DriverGetter – responsible for providing driver, if any,
to the rest of the system.

StubGetter – responsible for providing stubs, if any, to
the rest of the system.

TestcaseInputGetter – responsible for displaying a
condition to the tester and getting input parameter values
to test that condition.

Copyright © 2009 SciRes JSEA

An Exploratory Case Study in Designing and Implementing Tight Versus Loose Frameworks 215

In this framework Unit, Driver and Stub classes share
several attributes and methods thus we take a class Pro-
gram from which all these three classes will inherit
properties and operations. Similarly, UnitLoader, Driver
Loader and StubLoader also share several properties and
operations and we have taken a class ProgramLoader
that have all the common properties and operations of
these classes and these classes are taken as sub class of
ProgramLoader class. Further, UnitLoader, DriverLoader,
StubLoader are kept as abstract classes because we don’t
fix in this framework how the unit, drivers or stubs are
generated. Thus, these classes are hot spots of the frame-
work. At the time of instantiation of this framework one
needs to refine these subclasses according to the applica-
tion using the framework. The object diagram, that sho-
ws the relationships among all the types of classes identi-
fied during analysis and design, is shown in Figure 6.

4.3 Instantiation

We have instantiated this framework by adding three
classes UnitLoader_Sub of UnitLoader, Driver-
Loader_Sub of DriverLoader and StubLoader_Sub of
StubLoader. These sub classes allow us to provide unit,
drivers and stubs (if required) manually using graphical
user interface. Thus in this instantiation, we assume the
application need is to provide these manually. In any
other instantiation, some other method of providing a
unit, drivers and stubs can be used for example as a result
of some automation process that will generate them etc.
Further one more class GUI is added that helps in im-
plementation of these other classes added during instan-
tiating. GUI class has a method that displays a string,
passed it as a parameter, to the user. Thus, at the time of
instantiation of this tight framework for ‘EUT’ only four
additional classes were needed to be added.

loads

generates

uses

executes

TestSummaryReport

Stub Driver

Program

ProgramLoader

TestSummaryReportGenerator

Unit

executes

uses

Condition

generates

Condit ionFile

ConditionFileGenerator

uses

invokes

TestcaseGenerator Comprator

Executor

TestcasetestCaseInputGetter

StubGetter

StubLoader

DriverGetter

DriverLoader

UnitGetter

UnitLoader

provides stub's
information provides driver's

information provides unit 's information

Figure 6. Object diagram of tight framework

Copyright © 2009 SciRes JSEA

An Exploratory Case Study in Designing and Implementing Tight Versus Loose Frameworks 216

Figure 7. Use case diagram for loose framework

Figure 8. Activity diagram for loose framework

5. Loose Framework for ‘EUT’

In the loose framework, for the same ‘EUT’ domain, we
do not restrict the method of drivers, stubs or test case
generation as we did in the above tight framework.
However, in this loose framework the test oracle is also
not fixed. That is, this framework would accept the driv-
ers, stubs (if required for a unit) and test cases from
somewhere else as the tight one did. These would be

given to the framework either manually or generated
automatically. This framework will accept and load these
into the respective classes defined in the framework. This
loose framework for ‘EUT’ does not fix the way of gen-
erating test cases, which is a big part of the framework.
Thus, using this loose framework one can perform any
type of structural testing. That is, the test case generation
would also be application specific.

Copyright © 2009 SciRes JSEA

An Exploratory Case Study in Designing and Implementing Tight Versus Loose Frameworks 217

5.1 Analyzing the Loose Framework
Requirements

By studying the problem statement, we specify the func-
tionalities that the framework will support in the use case
diagram in Figure 7. Gray ovals show functionalities that
are needed to be customized and black ovals show func-
tionalities that are prefixed in the framework. Unit, to be
tested, drivers and stubs (if any) and test cases can be
provided to the system either manually or can be loaded
automatically using any software.

After analysis, here also, we get the same domain
classes as we obtained in tight framework described
above: Unit, Driver, Stub, Test case, and test summary
report. Only the domain class ‘condition’ that was iden-
tified during development of the tight framework, de-
scribed above, is not a domain class for this framework.
Rests of the classes are all same.

5.2 Designing the Loose Framework

To represent the dynamic behavior of a system that
would be developed using this loose framework, we de-
scribe the following scenarios that explain how the sys-
tem behaves when it performs some of its functions. The
success scenario is as follows:

1) Unit is provided to the system.
2) If driver is needed, driver is provided to the system.
3) If stubs are needed, these are provided to the sys-

tem.
4) Test data is given to the system.
5) Test oracle provides the correct output for a given

test data.
6) System executes the test case and compares the ac-

tual output with the expected output parameter values.
7) System generates a test summary report.
Abnormal scenarios are as follows:
1) Unit is given to the system.
2) If driver is needed, driver is given to the system.
3) Test data is given to the system.
4) Test oracle provides the correct output for the test

case.
5) System could not execute the test case and gener-

ates an error message “execution failed”.
Similarly other abnormal scenarios would be if the

unit and driver cannot be provided in the form used by
the system. At that time system again generates error
messages corresponding to the error occurred.

As we mentioned above, in this loose framework, we
do not restrict the method of generating drivers, stubs or
test case generation. Similarly the test oracle is also not
fixed. That is, drivers and stubs (if required for a unit to
be tested) and test cases can be provided manually or
generated automatically and are supplied to this frame-
work. This loose framework will accept and load these
drivers, stubs and test cases into their respective classes
defined in the framework. As the actual output would
need to be compared with the expected output, these
output variables would need to be stored in a file and
then compared with the expected output. To redirect
execution output of the unit it is required to add code in
the unit for the purpose. Activity diagram (Figure 8)
shows all the activities in this ‘EUT’ framework in brief.

Activity diagram hints some application logic classes:
UnitLoader, DriverLoader, StubLoader, TestcaseLoader,
Executor, Comparator, TestSummaryReportGenerator.
These classes are shown in Figure 9.

DriverLoader
PointertoCurrentDriver

askDriverName()
setDriverName()
askNoofInputparameters()
setNoofInputParameters()
askNoofOutputParameters()
setNoofOutputParameters()
loadDriver()
getDriver()

TestSummaryReportGenerator
PointertoTestcase
PointertoComprator

generateReport()

TestcaseLoader
PointertoUnit
PointertoCurrentTestcase

askTestcaseId()
setTestcaseId()
setNoofInputParameters()
askInputParameterValues()
setInputParameterValues()
setNoofOutputParameters()
askExpectedOutputParameterValues()
setExpectedOutputParameterValues()
loadTestcase()
getTestcase()

Comprator
PointertoTestcase
actualOutput

compare()

StubLoader
PointertoCurrentUnit

askStubtName()
setStubName()
askNoofInputParameters()
setNoofInputParameters()
askNoofOutputParameters()
setNoofOutputParameters()
loadStub()
getStub()

UnitLoader
PointertoCurrentUnit

askUnitName()
setUnitName()
askNoofInputParameters()
setNoofInputParameters()
askNoofOutputParameters()
setNoofOutputParameters()
loadUnit()
getUnit()

Executor
PointertoProgram
PointertoCurrentTestCase

executeProgram()

Figure 9. Control logic classes for loose framework

Copyright © 2009 SciRes JSEA

An Exploratory Case Study in Designing and Implementing Tight Versus Loose Frameworks 218

loads

generates

uses

executes

uses

TestSummaryReport

Stub Driver

Program

ProgramLoader

TestSummaryReportGenerator

TestcaseLoader

Comprator

Executor

Testcase

Unit

TestOracle

executes

uses

uses

StubGetter

StubLoader

provides stub
information

DriverGetter

DriverLoader

provides driver
information

UnitProvider

UnitLoader

provides unit
information

Figure 10. Object diagram of a loose framework

The user interface classes for this loose framework are

same as they were in the above tight framework. Only
the TestCaseInputGetter class is not included in this
framework.

In this framework also, we take Program as an ab-
stract class from which Unit, Driver and Stub classes
would inherit properties and operations for the same rea-
son as described in tight framework. Similarly, Pro-
gramLoader is taken as an abstract class of which Unit-
Loader, DriverLoader and StubLoader are be imple-
mented as sub classes for the same reason. Further,
UnitLoader, DriverLoader, StubLoader and Test-
caseLoader are also kept as abstract classes because we
don’t fix in this framework how the unit, drivers, stubs or
test cases are generated. Thus, these classes are hot spots
of the framework. At the time of instantiation of this
framework one needs to refine these in subclass accord-
ing to the application using the framework. After identi-
fying the attributes and methods of these applica-
tion-logic classes along with relationship among these
and problem domain classes we get the object diagram
(Figure 10).

5.3 Instantiation

We have instantiated this framework by adding five

classes UnitLoader_Sub a sub class of UnitLoader,
DriverLoader_Sub a sub class of DriverLoader and
StubLoader_Sub a sub class of StubLoader Test-
CaseLoader_Sub a sub class of the class TestCaseLoader
and a class GUI. Except the TestCaseLoader_Sub rest of
the classes have the same role and responsibilities that
they have in the earlier described tight framework for
‘EUT’. Since activities concerning with these classes
were not fixed in the above tight framework also. Using
this loose framework since the generation of test cases is
not fixed in the framework there is a need to customize
this activity also and thus the TestCaseLoader_Sub sub
class is also added in the instantiation of this loose
framework.

6. Observations

The objectives of the above case study are to obtain
quantitative characteristics of frameworks for the pur-
pose of comparing and understanding which framework
(tight or loose) can better be reused in which scenario.
The one main problem that we have encountered during
this work is the lack of some good experimental data
from real time environment that may help us to verify the
proposed idea in an efficient manner.

Copyright © 2009 SciRes JSEA

An Exploratory Case Study in Designing and Implementing Tight Versus Loose Frameworks 219

Table 1. Comparison of tight and loose frameworks at code level

S.N. Code Characteristics of frameworks Tight framework Loose framework

1. Total number of methods 74 68

2. Number of virtual functions 4 8

3. Total Number of classes 18 13

4. Number of abstract classes 4 5

5.
Size (Total number of non-commented lines
of code) 624 485

A comparative table 1 shows different characteristics

for loose and tight frameworks are drawn below.
By comparing frameworks at code level, we can an-

swer the questions discussed above at some extent.
1) If a software framework has more number of ab-

stract classes and virtual functions, the possibility of its
reuse will be higher. As we know, the abstract classes
and virtual functions give freedom (flexibility) to de-
signers to instantiate a framework according to the re-
quirements of a specific application. So such a frame-
work can be reused in more number of applications. It
can be shown from the table that loose framework for
‘EUT’ have 8 virtual functions and 5 abstract classes
while tight framework has 4 virtual functions and 4 ab-
stract classes. It shows the loose framework would be
more reusable in terms of “number of reuses” because it
can be used in more number of application developments
than the tight one.

In a software framework, the abstract classes and vir-
tual functions have to be customized at the time of in-
stantiation of that framework. A designer/implementer
would have to extend abstract classes and virtual func-
tions according to the requirements of any specific ap-
plication. If a software framework has more number of
abstract classes and virtual functions then more effort
would be needed to customize them at the time of instan-
tiation. However, as autonomous, in terms of its service
providing responsibilities, a framework would be that
better contribution it can make in functioning of the sys-
tem. It is shown in the table that loose framework for
‘EUT’ have 8 virtual functions and 5 abstract classes
while tight framework has 4 virtual functions and 4
abstract classes. As identified in the definition of tight
framework that it fixes the way of performing most of
such activities in the framework itself, it is our conjecture
that tight framework would be more reusable in terms of
“ease of reuse”. As shown in Figure 9 ‘TestcaseLoader’
is an abstract class in the loose framework that is to be
implemented according to the application specific re-
quirements and hence requires extra effort. Whereas the
tight framework has a concrete ‘TestcaseGenerator’ class
that has all the implementation and hence it can be di-
rectly used in the application.

2) As given in the definition of loose framework that it
is a framework that does not fix the way of performing
most of the activities in the framework itself. During
design of loose framework one need not to write
semi-code for the portion that is not concretely defined in
the framework. As shown in section 4, we did not fix
the unit testing criteria in loose framework so we need
not to develop code for generating test cases (based on
any criteria) in this framework; only the interface that
would connect the test case generator is needed to be
developed. However, in the case of tight framework, one
has to collect all the requirements for a specific applica-
tion. Since, in tight framework, we fix the way of per-
forming most of the activities so we have to write
semi-code for all the activities. As shown in section 5,
for the tight framework, where we fixed the testing crite-
ria as condition testing, we required to develop whole
code for generating test cases, satisfying this condition
coverage criterion, as part of the framework itself. Based
on our design and development experience regarding
both type of frameworks, it is our conjecture that a loose
framework would always be easier to develop than a
tight one.

3) Unlike a loose framework, in a tight framework we
fix most of the activities, so we have to write semi-code
for them. It can be shown from the table that size of tight
framework (total number of non-commented line of code)
is 624 while size of loose framework is 485. And thus,
the tight framework will be heavier, in terms of size, as
compare to loose framework.

In case of tight framework, the interdependence
among the different component of the framework would
be more because the way of performing most of the ac-
tivities are fixed. In order to understand/modify one
component, one has to understand all the related compo-
nents that make the tight framework more complex. In
case of loose framework, different components are
loosely coupled to each other. It is easy to understand/
modify one component, without understanding/modi-
fying other components, in a loose framework because
for each activity there would be perhaps different loose
frameworks that fulfill the application need by interact-

Copyright © 2009 SciRes JSEA

An Exploratory Case Study in Designing and Implementing Tight Versus Loose Frameworks 220

ing with each other. As in our case, loose framework for
‘EUT’ interact with any of the test case generator
framework and perform the unit testing. Thus whenever
we need to modify in test case generator framework there
is no need to understand the ‘EUT’ framework and
vice-versa. Thus we can say a loose framework would
always be less complex than a tight framework for the
same domain. In short, we can say that the complexity of
the tight framework would be high because several ac-
tivities considered in that framework may result in tightly
coupled implementation of them. However, the loose
framework that contains only the abstract code would be
less complex since no detailed implementation is there in
its code.

One can consider the basic guiding principles for de-
signing a software framework based on the above obser-
vations.

7. Conclusions

For some situations a tight framework would be better
than a loose framework for same domain if the ways of
performing the activities, fixed in the tight framework,
are exactly those that are required in the needed applica-
tion. In this paper, we suggested some scenarios, which
type of framework would be more appropriate as com-
pared to other one. These observations will be useful at
the time of selection of frameworks. We have focused on
limited parameters. Results would be more visible for
industrial applications. One can extend this study by
considering other quality criteria.

REFERENCES
[1] D. Roberts and R. Johnson, “Evolving frameworks: A

pattern language for developing object-oriented frame-
works,” in Pattern Languages of Program Design 3. Ad-
dison-Wesley, Illinois, USA, 1997.

[2] J. Bosch, P. Molin, M. Mattsson, and P. Bengtsson, Ob-
ject-Oriented Frameworks – Problems & Experiences,
1997.

[3] S. Sparks, K. Benner, C. Faris, and S. Consulting, “Man-
aging object-oriented framework reuse,” IEEE 1996, pp.
52–61, 1996.

[4] Y. J. Yang, S. Y. Kim, G. J. Choi, E. S. Cho, C. J. Kim,
and S. D. Kim, “A UML-based object-oriented frame-
work development methodology,” Software Engineering
Conference, Proceedings. 1998 Asia Pacific, pp. 211–218,
1998.

[5] IBM, “Building Object-Oriented Frameworks”, http:
//www.ibm.com/java/education/oobuilding/index.html.

[6] D. C. Schmidt, “Applying design patterns and frame-
works to develop object-oriented communication soft-
ware,” Handbook of Programming Languages, Volume I,
edited by Peter Salus, MacMillan Computer Publishing,
1997.

[7] M. E. Fayad and D. S. Hamu “Object-oriented enterprise
frameworks: Make vs. buy decisions and guidelines for
selection,” The Communications of ACM, 1997.

[8] A. K. Tripathi and M. Gupta, “Risk analysis in re-
use-oriented software development,” International Journal
of Information Technology and Management, Vol. 5, No.
1, pp. 52–65, 2006.

[9] P. Jalote, “An integrated approach to software engineer-
ing,” ISBN 81-7319-702-4, Narosa. 2005.

Copyright © 2009 SciRes JSEA

	jsea2-3 cover

	jsea2-3 cover 2

	JSEA 2.3 text.pdf
	contents.V2N3.pdf
	journal information JSEA_2-3
	1.9300073--10.15
	2.9300068--10.15
	3.9300050--10.16
	4.9300057--10.16
	5.9300100--10.19
	6.9300052--10.19
	5. Propositions of Complexity of Software Process
	6. Work Program of the Complexity of Software Process Improvement
	7. Knowledge Enabling Enterprise Model for Software Production

	7.9300084--10.16
	8.9300083--10.19
	9.Liu--10
	10.9300080
	JSEA_CiSE-cfp 2010

