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Abstract 
We investigate under what conditions transient simulation could be used to 
integrate backward in time so that the initial field could be recovered from 
later histories. In this paper we use realistic examples and find that, in long 
histories, traces of the initial field would be present only in the exact analyti-
cal solutions. We conclude that the recovery of initial field is possible only if 
the equations could be solved analytically or only short time periods are in-
volved. In practice, it is not possible to detect those traces by measurements 
or observations. If numerical procedures are used, truncation and discretiza-
tion errors are always present. Fine-tuning of system parameters used or 
transforming time into another pseudo time frame may allow numerical in-
tegration to be carried out backward in time. But numerical instability is still 
a problem. Large spurious increases found by numerical procedures are most 
likely due to numerical inaccuracy and instability. 
 

Keywords 
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1. Introduction 

With the availability of modern computer power, there is a rapidly increased use 
of mathematical models to simulate real life or physical situations [1] [2]. Ma-
thematical models use mathematical concepts and language to represent real 
problems and are used in natural sciences and engineering disciplines, as well as 
in the social sciences. Often, solutions of the mathematical equations used in the 
models may not be found easily. A proven technique is to employ a pseudo tran-
sient simulation [3] [4]. The word pseudo is used to indicate that the solution is 
found by a transient approach but the time used is not necessarily real. However, 
as far as the mathematical principles and methods are concerned there is no dis-
tinction between real and pseudo time. 
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With success of mathematical modelling, there is a tendency to replace labor-
atory testing of designs by numerical experiments [5] and operator control of a 
system by computer control [6]. It should be noted that the accuracy and effec-
tiveness of computer-based approach are most dependent on the model or mod-
els used. For example, maximum transient stress found by the numerical solu-
tions of a simulation based on the long cylinder approximation would be five 
folds smaller than the maximum stress which actually exists at the ends of the 
cylinder [7]. The interpretation of results obtained by simulations is also impor-
tant. Often the averages over a computational grid cell are used for numerical 
reasons. This means that the actual maximum inside a cell could be much great-
er than the cell average found. This could happen such as in the case of weather 
forecasting; the computer program predicted wind speeds could only be halves 
of the actual maxima. 

For saving computational time, simpler models are often used in simulation 
[8]. System parameters used in those models may not be the physical properties 
of the system but are those found to be most suitable for matching with observa-
tions in so called “fine tuning”. In such cases, it is important that the simulation 
is not being used far beyond the conditions employed in the calibration. In a 
sense this type of simulation is similar to curve fitting except that far more com-
plicated mathematical operators are involved. 

By far the more uncertain attempt involves predictions not just for what can 
be seen now or what would happen in the future but for predictions on what 
have already occurred in the past. A notable case is that astrophysicists are pre-
dicting what the universe could be billions of years ago by what they can observe 
now. As far as solving the field equations is concern, it is a well-established ma-
thematical principle that solutions are possible only for the time space from zero 
to infinity. However, with pseudo transient treatment, the real time space from 
zero to negative infinity could be converted to the pseudo time space varying 
from zero to infinity. This would be an useful solution if it is found permissible.  

In this paper, heat conduction problems are solved to give a set of analytical 
solutions. They are used to show why integration forward in time is always sta-
ble. Backward integration in time is permissible only if it is done analytically as 
any error in numerical approximates would grow exponentially. We also show 
that numerical backward extrapolation cannot be used to recover the initial con-
dition even when a pseudo time is used. In another example we show that if the 
temperature field in details is not needed, heat conduction need not be consi-
dered. The system could be modelled by an ordinary differential equation and 
solved analytically. System parameters that are generally not the same as the 
physical properties could be found by calibration so that the system could be 
used for prediction, measurement or control purposes.  

2. Transient Heat Conduction Equation 

For a one dimensional heat conduction problem 
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( ) ( ) ( )
2

2

, ,T x t T x t
Q x

t x
∂ ∂

= +
∂ ∂

                   (1) 

where T is the temperature and Q heat source, and all are in dimensionless. The 
initial condition, ( ) ( )0,0T x T x=  is given and the boundary conditions are:  

( ) ( ) ( )
1,

0, 0; 1, 0
T t

T t hT t
x

∂
′ = − =

∂
                (2) 

where h is the heat transfer coefficient. 
Using N terms of chopped sine Fourier expansions 
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1
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T t x a f t xλ
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T x t xλ
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∑                    (5) 

where λi are given by the characteristic equation derived from the boundary 
condition (2) 

cos sin 0
2 2i i ihλ λ λπ π   − + + + =   

   
                (6) 

Substitute (3) and (4) into (1) and equate the coefficients to give 

( ) ( )2
i i i i ia f t a f t qλ′ = − +                      (7) 

The solution of the above equation that satisfies the initial condition (5) is 

( ) ( ) ( )2 0 2
2 1 exp expi

i i i
i

q
a f t t t tλ λ

λ
 = − − + −              (8) 
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i i
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  π ∴ = − − + − +   
  

∑    (9) 

and at 0t  , the time independent and stationary temperature is 

( ) 2
1

, sin
2

N
i

i
i i

q
T x t xλ

λ=

π = + 
 

∑                 (10) 

Obviously the initial condition, including any errors, as well as those differ-
ences between the current and the stationary temperature would decay exponen-
tially in time leaving only the stationary components.  

With the analytical solution, Equation (9), ( )0,T x  can be recovered exactly 
from ( ),NT t x  even when 0Nt  . Using ( ),NT t x  as the initial value, 
( )0,T x  can be found by integrating backward to 0t = . This is possible be-

cause the analytical solution contains exactly every small terms associating with 
the factor ( )2exp i Ntλ−  that combines with the very large factor ( )2exp i Ntλ  to 
give the exact starting value.  

Use as an example ( ) sin
2

Q x x π = + 
 

 and ( ) 0,0 sin
2

T x t x π = + 
 

 to show 

what is needed in the analytical solution before the initial value could be recov-
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ered from that at time tN. According to Equation (9) the solution is 

( ) ( ){ } ( )0, 1 exp exp sin
2N N NT x t t t t x π  = − − + − +    

         (11) 

As 0Nt  , the term ( )exp Nt−  is very small; it drops out from Equation(11) 
to give the steady solution 

( ), sin
2NT x t x π = + 

 
                     (12) 

If Equation (12) is used as the initial value, integration backward to Nt t= −  
will give the same temperature 

( ) ( ){ } ( ),0 1 exp exp sin sin
2 2N NT x t t x xπ π    = − + + = +        

     (13) 

This should not be a surprise as starting from the steady solution there should 
be no change in the temperature field whether it is marching forward or back-
ward in time. Since t0 is absent in the steady solution, the arbitrary initial value 
could not be recovered from backward integration. However, no matter how 
small the term ( )exp Nt−  is if the full Equation (11) is used as the initial value, 
integration backward from time tN to time zero does recover t0 exactly. 

Next, consider that the starting field is slightly different to the steady field. 
That is 

( ) ( )0 ,0 1 sin
2

T x xε π = + + 
 

                  (14) 

where 0ε ≈ . Then according to Equation (11), the backward integration from 
the beginning to –tN is 

( ) ( ){ } ( ) ( )

( )

, 1 exp 1 exp sin
2

1 exp sin
2

N N N

N

T x t t t x

t x

ε

ε

π  = − − + + − +    
π  = + +    

      (15) 

It could be seen from Equation (15) that any error even as small as truncation 
error would growth exponentially without bound as the integration is progress-
ing further and further away in the backward time direction. This spurious solu-
tion would sooner or later swamp the real solution. It should be noted that when 
starting with an analytical solution, 0ε =  and hence stability is not a problem. 

3. Pseudo Transient Approach  

In a real and physical situation, it is impossible to run a system backward in time. 
But in mathematics, integration can be carried out forward as well as backward 
in time. For an initial value problem, however, it is generally accepted that solu-
tions can be found only for the time space from zero to infinity. In order to 
comply with this condition, a pseudo time, endt tθ = −  is used, where tend is a 
nominal positive value in the real time space. Then the pseudo time space used is 
from zero forward to tend. It also corresponds to the real time space from tend to 
zero. That is backward in real time space. With this pseudo time, Equation (1) 

https://doi.org/10.4236/am.2019.109051


P. Chen 
 

 

DOI: 10.4236/am.2019.109051 723 Applied Mathematics 
 

becomes 

( ) ( ) ( )
2

2

, ,T x T x
Q x

x
θ θ

θ
∂ ∂

= − −
∂ ∂

                (14) 

The solution based on chopped sine Fourier expansion in Equations (3)-(5) is 

( ) ( ){ } ( ) ( )2 0 2
2

1
, 1 exp exp sin

N
i

i i
i i

q
T x t xθ λ θ λ θ λ

λ=

 
= − + 

 
∑        (15) 

It is apparent that numerical integration forward in pseudo time would have a 
numerical stability problem as any error present at the beginning would growth 
exponentially and swamp the solution itself. However, integration backward in 
time would be stable, confirming the condition that for this type of field equa-
tion numerical integration in real time should only be carried out in the forward 
direction. 

To investigate the situation when integration is done by finite difference, 

suppose that Equation (14) is to be solved with ( ) sin 2
2

Q x q x π = + 
 

 and 

( ) 0,0 sin 2
2

T x t x π = + 
 

. Then, only one term in the Fourier series needs to be 

considered. Let the left hand side be replaced by Crank-Nicolson finite differ-
ence.  

At it t= , ( ), sin 2
2

i iT x t t T x π = = + 
 

 with superscript i denotes the time 

step. Then ( )
1

12
i i

i iT T T T q
θ

+
+−

= + −
∆

  

( )1 1 2 1 4
1 2

i i iT T q T qθ θ θ θ
θ

+ + ∆
∴ = − ∆ + ∆ − ∆

− ∆
           (16) 

If an inaccurate i iT T ε= +  is used in Equation (16), the estimated  
( )( )1 1 4i iT T qθ ε θ+ = + ∆ + − ∆  and 

( )1 1 1i iT T θ ε+ +− = + ∆                     (17) 

It can be seen that for a numerically unstable system, any error will grow in 
the forward time integration even when Crank-Nicolson difference scheme has 
been used. 

4. A Point Model Approach 

Consider as an example temperature in a heat generating body. If heat conduc-
tion is not considered, the mathematical equation representing such a model 
may not involve any boundary condition. Then it is not an initial boundary val-
ue problem, and there could be no restriction for forward or backward integra-
tion in time. But, there are still conditions that need to be fulfilled before a solu-
tion could be used to predict future or past events. 

When electric current is passing through a heating element, due to the resis-
tance heat is generated in the element. At the beginning, some of this heat is loss 
to the surrounding and the remainder causes a raise in the temperature. The 
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heat loss can be calculated by knowing the heat transfer coefficient and the tem-
perature difference between the heating element and the surrounding. The tem-
perature rise can be calculated if the heat capacity of the element is known. A 
stationary temperature will be reached when the rate of heat generation is equal 
to that of heat loss. Using a point model approach, temperature is represented by 
a single value and could be found by the following ordinary differential equa-
tion: 

[ ] 1 2
d 1
d
T Q hT c c T
t c
= − = −                  (18) 

where T is the temperature relative to the surrounding temperature, Q the heat 
generation rate, h the heat transfer coefficient, c the heat capacity and t is time. 

In this equation, 1
Qc
c

=  and 2
hc
c

=  are parameters characteristic of the  

system. Equation (18) can be cast in a normalized form where all the quantities 
involved are dimensionless. Although c1 and c2, are related to the physical prop-
erties such as conductivity, density, heat capacity as well as to the system dimen-
sions and how cooling is being carried out, they could be directly determined 
from the system by calibration. The analytical solution for Equation (18) is: 

( )1 1
0 2

2 2

expc cT T c t
c c

 
= + − − 

 
                (19) 

where T0 is the initial temperature at t = 0. The solutions for different starting 
temperature are shown in Figure 1. 

As there is a one to one relationship between T and t, this arrangement could 
be used as a time-measuring device by using two temperature readings to find 
out the time between them. One of the essential conditions is that the tempera-
ture at the starting must be known so that the appropriate curve may be used. 
For example, depending on which curve is used a temperature reading of 85 will 
give different times since the system is turned on. Only knowing the initial tem-
perature, the curve could be selected correctly. 

 

 
Figure 1. Temperature histories in dimensionless time for c1 = 0.5, 
c2 = 50 and T0 = 0 (Curve a), 60 (Curve b) and 80 (Curve c). 
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For good measurement sensibility, the device must be designed to operate 
over the range 5t < . When 10t >  there is very little change of temperature 
with time and the device is no longer sensitive enough for measurement. On the 
other hand, as a controlling device, the chosen operating parameters should be 
such that 10t >  could be reached within the design specification for the change 
to attain equilibrium quickly. Also needed is that the operation conditions must 
be close to those used in the calibration.  

Perhaps one feature unique to this device as compared with other clocks is the 
fact that time lapse of a past event could be found. That is to measure time 
backward. This principle is used in radiometric dating that is described by the 
same Equation (19) with c1 = 0. The accuracy relies on the fact that the half-life 
of a radioactive isotope is a constant and could be easily determined. However, 
to measure the time accurately the initial conditions must be known. That is on-
ly the time lapse between two known events can be found. 

5. Linearization of a Non-Linear Problem  

There are not many cases where non-linear problems have analytical solutions. 
A numerical approach would be needed to replace the problem by a linearized 
approximation at each forward time step. In non-linear form, Equation (18) be-
comes 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

d 1 , , , ,
d ,

T t
Q T t h T t T t c T t c T t T t

t c T t
= − = −       (20) 

The temperature and time dependency is replaced by the averages at the ith 
and (i + 1)th time step so that in linearized form 

( ) ( )1 2

d
d

T t
c c T t

t
= −                        (21) 

where ( ) ( )1 1
1 1 1

1 , ,
2

i i i ic c T t c T t+ + = +  , ( ) ( )1 1
2 2 2

1 , ,
2

i i i ic c T t c T t+ + = +  , and 

( )11
2

i it t t += + . As 1iT +  is yet to be determined, iteration is needed in the  

forward integration procedure. If a stationary solution does exist, this scheme 
should be stable. Solution of Equation (21) is in the same form as Equation (19) 
and the integration could be carried from ti to ti+1 smoothly. Should there be any 
error such as that due to numerical truncation; the error would decay exponen-
tially and eventually disappear from the final solution. However, if a backward 
integration in time is carried out, an error would grow exponentially, meaning 
that the backward time integration would be unstable also for a non-linear 
problem. Therefore, ( )0T t   could not be used to recover ( )0T t =  by back-
ward integration due to two reasons: 1) due to exponential decay the contribu-
tion of the initial value has already become insignificant in ( )0T t  , and 2) the 
initial value so obtained could have come from very small error in the starting 
input.  

https://doi.org/10.4236/am.2019.109051


P. Chen 
 

 

DOI: 10.4236/am.2019.109051 726 Applied Mathematics 
 

The same approach could be applied to more complex field, for example, dy-
namic study of a rotor in a turbine based on a point model [9], propagation of 
complex electromagnetic waves in optical fibres [10] and matter-wave laser [11]. 
In every case, providing the system is operating within parametric stability do-
main, stationary solutions could be found numerically from arbitrarily chosen 
initial guesses. In all those cases, iterations are needed to solve the linearized eq-
uations. It is not possible to back track from the stationary solutions and recover 
the initial values because they are arbitrarily chosen. 

6. Conclusions 

Every physical problem that could be described by a well-posed transient field 
equation starts with an initial value. For a real and conservative system this ini-
tial value would decay and eventually disappear leaving only the stationary solu-
tion. It would be normally impossible to recover the initial value from the sta-
tionary solution by working backward in time. If it was possible to identify the 
very small remnant of the initial value after a long time history, the recovery re-
lies on tracing back exactly its histories at every step. This is certainly not possi-
ble in a numerical procedure. 

Forward numerical integration in a conservative transient field equation is 
normally stable. But backward time integration of the same system is numeri-
cally unstable. 

System parameters could be fine-tuned to allow backward time integration. 
However, problems about the recovery of the initial value and numerical stabili-
ty also apply to this fine-tuned system. 

No matter how well-tuned a system could be the time interval between two 
events cannot be accurately measured unless the fields for the two events are 
known.  

Observations in a conservative system in equilibrium should not change in 
time either forward or backward. If a numerical model predicts the field intensi-
ty, for example temperature is very much larger in the past, such a prediction 
can only come from numerical instability and inaccuracy in the measurements.  

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Gershenfeld, N. (1998) The Nature of Mathematical Modeling. Cambridge Univer-

sity Press, Cambridge. 

[2] Lin, C.C. and Segel, L.A. (1988) Mathematics Applied to Deterministic Problems in 
the Natural Sciences. SIAM, Philadelphia. https://doi.org/10.1137/1.9781611971347 

[3] Mallinson, G.D. and de Vahl Davis, D. (1973) The Method of the False Transient 
for the Solution of Coupled Elliptic Equations. Journal of Computational Physics, 
12, 435-461. https://doi.org/10.1016/0021-9991(73)90097-1 

https://doi.org/10.4236/am.2019.109051
https://doi.org/10.1137/1.9781611971347
https://doi.org/10.1016/0021-9991(73)90097-1


P. Chen 
 

 

DOI: 10.4236/am.2019.109051 727 Applied Mathematics 
 

[4] Shestakov, A.I., Milovich, J.L. and Noy, A. (2002) Solution of the Nonlinear Pois-
son-Boltzmann Equation Using Pseudo-Transient Continuation and the Finite 
Element Method. Journal of Colloid and Interface Science, 247, 62-79.  
https://doi.org/10.1006/jcis.2001.8033 

[5] Bourdin, B., Francfort, G.A. and Marigo, J.-J. (2000) Numerical Experiments in Re-
visited Brittle Fracture. Journal of the Mechanics and Physics of Solids, 48, 797-826.  
https://doi.org/10.1016/S0022-5096(99)00028-9 

[6] Renner, I.W., et al. (2015) Point Process Models for Presence-Only Analysis. Methods 
in Ecology and Evolution, 6, 366-379. https://doi.org/10.1111/2041-210X.12352 

[7] Chen, P.Y.P. (2014) Axisymmetric Thermal Stresses in an Anisotropic Finite Hol-
low Cylinder. In: Hetnarski, R.B., Ed., Encyclopedia of Thermal Stresses, Springer, 
Dordrecht, 295-304. https://www.springer.com/gp/book/9789400727380  
https://doi.org/10.1007/978-94-007-2739-7_210 

[8] Paul, R.P. (1981) Robot Manipulators. The MIT Press, Cambridge and London. 

[9] Chen, P.Y.P., Feng, N., Hahn, E. and Wu, W. (2005) Recent Development in Tur-
bomachinery Modeling Improved Balancing and Vibration Response Analysis. 
Journal of Engineering for Gas Turbines and Power, 127, 646-653.  
https://doi.org/10.1115/1.1850942 

[10] Chen, P.Y.P., Malomed, B.A. and Chu, P.L. (2006) Optimal Preprocessing of Pulses 
for Dispersion Management. Journal of the Optical Society of America B, 23, 
1257-1261. https://doi.org/10.1364/JOSAB.23.001257 

[11] Chen, P.Y.P. and Malomed, B.A. (2006) Stable Circulation Modes in a Dual-Core 
Matter-Wave Soliton Laser. Journal of Physics B: Atomic, Molecular and Optical 
Physics, 39, 2803-2813. https://doi.org/10.1088/0953-4075/39/12/014 

 

https://doi.org/10.4236/am.2019.109051
https://doi.org/10.1006/jcis.2001.8033
https://doi.org/10.1016/S0022-5096(99)00028-9
https://doi.org/10.1111/2041-210X.12352
https://www.springer.com/gp/book/9789400727380
https://doi.org/10.1007/978-94-007-2739-7_210
https://doi.org/10.1115/1.1850942
https://doi.org/10.1364/JOSAB.23.001257
https://doi.org/10.1088/0953-4075/39/12/014


Applied Mathematics, 2019, 10, 728-742 
https://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2019.109052  Sep. 18, 2019 728 Applied Mathematics 
 

 
 
 

Analysis of an Inventory System for  
Items with Stochastic Demand and  
Time Dependent Three-Parameter  
Weibull Deterioration Function 

Nwoba Pius Ophokenshi1, Chukwu Walford Ikechukwu Emmanuel2, Maliki Olaniyi Sadik3 

1Department of Industrial Mathematics and Applied Statistics, Ebonyi State University, Abakaliki, Nigeria 
2Department of Statistics, University of Nigeria, Nsuka, Nigeria 
3Department of Mathematics, Michael Okpara University of Agriculture, Umudike, Nigeria 

 
 
 

Abstract 
In recent times, mathematical models have been developed to describe various 
scenarios obtainable in the management of inventories. These models usually 
have as objective the minimizing of inventory costs. In this research work we 
propose a mathematical model of an inventory system with time-dependent 
three-parameter Weibull deterioration and a stochastic type demand in the 
form of a negative exponential distribution. Explicit expressions for the op-
timal values of the decision variables are obtained. Numerical examples are 
provided to illustrate the theoretical development. 
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Inventory Model, Deteriorating Items, Weibull Distribution,  
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1. Introduction 

Inventory holding refers to producing ahead of demand and sales realizations 
[1]. The total investment in inventories is enormous and accounts for nearly half 
of the total logistics cost [2]. In view of this high cost, the management of in-
ventory offers high potential for improvement and results in a relatively rich li-
terature on theoretic inventory models. In inventory planning and control, the 
performance measures adopted should encourage the positive aspects of holding 
inventory such as providing flexibility, providing resources for production, pro-
viding responsive customer service. We observe that inventory arises in many 
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different situations. It is unlikely that the same inventory planning and control 
considerations will apply equally to all categories of inventory [3]. 

Some type of products may undergo change in value in storage. They may 
become partially or entirely unfit for consumption in the course of time. This 
change or deterioration can be defined as any process that prevents an item from 
being used for its intended original purpose. Following its utility, the deteriorat-
ing item can be characterized into either an item whose functionality or physical 
fitness deteriorates over time (e.g. fresh food or medicine) or an item whose 
functionality does not degrade, but where demand deteriorates over time as 
customers’ perceived utility decreases (e.g. fashion clothes, high technology 
products or newspapers). Both categories pertain to the same problem but re-
quire different actions seeing that items that lose their functional characteris-
tics and quality often cannot, or should not be kept in inventory. However, 
items that lose perceived utility can be kept in inventory and may be sold on a 
secondary market. 

The main objective of inventory management for deteriorating items is to ob-
tain optimal returns during the useful lifetime of the product [3]. This leads to 
three main issues: determining reasonable and appropriate methods for issuing 
inventory, replenishing inventory and allocating inventory. The choice of in-
ventory valuation methods adopted in issuing inventory (i.e. the order in which 
the items are to be issued), such as methods based on time sequence including 
FIFO (first-in, first-out) and LIFO (last-in, first-out), depends on both the in-
trinsic characteristics of the inventory (e.g. lifetime, quantity, variety, issuing 
frequency etc.) and the influence on the company (e.g. inventory balance, cost of 
goods sold etc.) [4]. 

1.1. Mathematical Formulation  

A rich literature on modelling of deteriorating inventory shows how the deteri-
oration of products has been captured in the research problem up till now. To 
integrate deterioration into mathematical models, the model type (deterministic 
or stochastic) and the considered time horizon (infinite or finite) lead to specific 
methods [4]. 

1.2. Deterioration Process Modeling Approaches 

Many researchers have analyzed inventory control of deteriorating items from 
different perspectives. Broadly speaking, the existing literature in this field can 
be divided into the following three classes from the perspective of the modeling 
approach. These classes are schematically illustrated in Figure 1.  

( )I t : On-hand inventory as a function of time t. 
( )tθ : Deterioration function of time t. 
( )D t : Demand function of time t. 
( )P t : Production rate as a function of time t. 
( )H t : Holding cost of one unit in-stock for t units of time. 
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Figure 1. Categorization of deterioration modeling schemes. 
 
h : A positive constant. 
( ), , ,Z t I m : A non-linear increasing positive function of finite number of 

parameters such as stocking time, t, on-hand inventory, I, etc. 

1.2.1. Class A: Non-Linear Inventory Function 
Most researches on deteriorating inventory consider that inventory decays with 
time, in different patterns. Thus, the on-hand inventory function can be deter-
mined by the differential equation: 

( ) ( ) ( ) ( ) ( )
d

d
I t

t I t P t D t
t

θ+ = −                  (1) 

here ( )I t  is the inventory level at time t, ( )P t  and ( )D t  indicate the dete-
rioration rate functions, the production rate and the demand rate as a function 
of time t respectively 

In this type of research it is considered that the holding cost per unit item per 
unit time (holding cost rate) is constant. In other words, the holding cost is li-
near in terms of parameters like stocking time, t, and the on-hand inventory lev-
el, I, that can be stated as htI , 0h >  where is constant. 

This kind of modeling approach is more appropriate for decaying items and 
was used in the earliest researches on deteriorating products. Ghare and Schrad-
er [5] seem to have been the first to have developed an exponentially deteriorat-
ing inventory model by defining a constant decaying rate. 

1.2.2. Class B: Non-Linear Holding Cost 
The deterioration process directly affects the on-hand inventory function and 
thereby inventory holding cost modeling. In this category, the on-hand invento-
ry function form is similar to its form of non-deteriorating products and can be 
obtained by the differential equation: 

( ) ( ) ( )
d

d
I t

P t D t
t

= −                     (2) 

Here, instead of considering the deterioration rate function, ( )tθ  in the 
on-hand inventory function, the holding cost, H, is considered as a non-linear 
increasing positive function of parameters like stocking time, t or on-hand in-
ventory I. 

Considering a non-linear time-dependent holding cost is more suitable for 
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deteriorating items-especially perishable ones—when the value and quality of 
the unsold items decrease with time, as in the case of green vegetables. For 
products such as electronic components, radioactive substances, volatile liquids 
etc., where more sophisticated tools are required for their security and safety in 
stock, a non-linear stock-dependent holding cost can be appropriate. 

1.2.3. Class C: Non-Linear Inventory Function and Non-Linear Holding  
Cost 

This modeling approach is more complicated than the other two. Here, both the 
deterioration rate function, ( )tθ , a feature of Class A, and the non-linear hold-
ing cost, a feature of Class B, are considered to model the inventory system of 
deteriorating products. In [6] the authors discussed Goh’s model, considering a 
constant ( )tθ  in addition to non-linear holding cost in two time-dependent 
and stock-dependent cases. 

1.3. The Demand Characteristics  

The customer arrival rate per time period may be deterministic or stochastic, 
each individual demand may be deterministic or stochastic and each individual 
demand may also be discrete or continuous [7] [8]. Demand plays a key role in 
the modeling of deteriorating inventory. Aiming towards satisfying customer 
demand, companies employ demand forecasts as a prediction of customer beha-
viour. The following variations of demand labeled from the point of view of real 
life situations have been recognized and studied by a number of researchers such 
as Khanra et al. [9]. It is assumed that demand is known with certainty in a de-
terministic demand process. Stochastic demand process on the other hand basi-
cally incorporates randomness and unpredictability. 

A deterministic demand distribution can be categorized into:  
1) Uniform demand, i.e. demand is a constant, fixed number of items.  
2) Time-varying demand.  
3) Stock-dependent demand.  
4) Price-dependent demand.  
A combination of the above is also possible. 
In the case of stochastic demand models, a further distinction is made be-

tween a specific type of probability distribution and an arbitrary probability dis-
tribution. Although modeling in a deterministic setting is more straightforward, 
a stronger focus on stochastic modeling of deteriorating inventory is suggested 
in order to better represent inventory control in practice since customer demand 
is variable in time and uncertain in terms of quantification. 

1.4. Stochastic Demand Function 

From a real life point of view, a stochastic demand distribution is more reasona-
ble, because demand and supply is not always known but can be controlled by 
using probability distribution function. Although less than 20% of the developed 
models in the literature (after 2001) can be classified as stochastic demand mod-
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els, Bakker et al. [10]. However, before 2001 researchers mostly concentrated on 
developing basic models under certain conditions, such as inventory models 
with stock dependent items. Based on Goyal and Giri [11], stochastic demand 
functions in the existing literature can be seen in two ways: 
• Taking into consideration a specific type of probability distribution function 

(PDF) such as Ravichandram [12] and Weiss [13] who developed inventory 
models for deteriorating products assuming Poisson demand function. 

• Considering an arbitrary probability distribution function (PDF) for end 
customer’s demand such as Aggoun et al. [14] and Lian et al. [15]. According 
to Bakker et al., since 2001 only about 4% of developed researches on deteri-
orating inventories provide models with an arbitrary probability distribution 
for demand. 

1.5. Proposed Deterioration Model 

The Weibull distribution ( ) ( ) ( )( )1 exp , 0W t t t tβ βαβ γ α γ−= − − − > , having 
exponential and Rayleigh as submodels, is often used for modeling lifetime data. 
When modeling monotone hazard rates, the Weibull distribution may be an ini-
tial choice because of its negatively and positively skewed density shape. Rinne 
[16] suggested that a three-parameter generalization of the Weibull distribution 
deals with general situations in modeling survival process with various shapes in 
the hazard function. Chakrabarty et al. [17] provided rationale for considering 
three-parameter Weibull deterioration rate. They discovered that many products 
that start deteriorating appreciably only after a certain period (e.g. after they are 
produced) and for which the rate of deterioration increases over time have a de-
terioration rate best described by a Weibull distribution (Figure 2). 

1.6. Negative Exponential Distribution 

The low flow of traffic can be modeled using the negative exponential distribu-
tion. The probability density of the negative exponential distribution is given as 

( ) e ,  0tf t tλλ −= ≥                        (3) 

where λ  is a parameter that determines the shape of the distribution. Figure 3 
displays the exponential distribution for some values of λ .  

We observe that the probability that the random variable t is greater than or 
equal to zero is given by; 

( ) ( )
0 0

0 d e d 1tp t f t t tλλ
∞ ∞ −≥ = = =∫ ∫  

The probability that the random variable t is greater than a specific value h is 

( ) ( )
0

1 1 e d e
h t hp t h p t h tλ λλ − −≥ = − < = − =∫  

Unlike many other distributions, one of the key advantages of the negative 
exponential distribution is the existence of a closed form solution for the proba-
bility density function.  
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Figure 2. Rate of deterioration-time relationship 
for a three-parameter Weibull distribution. 

 

 

Figure 3. Graphical profile of the negative expo-
nential distribution for various values of λ . 

1.7. Notations and Assumptions of the Model 

We adopt the following notations and assumptions in the derivation of our 
model. 

Notations: 

1c : inventory holding cost per unit per unit time. 

2c : shortage cost per unit per unit time. 

3c : ordering cost per order. 

4c : unit purchasing cost. 
( )D t : demand rate at any time, 0t ≥ . 

T: cycle time. 

0I : initial inventory size. 
( ) ( ) 1t t βθ αβ γ −= − : instantaneous rate function for a three-parameter Wei-

bull distribution; where α  is the scale parameter, β  is the shape parameter 
and γ  is the location parameter. Also, 0 1α<  . 

1t : time during which there is no shortage. 
κ : a constant value between 0 and 1. 

*T : optimal value of T. 
*
0I : optimal value of 0I . 
*
1t : optimal value of 1t . 

*κ : optimal value of κ . 

Assumptions 
1) The inventory system under consideration deals with single item. 
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2) The planning horizon is infinite. 
3) The demand rate is stochastic and given by the negative exponential distri-

bution as a function of time t, i.e. ( ) e tD t λλ −= , where 0λ > , is the parameter 
of the distribution. 

4) Shortages in the inventory are allowed and completely backlogged. 
5) The supply is instantaneous and the lead time is zero. 
6) Deteriorated unit is not repaired or replaced during a given cycle. 
7) The holding cost, ordering cost, shortage cost and unit cost remain con-

stant over time. 
8) There are no quantity discounts. 
9) The distribution of the time to deterioration of the items follows the 

three-parameter Weibull distribution, i.e.  

( ) ( ) ( )( )1 exp , 0W t t t tβ βαβ γ α γ−= − − − > . The instantaneous rate function is 

( ) ( ) 1t t βθ αβ γ −= − . 

2. Mathematical Formulation of the Model 

At the beginning of the cycle, the inventory level ( )I t  reaches its maximum 
( ) 00I I=  units of item at time 0t = . During the interval [ ]10, t , the inventory 

level depletes due to the combine effects of demand and deterioration. At 1t t= , 
the inventory level is zero and all the demand hereafter (i.e. 1T t− ) is completely 
backlogged. The total number of backordered items is replaced by the next rep-
lenishment. A graphical representation of this inventory system is depicted in 
Figure 4. Since the depletion of the units is due to demand and deterioration, 
the rate of change of the inventory level at any time t is governed by the differen-
tial equations:  

( ) ( ) ( ) ( ) ( ) 1

d
,   0

d
I t

t I t P t D t t t
t

θ+ = − ≤ <               (4) 

with boundary conditions ( ) 00I I=  and ( )1 0I t = . Furthermore the produc-
tion rate ( )P t  is zero in this case, thus in the interval 10 t t≤ < , the initial 
value problem to be solved is;  
 

 

Figure 4. An Economic Order Quantity (EOQ) 
model with shortages and deterioration. 
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( ) ( ) ( ) ( ) ( ) ( )0 1

d
,    0 ,  0

d
I t

t I t D t I I I t
t

θ+ = − = =           (5) 

In the interval 1t t T≤ ≤ , the initial value problem becomes; 

( ) ( ) ( )1

d
,   0

d
I t

D t I t
t

= − =                   (6) 

Employing the previously stated assumptions, we have: 

( ) ( ) ( )1
1

d
e ,  0

d
tI t

t I t t t
t

β λαβ γ λ− −+ − = − ≤ <           (7) 

( )
1

d
e ,   

d
tI t

t t T
t

λλ −= − ≤ ≤                   (8) 

2.1. Solution of the Model 

Equation (7) is a first order differential equation and its integrating factor is: 

( ) ( )1exp d e tt t
ββ α γαβ γ − − − = ∫                   (9) 

( ) ( ) ( )d e e e
d

t ttI t
t

β βα γ α γλλ− −−  = −  
 

( ) ( ) ( )1
1  e e d

t tt t t

tt
I t t

β βα γ λ α γλ− − + − ∴ = −   ∫
 

Taking first order approximation of the integrand, we have 

( ) ( ){ } ( )e 1 1t t t t t t
β β βλ α γ λ α γ λ α γ− + − ≈ + − + − = − + −

 

( ) ( ) ( ) ( )

( ){ }
( ) ( ) ( )( ) ( )

( )

1

1

1

1 1 2 2 2
1 1 1 1

  e e

1 d

2 2 2

2 1

t t

t

t

I t I t

t t t

t t t t t t t t

β βα γ α γ

β

β β

λ λ α γ

αλ γ γ λ β λ λ βλ

β

− −

+ +

⇒ −

= − − + −

 − − − + − − − + − − =
+

∫  

Applying the boundary condition ( )1 0I t = , we get 

( ) ( )

( ) ( ) ( )( ) ( )
( )

1 1 2 2 2
1 1 1 1

e

2 2 2

2 1

tI t

t t t t t t t t

βα γ

β βαλ γ γ λ β λ λ βλ

β

−

+ + − − − + − − − + − − =
+

 

( )
( ) ( ) ( )( ) ( )

( )
( )

1 1 2 2 2
1 1 1 12 2 2

 e
2 1

t
t t t t t t t t

I t
β

β β

α γ
αλ γ γ λ β λ λ βλ

β

+ +

− −
 − − − + − − − + − − ⇒ =

+
(10) 

Hence 

( )
( ) ( ) ( )

( )
( )

1 1 2 2
1 1 1 1

0

2 2 2
0 e

2 1

t t t t
I I

β
β β

α γ
αλ γ γ λ β λ βλ

β

+ +

− −
 − − − − − + + = =

+
 (11) 

From Equation (8), in the interval 1t t T≤ ≤  we obtain the solution 
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( ) 1

1 1
1

1e d e e e
t

tt tt t t
t t

t

I t t λλ λ λλ λ
λ

−− − − = − = − − = −     ∫  

( ) 1  e e ttI t λλ −−∴ = −                      (12) 

Hence, the inventory level at any time [ ]0,t T∈  is given by 

( )
( ) ( ) ( )( ) ( )

( )
( )

1

1 1 2 2 2
1 1 1 1

1

2 2 2
e       0

2 1

e e                                                                                                                     

t

tt

t t t t t t t t
t tI t

β
β β

α γ

λλ

αλ γ γ λ β λ λ βλ

β

+ +

− −

−−

 − − − + − − − + − −  ≤ <= +

− 1  t t T






≤ ≤

(13) 

The total cost per unit time, ( )1,T tφ , of the inventory system consist of the 
deterioration cost (DC), the shortage cost (SC), the holding cost (HC) and the 
ordering cost (OC). Put differently, the total cost per unit time is: 

( ) ( )1
1,T t DC SC HC OC
T

φ = + + +                  (14) 

We derive the components of the total relevant cost as follows: 
The total quantity of deteriorated items in the time interval [ ]10, t  is given by 

[ ]
( )1 1

1

0 00

Initial inventory Total demand within 0,

e d 1 e
t tt

D t

I t I λλλ −−

= −

= − = − −∫
            (15) 

Thus, the deterioration cost per unit time is 

( )1
1 0 1 e tDC c I λ−= − +                       (16) 

The average shortage cost within [ ]1,t T  is 

( ) ( ) 1

1

2
2 1e d 1 e e

T tt T
t

cSC c T t t T t λλ λλ λ λ
λ

−− − = − = − − + ∫         (17) 

The average inventory holding cost accumulated over the period [ ]10, t  is: 

( )1
3 0

d
t

HC c I t t= ∫                  (18) 

The total inventory cost per unit time is: 

( ) ( ) ( ) ( )11 12
1 1 0 1 3 40

1, 1 e 1 e e d
tt t TcT t c I T t c I t t c

T
λ λ λφ λ λ

λ
− − −  = − + + − − + + +   ∫ (19) 

Here 1 2 3, ,c c c  are constants as well as 4c  the ordering cost, assumed con-
stant. 

We assume 1t Tκ= ; 0 1κ< < . This assumption appears reasonable since the 
length of the shortage interval is a fraction of the cycle time. Substituting 

1t Tκ=  in Equation (19), we get: 

( ) ( ) ( ) ( )2
1 0 3 40

1, 1 e 1 e e d
TT T TcT c I T T c I t t c

T
κκ λκ λκ λφ κ λ λκ

λ
− − −  = − + + − − + + +   ∫ (20) 

( ) ( ) ( )
( )

( )
1 1 2 2 2

0

2 2 2
e

2 1

T T T T
I

β
β β

α γκ
αλ γ κ γ λκ β λκ βλ κ

β

+ +

− −
 − − − − − + + =

+
(21) 

We now proceed to determine the optimal values of T and κ . The total av-

https://doi.org/10.4236/am.2019.109052


N. P. Ophokenshi et al. 
 

 

DOI: 10.4236/am.2019.109052 737 Applied Mathematics 
 

erage cost per unit time ( ),Tφ κ  is now a function of two variables T and κ , 
its partial derivatives with respect to T and κ  are computed and the result 
equated to zero. We have 

( ) ( )

( )

0 2
1

3 40

1 e, 1 e e

d

T
T T

T

I cT c T T
T T T T T T

c I t t c
T

κ λκ
λκ λ

κ

φ κ λ λκ
λ

−
− −  ∂∂ ∂ ∂ ∂  = + + − − +   ∂ ∂ ∂ ∂ ∂   

∂
+ + 

∂ 
∫  

( )

( ) ( ) ( )( )2 2 2 20 e 2 2 2 2 1
2 1

I
T T T T

T

βα γκ
βκλ β κλ κ λ κ λ β ακλ β κ γ

β

− −∂  = − + − − + + − ∂ +
(22) 

( ) ( ) ( )1 e e 1 e 1T T TT T T T
T

λκ λκ λκλ λκ λ κ λκ λκ λ− − −∂
− − = − − − +

∂
   (23) 

The Lebnitz rule for differentiating the integral ( ) ( )
( )

( )
, d

b

a

I f x x
α

α

α α= ∫  is giv-

en by 

( ) ( ) ( ) ( )d ,d d, , d
d d d

b

a

I f xb af b f b x
α α

α α
α α α α

∂
= − +

∂∫  

Applying this rule to ( )
0

, d
T

I t T t
T

κ∂
∂ ∫ , we get 

( ) ( ) ( )
0 0

, d , d ,
T T

I t T t I t T t I T
T T

κ κ
κ κ∂ ∂

= +
∂ ∂∫ ∫           (24) 

Hence 

( )
( )

( ) ( )

( )( )

( ) ( )

( ) ( )

2 2 2 21

2

3 0

e1, 2 2 2
2 1

2 1 e

e 1 e 1 e

, d ,

0

T

T T T

T

cT T T T
T T

T

c T T

c I t T t I T
T

βα γ

β λκ

λκ λκ λ

κ

φ κ κλ β κλ κ λ κ λ β
β

ακλ β κ γ λκ

λ κ λκ λκ λ λ
λ

κ κ

− −

−

− − −

∂  = − + − − ∂ +
+ + − −

 + − − − + − 

∂ + + 
∂ 

=

∫

   (25) 

Similarly; 

( ) ( )

( )

0 2
1

3 0

1 e, 1 e e

d

T
T T

T

I cT c T T
T

c I t t

κ λκ
λκ λ

κ

φ κ λ λκ
κ κ κ λ κ κ

κ

−
− −  ∂∂ ∂ ∂ ∂  = + + − − +   ∂ ∂ ∂ ∂ ∂   

∂
+ 

∂ 
∫  

( )

( ) ( ) ( )( )2 2 2 20 e 2 2 2 2 1
2 1

I
T T T T T T

βα γκ
βλ β κλ κλ κβλ αλ β κ γ

κ β

− −∂  = − + − − + + − ∂ +
(26) 

( ) ( )1 e e 1 eT T TT T T T T Tλκ λκ λκλ λκ λ λ λκ λ
κ

− − −∂
− − = − − − +

∂
     (27) 
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and 

( ) ( ) ( )
0 0

, d , d ,
T T

I t T t I t T t TI T
κ κ

κ
κ κ
∂ ∂

= +
∂ ∂∫ ∫             (29) 

Hence 

( )
( )

( ) ( )

( )( )

( )

( ) ( )

2 2 2 21

2

3 0

e1, 2 2 2
2 1

2 1 e

e 1 e
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T T

T

cT T T T T
T

T T

c T T T T

c I t T t TI T

βα γ

β λκ

λκ λκ

κ

φ κ λ β κλ κλ κβλ
κ β

αλ β κ γ λκ

λ λ λκ λ
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κ
κ

− −

−

− −

∂  = − + − − ∂ +
+ + − −

 + − − − + 

∂ + + 
∂ 

=

∫

    (30) 

where 
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( ) ( ) ( )( ) ( )

( )
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1 1 2 2 2 22 2 2
, e

2 1
t

t T t T t T t T
I t T

β
β β

α γ
αλ γ κ γ λ κ β λ λκ βλ κ

β

+ +

− −
 − − − + − − − + − − =

+
 

and  

 
( ) ( ) ( ) ( )( )

( )
( )

( ) ( ) ( ) ( )( )
( )

( )

2 2 2

2 2 2

2 2 2 2 1
, e

2 1

2 2 2 2 1
, e

2 1

t

t

t T t T T T
I t T

T

T t T T t T T T T
I t T

β

β

β
α γ

β
α γ

κλ κ κλ β λ κλ βκ λ ακβ β κ γ
β

λ κ λ β λ κλ βκλ αβ β κ γ
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− −

− −

 − + − − + − + + −∂
= −

∂ +


− + − − + − + + − ∂
= −∂ +

 

2.2. Remark 

Equations (25) and (30) provide the necessary condition for *T  and *κ  to be 
minimum points of ( ),Tφ κ . 

The sufficient condition for these values to minimize ( ),Tφ κ  is that the 
Hesssian matrix H must be positive definite. Here  

( )

2 2

2
2

2 2

2

, TTH T

T

φ φ
κφ κ

φ φ
κ κ

 ∂ ∂
 ∂ ∂∂ = ∇ =
 ∂ ∂
 ∂ ∂ ∂ 

 

Thus the sufficient condition for optimality is 
2 2

2 20, 0
T
φ φ

κ
∂ ∂

> >
∂ ∂

 and 

22 2 2

2 2 0
TT

φ φ φ
κκ

 ∂ ∂ ∂
− > ∂ ∂∂ ∂  

. 

Since ( ) 1e e ttI t λλ −−= −  for 1t t T≤ ≤ , the total back-order quantity for the 
cycle is 

**
1* *

0 e e tTI I λλ −−= + − . 

2.3. Optimal Inventory Policy for the Model 

In this section, we provide the optimal inventory policy for the proposed model. 
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The procedure for reaching this optimum policy is also given. The optimal in-
ventory policy for the proposed model is: 

Order *I  units for every *T  time units. Use 
**
1e e tT λλ −− −  units to offset 

the backordered quantity and begin a new cycle with 0I κ  units. The total in-
ventory cost per unit time associated with the proposed model is: 

( ) ( ){
( )

( )

1 0

2

3 40

1, 1 e

1 e e

d

T

T T

T

T c I
T

c T T

c I t t c

κ λκ

λκ λ

κ

φ κ

λ λκ
λ

−

− −

= − +

 + − − + 

+ + 
∫

 

2.4. Solution Algorithm 

We give the following steps for computing the optimal ordering quantity, op-
timal cycle time and the optimal total cost for the model: 

Step 1: Solve Equations (25) and (30) simultaneously to get the optimal values 
*T  and *κ  for T and κ  respectively. 
Step 2: If at *T  and *κ  the sufficiency condition is satisfied, then go to step 

3 else stop and declare the solution infeasible. 
Step 3: Substitute *T  and *κ  into 1t Tκ=  to obtain *

1t . 
Step 4: Determine the optimal EOQ *

0I  by substituting the values of *T  
and *κ  into Equation (11). 

Step 5: Substitute the values of *
0I , *T  and *κ  into Equation (20) to get 

the optimal total average cost ( ),Tφ κ . 

2.5. Numerical Analysis and Results 

In this section we employ MathCAD 14 [18] to obtain numerical solution to the 
highly nonlinear system of Equations (25) and (30). This will provide us with the 
optimal solutions for the average cost function for some specified data. We con-
sider the following inventory data adapted from Ghosh and Chaudhuri (2004): 

1 2.40c = , 2 5c = , 3 100.00c = , 4 20.00c = , 0.001α = , 8β = , 0.1γ = , 
0.1λ = , 0.85κ = , 2T = . 

The format for the MathCAD 14 solve block follows; 
• Initial values for the unknown variables ( ),Tκ . 
• Given. 
• Equation 1. 
• Equation 2. 
• Find ( ),Tκ . 

2.6. Mathcad Solve Block Solution 

1 2 3: 2.40   : 5    : 100    : 0.01    : 8    : 1.5   : 0.4c c c α β λ γ= = = = = = =  

: 0.85     : 2     Initial values of the variablesTκ = =  

Given  
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∫
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− ⋅  + ⋅ ⋅ − ⋅ − ⋅ − ⋅ +

⋅ ⋅ ⋅ − ⋅ + ⋅ ⋅ ⋅ − ⋅

∫

( ) ( ) ( )

( ) ( ) ( )( ) ( )
( )

2 2

1 1 2 2 2 2

2 2 2 1 d

2 2 2
0

2 1

T T T T t

T T T T
T

β

β β

κ λ β κ λ α β β κ γ

α λ κ γ κ γ λ κ κ β λ κ λ κ β λ κ κ

β
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 − ⋅ ⋅ + − ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ − 
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  

( )
0.9460303

,
2.0306513

Tκ
 

=  
 

Find  

2.7. Remark 

• From the solve block solution we obtain the optimal *T  and *κ  as 
* 2.0306513T = , * 0.9460303κ = . 

• It is not difficult to show, using MathCAD, that for these optimal values the 
sufficient conditions for minimizing ( ),Tφ κ  are satisfied. 

• We proceed to use these values to compute the optimal *
1t  and *

0I  to be  
*
1 1.921,t Tκ∗ ∗= =  

( ) ( ) ( )
( )

( )

11 2 2
1 1 1 1

*
0

2 2 2
e 1.197

2 1

t t t t
I

β

ββ

α γ
αλ γ γ λ β λ βλ

β

++ ∗ ∗ ∗ ∗

− −

 − − − − − + +  = =
+  

• Finally, we have; 

( ) ( ) ( )

( ) }
2

1 0

3 40

1, 1 e 1 e e

d

11.334

T T T

T

cT c I T T
T

c I t t c

κ λκ λκ λ

κ

φ κ λ λκ
λ

− − −  = − + + − − +  

+ +

=

∫
 

In summary, for the mathematical model of an inventory system with time 

https://doi.org/10.4236/am.2019.109052


N. P. Ophokenshi et al. 
 

 

DOI: 10.4236/am.2019.109052 741 Applied Mathematics 
 

dependent three-parameter Weibull deterioration and a stochastic type demand 
in the form of a negative exponential distribution, we obtained the following re-
sults. 

The optimum cycle time * 2.031T =  days. 
The optimum value * 0.94603κ = . 
The optimum stock-period *

1 1.921t =  days.  
The economic order quantity *

0 1.197I =  units. 
The optimum total average cost ( )*, $11.334Tφ κ =  per day. 
The optimum number of order, * 1 1.197 0.8354N = =  order per day. 

2.8. Conclusions 

In this work we developed an inventory model for a three-parameter Weibull 
deteriorating items with stochastic demand in the form of a negative exponential 
distribution. We derived the optimal inventory policy for the proposed model 
and also established the necessary and sufficient conditions for the optimal poli-
cy. In the solution of the differential equation obtained, because of the cumber-
some nature of the associated integral, we were forced to make a first order 
approximation for the integrand involving an exponential function. This in 
turn enabled us to obtain a closed form solution for our model. We provided a 
numerical example illustrating our solution procedure. Though our solution is 
only approximate, we were still able to obtain very reasonable results which 
compared favourably with that of Ghosh and Chaudhuri [6] ( * 2.145 daysT = , 

* 0.8832κ = ) for the deterministic demand case. 
It is important to state that the numerical procedure for this problem relied 

heavily on the power of MathCAD14, which was used to solve a highly nonlinear 
system of equations in two unknowns, and involving a definite integral. The ad-
vantage of this numerical software is that the equations are composed as they 
appear in the text and need not be recast in a special format for computation. 
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Abstract 
In this paper, we define two versions of Untrapped set (weak and strong Un-
trapped sets) over a finite set of alternatives. These versions, considered as 
choice procedures, extend the notion of Untrapped set in a more general case 
(i.e. when alternatives are not necessarily comparable). We show that they all 
coincide with Top cycle choice procedure for tournaments. In case of weak 
tournaments, the strong Untrapped set is equivalent to Getcha choice proce-
dure and the Weak Untrapped set is exactly the Untrapped set studied in the 
litterature. We also present a polynomial-time algorithm for computing each 
set. 
 

Keywords 
Choice Procedure-Pseudo Tournament-Untrapped Set-Computational  
Complexity 

 

1. Introduction 

A common way to model a decision maker’s preferences is to consider a binary 
relation R over a set A of alternatives (teams, projects, candidates, goods, etc. …). 
In many different contexts (Sports league, Social Choice Theory, Economics, 
Operational Research, etc …), the binary relation R is used to make a choice 
between alternatives of A. Very often this relation is assumed to be complete and 
asymmetric (we say that R is a tournament) or sometimes complete (R is said to 
be a weak tournament). The general case concerning incomplete binary relations 
has received less attention (see [1] [2] [3]). Incomplete preferences have been 
increasingly recognized as important [4] [5]. The origin of these preferences is 
twofold: a lack of information about the alternatives or a lack of information of 
the decision maker about her own tastes on the alternatives [6] [7].  
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From the binary relation defined on A, many mechanisms (procedures) are 
defined in order to choose the set of ‘‘best alternatives’’ also called choice sets. 
Some familiar choice procedures studied in the literature are the Top cycle 
choice procedure [8], the Copeland choice procedure [9], the Uncovered choice 
procedure [10], etc. … These choice procedures have been extensively analysed 
(in terms of mathematical characterizations) for tournaments and weak tourna-
ments [see [11] [12]]. Sanni [13] has studied axiomatic characterizations of some 
pseudo tournaments i.e. reflexive and non necessary complete binary relations.  

Recent work has addressed the computational complexity of many choice 
procedures (see for example: [14] [15]) and the literature is full of choice proce-
dures that are difficult to compute [15] [16]. It is assumed that if computing a 
choice set is infeasible, the applicability of the corresponding solution concept is 
seriously undermined [17]. Most of the familiar procedures mentioned above are 
demonstrated to be tractable [17] i.e. belonging to class P of problems which can 
be solved by an algorithm whose running time is polynomial in the size of the 
problems instance. These procedures are then considered useful because if the 
computation of a choice set is intractable, the associated choice procedure is 
virtually rendered useless for large problem instances. 

In this article, we consider the Untrapped choice procedure (UT) defined by 
Duggan [18] for (weak) tournaments. The resulting set is composed of alterna-
tives x that are not directly beaten or that beat indirectly some other alternatives 
(especially alternatives that directely beat x). Duggan [18] proves that this choice 
procedure coincides with the Top cycle choice procedure in the case of tourna-
ments and is nested between the Getcha and the Gocha choice procedures for 
weak tournaments. UT strongly depends on the asymmetric part of the binary 
relation considered. 

We particularly focus, in this paper, on pseudo tournaments and we deduce 
another notion of the Untrapped (Strong Untrapped: SUt) choice procedure di-
rectely dependent on the pseudo tournament R studied. We also discuss the 
computational complexity of identifying the choice set for each of the choice 
procedures studied. 

The rest of this article is structured as follows. Concepts that are used 
throughout this paper are given in Preliminaries (Section 2). Section 3 introduc-
es the two extensions of the Untrapped choice procedures which are compared 
with two extensions of the Top cycle choice procedure. Computational complex-
ity of Untrapped choice procedures is then explored in Section 4. Section 5 ends 
with an overview of the results. 

2. Preliminaries 

A represents a finite set of alternatives and R a binary relation defined on A (i.e. 
R is a subset of A A× ). If ( ),x y R∈  we write xRy . If B is a non empty subset 
of A, R B  represents the restriction of R on B, i.e. ( ){ }, /R B x y B B xRy= ∈ × . 
The binary relation R is said to be reflexive if xRx , x A∀ ∈ . It is symmetric if 
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xRy yRx⇒ , ,x y A∀ ∈ . Relation R is asymmetric if ( )xRy not yRx⇒ , 
,x y A∀ ∈  with x y≠ . It is antisymmetric if xRy  and yRx x y⇒ = , 
,x y A∀ ∈ . It is transitive if ( xRy  and yRz ) ⇒  xRz , , ,x y z A∀ ∈ . It is 

complete if xRy  or yRx , ,x y A∀ ∈ . A tournament is a complete and anti-
symmetric relation1. A weak tournament is a complete relation. A pseudo tour-
nament is any reflexive binary relation (the relation may be complete or not)2. 

Three other binary relations (I: indifference relation, P: strict preference rela-
tion and J: incomparability relation) are defined from R as follow: ,x y A∀ ∈ , 
xIy  ⇔  ( xIy  and yRx ), xPy  ⇔  ( xRy  and ( )not yRx ) and  

( )xJy not xRy⇔  and ( )not yRx . It can be noticed that I is reflexive and sym-
metric, P is asymmetric (P is also called the asymmetric part of R) and J is sym-
metric. xPy  (resp. xIy ) can be interpreted as x beats or is better than (resp. x 
is indifferent to) y. 

A circuit is any subset { }1 2, , , kx x x  of A (with 2k ≥ ) such that 

1 2 kx Rx R Rx  and 1kx Rx . The subset { }1 2, , , kx x x  is a P-circuit if 

1 2 kx Px P Px  and 1kx Px . A is acyclic (resp. P-acyclic) if it contains no circuit 
(resp. no P-circuit). 

The transitive closure *R  of R is defined as follows: *, ,x y A xR y∀ ∈  if and 
only if k∃ ∈  with 1k ≥ , 1 2, , , kx x x A∃ ∈ , such that { }1,2, , 1i k∀ ∈ − , 

1i ix Rx + , 1x x=  et kx y= . In other words *xR y  if and only if there exists at 
least a path of length k from x to y (we also say that y is reachable from x). The 
transitive closure *P  of P can also be defined in the same way (we then say that 
y is P-reachable from x). 

The predecessor with respect to R (resp. with respect to P) of an alternative 
x A∈  is the set ( ) { }/Pred x y A yRx= ∈  (resp. ( ) { }/PPred x y A yPx= ∈ ). 

We also define the set ( )Cl x  (resp. ( )PCl x ) as ( ) { }*/Cl x y A yR x= ∈  (resp. 
( ) { }*/PCl x y A yP x= ∈ ). So ( )Py Cl x∈ ) if y is P-reachable from x. 

A choice procedure is a function C that maps each pseudo tournament R to a 
nonempty subset ( )C R  of A called the choice set. 

If R is a tournament (resp. a weak tournament) the choice procedure is called 
a tournament solution (resp. a generalized or weak tournament solution) (see 
[15]). 

We say that a choice procedure C is contained in a choice procedure C′  if 
( ) ( )C R C R′⊆  for every pseudo tournament R defined on A (we write 

C C′⊆ ). 
Many tournament or generalized tournament solutions have been studied in 

the litterature. A well known one is the Top Cycle choice procedure [8] [10]) de-
fined by the concept of dominant set. 

Definition 1. A non empty subset D of A is said to be a dominant set for a 
tournament R in A if xRy , x D∀ ∈ , \y A D∀ ∈ . 

 

 

1Tournaments are always supposed to be asymmetric. We suppose without lost of generality that 
tournament may be reflexive. 
2Pseudo tournaments should not be confound with partial tournaments for which binary relations 
are asymmetric and not necessarily reflexive. 
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D is a minimal dominant set if D is dominant and if no subset of D is domi-
nant. 

The Top Cycle choice procedure of a tournament R on A is defined as 
( )TC R D= , where D is the unique minimal dominant set for the tournament R. 

It is easy to show that ( ) { }/ ,TC R x A xR y y A∗= ∈ ∀ ∈ . It is also obvious that the 
asymmetric part of the transitive closure *R  is without circuit and because *R  
is complete we have ( ) ( )*TC R M R= . An attractive property of TC is that any 
alternative that beats another alternative in the Top Cycle is indirectly beaten by 
the latter. 

The notion of (minimal) dominant set has been extended to the case of weak 
tournaments in two directions. 

Definition 2. Let R be a weak tournament on A. A non empty subset D of A is 
a dominant (resp. undominated) set for R in A if ( )not yRx  (resp. ( )not yPx ), 

x D∀ ∈ , \y A D∀ ∈ . 
D is a minimal dominant (resp. minimal undominated) set if D is dominant 

(resp. undominated) and if no subset of D is dominant (resp. undominated). 
Contrary to the minimal undominated set, the minimal dominant set is 

unique. Schwartz [8] [19] then defined two choice procedures [Getcha and Go-
cha3 choice procedures] as follow:  

Definition 3. Let R be a weak tournament defined on A. 
The Getcha choice procedure of R is defined as ( )Getcha R D= , where D is 

the (unique) minimal dominant set for R in A. 
The Gocha choice procedure is defined by: ( ) iGocha R D=



, where iD  is 
a minimal undominated set.  

Both Gocha and Getcha choice procedures coincide with the Top Cycle (TC) 
when the binary relation R is a tournament. It is easy to show that 

( ) ( )Gocha R Getcha R⊆ . Moreover we have [20], ( ) ( )*Gocha R M P=  and 
( ) ( )*Getcha R M R= . 

For pseudo tournaments, we adopt the same definition for dominant and un-
dominated sets. It is then easy to see that the dominant set is no more unique, so 
we have the following definition. 

Definition 4. Let R be a pseudo-tournament on A4. 
The Gocha choice procedure is defined as the union of all minimal undomi-

nated sets for R in A. 
The Getcha choice procedure is defined as the union of all minimal dominant 

sets for R in A.  
Lemma 1. Let D be a minimal dominant (resp. minimal undominated) set for 

R in A. For all ,x y D∈ , we have *xR y  (resp. *xP y ).  
Proof. We give the proof for the case of the minimal dominant set. The proof 

for minimal undominated set is similar. 
Consider D a minimal dominant set for R in A. Suppose there exists ,x y D∈ , 

 

 

3Getcha set (resp. Gocha set) is also called Smith set (resp. Schwartz set) in the litterature. 
4Sanni (2010) has defined two extensions of the Gocha procedure and two extensions of the Getcha 
procedure. 
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such that ( )*not xR y . Since y D∈ , there exists 1y D∈  such that 1y Ry . We 
also have ( )1not xRy  [otherwise *xR y , a contradiction to ( )*not xR y ]. So 
there exists 2y D∈  such that 2 1y Ry . We have ( )2not xRy . Similarly, there ex-
ist 3 4, , , ny y y D∈  such that 1i iy Ry+  and ( )1inot xRy +  for all  

{ }1,2, , 1i n∈ − . Now consider the set { }*,U z D zR y= ∈ . For all z U∈  and 

0z U∉ , we have ( )0not z Rz . So U is a dominant set for R in A. This contradicts 
the minimality of D because x D∈  but x U∉ .  

The result of Deb [20] for pseudo tournaments is then generalized as follow.  
Proposition 1. For a pseudo tournament R defined on A, we have:  
1) ( ) ( )*Getcha R M R=   
2) ( ) ( )*Gocha R M P= .  
Proof. Consider ( )*x M R∈  and suppose ( )x Getcha R∉ . There exists 

1y A∈  such that 1y Rx . If ( )1y Getcha R∈ , then *
1 1y Rx y R x⇒  and since 

( )*x M R∈ , we have *xR y  (which is not possible). So ( )1y Getcha R∉ . There 
exists 2y A∈  such that 2 1y Ry . 

For the same reasons ( )2y WGe R∉ . Consider the set { }*
1,U z A zR y= ∈ , we 

have ( )U WGe R φ= . Moreover for all z U∈  and for all \z A U′∈ , we have 
( )not z Rz′ . So the set U contains a dominant set for R in A which contains a mi-

nimal weak dominant set (which is not possible). 
Now let ( )x Getcha R∈  and suppose there exists y A∈  such that *yR x . 

( )x Getcha R∈  implies that there exists a minima dominant set D such that 
x D∈ . Then we have y D∈  [otherwise 1 2, , , nx x x A∃ ∈  such that 

1 2 ny x Rx R Rx x= =  (which is not possible)]. so ,x y D∈  and according to 
the previous lemma, we also have *xR y .  

Example. Let R be the pseudo tournament defined on { }, , , , , ,A a b c d e f g=  
by aPb , aIc , bPc , cPd , cPe , dPe , eIf , ePg  and gPd . We also have 
xRx , x A∀ ∈ . The graph of R is represented by: 
 

 
 

We have ( ) { },Gocha R a f= , ( ) { }, ,Getcha R a b c= , ( ) { }, , , ,SUt R a b c f g=  
and ( ) { }, ,WUt R a f g= .  

3. Untrapped Choice Procedures 

We study in this section two choice procedures (strong and weak Untrapped 
choice procedures) for pseudo tournaments. These choice procedures generalize 
the concept of Untrapped choice procedure defined by Duggan [19] for weak 
tournaments. 

Definition 5. Let R be a pseudo tournament on A. We say that x weakly (resp. 
strongly) traps y with respsect to R and we write xTy  (resp xTy ) if xPy  and 
if ( )*not yP x  (resp. if xRy  and if ( )*not yR x ).  

Relation T (resp T ) is not necessary transitive but is P-acyclic (resp. acyclic) 
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[because if 1 2 nx Tx Tx  and 1nx Tx , we get 1 2 nx Px P Px  and 1nx Px , which 
implies *

2 1x P x : this is not possible since 1 2x Tx ]. So, we can define the set of its 
maximal elements. This leads to two choice procedures called weak Untrapped 
(resp. strong Untrapped) choice procedure, denoted by WUt  (resp. SUt ) and 
defined as follow: ( ) ( ){ }/ ,WUt R x A not yTx y A= ∈ ∀ ∈  (resp.  

( ) ( ){ }/ ,SUt R x A not yTx y A= ∈ ∀ ∈ ). 
It is easy to see that an element x of A is in ( )WUt R 5 if and only if ( )not yPx  

or *xP y , y A∀ ∈ . 
So any alternative x which is not directly beaten or which beats indirectly 

some other alternatives (specially alternatives that beat directly x) is in the weak 
Untrapped set. 

It is also easy to see that an element x of A is in SUt  if and only if 
( )not yRx  or *xR y , y A∀ ∈ . 

We can say that an alternative x strongly traps another alternative y ( xTy ) if 
xPy  and if ( )*not yR x ). So ( )x SUt R∈  if and only if ( )not yPx  or *xR y , 

y A∀ ∈ . 
When relation R is a tournament (resp. weak tournament) Duggan [19], 

shows that ( ) ( ) ( )WUt R SUt R TC R= =  (resp  
( ) ( ) ( )Gocha R WUt R Getcha R⊆ ⊆ ). It is obvious that for weak tournaments, 

we have ( ) ( )SUt R Getcha R= . 
The following proposition gives inclusion relations between the different 

choice procedures mentionned above. 
Proposition 2. For a pseudo tournament R defined on A, we have the follow-

ing relations (Table 1). 
Legend: The symbol ⊇  (resp.=, ∅ ) indicates that the choice set in column 

is always contained in (resp. is equaled to, intersects) the choice set in row.  
Proof. See Appendix.  
The previous proposition can be summarized by the following Hasse diagram. 

 

 
 

We can then notice that WUt  is nested between Gocha and Getcha 
( Gocha WUt Getcha⊆ ⊆ ) and that Getcha SUt⊆ . Missing arrows between two 
choice sets indicates that the two always intersect and none is included in the 
other. 

Lemma 2.  
1) ( ) ( )x SUt Pred x Cl x∈ ⇔ ⊆   
2) ( ) ( )P Px WUt Pred x Cl x∈ ⇔ ⊆   

 

 

5Duggan [19] also shows that ( )WUt R  is the union of all maximal sets of all maximal acyclic sub-
relations (w.r.t. set inclusion) of R. 

https://doi.org/10.4236/am.2019.109053


M. B. Sanni 
 

 

DOI: 10.4236/am.2019.109053 749 Applied Mathematics 
 

Table 1. Comparison of choice procedures. 

 ( )SUt R  ( )WUt R  ( )Gocha R  ( )Getcha R  

( )SUt R  = ⊇  1. ⊇  2. ⊇  3. 

( )WUt R   = ⊇  4. ∅  5. 

( )Gocha R    = ∅  6. 

( )Getcha R     = 

 
Proof.  
1) (⇒ ): Let ( )x SUt R∈ .  

• If ( )Pred x = ∅  then ( ) ( )Pred x Cl x⊆ .  
• If ( )Pred x ≠ ∅  then for ( )y Pred x∈ , yRx . And since ( )x SUt R∈ , we 

then have *xR y ; which implies that ( )y Cl x∈ .  
( ⇐ ): Let x A∈  such that ( ) ( )Pred x Cl x⊆  and suppose that 

( )x SUt R∉ ; then y A∃ ∈  such that yTx . i.e. y A∃ ∈  such that yRx  and 

( )*not xR y . But ( )yRx y Pred x⇒ ∈  ( ( )Cl x⊆ ); which means ( )y Cl x∈ , i.e. 
*xR y : a contradiction.  

2) Similar to the previous one.  

4. Computational Complexity 

In this section we analyze the computational complexity of the weak (resp. 
strong) Untrapped set. The following algorithm (based on the previous lemma) 
describes how to get ( )WUt R  for a given pseudo tournament R defined on a 
finite set A. This algorithm can be considered for ( )SUt R  if ( )PPred x  (resp. 

( )PCl x )) is replaced by ( )Pred x  (resp. ( )Cl x )). 
Let us mention that deciding whether an alternative is contained in a choice 

set is computationally equivalent to finding the set [18]. 
 

Algorithm 1. Untrapped set 

for all x in A do 
if ( ) ( )P PPred x Cl x⊆  then 

( )x WUt R∈  

end if 
return ( )WUt R  

end for 

 
It has been shown that the transitive closure of each x A∈  is computable in 

polynomial time. The same holds for the computation of predecessors of x (see 
[21] page 137), we can then conclude that deciding whether an alternative is 
contained in the weak (resp. strong) Untrapped set is in P (class of problems that 
can be solved in polynomial time). 

5. Conclusions 

Duggan [18] has defined the concept of Untrapped choice procedure for weak 
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tournaments (complete binary relations). This notion depends on the asymme-
tric part of the given binary relation. In this paper, we have introduced two ver-
sions of the Untrapped choice procedures which have been extended to pseudo 
tournaments (reflexive and non necessarily complete binary relations). The weak 
Untrapped (WUt) choice procedure also depends on the asymmetric part of the 
pseudo tournament while the strong Untrapped choice procedure (SUt) is di-
rectly defined by the given pseudo tournament. 

We have shown that each of the new choice procedures coincides with the fa-
miliar Top cycle choice procedure for tournaments. In case of weak tournaments, 
the strong Untrapped set is equivalent to Getcha choice procedure and the Weak 
Untrapped set is exactly the Untrapped set studied by Duggan [18]. We know 
(see [18]) that for a weak tournament R, we have  

( ) ( ) ( ) ( )( )Gocha R WUt R Getcha R SUt R⊆ ⊆ = . When R is a pseudo tourna-
ment, we’ve seen (from proposition 2) that the three choice procedures (WUt, 
Getcha and Gocha) are all contained in SUt. 

In terms of computational complexity, we present an algorithm to compute 
both the strong and the weak Untrapped choice procedure. This algorithm al-
lows us to show that deciding whether an alternative is contained in the strong 
(or in the weak) Untrapped set is in P (class of problems that can be solved in 
polynomial time). 
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Appendix 
Proof of Proposition 2 

1) ( ) ( )WUt R SUt R⊆ . 
Let R be a pseudo tournament defined on A. ( )x WUt R y A∈ ⇒∀ ∈ , 
( )not yPx  or *xP y y A⇒∀ ∈ , ( )not yPx  or ( )*xR y x SUt R⇒ ∈ . 

2) ( ) ( )Gocha R SUt R⊆ . 
According to proof 4. and 1., we have respectively ( ) ( )Gocha R WUt R⊆  and 
( ) ( )WUt R SUt R⊆ . 

3) ( ) ( )Getcha R SUt R⊆ . 
Let R be a pseudo tournament defined on A and let ( )x Getcha R∈ .  
Suppose ( )x SUt R∉ . Then y A∃ ∈  such that yTx  i.e. yPx  and 

( )*not xR y . A contradiction since ( )x Getcha R∈  and ( ) ( )*Getcha R M R= . 
4) ( ) ( )Gocha R WUt R⊆ . 
Let R be a pseudo tournament defined on A and let ( )x Gocha R∈ . 
Suppose ( )x WUt R∉ . Then y A∃ ∈  such that yTx . i.e. yPx  and 

( )*not xP y : which is not possible since ( )x Gocha R∈  and  
( ) ( )*Gocha R M P= . 

5) ( ) ( )WUt R Getcha R∅ . 
Let’s show that any minimal weak dominant set intersects the weaak Un-

trapped set. 
Consider a minimal weak dominant set D′  and suppose that  

( )WUt R D′ = ∅ . Then for x D′∈  we have ( )x WUt R∉ . So ( )y WUt R∃ ∈  
such that yPx . Which is not possible because y D′∉  and x D′∈ . 

The above example shows that none of Getcha and WUt choice procedure is 
included in the other. 

6) ( ) ( )Gocha R Getcha R∅ . 
Note that every weak dominant set is a weak undominated set. So every mi-

nimal weak dominant set contains at least one minimal weak undominated set. 
We then have ( ) ( )Gocha R Getcha R ≠ ∅ . 

The above example shows that none of Getcha and Gocha choice procedure is 
included in the other. 
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Abstract 
Delay differential equations (DDEs), as well as neutral delay differential equa-
tions (NDDEs), are often used as a fundamental tool to model problems aris-
ing from various areas of sciences and engineering. However, NDDEs partic-
ularly the systems of these equations are special transcendental in nature; it 
has therefore, become a challenging task or times almost impossible to obtain 
a convergent approximate analytical solution of such equation. Therefore, this 
study introduced an analytical method to obtain solution of linear and nonli-
near systems of NDDEs. The proposed technique is a combination of Homo-
topy analysis method (HAM) and natural transform method, and the He’s 
polynomial is modified to compute the series of nonlinear terms. The pre-
sented technique gives solution in a series form which converges to the exact 
solution or approximate solution. The convergence analysis and the maxi-
mum estimated error of the approach are also given. Some illustrative exam-
ples are given, and comparison for the accuracy of the results obtained is 
made with the existing ones as well as the exact solutions. The results reveal 
the reliability and efficiency of the method in solving systems of NDDEs and 
can also be used in various types of linear and nonlinear problems. 
 

Keywords 
Homotopy Analysis Method, Natural Transform, He’s Polynomial and  
Neutral Delay Differential Equations 

 

1. Introduction 

Ordinary differential equations (ODEs) are usually used as a fundamental tool in 
modelling the problems of the real world. However, in most cases, the mathe-
matical formulation of real-life problems needs to consider both the present and 
past states of the system behaviour. Different from (ODEs), DDE is a type of 
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differential equation in which the derivative of the unknown function at a cer-
tain time is given in terms of the values of the function at previous time [1]. 
Hence, more reliable models of real problems arising from various field of stu-
dies such as; biology, population dynamics, chemistry, and physics, control 
theory to mention but few are now model using DDEs as well as NDDEs [2] [3] 
[4] [5] [6]. Recently series of methods have been developed to find an approx-
imate analytical solution to different types of DDEs [7]-[12]. However, most of 
these methods have experienced a series of challenges in finding a convergent 
approximate analytical solution of NDDEs in particular system of such equa-
tions. So, scientist and engineers adopt the use of numerical methods as the best 
approach to approximate the solutions. Therefore, more analytical approaches 
are highly needed for solving these equations. 

This work aims to develop an analytical technique for solving linear and non-
linear systems of NDDEs from the combination of HAM and Natural transform. 
The proposed technique improved on the work of Rebenda and Smarda [12] by 
introducing the concept of NDDE into Natural transform. In addition, the vari-
ous derivatives for both proportional and constants delay of NDDEs were suc-
cessfully generated using the Natural transform. This work is also an extension 
of Efficient Analytical Approach for Nonlinear System of Retarded Delay Diffe-
rential equations. This approach was developed by Barde and Maan [13] and 
solutions to different types of nonlinear systems of retarded DDEs were obtained 
in a series form which converges to exact or approximate solution. 

Thus, based on the results of this pervious works, this research focuses to de-
velop a new analytical technique that modifies Efficient Analytical Approach for 
Nonlinear System of Retarded Delay Differential Equations with aims to obtain 
approximate analytical solution for both linear and nonlinear system of NDDEs 
with proportional and constant delays. Using the introduced technique, the He’s 
polynomial is adjusted in order to ease the computational difficulties of nonli-
near terms of such equations. Furthermore, the convergence analysis and the 
maximum estimated error of the technique are also investigated. 

Therefore, in this work we were able to develop a new generating function in 
Equation (29) that provides a convergent analytical solution to various types of 
linear and nonlinear system of NDDEs in a series form using few numbers of 
computational terms and minimal error as compared with the previous tech-
niques. Thus, different from some of the existing methods the presented tech-
nique provides solution to different form of linear and nonlinear NDDEs with-
out any linearization, perturbation or unnecessary assumptions. In Section 4, 
some illustrative examples are presented in order to show the reliability and effi-
ciency of our algorithms over the reference methods. 

2. Methods 

The idea of this work is come up with analytical approach from the combination 
of natural transform and HAM for solving systems of linear and nonlinear 
NDDEs. The He’s polynomial is modified to compute the series of nonlinear 
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terms of both proportional and constants delays. 
HAM is a powerful technique introduced by Lio [14] for solving different 

types of linear and nonlinear problems. Details on theory and application of 
HAM can be found in [1] [15] [16] [17] [18]. 

In recent years natural transform is considered as an active topic in research 
due to its vast application in solving different type of differential and integral 
equations [19] [20] [21] [22]. This transform was derived from the renowned 
Fourier integral which converged to either Laplace or Sumudu transforms de-
pending on the values of the transform variables. The basic concepts of natural 
transform for further use in this research are rendered below. 

Definition 2.1 [23] Let ( ),t∈ −∞ ∞ , then the natural transform of the func-
tion ( )v t  is defined by:  

( ) ( ) ( ) ( ], e d ; , 0, .stv t V s u v ut t s u
∞+ −

−∞
= = ∈ ∞   ∫N            (1) 

where +N  denotes as natural transform and ,s u  are transforming variables.  
Equation (1) can be simplified as [23]  

( ) ( ) ( ) ( ]

( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )

( ) ( )

0

0

, e d ; , 0,

e d ; , ,0 e d ; , 0,

, ,

st

st st

v t V s u v ut t s u

v ut t s u v ut t s u

v t v t

v t H t v t H t

V s u V s u

∞+ −

−∞

∞− −

−∞

− +

− +

= = ∈ ∞  

= ∈ −∞ + ∈ ∞

= +      
= − +      
= +

∫

∫ ∫

N

N N

N N

   (2) 

where, ( ).H  is the Heaviside function. Assume the function ( ) ( )v t H t  is de-
fined on +R  and for t∈R  then its natural transform can be define over the 
set  

( ) ( ) ( ) [ )1 2: , , 0, e , 1 0, ,j

t
jA v t M v t M t jττ τ +

  = ∃ > < ∈ − × ∞ ∈ 
  

Z  

as in the given integral:  

( ) ( ) ( ) ( ]
0

, e d ; , 0, .stv t V s u v ut t s u
∞+ + −= = ∈ ∞   ∫N           (3) 

Theorem 2.1 [24] The generalised natural transform of the function ( )v t  is 
given as  

( ) ( ) 1
0

!
, .

n
n

n
n

n a u
v t V s u

s

∞
+ +

+
=

= =   ∑N                  (4) 

Property 2.1 [23] Let a be a non-zero constant and ( )v at A∈  then,  

( ) 1 , .sv at V u
a a

+  =      
N                       (5) 

Theorem 2.2 [20] If Hτ  is the Heaviside function and for any real number 
0τ ≥  we defined  
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( )
1, for
0 for

t
H t

tτ

τ
τ

≥
=  <

 

Then the natural transform of the shifted function ( ) ( ) ( )v t v t H tττ τ− = −  
is given by  

( ) ( ) ( )e .
s
uv t H t v t
τ

ττ
−

+ +− =      N N                 (6) 

Theorem 2.3 [24] Let ( ) ( )nv t  be the nth derivatives of the function ( )v t  
then its natural transform is given by  

( ) ( ) ( ) ( ) ( )1
1

1
, , 0 .

n n kn
n k

n n n k
k

s sv t V s u V s u v
u u

−
+ + −

− +
=

  = = −  ∑N        (7) 

Corollary 2.1 
Let ( ) ( )n

iv at  be the nth derivatives of the functions ( )iv at  with respect to t, 
( )1,2, ,i N=   and suppose that ( ) ( ),i iv at V as u+ +=  N  then we define the 
following  

( ) ( )
( )

( ) ( )
( ) ( )1

, 1
1

, , 0
n n kn

kn
i n i i in n k

k

s sv at V as u V as u v
auau

−
−+ + +

− +
=

  = = −  ∑N   (8) 

Proof 
Using an induction method, for 1n =  and 2n =  we respectively obtained 

the natural transform of first and second derivatives of ( )iv at  that is  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( )

1,

2

2, 2

0
, ,

, 0 0
,

i
i i i

i i i
i i

vsv at V as u V as u
au au
s V as u sv v

v at V as u
auau

+ + +

+
+ +

′ = = −  

′−
′′ = = −  

N

N
       (9) 

Now suppose the result holds for n, then we have to show its also true for 
1n + . Now from Equation (9) we have 

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )

( )
( )

( )( )
( ) ( )

( ) ( )

( )
( )

( )

( )( )
( ) ( )

1
1, ,

1
1

1

11 1
1

1 2
1

0
, ,

0
, 0

, 0

n
n n i

i i n i n i

nn n kn
k i

i in n k
k

n kn n
k

i in n k
k

vsv at v at V as u V as u
au au

vs s sV as u v
au auau au

s sV as u v
au au

++ + + +
+

−
−+

− +
=

− ++ +
−+

+ − +
=

 ′  = = = −    
 
 = − −
  

= −

∑

∑

N N

 (10) 

which is true for 1n +  and hence the result. 
Corollary 2.2 
Suppose ( ) ( )n

iv t τ−  are the nth derivatives of the shifted functions ( )iv t τ−  
with respect to t, then their natural Transforms can be define as  

( ) ( )

( )
( )( )

( ) ( )

,

1
1 01

e ,

e , lim

s
n u
i n i

sn n kn
ku

i in n k tk

v t V s u

s sV s u v t
u u

τ

τ

τ

τ

 − + + 

  −−  −+ 
− + →=

 − = 

 = − − ∑

N
   (11) 
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Proof 
Also by induction, for 1n =  and 2n =  we respectively have the natural 

transform of first and second derivatives of ( )iv t τ− , that is  

( ) ( ) ( )

( )
( ) ( ) ( )

0

2

0 0
2

1e , lim

e , lim lim

s
u

i i it

s
u

i i it t
i

sv t V s u v t
u u

s V s u s v t v t
v t

uu

τ

τ

τ τ

τ τ
τ

−
+ +

→

−
+

+ → →

′ − = − −  

′− − −
′′ − = −  

N

N

     (12) 

Now assume Equation (11) is true for n and we have to show for 1n + . From 
Equation (12) we have 

( ) ( ) ( )( ) ( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( )

1 0

1 0
1 01

11
1

( ) 2 01

lim

lim
e , lim

e , lim

n
in nn t

i i i

nsn n kn ik tu
i in n k tk

sn n kn
ku

i in n k tk

v tsv t v t v t
u u

v ts s sV s u v t
u uu u

s sV s u v t
u u

τ

τ

τ
τ τ τ

τ
τ

τ

++ + + →

− −
−+ →

− + →=

− − ++
−+

− + →=

− ′   − = − = − −     

−  = − − −   

 = − − 

∑

∑

N N N

 (13) 

which is true for 1n +  and hence the proof. 
Another important point to note is that, in both the concept of HAM and 

natural transform there is no direct approach for the computation of nonlinear 
terms of the system of NDDEs for both Proportional and constant delays. 
Therefore, in this research the He’s polynomial will be adjusted for the series 
calculation of these nonlinear terms. 

3. Analysis of the Result 

Consider the following n-order system of NDDEs  

( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) [ ],, , , 0, , 1, , , 1, ,

n

i i

p p
i i j

v t v t

F t v t v t t d i N J Mγ γ

α

α

 + 
 = ∈ = =   

    (14) 

where  
( ) ( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )
1 2

, 1 , 2 , ,

, , , ,

, , ,

p p p p
N

p k pp
i j i j i j N i j

v t v v v

v t v t v t v t

γ

γ α α α α

=

=





 

for 0,1,2, , 1p n= −  and ( ),i j tα  are the functions of delay terms such that 
( ) ( ),max i jt tα α =     

with the given initial conditions  
( ) ( ) ( ) ( ) ( ),00 , , 0p p
i i i iv v v t t tψ= = <               (15) 

Now for simplicity we rewrite Equation (14) in the following form  

( )( ) ( ) ( ) ( )i i i i iL v v R v F v g tγ γα+ + + =             (16) 

Subject to a given initial conditions. The vγ  is defined as N-dimentional 
vector of the form ( ) ( ) ( )1 2, , , Nv v t v t v tγ =    . The linear terms are decom-
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posed into bounded linear operators i iL R+  (That is there are some positive 
numbers ,1 ,2,i iα α  such that { ( ) ,1i iL v vγ γα≤ , ( ) ,2i iR v vγ γα≤ ) with iL  
as the highest order and iR  as remaining of the linear operators, and iF  are 
continuous functions satisfy the Lipschitz condition with Lipschitz constants 

[ ]0,i dµ ∈  ( ( ) ( ) [ ], 0,i i if v f u v u t dµ− ≤ − ∀ ∈ }) represent the non-linear 
terms.  

Take the natural transform of both sides of Equation (16) to obtain:  

( )( ) ( ) ( ) ( )i i i i i i iL v v R v F v g tγ γα+ + + +    + + + =        N N N N      (17) 

Note: This research considered two forms of delay functions ( ),i j tα  as fol-
lows: 

Case I: ( ), ,i j i jt a tα = , where ( ), 0,1i ja ∈  (proportional delay). 
Case II: ( ), ,i j i jt tα τ= − , where , 0i jτ >  are real constants (constant delay) 

Therefore, by substituting the given initial condition into Equation (17), and 
simplify using the differential properties of natural transform we respectivily 
obtained the following for the two types of delay as defined in Case I and Case II.  

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1
1 1

1

1 1

01

1 11 0

0

e 0 lim

0

i

n kn
k

i i ikn n k
ki i

n

i i in

s n kn
k ku

i i i i ik tk

n

i i in

uv t v a t v
sa a

u R v F v g t
s

uv t v t v v t
s

u R v F v g t
s

γ γ

τ

γ γ

τ

−
+ −

+ + −
=

+

− −
+ − −

→=

+

   
+ − +        

 + + − = 

   + − + −     

 + + − = 

∑

∑

N

N

N

N

       (18) 

where ,maxi i ja a =    and ,maxi i jτ τ =    
Now from Equation (18) we can define the following nonlinear operators  

 

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

( )( )

1
1 1

1

1 1

01

1 1; ; ; 1 9

; ;

; ; e ; 0 lim ;

;

i

n kn
k

i i i i i ikn n k
ki i

n

i i in

s n kn
k ku

i i i i i i ik tk

n

in

uN t q t q a t q
sa a

u R t q F t q g t
s

uN t q t q t q t q
s

u R t q
s

γ γ

τ

γ

φ φ φ φ

φ φ

φ φ φ φ φ τ

φ

−
+ −

+ + −
=

+

− −
+ − −

→=

+

   
= + − +           

 + + − 

   = + − + −        

+

∑

∑

N

N

N

N ( )( ) ( );i iF t q g tγφ + − 

(19) 

where [ ]0,1q∈  is an embedding parameter, ( );i t qφ  are functions of variables 
t and q.  

So, by means of HAM we can construct the following Homotopy Equations as  

( ) ( ) ( ) ( ) ( ),01 ; ;i i i i iq t q v t h qH t N t qγφ φ+   − − =   N         (20) 

where +N  denotes as natural transform, ( ),0iv t  are initial approximations of 
( )iv t  and ( ),ih H t  are non-zero auxiliary parameters and auxiliary fuctions 

respectively.  
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Now, from Equation (20) as 0q =  and 1q =  we respectively obtained the 
following equation.  

( ) ( )
( ) ( )

,0,0

,1
i i

i i

t v t

t v t

φ

φ

=

=
                        (21) 

Thus, as q increases from 0 to 1, the solutions ( ),i t qφ  vary from the initial 
approximations ( ),0iv t  to the exact solutions ( )iv t . In topology, this type of 
variation is called deformation and Equation (20) is called zero-order deforma-
tion equation.  

Therefore, the Taylor series expansion of ( ),i t qφ  with respect to q can be 
obtained as  

( ) ( ) ( ),
1

, ,0 m
i i i m

m
t q t v t qφ φ

∞

=

= +∑                  (22) 

where  

( ) ( )
0

;1
!

m
i

im m
q

t q
v t

m q
φ

=

∂
=

∂
 

Suppose that the initial approximations ( ),0iv t , auxiliary parameters ih  and 
the auxiliary function ( )iH t  are properly chosen so that the series in Equation 
(22) converges at 1q = , that is  

( ) ( ) ( ),0 ,
1

,1i i i m
m

t v t v tφ
∞

=

= +∑                    (23) 

Define vectors  

( ) ( ) ( ) ( ), ,0 ,1 ,, , ,i n i i i nt v t v t v t =  v                 (24) 

By differentiate Equation (20) m times with respect to q and setting 0q =  
and finally divided by !m  we obtain the so called mth-order deformation equa-
tion as 

( ) ( ) ( ) ( ), , 1 , 1ii m m i m i i y m i mv t v t h H t R tχ+
− −   − =   vN          (25) 

where  

( ) ( )
( )1

, , 1 1

0

,1
1 !i

m
i i

y m i m m

q

N t q
R t

m q
φ−

− −

=

∂     =  − ∂
v          (26) 

and  

0, 1
1, 1m

m
m

χ
≤

=  >
 

By taking the inverse natural transform on both sides of Equation (25) we ob-
tained  

( ) ( ) ( ) ( ), , 1 , 1ii m m i m i i y m i mv t v t h H t R tχ −
− −  = +   vN          (27) 

Therefore, ( ),i mv t  for 1m ≥  can be easily obtained from Equation (27), at 
Mth order we have  
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( ) ( ),
0

M

i i m
m

v t v t
=

= ∑                         (28) 

Hence, as M →∞  the following recursive relations of Equations (14) and 
(15) for the two type of delay as defined respectively in Case I and Case II are 
obtained 

( ) ( ) ( ) ( )

( ) ( )

( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 2

, , 1 , 1

1
1

1
1

, 1 , 1

, , 1 , 1

1
1

01

1

11 1 0

, , , , 1

1 0 lim

N

i m m i i m i i m in
i

kn
k

i m in k k
k i

n

i i m i m in

i m m i i m i i m i

kn
k

i m i ik tk

v t h v t h v a t
a

uh v
a s

uh R v t H v v v g t m
s

v t h v t h v t

uh v v
s

γ γ γ γ

χ

χ

χ τ

χ

− −

−
− −

− +
=

− +
− −

− −

−
− −

→=

= + +

 
− − + 

 
  + + − ≥   

= + + −

− − +

∑

∑



N

N N

N ( )

( )( ) ( ) ( )
1

1

, 1 , 1 , , , 1
N

k
i

n

i i m i m in

t

uh R v t H v v g t m
s γ γ γ

τ−

− +
− −

 − 

  + + − ≥   
N N

(29) 

Now, the nonlinear operators ( )iF vγ  are expanded as series of modified 
He’s polynomials ( ), 1 1 2, , , )i m nH v v vγ γ γ−   define as  

( ), 1 2 ,
0 0

1, , ,
!

m m
p

i m N i pm
p q

H v v v F q v
m qγ γ γ γ

= =

 ∂
=  

∂  
∑          (30) 

where ( ), ,1 ,2 ,, , ,i i i i Nv v v vγ =   and ( ), 1, 2, ,, , ,p p p N pv v v vγ =  . 
The proof for Case II (constant delay) is of the same process with that of Case I. 
Theorem 3.1 Assume [ ]( ), .C D  is a Banach Space and let ( ),i mv t  be de-

fined in [ ]( ), .C D , where ,i mv  are define in form of an operators, that is 
( ) ( )( ), , 1i m i i mv t A v t−=  such that ( ) ( ), , 1ii y m i mA v R v t−

− = −  
N  and  

( ) ( ) [ ], ,i i iA v A u u v v u C Dδ− ≤ − ∀ ∈            (31) 

where ( ),1 ,2i i i i dδ α α µ= + +  for some ( )0,1iδ ∈ . Then iA  have unique fixed 
points in [ ]C D . Furthermore, the Homotopy series in Equation (23) converged 
uniquelly to the solutions ( )iv t  (their respective fixed points in [ ]C D ) of Eq-
uations (14) and (15).  

Proof 
Let ( ) , .C D    be the Banach space of all continuous functions on ( )C D , 

and from definitions of ,i iL R  and iF  in Equation (16) then we have to show 
that the { },i mv  are Cauchy sequences in ( ) , .C D   . Now from Equation (19) 
we have 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

, , , , 1 , , 1

1

1 1
, ,1

1

12 ; ;

11 0 0

i ii m i p y m i m y p i p

i i in
i

n kn
k k
i m i pkn k

k i

v v R t R t

t q a t q
a

u
sa

φ φ

φ φ

−
− −

− +
+

−
− −

+ −
=

   − = − −    

   
= +       

 
− + −  

 
∑

v vN

N N
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( ) ( )( )

( ) ( )( ) ( )

( ) ( ) ( ){ }
( )

, 1 , 1

, 1 , 1

, 1 , 1 , 1 , 1 , 1 , 1

,1 ,2 , 1 , 1 , 1 , 1

; ;

; ;

n

i i m i pn

i i m i p i

i i m i p i i m i p i i m i p

i i i i m i p i i m i p

u R t q t q
s

F t q t q g t

L v v R v v F v v

v v v v

φ φ

φ φ

α α µ δ

+
− −

− −

− +
− − − − − −

− − − −

+ −


+ − − 

 ≤ − + − + − 

≤ + + − ≤ −

N

N N

   (32) 

For 1m p= + , we have  
2

, 1 , , , 1 , 1 , 2 ,1 ,0
q

i p i p i i p i p i i p i p i i iv v v v v v v vδ δ δ+ − − −− ≤ − ≤ − ≤ ≤ −    (33) 

Hence, for all ,m p N∈  with m p≥ , by means of Equation (33) and using 
triangle inequality we seccessively obtained the following  

, , , , 1 , 1 , 2 , 1 ,

1 2
,1 ,0 ,1 ,0 ,1 ,0

1

1 ,0 ,1 ,0
0 0

1 ,0
1 .

1

i m i p i m i m i m i m i p i p

m m p
i i i i i i i i i

m n
p k p k

i i i i i i i i
k k

p
i i i

i

v v v v v v v v

v v v v v v

v v v v

v v

δ δ δ

δ δ δ δ

δ
δ

− − − +

− −

− − ∞

= =

− ≤ − + − + + −

≤ − + − + + −

= − ≤ −

 
= −  − 

∑ ∑





   (34) 

Since 1iδ <  then for arbitrary iε  we can find some large i Nη ∈  such that 

( )
,1 ,0

1i ii
i

i iv v
η ε δ

δ
−

<
−

 

Therefore, choosing ,p m N>  then we obtain the following  

( )
, , ,1 ,0 ,1 ,0

,1 ,0

11 1
1 1

i ip
i m i p i i i i i i

i ii i

v v v v v v
v v
ε δ

δ ε
δ δ

−   
− ≤ − < − =   − −−   

 (35) 

This shows that { },i mv  are Cauchy sequences in [ ]C D , and hence the se-
quences converged. And the Proof is now completed. The proof for Case II 
(constant delay) is of the same process with that of Case I. 

To establish the proof for the uniqueness of these solutions, let ( )iv t  and 
( )iu t  be two distinct solutions of Equations (14) and (15). According to Equa-

tion (16) we have  

( ) ( ) ( ) ( ) ( )1
i i i i i iv t v L g t R v F vγ γα −  + = − −            (36) 

where 1
iL−  are the inverse operators defined by ( )

0
. d

t
t∫ . Since ( )iv t  and 

( )iu t  are distinct solutions of Equations (14) and (15), so from Equation (36) 
we obtain the following equation  

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

, ,

0

0

2,1

d

d

i i i i

t
i i i i i i i i

t
i i i i i i i

i i i i i i i i

v u v u

v u R v u F v u t

R v u F v F u t

v u v u d v u

α α

α µ δ

− + −

 ≤ − = − − + − 

 ≤ − + − 
≤ − + − ≤ −

∫

∫
           (37) 
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According to Equation (37) we have ( )1 0i i iv uδ− − ≤  and since ( )0,1iδ ∈  
then 0i iv u− ≤  implies that i iv u=  and hence the proof. 

Theorem 3.2 Suppose the Homotopy series in Equation (23) converges to the 
solutions ( )iv t  of Equations (14) and (15) and let the approximations of 
( )iv t  are given by the truncuted series ( ),0

M
i mm v t

=∑ . Then the maximum ab-
solute error is estimated to be  

( ) ( ), ,0
0 1

nM
i

i i m i
m i

v t v t v
δ
δ=

− ≤
−∑                  (38) 

Proof 
According to Theorem 3.1 and Equation (34) we have  

( ), , ,01

n
i

i m i p i
i

v v v t
δ
δ

− ≤
−

 

As m →∞  then ( ),i m iv v t→ , so we have  

( ) ( ), ,01

n
i

i i p i
i

v t v v t
δ
δ

− ≤
−

                   (39) 

Since ( )0,1iδ ∈  then 1 1iδ− ≤  and from Equation (39) we have  

( ) ( ) ( ), ,0
0 1

nM
i

i i m i
m i

v t v t v t
δ
δ=

− ≤
−∑                  (40) 

The Proof is now complete. 

4. Examples and Discussion 

The application of the proposed technique will be presented in this section. This 
involve solving some problems of linear and nonlinear systems of NDDEs with 
both proportional and constant delays. 

Example 4.1 [10] First we seek for a solution of the following 2-dimensional 
linear system of NDDEs with constant delay  

( ) ( ) ( )
( ) ( ) ( )

1 1 2

2 1 1

1 4 , 0 2

1 , 0 2

v t v t v t t

v t v t v t t

′ ′= − + ≤ ≤

′ = − − ≤ ≤
                (41) 

( ) ( ) ( )( ) [ ]2 12 2
1 2

1e , e e , 1,0 .
2

tt tv t v t t− −− −= = − ∈ −  

Take the natural transform to both sides of Equation (41) and simplify further 
using Equation (11) to get  

( ) ( ) ( )

( ) ( ) ( ) ( )

2
1 1 2

2
2 1 1

1e 1 e 4 0

1 1 e 1 1 0
2

s
u uv t v t v t

s s

uv t v t v t
s s

−+ +

+ +

 
 − − − − =     

 
 − − + − − =        

N N

N N

         (42) 

From Equation (42) define a non-linear operator  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
1 1 1 2

2
2 2 1 1

1; ; e ; 1 e 4 ;

1 1; ; e 1 1; ;
2

s
u uN t q t q t q t q

s s

uN t q t q t q t q
s s

φ φ φ φ

φ φ φ φ

−+ +

+ +

 
 = − − − −        

 
 = − − + − −            

N N

N N

 (43) 
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Now using Equation (29) the recursive relation of Example 4.1 can be ob-
tained as  

( ) ( ) ( ) ( ) ( ) ( )

( )( )

( ) ( ) ( ) ( ) ( )

( )( )

2
1, 1 1, 1 1 1 1

1 1 2, 1

2
2, 2 2, 1 2

2 2 1, 1

11 1 1 e

11 e 1
2

, 1

m m m m

m

m m m m

m

v t h v t h v t h
s

uh R v t
s

v t h v t h
s

uh R v t m
s

χ χ

χ χ

−
−

− +
−

−
−

− +
−

 = + − − − − −  
  −    

 = + − − −  
  + ≥   

N

N N

N

N N

   (44) 

By choosing an initial approximations of ( )1,0 1v t =  and ( ) ( )2
2,0

1 e 1
2

v t = −  

and using Equation (44) we obtained the following  

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )( )
( ) ( )( ) ( )
( ) ( ) ( )( )

( )( )

2 2
1,1 1 2,1 2

2 2 2
1,2 1 2 1

2 2
2,2 2 1 2 2

2 2 2 2
1,3 1 2 1 2 1

2 22 3 2 2 2
2,3 1 2 1 2 1 2

3 2 2
2 2 2

2 e 1 , e 1

2 e 1 2 e 1

2 e 1

3 e 1 2 e 1

2 e 1 2 e 1
3

2 e 1

v t h t v t h t

v t h h t h t

v t h h h h t

v t h h h h t h t

v t h h t h h h h t

h h h t

= − − = −

= − − − −

= + + −

= − − − −

= − − − + −

+ + + −

       (45) 

Following the same process remaining terms of ( ),i mv t  for 3m ≥  can be 

obtained. Putting 
( )1 2

1
3 e 1

h =
−

 and 2 1h = −  in Equation (45), then the fifth 

order approximation of Example 4.1 is given as  

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 3 4 5 6
1

2 2 2 2 2 3
2

2 4 2 5 2 6

4 2 4 41 2 2
3 3 15 45

1 2e 1 e 1 e 1 e 1
2 3

1 2 2e 1 e 1 e 1
3 15 45

v t t t t t t t

v t t t t

t t t

= − + − + − + +

= − − − + − − −

+ − − − + − +





       (46) 

The series solutions in Equation (46) converged to exact solutions 

( ) ( ) ( )( )2 12 2
1 2

1e , e e
2

tt tv t v t − −− −= = −  of Equation (41).  

Therefore, the fifth order approximated series of the derived algorithm in Eq-
uation (29) was successfully generates the closed form solution of Example 4.1 
with minimum error as shown in Figure 1 While in most applications only nu-
merical approximations was obtained. For instance, in [10] the numerical ap-
proximation of this problem was computed using Implicit Block method with 
the maximum absolute error of 1.47320 when the tolerance was 1 × 10−10 in a to-
tal number of 25 steps. 

Example 4.2 [12] Next we consider a third-order nonlinear system of NDDEs 
with both proportional and constant delays  
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Figure 1. The behaviour of maximum absolute errors between 
the exact solution and fifth-order approximation of Example 4.1. 

 

( ) ( ) ( )( )

( ) ( )

2
3

1 1 1 1

2 2 2 1

2 2 e
3

1 1 , 1
2 2 3

ttv t v t v v t t

t tv t v v t v t

− ′′′ ′′′= − + + + 
 

   ′′′ ′′′ ′= + − ≥   
   

            (47) 

with initial functions  

( ) ( ) [ ]2
1 2e , , 2,0tt t t tφ φ= = ∈ −  

and the given initial conditions  

( ) ( ) ( )
( ) ( ) ( )

1 1 1

2 2 2

0 1, 0 1, 0 1

0 0, 0 0, 0 2

v v v

v v v

′ ′′= = =

′ ′′= = =
 

Take the natural transform to both sides of Equation (47) and simplify further 
using Equation (11) to get  

( ) ( )( )

( ) ( )

2 3 2
2 3

1 1 12 3 3

3

2 2 12

1 e 2 e 0
2

8 2 1 0
2 3

t tu u u tv t v v t t
s s s s

t u tv t v t v
s

+ + − −

+ +

    − + + − + + + =           
      − − − =            

N N

N N
  (48) 

From Equation (48) define a non-linear operator  

( ) ( )

( )( )

( ) ( ) ( )

2

1 1 2 3

3 2
2 3

1 13

3

2 2 2 12

1; ;

e ; ; 2 e
2

; ; 8 ; 2 1 ; 0
2 3

t t

u uN t q t q
s s s

u t q t q t
s

t u tN t q t q q t q
s

φ φ

φ φ

φ φ φ φ

+

+ − −

+ +

 
= − + +        

 
  − + + +    

      = − − − =                

N

N

N N

  (49) 

Now using Equation (29) the recursive relation of Example 4.2 can be ob-
tained as  

( ) ( ) ( )

( )( ) ( ) ( )

( ) ( ) ( ) ( )( )

1

2

1, 1 1, 1 1 2 3

3

1 1 1, 1 1, 1 13

3

2, 2 2, 1 2 1 2 2 2, 13

11

, ,

4
2

N

m m m m

m m

m m m m m

u uv t h v h
s s s

uh R v t H v v g t
s

t uv t h v t h v h R v t
s

λ λ

χ χ

χ

−
−

− +
− −

− +
− − −

 
= + − − + + 

 
  − + +   

    = + − −        



N

N N

N N

 (50) 
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By choosing an initial approximations of ( )
2 3

1,0 1
2! 3!
t tv t t= + + +  and 

( ) 2
2,0v t t=  and using Equation (50) we obtained the following  

( )

( )

2 2 2
3 4 5

1,1 1 1 1

2
6

1

3 4 5
2,1 2 2 2

1 e 5 4e 16e 5
6 72 1080

1098e 506
1145

1 1 1
3 27 108

v t h t h t h t

h t

v t h t h t h t

− − −

−

     + + −
= − − −     

     
 +

+  
 

= − − +

        (51) 

By putting 1 1h = −  and 2 2h = −  in the series Equation (51) we obtained the 
approximate solution of Example 4.2 as 

( )

( )

2 2 2 2
3 4 5

1

2
6

2 3 4 5
2

1 e 5 4e 16e 51
2 6 72 1080

1098e 506
1145

2 2 1
3 27 54

tv t t t t t

t

v t t t t t

− − −

−

     + + −
= + + + + +     

     
 +

−  
 

= − + + +

       (52) 

Using only one iteration of the derived algorithm (first order) in Equation (29) 
a good approximation of Example 4.2 was successfully obtained. Since this 
problem has no exact solution therefore, Figure 2 shows the comparison be-
tween approximate solution obtained by the proposed technique, Matlab Pack-
age DDENSD and the result obtained by Rebenda and Smarda [12] using an al-
gorithm based on the combination of the method of steps and differential trans-
form method (DT). 

Threrefore, from Figure 2 we can observed that there is a good correspon-
dence between the first order approximate solution of the proposed tecnique 
with that of Matlab Package DDENSD and DT. Hence, this shows that the pre-
sented method provides reliable results and reduces the computation size as 
compared with the previous techniques. 

 

 
Figure 2. Comparison of solutions obtained by Matlab Package, Proposed 
Method and Differential Transform Method of Example 4.2. 

https://doi.org/10.4236/am.2019.109054


A. Barde, N. Maan 
 

 

DOI: 10.4236/am.2019.109054 766 Applied Mathematics 
 

5. Conclusion 

This paper presents an efficient analytical approach suitable for solving linear 
and nonlinear systems of NDDEs with proportional and constant delays via 
HAM and natural transform. The presented algorithm adjusted the He’s poly-
nomial in order to ease the computational difficulties of both proportional and 
constant delays. Another advantage of this research is that a new algorithm is 
constructed in Equation (25) which reduces the computational work as com-
pared to other methods, produces a much faster convergent approximate solu-
tion and handles more complicated problems (as in the case of second example) 
in applications than other analytical methods. Therefore, the presented approach 
is efficient and reliable in solving different form of linear and nonlinear systems 
of NDDEs which can be also applied to solve various types of linear and nonli-
near problems. 
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Abstract 
The two-dimensional and self-consistent fluid model of the SF6 discharge was 
established based on the electron and ions continuity transfer equations 
coupled to Poisson’s equation, and also simultaneously considered the pho-
toionization event, and then the flux corrected transport technique (FCT) was 
employed to numerically solve the particle flux-continuity equations, and 
some significant microphenomena were achieved that the dynamic behaviors 
of the charged particles, the spatio-temporal evolution of the discharge chan-
nel and the transformation law of the avalanche-streamer for the SF6 nar-
row-gap were revealed in this paper. 
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1. Introduction 

Usually, the approaches to explore gas discharge phenomenon can be classified 
into experimental and theoretical methods. Experimental method can directly 
observe the discharge events, but the discharge mechanisms have not been 
clearly discovered in detail. However, the theoretical method not only gains key 
data for the dielectric breakdown of gases, but also some microcosmic parame-
ters on controlling dynamic behaviors of charged particles produced in the time 
of the gas discharge process are founded [1] [2] [3]. Recently, the computational 
fluid dynamics has been widely used in the gas discharge field due to its advan-
tages in explicit physical concept, legible image exhibition and highly calculating 
efficiency [4] [5] [6].  
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Despite the fact that the electron and ion densities can attain very steep gra-
dients and make the shock fronts in particule fluids along the discharge channel 
when the gas discharge is triggered and developed in the overall process under 
the stimulation of electric field, the FCT technique (flux corrected transport) 
shows high efficiency and accuracy dealing with the intricacy situation [7] [8] 
[9]. By virtue of the excellent thermodynamic, dielectric and transport propeties, 
SF6 is widely used in the eletrical industry, especially in the high voltage circuit 
breaker technology, although it might be replaced by the environment friendly 
insulating gases. Nevertheless, it is necessary to accurately find microcosmic 
mechanisms of the particle dynamical behaviors, the spatio-temporal characte-
ristics of the electric field and the track evolution of the discharge channel along 
the direction of the specific discharge development for broader application do-
main. 

This paper is organized as following: the mathematical model, the FCT algo-
rithm and constraint conditions are carefully presented in Section 2, and the re-
sults of the mathematical simulation are analyzed in Section 3 including the fol-
lowing contents: 3.1, avalanche phase; 3.2, streamer formation phase; 3.3, the 
discharge channel evolution and the photoionization effect. Some valuable con-
clusions are given in Section 4.  

2. The Model and FCT Algorithm 
2.1. Model of the Gas Discharge 

The model for the narrow-gap with parallel plate electrodes which are filled with 
SF6 gas has been presented in detail [10] [11], and the spatio-temporal evolution 
of the SF6 discharge overall process is mathematically modeled by a set of equa-
tions governing the transport of particles, moment and energy for ions and elec-
trons together with the electric field equation as follows [12] [13]: 

( ) ( )e e e e
ph e e e e e p

N N v N
S N v N v N N D

t z z z
α η β

∂ ∂ ∂∂
= + − − − +

∂ ∂ ∂ ∂
     (1) 

( ) ( )p p p
ph e e e p n p

N N v
S N v N N N N

t z
α β β

∂ ∂
= + − − −

∂ ∂
         (2) 

( ) ( )n n n
e e p n

N N v
N v N N

t z
η β

∂ ∂
= − −

∂ ∂
                (3) 

here t is the time, r and z are the radius and axis distances for the calculating 
subregion; eN , pN  and nN  are the electron, positive and negative ion densi-
ties; ev , pv  and nv  are respectively the electron, positive and negative ion 
drift velocity; the symbols α , β , η  and D are ionization, adsorption, recom-
bination coefficient and electron diffusion coefficient, respectively, their values 
have been taken from reference literature [14], and the phS  is photoionization 
source term. Collision ionization process between electrons and neutral particles 
at atmospheric pressure radiate photons, and these photons are absorbed by mo-
lecules according to a certain probability, in this situation, once photon energy 
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reaches the ionization critical value, then the photoionization process occurs and 
produces a certain amount of the photo electron. Generally speaking, the num-
ber of photon electron is much smaller than that of the electrons generated by 
impact ionization. However, these photon electrons would result in the forma-
tion of the secondary avalanche, which moves towards the head of the first ava-
lanche, composes a big avalanche and accelerates the development of the dis-
charge process. Hence the photoionization effect plays a significant role in the 
gas discharge process. The term phS , being a source term due to photoionization, 
is represented as shown below: 

( ) ( ) ( ) ( ) ( ) ( )*
0

exp d
d

ph p e eS z z z N z z z z z zγ α ν µ′ ′ ′ ′ ′ ′= Ω − × − −∫      (4) 

here pγ , *α  and µ  are second ionization, excitation and absorption coeffi-
cients, and Ω  is the solid angle subtended at z′  by the disk charge at the 
point z. A detail solution about phS  can be referred to the literature [15].  

Taking into account the distortion of space charge effects on the electric field, 
the Poisson equation is given by: 

( )
2 2

2
2 2

0

1
p e n

q N N N
r rr z

ϕ ϕ ϕϕ
ε

∂ ∂ ∂
∇ = + + = − − −

∂∂ ∂
            (5) 

where ϕ  is the electric potential; q is the electronic charge; 0ε  is the permit-
tivity of the free space. The current I in the external circuit due to the motion of 
electrons and ions between the electrodes is calculated by the Sato formula [16]: 

( )
2

0
d

d
p p n n e e

r qI N v N v N v z
d

π
= − −∫                  (6) 

here, r  is the radius of the discharge channel, q is the electronic charge.  
The convection term of particle’s continuity Equations (1)-(3) are solved by 

the FCT technique and other items are used the finite difference directly to solve 
and the Poisson’s Equation (5) is numerically resolved by the over-relaxation 
iteration. 

2.2. FCT Algorithm 

The convective terms of Equations (1), (2) and (3) are written as  
( )

conv

NvN
t x

∂∂
= −

∂ ∂
, where symbol N shows the density of the particle species 

and v  is their velocities. 
Taking ( rN ) as the dependent variable for an axisymmetric cylindrical coor-

dinate system, then  

( )
conv

rN f g
t r z

∂ ∂ ∂
= − −

∂ ∂ ∂
                     (7) 

where 

,r zf rNv g rNv= =                       (8) 

The flux corrected transport algorithm is as follows [17]: 
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1). Compute L
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2

i j
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+
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1,
2

i j
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+
 by a low order monotonic scheme (donor  

cell). 
2). Compute H
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2

i j
F

+
 and H

1,
2

i j
G

+
 by a high order scheme. 

3). Define the anti-diffusive fluxes:  
H L H L

1 1 1 1 1 1, , , , , ,
2 2 2 2 2 2

,
i j i j i j i j i j i j

A F F A G G
+ + + + + +

= − = −               (9) 

4). Compute the low order time advanced solution: 
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, 2 2 2 2
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i j i j i j i j i j i j

i j

N N F F G G
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5). Limit the anti-diffusive fluxes:  
C

1 1 1 1, , , ,
2 2 2 2

, 0 1
i j i j i j i j
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+ + + +

= ≤ ≤                   (11) 

C
1 1 1 1, , , ,
2 2 2 2

, 0 1
i j i j i j i j

A A C C
+ + + +

= ≤ ≤                   (12) 

6). Apply the limited anti-diffusive fluxes: 

td C C C C
, , 1 1 1 1, , , ,

, 2 2 2 2

1t t
i j i j i j i j i j i j

i j

N N A A A A
V

+∆

+ − + −

 
= − − + −  ∆  

           (13) 

where ,i jV , ,i jr , ,i jN  and ,i jC  are the volume, radial distance, density and 
anti-diffusive coefficient of the ( ),i j  cell, and further details and calculation 
procedure on the FCT can be found in the literature [3]. 

2.3. Constraint Conditions 

In this paper, schematic diagram and the constraint conditions for parallel-plate 
electrodes discharge under atmospheric pressure are set as shown in Figure 1, 
and the calculation model is converted to a two-dimensional structure by rotating 
the axis of symmetry. In the present study, the gap distance between the elec-
trodes filled with SF6 gas is 5 mm under the pressure 0.1 MPa and temperature 
 

 
Figure 1. Schematic diagram of mathematical modeling. 
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300 K. The spatial mesh chosen to be uniform with 40,000 mesh points, namely, 
the longitudinal axis ( z -axis) and the radial axis ( r -axis) are all uniformly di-
vided into 200 grids. Then 90.05 10 st −∆ = ×  is taken as time step, which is sig-
nificantly smaller than that required for stability of the used numerical scheme 
[3]. At the initial moment of time for gas discharge, the quasi–neutral plasma 
spot of Gaussian shape in the radial and axial directions is placed at the front of 
cathode:  

2 2
0

00 0
expe pt t

r z

z zrn n n
δ δ= =

    −
 = = − −   
     

            (14) 

where ,r z  is the radial and axial coordinates respectively; the origin of coor-
dinates ( 0r z= = ) is positioned at the center of cathode surface, the peak value 
density of particles (seed electrons and positive ions) is 6 3

0 10 mn −= , the posi-
tion of initial plasma 0 0.1 cmz = , characteristic scales 42.5 10 mrδ

−= ×  and 
42.5 10 mzδ
−= × .  

Boundary conditions for electrons and positive ions at the electrodes are as 
follows: 

0 0

0, 0p pe e

z z d z z d

n nn n
z z z z= = = =

∂ ∂∂ ∂
= = = =

∂ ∂ ∂ ∂
 

The solution of Poisson's equation is subject to the following boundary condi-
tions: 

0 00 0
0

, 0, 0,z z r R
r

V zV V V V V
r d= = =

=

∂
= = = =

∂
 

where 0V  is the applied voltage, r  is the radius of the computational domain. 

3. Modeling Results 

The space between parallel-plane electrodes 0.5 cm apart is filled SF6 gas with 
standard atmospheric pressure and commercial purity, and the 46 kV DC is ap-
plied on the anode plane, then the cathode grounding. The incepting discharge 
of the model is trigged by the seed electrons having a Gaussian distribution near 
the cathode at 0 nst =  (located at 0.1 cm from the cathode as mentioned earli-
er). Under the electric field, the seed electrons obtain energy to migrate, impact 
the neutral molecules and produce much more charged particles, so that the 
current through parallel-plane electrodes is shown in Figure 2. The transition 
time of the electron for the model is about 10 ns, according to the principle of 
gas discharge, the whole discharge process undergoes two phases from the ava-
lanche to the streamer phase while the discharge incepted. 

3.1. Avalanche Phase 

The electric field stress 92 kV/cm applied to the SF6 gap, which slightly larger 
than the threshold value 89.6 kV/cm, easily renders the discharge happen smooth-
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ly. With the electrons migrating to the anode and impacting with neutral mole-
cules, an electron swarm is quickly made up as shown in Figure 3. When about 
7.7 ns moment, the peak value of the electron swarm is up to the 18 31.01 10 cm−×  
at the point 0.25 cmz =  apart from the cathode, and corresponding positive 
and negative ions densities are 18 33.97 10 cm−×  and 18 33.22 10 cm−×  respec-
tively as shown in Figure 7 and Figure 8, then the distortion of the space electric 
field is not remarkable as shown in Figure 4 at 7.5 and 7.7 ns moments, there-
fore the interval from 0 nst =  to the 7.7 nst =  usually is known as the ava-
lanche phase according to the gas discharge theory [18].  
 

 
Figure 2. External circuit current. 

 

 
(a) Electron density at 0 ns 

 
(b) Electron density at 7.5 ns 
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(c) Electron density at 7.7 ns 

 
(d) Electron density at 8.0 ns 

 
(e) Electron density at 8.5 ns  

 
(f) Electron density at 9.0 ns 

Figure 3. Electron densities at 0 ns, 7.5 ns, 7.7 ns, 8.0 ns, 8.5 ns and 9.0 ns, respectively. 
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(a) Axial electric field at 7.0 ns 

 
(b) Axial electric field at 7.5 ns 

 

(c) Axial electric field at 7.7 ns 
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(d) Axial electric field at 8.0 ns 

 
(e) Axial electric field at 8.3 ns 

 
(f) Axial electric field at 9.0 ns 

Figure 4. Axial electric fields for SF6 gas at 7.0 ns, 7.5 ns, 7.7 
ns, 8.0 ns, 8.3 ns and 9.0 ns, respectively. 
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3.2. Streamer Phase 

When the avalanche volume reaches to the critical value, it instantly changes the 
avalanche phase into the streamer phase, namely, the streamer phase formation 
[19] [20]. It is demonstrated in Figure 3 and Figure 4 that the electron densities 
are visibly larger than that of the avalanche phase in the interval 7.7 - 8.0 ns, al-
though the distorting of space electric field is still slight enhancement, it is con-
sidered an initial period of the streamer phase.  

From the 8.0 ns moment, the streamer discharge is rapidly development, its 
volume is promptly expanded and the length is also stretched quickly, and si-
multaneously the electric field distortion is also exacerbated as shown in Figure 
5, then the mainly changes of the density distribution of charged particles for the 
electron, positive and negative ions on the axial direction are shown in Figures 
6-8, the procedure described is rather intricacy including the dynamical beha-
viors of the charged particles in the electric field [21] [22]. 

 

 
Figure 5. Axial electric field distributions at 7.7 ns, 8.0 ns, 8.3 ns, 8.6 ns, 8.9 ns and 
9.2 ns, respectively. 

 

 
Figure 6. Axial electron distributions at 7.7 ns, 8.0 ns, 8.3 ns, 8.6 ns, 8.9 ns and 9.2 
ns, respectively. 
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Figure 7. Axial distributions of positive ions at 7.7 ns, 8.0 ns, 8.3 ns, 8.6 ns, 8.9 ns and 9.2 
ns, respectively. 

 

 
Figure 8. Axial distributions of negative ions at 7.7 ns, 8.0 ns, 8.3 ns, 8.6 ns, 8.9 ns and 9.2 
ns, respectively. 

 
1) The anode-directed streamer 
When the transformation avalanche into the streamer phase, the peak value of 

the electron densities from location 0.25 cmz =  at 7.7 ns to the point 
0.44 cmz =  at 9.2 nst =  is shown in Figure 6, and the streamer head moves 

to the anode at an average speed 61.33 10 cm s× . The positive and negative ion 
densities in the anode-directed streamer head increase steadily from 

18 34.43 10 cm−×  to 19 31.09 10 cm−×  and from 18 33.62 10 cm−×  to  
19 39.41 10 cm−×  respectively shown in Figure 7 and Figure 8. The head of the 

anode-directed streamer shows the electro-negativity due to gathering most 
electrons and greatly enhanced field intensity of the short distance between the 
head with the anode plate, so that SF6 molecule ionization in this small region is 
dramatically aggravated, and many more electrons are reproduced and the head 
radius continuously becomes bigger and bigger, the iterative process finally ends 
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until the head arrives at the anode plate.  
2) The cathode-directed streamer 
As shown in Figure 6, the curve of electron distribution at 0.18 cmz =  and 
8.3 nst =  presents the clearly escalating trend, that is to say, the event of the 

cathode-directed streamer obviously happens, then the appeared moment of the 
cathode-directed streamer is later than that of the anode-directed one. In con-
trast with anode-directed streamer, the head of the cathode-directed streamer 
presents the electro-positivity, because the electric field is strengthened in the 
short space between the cathode plate and the head, then the ionization rate of 
the SF6 molecule is greatly accelerated and much stronger, the velocity of the ca-
thode-directed streamer at 9.2 ns is 60.92 10 cm s×  at 0.088 cmz =  location, 
which is only about 70% of the velocity of the anode-directed streamer in the 
same moment. 

3.3. Discharge Channel and Photoionization 

As mentioned above, the discharge process in the narrow-gap of the SF6 under-
goes transformation from the avalanche to the streamer phase, once the streamer 
is triggered it soon develops respectively towards the anode and cathode plate, 
namely, the anode-directed streamer and the cathode-directed streamer, at the 
same time accompanied by the photoionization appeared, the streamer volume 
not only grows quickly presenting a near cylindrical shape and but also the 
streamer length becomes much longer till through the anode and cathode plate, 
then the discharge path of the both electrode is formed and known as a break-
down channel. The fact has been proved by the experiment results and theoreti-
cal demonstration, the photoionization plays an important role and not been 
overlook when the whole discharge process in the narrow-gap of the SF6 under-
goes transformation from the avalanche to the streamer phase. The results of the 
mathematical modeling in this paper shows in Figure 9, considering and ignor-
ing photoionization could achieve different results, if you ignore the photoioni-
zation effect, you might get the false result [23]. 
 

 
(a) ignoring photoionzation 
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(b) considering photoionzation 

Figure 9. Electron density contour in SF6 at 9 ns. 

4. Conclusions 

Based on the fluid model of gas discharge and the FCT algorithm, dynamic cha-
racteristics of the SF6 breakdown process in narrow-gap has mathematically 
modeled and some important facts has demonstrated that the FCT algorithm is 
an efficient theoretical way to deal with the troublesome problems having shock 
fronts in the discharge channel. The results are both shown via easy visualization 
for the complicated course of the SF6 discharge and revealed dynamic characte-
ristics of the charged particles during the SF6 discharge process in narrow-gap.  

According to the mathematical model and numerical analysis results in this 
paper, the breakdown process in narrow-gap of SF6 still presents two phases at 
the standard atmospheric pressure, and parallel-plane electrodes 0.5 cm apart 
and the 46 kV DC applied. Moreover, some facts are indicated that when elec-
trons increase to a certain amount and the avalanche phase changes into the 
streamer phase. On the one hand, in the electron avalanche phase, the collision 
ionization is the key rule for producing electrons and making them grow fast 
until the electron swarms up to the 18 31.01 10 cm−× . The microcosmic mechan-
isms of the particle dynamical behaviors, the spatio-temporal characteristics of 
the electric field and the track evolution of the discharge channel are shown in 
Figure 3 and Figure 4 in the interval from 0 nst =  to the 7.7 nst = . In this 
interval, the collision between SF6 molecule and seed electrons is only triggered 
by the external electric field. When time ranges from 7.7 nst =  to the 8.0 ns, a 
dramatic change happens in the electron number and electric field of the gas-gap; 
that is to say, the streamer discharge would be coming. On the other hand, in the 
streamer phase, from the 8.0 ns moment, the streamer discharge is rapidly de-
veloping; its volume is promptly expanded and the length is also stretched 
quickly, and simultaneously the electric field distortion is also exacerbated as 
shown in Figure 5, then the main changes of the density distribution of charged 
particles for the electron, and positive and negative ions on the axial direction 
are shown in Figures 6-8.  

In a nutshell, the photoionization effect plays a pivotal role in the process of 
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the streamer discharge phase. 
Accompanied by the photoionization, the space charges of the gas-gap are 

multiplicatively increased and led to extremely distorting of the electric field 
within the discharge channel, and then the streamer dramatically develops to-
ward both anode and cathode plates, and a plasma region is left in the central 
part of the streamer; meanwhile, the distorted electric field also speeds up the 
streamer velocity forward to both plates till bridging the anode and cathode plate; 
finally, the gas-gap is absolutely broken down.  
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Abstract 
In this paper we present and test a numerical method for computing eigen-
values of 4th order Sturm-Liouville (SL) differential operators on finite inter-
vals with regular boundary conditions. This method is a 4th order shooting 
method based on Magnus expansions (MG4) which use MG4 shooting as the 
integrator. This method is similar to the SLEUTH (Sturm-Liouville Eigenva-
lues Using Theta Matrices) method of Greenberg and Marletta which uses the 
2nd order Pruess method (also known as the MG2 shooting method) for the 
integrator. This method often achieves near machine precision accuracies, 
and some comparisons of its performance against the well-known SLEUTH 
software package are presented. 
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1. Introduction 

In this paper1 we consider the self-adjoint differential operators which arise from 
the 4th order differential equation  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )4 ,L y y x s x y x q x y x y x a x bλ′′= − + = ≤ ≤       (1) 

when separated, self-adjoint boundary conditions are imposed at each of the two 
regular endpoints x a=  and x b= . 

We make the assumptions: 
1) ( )q x  is continuous on [ ],a b . 
2) ( )s x  and ( )s x′  are continuous on [ ],a b . 
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3) a b−∞ < < < ∞ . 
Under these assumptions both endpoints a and b are regular endpoints. The 

most general separated, self-adjoint boundary conditions which can be imposed 
at x a=  and x b=  are 

( )
( )

( )
( )

( ) ( ) ( )
( )

1
1 2

2

0
0

l y y a y a s a y a
A A

l y y a y a
′′′ ′    − +   

= + =       ′′ ′−       
         (2) 

and  

( )
( )

( )
( )

( ) ( ) ( )
( )

1
1 2

2

0
0

r y y b y b s b y b
B B

r y y b y b
′′′ ′    − +   

= + =       ′′ ′−       
         (3) 

where 1 2,A A  and 1 2,B B  are any choice of real, 2 2×  matrices satisfying the 
properties  

T T
1 2 2 1 0A A A A− =                        (4) 

T T
1 1 2 2 2 .A A A A I+ =                       (5) 

and  
T T

1 2 2 1 0B B B B− =                        (6) 

T T
1 1 2 2 2 .B B B B I+ =                       (7) 

The above boundary conditions can be shown to be equivalent to the general 
forms of boundary conditions used by Everitt [2] (in his PhD dissertation on 4th 
order Sturm-Liouville problems), Fulton [3] and many others. 

The domain of the maximal operator 1L  associated with the Equation (1) on 
the closed interval [ ],a b  is  

( ) ( ) ( ) ( ){ }1 2 2, : , , , , , , ,locD L f L a b f f f f AC a b Lf L a b′ ′′ ′′′= ∈ ∈ ∈     (8) 

where locAC  is the space of functions which are absolutely continuous on 
compact subsets of ( ),a b . The self-adjoint operators associated with Equation 
(1) are then obtained by restricting ( )1D L  by two boundary conditions at the 
left endpoint and two boundary conditions at the right endpoint as in (2) and (3), 
namely  

( ) ( ) ( ) ( ) ( ) ( ){ }1 2 1 2, , , 1 1 2 1 2: 0, 0, 0, 0A A B BD L f D L l f l f r f r f= ∈ = = = =    (9) 

The Green’s formula for the 4th order equation is  

( ) [ ]( )d , ,
bb

xa a
zLy yLz x y z− =∫                     (10) 

where the bilinear concomitant is defined as  

[ ]( )
( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )
, : .x

y x z x y x z x y x z x
y z s x

y x z x y x z x y x z x
′′′ ′′′ ′′ ′′

= − +
′ ′ ′ ′

    (11) 

Using this definition, and the boundary conditions (2) and (3), it can be 
shown that the operators 

1 2 1 2, , ,A A B BL  on ( )2 ,L a b  are symmetric; that is, for all 
( )1,f g D L∈ :  
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( ) ( ) ( ) ( ), , d 0.
b

a
f Lg Lg f f Lg g Lf x− = ⋅ − ⋅ =∫            (12) 

This paper is devoted to the 4th order shooting method based on Magnus Ex-
pansions (MG4) for computation of eigenvalues of 4th order SL problems of the 
type (1), (2), (3) having regular endpoints. 

For 2nd order SL problems, on both regular and singular intervals, there are 
several well developed software packages for eigenvalue and eigenfunction 
computations: SLEIGN [4], SLEIGN 2 [5], SLEDGE [6] [7], SLO2FM [8] [9] [10], 
MATSLISE [11] [12] [13]. The best source of information where their capabili-
ties and general performance is discussed, is the book, Numerical Solution of 
Sturm-Liouville Problems, of John Pryce [8]. 

For the 4th order SL equation, the only reliable software package for eigenva-
lue and eigenfunction computations is ACM Algorithm 775: SUBROUTINE 
SLEUTH, produced by L. Greenberg and M. Marletta in 1997 [14]. This package 
restricts attention to problems on finite intervals with regular endpoints; at this 
writing there is still no readily available software for singular endpoints. The 
SLEUTH code handles eigenvalues and eigenfunctions only for SL problems 
with regular endpoints, and it is capable of handling a wide variety of possible 
boundary conditions. The Greenberg-Marletta algorithm is based on an integra-
tion scheme using piecewise trigonometric hyperbolic splines (the Pruess me-
thod), also known as the MG2 shooting method. This was also the underlying 
integration scheme in the SLEDGE package. The SLEUTH code is based on us-
ing formulas of Greenberg [14] [15] [16] for the number of eigenvalues less than 
λ . 

Since eigenvalue/eigenfunction calculations for the 4th order equation have 
been tackled by many other methods we give here a brief overview of some of 
the existing competitive methods. The most prominent approaches to date, and 
those which continue to receive much attention, are as follows: 

1) Extended Sampling Method (ESM) which relies on the classical Whittak-
er-Shannon-Kotelnikov sampling theorem [17] (also used for 2nd order SL prob-
lems). 

2) Fliess Series Method [18] [19] [20] which represents the solution of an IVP 
for the 4th order Equation (1) in terms of iterated integrals involving the coeffi-
cient functions, ( )s x  and ( )q x . 

3) Chebyshev Method [21]-[26] which approximates solutions of the 4th or-
der Equation (1) by Chebyshev polynomials. 

4) Boubaker Polynomials Expansion Scheme (BPES) [27] which approximates 
solutions of of the 4th order Equation (1) using Boubaker polynomials and uti-
lizes a Differential Quadrature Method (DQM). 

5) Spectral Parameter Power Series (SPPS) Method [28] [29] [30] which ex-
pands the solutions of the SL equation (both second and 4th order) in a conver-
gent Taylor expansion in the eigenparameter λ . This has recently proven to 
have much advantages both for theoretical problems and numerical computa-
tions for SL equations. 
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Selection of Test Problems 

To investigate the performance of the method, we make the following selection 
of test problems. These problems are the square of a 2nd order SL problem. 

1) The square of the 2nd order Bessel equation  

( ) ( )( ) ( ) [ ]4 , 1,5Ly y s x y q x y y xλ′′= − + = ∈              (13) 

where  

( ) 2

2 ,
4

s x
x
−

=                           (14) 

and  

( ) 4 4

1 3 .
16 2

q x
x x

= +                        (15) 

2) The square of the 2nd order Modified Harmonic Oscillator equation  

( ) ( )( ) ( ) [ ]4 , 1,5Ly y s x y q x y y xλ′′= − + = ∈           (16) 

where  

( ) ( )2 42 ,s x x x= +                        (17) 

and  

( ) ( ) ( )22 4 22 12 .q x x x x= + − +                   (18) 

3) The square of the 2nd order equation  

( ) ( )( ) ( ) [ ]4 , 0,Ly y s x y q x y y xλ′′= − + = ∈ π            (19) 

where  

( ) ( ) ( ) ( )( )2 cos 2cos 2 3cos 3 ,s x x x x= + +              (20) 

and  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )2
cos 2cos 2 3cos 3 cos 8cos 2 27cos 3 .q x x x x x x x= + + − − − − (21) 

4) The square of the 2nd order Coffey-Evan equation with 10β =   

( ) ( )( ) ( )4 , ,
2 2

Ly y s x y q x y y xλ −π π ′′= − + = ∈   
          (22) 

where  

( ) ( ) ( )( )2 22 sin 2 2 cos 2 ,s x x xβ β= −                     (23) 

and  

( ) ( ) ( )( ) ( ) ( )( )22 2 2sin 2 2 cos 2 8 cos 4 8 cos 2 .q x x x x xβ β β β= − − +     (24) 

5) The square of the 2nd order Legendre equation  

( ) ( )( ) ( )4 , 0,
4

Ly y s x y q x y y xλ π ′′= − + = ∈   
            (25) 

where  

https://doi.org/10.4236/am.2019.109056


A. Alalyani 
 

 

DOI: 10.4236/am.2019.109056 788 Applied Mathematics 
 

( ) ( )21 sec ,
2

s x x=                       (26) 

and  

( ) ( ) ( ) ( ) ( )4 4
2 2sec sec

sec tan .
16 2

x x
q x x x

   
= − +      
   

         (27) 

Problem 5, the Legendre squared equation, arises from changes of variables to 
the non-LNF form discussed in [31]. 

2. The MG4 Shooting Method Associated with the 4th Order  
Sturm-Liouville Equation 

In this section we describe an implementation of the MG4 shooting technique 
for the 4th order SL Equation (1) on regular intervals with ( ) ( ),s x q x  conti-
nuous. The Equation (1) can be converted to the 1st order system (Atkinson [32], 
pp. 323-324) ( ) ( ) ( ), ,Y x A x Y xλ λ′ = ⋅ , where  

( ) ( )
( ) ( ) ( ) ( )

0 0 0 1
0 0 1

, , , ,
0 0 0

0 1 0 0

s x
Y x Y x A x Y x

q x
λ λ λ

λ

− 
 − − ′ = = ⋅
 −
 

− 

     (1) 

and  

( )

( )
( )

( ) ( ) ( )
( )

,
,

, .
, ,

,

y x
y x

Y x
y x s x y x

y x

λ
λ

λ
λ λ

λ

 
 ′′ =  ′′′ ′− +
  ′− 

                (2) 

Remark 2.1 Currently the most reliable software package for eigenvalues and 
eigenfunctions of the 4th order Sturm-Liouville equation with regular endpoints 
is ACM Algorithm 775: SUBROUTINE SLEUTH, produced by L. Greenberg and 
M. Marletta in 1997 [14], which is available from NETLIB at ORNL. The SLEUTH 
(Sturm-Liouville Eigenvalues Using Theta Matrices) code employs an MG2 ap-
proximation for the solution ( ) ( )

0e xY x Yσ= , (see [33], p. 283), on each mesh 
interval of a Hamiltonian system similar to the system (1) (the order of the de-
rivatives in the above ( ),Y x λ  vector being slightly different). The SLEUTH 
code is based on using formulas of Greenberg [15] [16] [34] [35] for the number 
of eigenvalues less than λ , so the eigenvalue algorithm is quite different than 
the method we are proposing here for eigenvalue computation for (1) using (1). 

For the IVP, ( ) ( ) ( ), ,Y x A x Y xλ λ′ = ⋅ , ( )0Y I= , where A is a constant ma-
trix is also basic to Magnus methods for (1). We introduce the following lemma 
and the definitions of the Lie-group and Lie-algebra (see [36], Prop. 7.2.3 and 
Def. 7.2.4). 

Definition 2.1 ( )4,SL   is the Lie-group and defined as:  

( ) ( ){ }4, : | is 4 4 matrix with real entries and det 1 .SL A A A= × =  

Definition 2.2 ( )4,sl   is the Lie-algebra and defined as:  
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( ) ( ){ }4, : | is 4 4 matrix with real entries and tr 0 .sl A A A= × =  

Lemma 2.1 If ( )4,X sl∈  , then ( ) ( )exp 4,X SL∈  , i.e.  

( )( )det exp 1.X =                        (3) 

Remark 2.2 For any constant matrix ( )4,X sl∈  , it follows from this lem-
ma that the solution  

( ), eXtY t λ =                          (4) 

of the IVP,  

( ) ( ) ( ), , ,Y t X t Y tλ λ′ = ⋅                     (5) 

( )0 ,Y I=  

lies in the Lie Group ( )4,SL  . 
The Magnus methods originate (see [37]) with the observation that an analyt-

ical solution of (1) with initial condition ( ) 00Y Y=  can be written as, (see [33], 
p. 283),  

( ) ( )
0e xY x Yσ=                         (6) 

where  

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0 0

0 0 0

0 0 0

1d , d d
2

1 , , d d d
4
1 , d , d d

12

x x k

x k

x k k

x A k k A k A k

A k A A k

A k A A k

ξ

σ ξ ξ

ξ η η ξ

ξ ξ η η

 = +   

  +     

  + +    

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫ 

       (7) 

and where the square brackets denote the matrix commutator and are defined 
as:  

[ ], :A B A B B A= ⋅ − ⋅                      (8) 

The MG4 method is a well known 4th order method obtained by truncation of 
the above Magnus series, together with evaluation of the A matrix in (1) at two 
gaussian points 1A  and 2A : 

For the Hamiltonian system (1), we put  

( )1
3 1: ,

2 3nA A x h A x
  − ′= + =      

                (9) 

( )2
3 1: ,

2 3nA A x h A x
  + ′′= + =      

               (10) 

(meaning that ( )q x  and ( )s x  in (1) are to be evaluated at x x′=  and 
x x′′=  in the nth mesh interval [ ]1,n nx x + ). Then the MG4 method of Iserles 
and Norsett ([38], p. 1012), and ([33], p. 288) for (1) takes the form (for a fixed 
step size h)  

( )1 exp ,n nY hA Y+ = ⋅                       (11) 

where the transfer matrix for passing from nx  to 1nx +  is ( ): expM hA=   with  
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( ) [ ]

( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( )

( )

( )

1 2 2 1

1 2 1 2 1 2

1 21 2

1 2

1 1: ,
2 4 3
1 1
2 4 3

0 0 0 1

3 3
1

12 12 2
,3

0 0
2 12

3
0 1 0

12

A A A A A h

A x A x h A x A x A x A x

h q q h s s s s

h q qq q

h s s

λ

= + +

′ ′′ ′′ ′ ′ ′′= + + −

− 
 
− − − − − − − 

 
= − +

− 
 
 −

− 
 



     (12) 

where the square bracket [ ]2 1,A A  denotes the matrix commutator and is de-
fined as:  

[ ]2 1 2 1 1 2, ,A A A A A A= −                     (13) 

and  

( ) ( ) ( ) ( )1 2 1 2, , , .q q x q q x s s x s s x′ ′′ ′ ′′= = = =  

The four eigenvalues of A  are  
1
2

1 ,
2
BAλ

 
= − − 

 
                    (14) 

1
2

2 ,
2
BAλ

 
= − + 

 
                    (15) 

3 1,λ λ= −                         (16) 

4 2 ,λ λ= −                         (17) 

where  

( )2 2 2 2
1 21 2 1 2 ,

4 96 48

h s ss s h s sA
++

= + −                (18) 

and  

( ) ( ) ( )

( )

4 4 4 4 3 3 2 3 3 2 24 2 2
1 2 1 2 1 2 1 2 1 2 1 21 2

2 2
1 2 1 2

1 2

4
2304 576 384 48

2 .
4 2

h s s h s s s s h s s s s s sh s sB

s s s s q q

λ
+ + + − −

= + − + +

+
+ + − +

 (19) 

Eigenvalues of A  matrix: 
Let us define  

: ,
2
BD A= −                         (20) 

and  

: .
2
BE A= +                         (21) 

Then the following four cases of eigenvalues of A  arise, involving both 
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complex and real eigenvalues: 
Case 1: 0B >  and ( 0, 0D E> > ).  

1
21 ,Dλ = −                         (22) 

1
22 ,Eλ = −                         (23) 

1
23 ,Dλ =                          (24) 

1
24 .Eλ =                          (25) 

Case 2: 0B >  and ( 0, 0D E< < ).  
1
21 ,i Dλ = −                        (26) 

1
22 ,i Eλ = −                        (27) 

1
23 ,i Dλ =                        (28) 

1
24 .i Eλ =                        (29) 

Case 3: 0B >  and ( 0, 0D E< > , where D E< ).  
1
21 ,i Dλ = −                       (30) 

1
22 ,Eλ = −                       (31) 

1
23 ,i Dλ =                        (32) 

1
24 .Eλ =                        (33) 

Case 4: 0B < .  
1
2

1 ,
2

i B
Aλ
 
 = − −
  

                  (34) 

1
2

2 ,
2

i B
Aλ
 
 = − +
  

                  (35) 

3 1,λ λ= −                       (36) 

4 2 .λ λ= −                       (37) 

Remark 2.3 It follows from (12) that  

( )( ) 0,ntrace x x A− =                   (38) 

so that ( ) ( )4,nx x A sl− ∈  . Also we observe that on diagonalization we have 
(in all the above 4 cases),  
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( )( ) ( ) ( )( ) ( )

( )

1

4

1

det exp det det exp det

exp 1,

n n

n j
j

x x A P x x D P

x x λ

−

=

   − = ⋅ − ⋅  

 
= − = 

 
∑



    (39) 

where { }, 1, 2,3, 4j jλ = , are the eigenvalues of A . Hence on each mesh inter-
val,  

( ) ( ) ( ), exp ,n nY x x x A Y xλ λ = − ⋅ 
               (40) 

is a solution of  

( ) ( ) ( ), ,Y x A x Y xλ λ′ = ⋅                    (41) 

which remains in the Lie Group, ( )4,SL  . 
We consider the SL problem for Equation (1) with the following choices of Di-

richlet boundary conditions at the left and right endpoints (compare (2) and (3)).  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )4 , ,L y y x s x y x q x y x y x a x bλ′′= − + = ≤ ≤     (42) 

( )
( )

( ) ( ) ( )
( )

( )
( )

( )
( )

1
1 2

2

0
,

0
y a y a s a y a y a l y

A A
y a y a y a l y

′′′ ′   − +       
+ = = =         ′′ ′ ′′−         

   (43) 

( )
( )

( ) ( ) ( )
( )

( )
( )

( )
( )

1
1 2

2

0
.

0
y b y b s b y b y b r y

B B
y b y b y b r y

′′′ ′   − +       
+ = = =         ′′ ′ ′′−         

   (44) 

where  

1

1 0
,

0 1
A  
=  
 

                      (45) 

2

0 0
0 0

A  
=  
 

                      (46) 

and  

1

1 0
,

0 1
B  

=  
 

                      (47) 

2

0 0
.

0 0
B  

=  
 

                      (48) 

The left boundary conditions are implemented by fixing initial conditions for 
two solutions ( )1 ,Y x λ  and ( )2 ,Y x λ  of (1) at x a= , namely we define solu-
tions ( )1 ,Y x λ  and ( )2 ,Y x λ  at x a=  by requiring  

( ) ( )( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 2

1 2
1 2

1 1 2 2

1 2

2

, ,
, ,

, , ,
, , , ,

, ,

0 0
00 0

.
1 0
0 1

y a y a
y a y a

Y a Y a
y a s a y a y a s a y a

y a y a

I

λ λ
λ λ

λ λ
λ λ λ λ

λ λ

 
 ′′ ′′ =  ′′′ ′ ′′′ ′− + − +
  ′ ′− − 
 
    = =      
 

(49) 
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Then the corresponding solutions ( ) ( ){ }1 2, , ,y x y xλ λ  of (1) automatically 
satisfy the boundary conditions (43) at x a= . Using the solutions 

 
( ) ( ){ }1 2, , ,Y x Y xλ λ  of (1) defined by (49) we define the 2 2×  matrices  

( ) ( ) ( )
( ) ( )

1 2

1 2

, ,
, : ,

, ,
y x y x

U x
y x y x

λ λ
λ

λ λ
 

=  ′′ ′′ 
                  (50) 

and  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 1 2 2

1 2

, , , ,
, := .

, ,
y x s x y x y x s x y x

V x
y x y x

λ λ λ λ
λ

λ λ
′′′ ′ ′′′ ′ − + − + 

 ′ ′− − 
  (51) 

The two-dimensional subspace,  

( ) ( ) ( ) ( ){ }1 2, : , , , for some choice of and ,y x y x Ay x By x A Bλ λ λ λℑ = = + (52) 

where ( )1 ,y x λ  and ( )2 ,y x λ  are solutions of (1) corresponding to the 
( )1 ,Y x λ  and ( )2 ,Y x λ  solutions of the IVP, (1) and (49), of the four-dimensional 

solution space of (1) satisfies the boundary conditions (43) at x a= . 
We have the following theorem giving necessary sufficient conditions (N.S.Cs) 

for the eigenvalues of the SL problem for Equation (1) which has boundary con-
ditions at x a=  (43) and boundary conditions at x b=  (44). 

Theorem 2.1 1) A N.S.C. for ( ),λ ∈ −∞ ∞  to be an eigenvalue of the SL 
problem for Equation (1) with boundary conditions at x a=  (43) and boun-
dary conditions at x b=  (44), and having multiplicity one, is:  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 1 2 1 2

2 1 2 2 1 2

, ,
0

, ,
r y r y y b y b
r y r y y b y b

λ λ
λ λ

= =
′′ ′′

            (53) 

and  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 1 2 1 2

2 1 2 2 1 2

, ,
1.

, ,
r y r y y b y b

rank rank
r y r y y b y b

λ λ
λ λ

   
= =   ′′ ′′   

      (54) 

2) A N.S.C. for ( ),λ ∈ −∞ ∞  to be an eigenvalue of the SL problem for Equa-
tion (1) with boundary conditions at x a=  (43) and boundary conditions at 
x b=  (44), and having multiplicity one, is:  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 1 2 1 2

2 1 2 2 1 2

, ,
0

, ,
r y r y y b y b
r y r y y b y b

λ λ
λ λ

= =
′′ ′′

           (55) 

and  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 1 2 1 2

2 1 2 2 1 2

, ,
0.

, ,
r y r y y b y b

rank rank
r y r y y b y b

λ λ
λ λ

   
= =   ′′ ′′   

      (56) 

Proof Let ( ) ( ){ }1 2, , ,y x y xλ λ  be the unique solutions of the 4th order Equa-
tion (1) which are defined by the initial conditions at x a=  and 

 
( ) ( ){ }1 2, , ,Y x Y xλ λ  be the corresponding solutions of the Hamiltonian system 

(1):  
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( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 2

1 2

1 1 2 2

1 2

, , 0 0
, , 0 0

, , , , 1 0
, , 0 1

y a y a
y a y a

y a s a y a y a s a y a
y a y a

λ λ
λ λ

λ λ λ λ
λ λ

   
   ′′ ′′   =   ′′′ ′ ′′′ ′− + − +
    ′ ′− −   

   (57) 

By fixing (57) the two-dimensional space ℑ  is fixed by the 4 2×  matrix 
(57). The constants in the (57) matrix were chosen to ensure that the boundary 
conditions at x a=  (43) was satisfied, so we know that  

( )
( )

( )
( )

1 1 1

2 1 1

, 0
,

, 0
l y y a
l y y a

λ
λ

     
= =     ′′     

                 (58) 

( )
( )

( )
( )

1 2 2

2 2 2

, 0
,

, 0
l y y a
l y y a

λ
λ

     
= =     ′′     

                 (59) 

that is, that both ( )1 ,y x λ  and ( )2 ,y x λ  satisfy the boundary conditions at 
x a=  (43). Also, of course, the space ℑ  of solutions spanned by these two so-
lutions ( ) ( ){ }1 2, , ,y x y xλ λ  of (1) satisfies the boundary conditions at x a=  
(43), that is  

( ) ( )( )1 1 2, , 0,l Ay x By xλ λ+ =                 (60) 

( ) ( )( )2 1 2, , 0l Ay x By xλ λ+ =                 (61) 

for all ,A B∈ . It remains only to apply the boundary conditions at x b=  
(44), i.e. to require that  

( ) ( )1 , 0,r y y b λ= =                     (62) 

and  

( ) ( )2 , 0r y y b λ′′= =                     (63) 

for boundary conditions at x b=  (44). Hence, we find  

( ) ( )( ) ( )( ) ( )( )1 1 2 1 1 1 2, , , , 0r Ay x By x Ar y x Br y xλ λ λ λ+ = + =     (64) 

and  

( ) ( )( ) ( )( ) ( )( )2 1 2 2 1 2 2, , , , 0r Ay x By x Ar y x Br y xλ λ λ λ+ = + =     (65) 

as the requirement for solutions in ℑ  to also satisfy the boundary conditions at 
x b=  (44). But the Equations (64) and (65) can have a nonzero solution for 

,A B  if and only if  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 1 2 1 2

2 1 2 2 1 2

, ,
0

, ,
r y r y y b y b
r y r y y b y b

λ λ
λ λ

= =
′′ ′′

            (66) 

Hence (66) is a N.S.C. condition for λ  to be an eigenvalue of the SL problem 
for Equation (1). The multiplicity of the eigenvalue is defined as the number of 
linearly independent solutions of (1) which satisfy both boundary conditions at 
x a=  and both boundary conditions at x b= . Since the dimension of ℑ  is 
two, this can be at most two. For multiplicity one, we must have  

https://doi.org/10.4236/am.2019.109056


A. Alalyani 
 

 

DOI: 10.4236/am.2019.109056 795 Applied Mathematics 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 1 2 1 2

2 1 2 2 1 2

, ,
1,

, ,
r y r y y b y b

rank rank
r y r y y b y b

λ λ
λ λ

   
= =   ′′ ′′   

         (67) 

and in this case the solution of the two Equations (64) and (65) will be  

( )
( ) ( )

1 2

1 11 1 , if 0
1

r y
A

r yr y
B

 − 
   = ≠   
   

 

                 (68) 

and  

( )1 1

1
, if 0.

0
A

r y
B

   
= =   

   
                   (69) 

In this case the eigenfunction, which is unique up to a constant multiple, is  

( ) ( )
( ) ( ) ( ) ( )1 2

1 2 1 1
1 1

, , , , if 0
r y

y x B y x y x r y
r y

λ λ λ
 −

= ⋅ + ≠  
 

       (70) 

or  

( ) ( ) ( )1 1 1, , , if 0.y x Ay x r yλ λ= =                (71) 

For multiplicity two, we need to require  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 1 2 1 2

2 1 2 2 1 2

, ,
0,

, ,
r y r y y b y b

rank rank
r y r y y b y b

λ λ
λ λ

   
= =   ′′ ′′   

      (72) 

and in this case ( )1 ,y x λ  and ( )2 ,y x λ  would be linearly independent eigen-
functions of (1).   

More generally, the general case of boundary conditions (3) would give  

( ) ( ) ( )( )1 2: det , , 0f B U b B V bλ λ λ= + =             (73) 

as a N.S.C. for λ  to be an eigenvalue of (1) with boundary conditions (44) and 
(3). More generally, the boundary conditions (2) could be handled by changing 
the initial conditions (57) appropriately. 

3. Description of the MG4 Algorithm 

We obtained the 4 4×  transfer matrix  

( )expM hA=                         (1) 

by doing the following steps: 
1) Calculate the eigenvalues and the eigenvectors of A . 
2) Diagonalize  

1,A P D P−= ⋅ ⋅                          (2) 

where P denotes the matrix of eigenvectors of A , and D denotes the diagonal 
matrix of the four eigenvalues of A  (12). 

3) Put  

( )( ) 1exp .M P hD P−=                       (3) 
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This gives a 4 4×  transfer matrix with 4 cases of eigenvalues of A . (The 
matrix elements could be reduced to expressions involving sinh, cosh, sin 
and cos functions). Our MG4 code implements the above transfer matrix 

( )expM hA=   by doing the matrix multiplication (3) numerically. Here we de-
scribe the implementation of the MG4 method for computing the eigenvalues of 
the SL problem for Equation (1) with the choices of Dirichlet boundary condi-
tions (43) and (44) at the left and right endpoints. To impose the boundary con-
ditions (44) on ℑ , we integrate the IVP, (1) and (49), from x a=  to x b=  
using the MG4 method on the 4 2×  matrix ( ),Y x λ . Then when ( ),Y b λ  
has been computed, the boundary conditions (44),  

( ) ( ) ( )1 2, , , 0y b Ay b By bλ λ λ= + =                  (4) 

( ) ( ) ( )1 2, , , 0,y b Ay b By bλ λ λ′′ ′′ ′′= + =                  (5) 

will be satisfied for some choices of real constants A and B, not both zero, if and 
only if  

( ) ( )( ) ( ) ( )
( ) ( )

1 2

1 2

, ,
: det , 0.

, ,
y b y b

f U b
y b y b

λ λ
λ λ

λ λ
= = =

′′ ′′
            (6) 

The computation is performed using an initial uniform mesh, applying bisec-
tion method with initial upper and lower bounds for a given eigenvalue nλ , and 
then doubling the number of mesh points by bisecting the mesh to generate a 
Richardson h4-extrapolation table over successively bisected meshes. Then the 
extrapolated eigenvalue is selected when the eigenvalue extrapolation error satis-
fies a tolerance test. 

3.1. Description of h4-Richardson’s Extrapolation 

If ( ) ( ) [ ], ,q x s x C a b∞∈ , we can assume that if MG4 method is applied we will 
have for each choice of h:  

( ) ( ) ( )24 4 4
1 2

ˆ m

Exact mh h h hλ λ τ τ τ≈ + + + +             (7) 

for some choices of real constants 1 2, , , mτ τ τ . For each 1,2,3,m = 
  

( ) ( ) ( ) ( )( ) ( )2 14 4 4 4 4
1 2

ˆ .
m m

Exact mh h h h O h O hλ λ τ τ τ
+

− = + + + + =    (8) 

Putting  
4

1 0x h=                             (9) 

4
4 0

2 1 2
h

x h  = =  
 

                       (10) 


 

4
4 0

1 1 ,
2i i i

h
x h − −

 = =  
 

                      (11) 

in Neville’s algorithm ([39], 2.1.2.5b, p. 42),  
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( ) ( ) ( ) ( ), 1 1, 1
, 1 , 1 , 0,1, 2, , ,

1

i k i k
ik i k

i k

i

T x T x
T x T x k i i n

x x
x x

− − −
−

−

−
= + ≤ ≤ =

−
−

−

    (12) 

we find  

( ) ( ) ( ) ( )1, 2 2, 2
1, 1 1, 2 1

0 0
0 0

16 1
I J I J

I J I J J

T T
T T − − − −

− − − − −

−
= +

−
          (13) 

where we have taken  
4 4

11, 1, 0, , .i I i k I Jk J i I x x h x h− − −= − = − = = =  

Applying Neville’s algorithm generates the h4-Richardson’s extrapolation table 
for the eigenvalue computation. Defining  

( )1, 1
ˆ : 0IJ I JTλ − −=                         (14) 

we have from (13) that  

, 1 1, 1
, , 1 1

ˆ ˆ
ˆ ˆ ,

16 1
I J I J

I J I J J

λ λ
λ λ − − −

− −

−
= +

−
                   (15) 

where  

11 0
ˆ computed value for ,h hλ = =  

0
21

ˆ computed value for ,
2
h

hλ = =  

  

0
1

ˆ computed value for .
2n n

h
hλ = =  

here the second term in (15) is the extrapolation error. The first column of the 
extrapolation table, that is, the eigenvalues 11 21

ˆ ˆ, ,λ λ  , are computable quanti-
ties. The columns two, three, four, five,  , are generated from column one us-
ing (15). 

3.2. Computing Large Eigenvalues by Using the  
Invariant-Imbedding Variables 

In a manner similar to Greenberg and Marletta in their SLEUTH code (see [14], 
Section 3.2, pp. 461-462), we applied the change to “invariant-imbedding” va-
riables, , , detA AVU UV U  and detV , in our code in order to provide a good 
stable integration scheme. We generated the “invariant-imbedding” variables by 
using the 2 2×  matrices ( ),U x λ  and ( ),V x λ  which we defined in (50) and 
(51) for eigenvalue computation of the SL problem. 

4. Numerical Results and Discussion 

In this section we give some numerical outputs for each of the 5 test problems in 
Section 1.1, and compare with the comparable SLEUTH outputs. The 5 test 
problems are squares of 2nd order SL equations. For such problems the choice of 
Dirichlet boundary conditions for the 2nd order problem, generates, by squaring, 
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a 4th order SL problem whose eigenvalues are the squares of the 2nd order SL 
problem, Greenberg and Marletta ([14] pp. 478-481). For example, we consider 
in section 5 the following 2nd order SL problems  

2

1
4

y y y
x

λ− ′′− + = 
 

                       (1) 

( ) ( )1 0, 5 0y y= =  

( )2 4y x x y yλ′′− + + =                      (2) 

( ) ( )1 0, 5 0y y= =  

( ) ( ) ( )( )cos 2cos 2 3cos 3y x x x y yλ′′− + + + =              (3) 

( ) ( )0 0, 0y y= π =  

( ) ( )( )2 2sin 2 2 cos 2y x x y yβ β λ′′− + − =               (4) 

0, 0
2 2

y y−π π   = =   
     

( )21 sec
4

y x y yλ′′− + =                      (5) 

( )0 0, 0
4

y y π = = 
 

 

Squaring the self-adjoint operator corresponding to (1)-(5) gives the 4th order 
self-adjoint operator corresponding to the 4th order problems in Tables 1-5, 
respectively. Accordingly, the eigenvalues of the problems in Tables 1-5 are the 
squares of the eigenvalues of the 2nd order SL problems (1)-(5), respectively. 
Tables 1-5 give outputs of MG4 and SLEUTH codes on the test problems 1, 2, 3, 
4 and 5 respectively, with the choices of Dirichlet boundary conditions. In these 
tables, we list the SLEUTH and MG4 outputs to 17 digits. The number of these 
digits which are correct is always a key issue in assessing the performance of a 
numerical algorithm. Since the exact eigenvalues of these 4th order SL problems 
are the squares of the exact eigenvalues of the 2nd order SL problems (1)-(5), we 
computed the eigenvalues of the 2nd order SL problems (1)-(5) and computed 
their squares to provide a benchmark against which we can compare MG4 and 
SLEUTH algorithm outputs. The purpose for the following tables is to make 
comparisons at reasonably high accuracy; so we ran the MG4 and SLEUTH 
codes with the tolerance parameter TOL = 10−12. Outputs of the SLEDGE code 
(Sturm-Liouville Estimates Determined by Global Error Control) of Pruess and 
Fulton [6] for the problems (1)-(5) were obtained for the eigenvalue indices 
listed in Tables 1-5, and then their squares were computed to generate the 
second columns of Tables 1-5. Since SLEDGE is known to compute eigenvalues 
quite reliably to the user-requested accuracy, we used the squares of the SLEDGE 
eigenvalues as the benchmark for MG4 and SLEUTH codes in Tables 1-5. The 
error characterization sledgeE  in columns 4 and 6 of Tables 1-5 was computed 
as  
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( )

( )

( )

, if 1

, if 1,

SLEDGE
n n n

SLEDGEsledge
n n

nSLEDGE
n

E

λ λ λ

λ λ
λ

λ

 − <
=  −

≥


                 (6) 

where ( )SLEDGE
nλ  are the SLEDGE-squared eigenvalues and nλ  are eigenvalues 

obtained by the SLEUTH and MG4 codes. This represents the absolute or rela-
tive eigenvalue errors of each code relative to the benchmark values obtained 
from SLEDGE. The obtained absolute or relative eigenvalue errors of each code 
are used to measure the performance of each method. In Table 1, we see that the 
error characterization sledgeE  for the eigenvalues 0λ , 20λ  and 100λ  obtained 
by the SLEUTH are slightly larger than the error characterization sledgeE  for the 
eigenvalues 0λ , 20λ  and 100λ  achieved by the MG4 method.  
 

Table 1. Eigenvalues of Problem 1. 

Eval Index SLEDGE SLEUTH sledgeE  of SLEUTH MG4 sledgeE  of MG4 

0 0.339260710091670 0.3392607100805489 1.105e−11 0.339260710092205 5.348e−13 

20 73973.71134197622 73973.711342122158 1.973e−12 73973.711342028924 7.125e−13 

100 39594796.88731044 39594796.886610150 1.769e−11 39594796.887332238 5.506e−13 

 
Table 2. Eigenvalues of Problem 2. 

Eval Index SLEDGE SLEUTH sledgeE  of SLEUTH MG4 sledgeE  of MG4 

0 236.0251207053473 236.02512061495375 3.830e−10 236.02512070536613 7.984e−14 

50 3155257.7441797131 3155257.7441750434 1.480e−12 3155257.7441805508 2.655e−13 

100 41735725.88393135 41735725.884191565 6.235e−12 41735725.883945607 3.415e−13 

 
Table 3. Eigenvalues of Problem 3. 

Eval Index SLEDGE SLEUTH sledgeE  of SLEUTH MG4 sledgeE  of MG4 

0 0.2786088184066070 0.2786088184207267 1.412e−11 0.27860881843425472 2.765e−11 

50 6765204.5033669453 6765204.5033744955 1.116e−12 6765204.5033704005 5.107e−13 

100 104060404.5008649 104060404.50095831 8.977e−13 104060404.50091156 4.485e−13 

 
Table 4. Eigenvalues of Problem 4. 

Eval Index SLEDGE SLEUTH sledgeE  of SLEUTH MG4 sledgeE  of MG4 

2 4871.3813098296687 4871.3813098537794 4.950e−12 4871.3813098332166 7.283e−13 

50 7028539.5468045129 7028539.5468126526 1.158e−12 7028539.5467997193 6.820e−13 

100 105083729.4441578 105083729.44410391 5.128e−13 105083729.44420157 4.166e−13 

 
Table 5. Eigenvalues of Problem 5. 

Eval Index SLEDGE SLEUTH sledgeE  of SLEUTH MG4 sledgeE  of MG4 

0 265.7655513700918 265.76555137422213 1.554e−11 265.76555137021074 4.474e−13 

8 1680440.528481040 1680440.5284831792 1.273e−12 1680440.5284811275 5.210e−14 

30 236431164.13291141 236431164.15818894 1.069e−10 236431164.13306919 6.673e−13 

100 26639566561.99389 26639566568.073307 2.282e−10 26639566561.998882 2.661e−13 
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In Table 2, we see that the error characterization sledgeE  for the eigenvalues 

0λ , 50λ  and 100λ  obtained by the SLEUTH are slightly larger than the error 
characterization sledgeE  for the eigenvalues 0λ , 50λ  and 100λ  achieved by the 
MG4 method. In Table 3, we see that the error characterization sledgeE  for the 
eigenvalues 0λ  and 100λ  achieved by the MG4 method are quite comparable 
to the error characterization sledgeE  for the eigenvalues 0λ  and 100λ  obtained 
by the SLEUTH. But, the error characterization sledgeE  for the eigenvalue 50λ  
obtained by the SLEUTH is slightly larger than the error characterization sledgeE  
for the eigenvalue 50λ  achieved by the MG4 method. In Table 4, we see that 
the error characterization sledgeE  for the eigenvalue 100λ  achieved by the MG4 
method is quite comparable to the error characterization sledgeE  for the eigen-
value 100λ  obtained by the SLEUTH. But, the error characterization sledgeE  for 
the eigenvalues 2λ  and 50λ  obtained by the SLEUTH are slightly larger than 
the error characterization sledgeE  for the eigenvalues 2λ  and 50λ  achieved by 
the MG4 method. In Table 5, we see that the error characterization sledgeE  for 
the eigenvalues 0λ , 8λ , 30λ  and 100λ  obtained by the SLEUTH are slightly 
larger than the error characterization sledgeE  for the eigenvalues 0λ , 8λ , 30λ  
and 100λ  achieved by the MG4 method. 

Remark 5.1 The machine precision, obtained from the FORTRAN routine 
EPSLON, on the desktop computer (with Pentium 4 processors) used to obtain the 
following outputs of the SLEUTH and SLEDGE codes was MACHEPS = 2.22D-16. 

5. Conclusion 

In this paper we have presented the MG4 algorithm of Iserles et al. [33] [40], for 
eigenvalue computation of regular 4th order Sturm-Liouville problems. Apply-
ing the change to “Invariant-Imbedding” variables in a manner similar to Green-
berg and Marletta in their SLEUTH code [14] provides good stabilization for the 
MG4 algorithm, and this resulted in its capability for achieving high accuracy, 
very often on the order of machine precision. The MG4 algorithm appears to be 
competitive to the SLEUTH code. 
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