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Abstract 
Background: The unavoidable links between the benefits of conventional sys-
temic treatment of cancer and the side effects such as lymphopenia. Objec-
tive: To analyze this phenomenon in view of the newly discovered trophic 
function of circulating hematopoietic stem cells (HSC) and their lymphocyte 
descendants. Method: We used population statistics and recent current re-
search involving natural aging and preliminary aging with cancer, its cyto-
toxic therapy, eclampsia at pregnancy, and radiation hormesis. Results: In 
contrast to immune-defense interpretations of these health conditions, the 
trophic influence of HSC and morphogenic lymphocytes on natural tissue 
renewal and regeneration after sublethal injuries eliminates the majority of 
covered inconsistencies, which are inherent to the dominating idea of cellular 
immunity. Conclusion: Our examination led to the feeding influence of lym-
phopoiesis on tumor progression, an indirect mechanism of tumor growth 
control by systemic therapy via either destruction of trophic cells, or by com-
petitive distraction from malignant tissue via reparation of sublethal injuries 
in normal tissues. Analyses also involved similarities of the mechanisms of 
systemic chemotherapy and total body/half body radiotherapy in low doses, 
as well as the futility of the theoretical opposition of the radiation hormesis 
phenomenon to the linear non-threshold model, dominant in radiobiology. 
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1. Introduction 

The concept that the immune system can recognize and eliminate primary de-
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veloping tumors has existed for nearly 100 years. The idea of a fight of the body 
with neoplasm, which has been once presented with an enthusiastic approval, 
turned out little by little to be nothing more but acceptance of the wish for the 
reality, optimistic self-deception. However, it does not lead to an open public 
discussion. Most of the scientists still believe that here will be a day, when a re-
search genius releases the resistance forces of a body, and they destroy forever a 
mortal enemy of the humanity. This belief becomes stronger in spite of obvious 
truisms, such as invariable difficulties in solving two opposite problems, a suc-
cessful rejection of cancer tissue on one hand, and successful prevention of re-
jection of heterologous transplants of normal tissue on the other hand, despite 
declared theoretical progress in cellular immunity, where these two tasks are 
considered. A “favorite” site of the tumor spread/dissemination in the body is 
lymph nodes, which are the very place of “protective” lymphocytes; an immuta-
ble lymphotoxicity of anti-cancer therapy regardless of a long history of its con-
stant improvement; procedures, which reduce the somatic toxicity of chemo, 
decrease their anti-cancer activity, and so on. 

Protumor activity of circulating cells originating from the bone marrow (BM) 
is the main strategic challenge to the dominant doctrine of cellular immunity. 
The generation of a protumor angiogenic microenvironment [1] is no more than 
part of the recently discovered morphogenic (trophic, feeding, morphogenic) 
function (MF) for circulating hemopoietic stem cells (HSC) and their lymphoid 
descendants, recruited in different organs and tissues from the BM [2]-[10]. 
Morphogenic migratory cells (MC) include the ancestral and angiogenic 
CD133+HSC, progenitor CD34+HSC, and young emigrating cells from the BM 
and thymus like the terminal deoxynucleotidyl transferase-positive (TdT+) pre-
lymphocytes, descendant CD31+ angiogenic T-lymphocytes, and other “regula-
tory” cells [2] [8] [11] [12] [13] [14]. These MC may become committed to their 
own tissues with different histotypes [5] [15] [16] [17], and their abilities to po-
tentiate regeneration, reparation, and cell renewal in target organs compromise 
the use of lymphocytes against tumors as a “foreign invader”. Thus, MF opens 
up an opportunity for new explanations of numerous viability phenomena in the 
fields of aging, pregnancy, malignancy, cancer treatment, radiobiology, and 
transplantology. All these situations are associated with systemic chronic in-
flammation (SCI), which is characterized by two opposite processes involving 
neutrophilia (N) and lymphopenia (L). The increasing N/L ratio (NLR) corre-
lates with the severity of the clinical outcomes of many diseases [18] [19]. Be-
sides lymphopenia, the SCI is also associated with myelosuppression, body 
weight deficits, frailty, and higher risk of death. All signs of SCI involve a single 
complex, and differ only in the degree of their severity, which corresponds to 
clinical situations. 

Here, we apply MFs to some prominent truisms in the field of human viabili-
ty, and propose alternative interpretations for some of them, based on the func-
tion of the critical physiological system, but not at the level of its separate com-
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ponents such as molecules, genes, or cells, which cannot be responsible for the 
viability of organisms at large. Lymphopoiesis is a vulnerable system in mam-
mals, and lymphopoietic reproductive capacity is the most amortizable among 
other physiological tissue systems in the thymus, BM, gastrointestinal tract, 
breast, ovary, skin, lung, kidney, liver, adrenal, adipose tissue, muscle, bone, and 
brain, which could all be responsible for the natural involution of the organism 
[20]. 

2. Considered Threats to Viability 
2.1. Aging 

The theory of immunology states that aging arises from dysregulation of the 
immune response to foreign antigens and is associated with acceleration of in-
flammation followed by natural frailty at the end of life [21] [22], and during 
different somatic diseases including cancer [23]. However, a dramatic decline in 
T-lymphopoiesis of the old people is primarily dependent on the status of pro-
genitor niches in the BM and thymus [24], which, in turn, become depleted at 40 
years of age, with either 100% for the thymus or BM in the lower legs and fe-
murs, or 30% - 75% for the BM in bones, sternum, and ribs [25]. The absolute 
number of circulating CD133+ and CD34+ cells and their clonogenic capacities 
progressively and significantly decrease with advancing age [26] [27]. Natural 
exhaustion of lymphopoiesis is responsible for the frailty syndrome and the real 
senility/aging of the naturally frail population of those ≥75 years of age [28] [29]. 
NLR positively correlates with aging in the healthy population [30], and the ratio 
increases sufficiently during multiple organ dysfunction syndrome (MODS) [31] 
[32] due to deadly lymphopenia (lower than 0.5 × 109/L) with concomitant re-
duced innate γ-δ T cells, which are able to migrate to different epithelial tissues 
[33].  

Analysis of natural survival curves by age for countries with high social status 
has shown specific rectangularity of the curve, which arises due to the strongly 
increasing exponential rate of death (ERD) at the end of life. The younger popu-
lation (25 - 75 years of age) in the US, Sweden, and UK die slowly, with an ERD ≈ 
0.0023 - 0.0028 per year. ERD in the last 20 - 25 years of life for the US popula-
tion involves an ERD ≈ 0.0812 per year [34], for Sweden it involves ≈0.102 per 
year [35], and for the UK it involves ≈0.146 per year [36]. Such large values of 
ERD indicate that most of the oldest population (88% - 97%) has died in the last 
25 years of life. A natural exhaustion of lymphopoiesis and an obvious deficit of 
trophic cells are more explainable for both MODS and life-threatening multiple 
organ failures, which also develop during natural frailty, due to poison-
ing/toxicity, burns, eclampsia, major trauma, and sepsis. The explanation of 
MODS by natural exhaustion of lymphopoiesis and deadly reduction of support 
of cellular renewal in different tissues by circulating HSC and their lymphoid 
descendants is very reliable. Nevertheless, the traditional explanation of MODS 
avoids the insufficiency of lymphopoiesis, emphasizing only inflammation with 
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leukocytosis and neutrophilia [31]. 

2.2. Eclampsia 

Rapid growth of the fetus during pregnancy, though natural, is associated with 
complications in 7% of cases, involving preeclampsia with chronic inflammation 
and with a high risk of death of the mother and the fetus [37] [38] [39] [40]. An 
eclampsia at pregnancy, leading to MODS, is consistent with the main role of 
temporal exhaustion of lymphopoiesis. During normal pregnancy, CD34+ 
VEGFR-2+ and CD133+ VEGFR-2+ angiogenic stem cells increase by the 
second and into the third trimester, when the mass of the growing fetus is ≥500 
g. This excess of circulating HSC declines to nulligravida (a woman who has 
never been pregnant) levels by 48 h postpartum (the period following child-
birth). During pre-eclampsia, these cells are comparatively reduced in numbers 
[39] and this reduction is accompanied by 10% - 15% of maternal deaths, par-
tially of cardiovascular origin [41] [42]. Remarkably, cardiovascular disease is 
the leading cause (rank 1) of natural death in the advanced age group (≥85 years 
of age) with a high EDR [43]. Thus, an excessive rate of natural proliferation of 
embryonic fetal tissues can induce a reversible deficit of trophic cells in a small 
percentage of only those women who, probably at birth, had the lowest value of 
hematopoiesis that was naturally distributed in the population [44]. These data 
indirectly show the similarity of the temporary status of pregnancy during the 
originally weakest hemopoiesis with those who experience frailty during natural 
aging.  

2.3. Malignancy  

A cancer, being embryonic-like tissue, involves a set of conventional cellular 
processes used to grow the embryo during morphogenesis [45], as well as to in-
crease the body mass intensively during a young age. In contrast to pregnancy, a 
malignant growth is an uninterrupted process, which efficiently leads to in-
flammation, frailty [28], chronic irreversible lymphopenia, anemia, protein dep-
letion, reduced food intake, fatigue, cachexia, and death [46] [47] [48]. A high 
number of CD3+ tumor-infiltrating lymphocytes have been widely interpreted 
as proof of an immune defense against cancer, because they are associated with a 
favorable prognosis. However, the more lymphocyte infiltration there is, the 
higher the rate of tumor growth, and the smaller the tumor size and lower stage [49] 
[50] [51] [52]. This is evidence in favor of a trophic/morphogenic/proliferogenic 
function of migrating lymphocytes during tumor “vertical” growth, partially in-
volving intertumoral CD34+HSC [6], which, in turn, shows a positive correla-
tion with the microvascular density of the tumor, involving many intertumoral 
CD3+ lymphocytes (TILs) and FOXP3+T-regulatory lymphocytes [8] [53] [54]. 
The inflammation-associated infiltrates in cancer tissues serve as a niche for tu-
mor progenitor cells, promote cancerogenesis, and may lead to recurrence of the 
disease after surgery [9] [55] [56] [57]. Thus, excessive consumption of feeding 
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cells by rapidly growing cancer tissue or fetal tissue can induce an irreversible or 
reversible deficit of their reproduction in the bone marrow. Such deficits, in 
turn, may become fatal for longevity, independent of the nature of the excessive 
growth (Shoutko A, Akushevich I, Ekimova L, Karamullin M, Yashin A. The 
terminal exhaustion of hematopoietic potentiality as the universal cause of 
death. In: abstracts of the 38th annual meeting of the European radiation re-
search society; 2010 Sept 5 - 9; Stockholm University, Sweden 2010; p. 187). 
However, attempts to interpret the immune destination of tumor-infiltrating 
lymphocytes is continuing, but ignore the nonequivalence of the compared 
groups in terms of tumor size [58]. 

2.4. Cancer Therapy 

In 1942 founders of chemotherapy Goodman and Gilman hypothesized that ni-
trogen mustard (called “synthetic lymphocidal chemical”) could destroy sensi-
tive normal white blood cells and cancerous ones [59]. At present nitrogen mus-
tards are cytotoxic (alkylating) chemotherapy agents derived from “mustard 
gas”, which was used as chemical warfare agents (iprite) during the First World 
War. According to modern sources, 85% - 90% of anticancer drugs are mielode-
pressants [60] [61], carcinogens [62], or act as radiomimetics [63]. Radiation 
and chemical genotoxic anticancer agents act on DNA, mitosis, and at metabolic 
checkpoints to block DNA replication. Many mechanisms like single and double 
strand breaks, DNA adducts, base oxidation, base deamination, DNA-protein 
crosslinks, and DNA-crosslinks are common [64]. Chemotherapy is known to be 
a greater risk factor than radiation therapy for tumorigenicity, genotoxicity, cy-
tostaticity, mutagenicity, clastogenicity, and teratogenecity [62] [65]. Systemic 
(nonselective) cytotoxic cancer treatment is accompanied by side effects on 
healthy tissues, especially in fast-growing tissues involving inflammation, deep 
irreversible lymphopenia, immune suppression, anemia, bleeding or clotting, 
bowel dysfunction, nausea, dietary issues, hair change, infertility, heart damage, 
lung dysfunction, bone density loss, distress, pain, memory and other mental 
deficits, fatigue, weight changes, increases in the NLR [65] [66] [67] [68] [69], 
and cancer [62] [64] [70]. Even conventional doses of all types of anticancer 
drugs increase lymphopenia, myelosuppression, and hematological toxicity [61] 
[71], especially in older patients, because their bone marrow reserve decreases 
with age [72] [73] [74] [75]. Therapy usually continues until the end of life, with 
short breaks involving periods of remission [76] [77]. In an advanced cancer 
population of diverse tumor types, there is a significant decrease in progres-
sion-free survival in systemic therapy involving treatment 1 through treatment 5, 
manifested as progressive exhaustion of the lymphopoietic resource and conco-
mitant occurrence of incurability [78]. Regularity and validity of lymphopenia 
during a successful treatment [79] excludes it from the category of an accidental 
complication. During the last 5 years of life, increased reproductive activity of 
HSC and increased numbers of CD34+ and CD133+ cells in the circulation of 
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treated patients have been shown to undergo a rapid decrease [80]. However, a 
satisfactory 5-year survival is present in cancer patients, when their specific re-
productive activity of stem cells (ratio G2-M/CD133+cells) before treatment is 
excessive (for instance, five-fold greater compared with a healthy level). The 
short-living patients originally have a reduced number of progenitor cells, ac-
companied by reduced reproductive potency [80] [81] [82]. These symptoms of 
exhaustion manifest as a decrease in the feeding function of lymphopoiesis, and 
are typical for the final and ineffective period of therapy. In the last year of life, a 
weakened subnormal reproduction of CD34+HSC in the BM occurs, which is 
usually classified as a turbulent and symmetric type of cell division [83]. Thus, 
the benefit of treatment can arise from temporal suppression of trophic cell 
production, if their generation before therapy is fully sufficient. If it is not, the 
conventional anticancer treatment may bring about a poorer result compared 
with palliative therapy or even the absence of treatment [84] [85] [86] [87]. Ac-
tually, “rushed approvals of chemo result in a poor deal for both patients and 
cancer research” [88]. 

The above results showed that the inhibition of lymphocytopoiesis, regardless 
of physiological aging, eclampsia at pregnancy, malignant growth itself, or dur-
ing treatment with cytotoxic agents, including anticancer drugs and radiation, is 
accompanied by a deceleration of the fast growth processes in any kind of tissue, 
including both normal and malignant tissues. Both cancer and cytotoxic therapy 
then gradually potentiate lymphocytopenia, which lasts until the death of the pa-
tient [76] [77] [78]. 

3. The Potentiation of Lymphocytopenia by Both Cancer and  
Cytotoxic Therapy 

Most cancer patients die, losing several decades of their naturally expected life 
span, despite conventional therapy. 

The calculated ERD of all 1.526 million cancer patients diagnosed between 
2012 - 2016 in the UK for all stages and treated during a 5-year period was 0.143 
per year ±0.004 at a confidence interval (CI) of 95% [89]. The average ERD, cal-
culated in the same manner for all cancer sites of the US population was 0.081 in 
2014 [90]. Both calculated ERD values are comparable with average ERDs for 
natural aging in these two countries (see 2.1 Aging). Thus, 87% - 97% of cancer 
patients with a large ERD usually live no longer than 25 years, and die like nor-
mal senile patients.  

The average ERDs calculated for the 5-year net survival of 29 cancer sites in 
the UK for subgroups with ages 15 - 44, 45 - 54, 55 - 64, 65 - 74, and 75 - 99 
years at diagnoses showed ranges of 0.086 - 0.074, 0.102 - 0.092, 0.109 - 0.096, 
0.143 - 0.131, and 0.216 - 0.194 per year, respectively [89]. In a similar manner, 
the ERD values were calculated for all US patients dying from cancer within 5 
years with ages of <45, 45 - 54, 55 - 64, 65 - 74, and ≥75 years at diagnoses, with 
ERDs of 0.038, 0.059, 0.071, 0.08, and 0.137 per year, respectively, as of 2008 - 
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2014 [90]. Being joined together, both ranges can be described by the 
second-degree polynomial Equation 1: 

20.0000005 0.0036 0.132; 0.86 0.18; 0.002y x x R p= − + = ± =       (1) 

where the x-average age at diagnosis in the subgroups is in years, the y-averaged 
ERD in the subgroups is in years−1, with an R-correlation coefficient, and the 
p-values indicating its validity.  

According to Equation (1), the ERD values slowly increase with age (+30%) 
from 30 to 65 years of age, and then the rate quickly doubles from 65 to ≥87 
years of age, which reflects the real influence of aging. The influence of cancer 
progression manifests as the highest ERD value of 0.205 per year ±0.019 with a 
95% confidence interval of 231,126 patients with stage 3 only for different can-
cers from the same UK database [89]. The value of 0.205 is independent from 
the age at diagnosis, and the average ERD of 0.146 per year is typical for natural 
senescence of the UK population. Thus, the majority of treated patients with 
malignant diseases were older patients at the age of diagnoses. Although their li-
fespan was increased by 5 - 10 years because of therapy, when diagnosed be-
tween 15 - 65 years of age, it will result in the loss of 5 - 55 years of active natural 
longevity. 

These rough calculations explain why such modest criteria as a 5-year survival 
rate are widely used in practice, independently of the age at diagnosis and the 
type of cancer. The calculations also show that a preliminary aging of patients is 
a result not only of malignant progression but also of conventional therapy, 
which promotes frailty and senescence of patients in parallel with the progress of 
malignant diseases. In general, modern anticancer agents for systemic therapy 
retain the toxic properties of their pharmacological predecessors, such as those 
of mustard poison. Even the results of modern immune checkpoint inhibitors 
(ICI) are subject to current systemic conditions, because higher NLR is asso-
ciated with poorer outcomes for patients receiving ICI across studies [91] [92] 
[93]. ICI treatment is able to destroy the CD34+HSCs, which have PD-1 and 
PD-2 ligands [94]. ICI treatment depletes the common number of lymphocytes 
and the T-reg cells number [95] [96] [97] [98]. Furthermore, this type of therapy 
is also often associated with subtle, potentially fatal adverse events [99]. 

4. The Proof for an Indirect Destructive Mechanism of  
Conventional Systemic Cytotoxic Therapy at the  
Level of Lymphopoiesis 

The well-known increase in malignancy by age is reversed in the oldest cohort of 
patients. The incidence, mortality, and prevalence of a wide variety of cancer 
sites (n = 24) stop their increases at approximately 80 years of age, and then de-
cline during the last 25 years to a natural age limit of 105 years. [100]. During 
aging, the mean rank of death from infectious influenza and pneumonia 
(J09-J18) increases from 11 (at ages of 45 - 79 years) to 7 (at ages of 85 to ≥100 
years), manifesting as weakening of the immune system. However, the rank of 
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death from malignant neoplasms (C00-C97) diminishes from 1 to 3 [101], re-
flecting their trophic dependence on lymphopoiesis. These population-based 
results correlate with age-dependent impairment of angiogenesis and cancer 
tumor growth in humans [102] [103], and are consistent with in-phase changes 
of the presence of the CD133 marker in blood and in the process progress of ma-
lignancy [104]. As age advances, a dramatic decline in the production of naive T 
cells has been reported [105]. In contrast to weakening of the lymphoid lineage, 
myeloid compartmentalization is expanded with aging, providing a proinflam-
matory environment in the body and becoming detrimental later in life [106]. 
Such age-related reduction of cancer activity cannot be explained by the widely 
accepted explanation that the, “immune system, which fights an infinite number 
of foreign antigens and breaks down with aging, impairs the body’s ability to 
resist these invaders” [23]. The loss of malignant activity in a naturally sick pop-
ulation relates more realistically to a weakening of the trophic supply, which is 
common for normal and malignant tissues of a host. Comparison of the impact 
of the natural evolution of the thymus, a source of trophic young lymphocytes, 
on the viability of patients with nonmalignant and malignant diseases has shown 
a trophic contribution of the thymus toward tumor development, and assumes 
that use of cytotoxic therapy can exert indirect benefits via artificial lymphope-
nia. The increase of infectious diseases testifies to the weakening of immunity in 
parallel with weakening of malignant activity [107]. Lymphocytopenia can 
therefore contribute to the cytotoxicity of cancer [81] [108] [109] [110], slowing 
the growth and temporarily delaying death, at least for 5 years, and less often for 
10 years. It is therefore more reliable to explain ecological data [100] [101] in 
terms of the exhaustion, like aging, of universal morphogenic activities of feed-
ing lymphoid HSCs and their morphogenic descendants in cancer patients [111] 
[112] [113] [114]. The BM, as a resource for multiple stem cell populations, is 
limited, and its potency is progressively exhausted by an abnormally high con-
sumption of trophic cells by quasi-embryonic tumors, ceasing trophic passes 
with the BM. A history of extra consumption of circulating feeding cells for tu-
mor growth before diagnosis is unknown. So, previous weakening of the tropic 
relation in the “BM-Tumor” limits the opportunity to suppress this mechanism 
by periodic cytotoxic courses, and predetermines the rate of gradually develop-
ing “resistance to therapy” during the clinical period [115]. As a result, initially 
effective cytotoxic therapy is steadily disabled and even dangerous at later times 
[80] [84] [86]. A treatment usually continues until it has a chance to work but, in 
parallel, it exhausts lymphopoiesis from cycle to cycle, losing its effectiveness 
and inducing serious complications, including incurability and a higher risk of 
death. Intense chemotherapy can actually shorten the life of patients. People who 
are much older and have exhausted lymphopoiesis may not be able to tolerate 
intense treatment, which brings no benefit, despite its intensification [116]. 

Thus, the acceleration of aging and frailty by artificial suppression of lym-
phopoiesis in cancer patients leads to temporary restriction of malignant growth, 
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in manner similar to that of natural aging. Systemic cytotoxic treatment, repro-
ducing the phenomenon of natural senility, may destroy lymphopoiesis, rather 
than “stimulating the immune defense against cancer” at any age. In addition, 
the deadly “therapeutic” waste of sensitive stem and progenitor cells in the BM 
decreases its proliferogenic influence on malignant and normal tissues [117], 
which explains why the therapeutic benefit of cytotoxic agents is inevitably asso-
ciated with “moderate” lymphocytopenia [79]. 

5. Systemic Therapy Does Not Directly Control the Tumor 

The benefit of chemotherapy has been assumed to involve direct lethal activity of 
the drugs toward tumor cells. However, direct control of tumor growth using 
local irradiation can be achieved by using only a few dozen Gray (Gy) [118]. 
Systemic chemotherapy as well as systemic radiotherapy in such huge 
dose-equivalents would result in the complete ablation of the bone marrow and 
death of patients. 

It is accepted that systemic chemotherapy cannot be lethal for people without 
cancer as well as nonlethal dose of total body irradiation of a healthy man is not 
more, than 2 - 3 Gy. Then, systemic chemotherapy is unable to kill a tumor cells 
fundamentally. Moreover, many authors argue that chemotherapy stimulate 
both the innate and adaptive arms of the immune system [119]. Tumor response 
to therapy is regulated by its vasculature in range of absorbed doses of radiation 
not less, than 10 - 20 Gy [120] [121]. Thus, nonlethal chemotherapy is not 
enough to control directly even most sensitive vascular structure of a tumor. The 
cytotoxic chemotherapy combined with administration of anti-VEGF drugs 
leads to improvements of survival of patients with colorectal cancer, breast can-
cer and non-small lung cell cancer compared to chemotherapy alone [122]. In 
contrast, the results generate some confusion. It is known that the efficacy of 
chemotherapy depends on efficient delivery of cytotoxic agents to tumor cells 
through efficient blood flow, whilst antiangiogenic therapy, according to the 
theory, should destroy blood vessels and thus prevent drug delivery. The confu-
sion eliminates easily, as recruited in tumor microenvironment (TME) mono-
nuclear cells have paradoxical protumor functions. They originate from BM and 
found in invasive tumor margins and in draining lymphoid organs or lymphoid 
structures adjacent to TME. TME includes HSC, protumor Treg lymphocytes 
and B lymphocytes, which convert T into Treg, endothelial cells and pericytes, 
which promote lymphangiogenesis and cancer progression, including metastases 
[123]. Inducible “therapeutic” lymphopenia restricts all these protumor activities 
indirect way. In 1981 we showed, that low-dose irradiation of whole body of tu-
mor-bearing animals except the small shielded area of graft, retards significantly 
tumor growth and prolongers the life [2]. 

The main side effect of conventional systemic chemotherapy or systemic total- 
or half-body irradiation (TBI or HBI) with repeated low-dose (0.5 Gy every 4 
days, total dose 2 Gy [124]; 3 Gy every 3 days, total dose 9 Gy [125]) is deep (2 - 
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5-fold) lymphocytopenia. Lymphocytopoietic tissues are most vulnerable in the 
organism to any toxic agents, and their involution is associated with the early 
onset and acceleration of aging in mammals including humans [24] [75]. The 
allowable oncological dose of a “moderate” level of 0.5 - 0.8 × 109 lymphocytes/L 
[79] corresponds to acute radiation syndrome (ARS) for healthy people exposed 
to a single dose of ionizing irradiation of only 2 - 4 Gy, followed by precipitously 
decreasing the total hematopoietic output and probability of death from 5% to 
50% [126] [127]. Clinically significant ARS after single TBI in doses as low as 2 
Gy classically includes not only hematological but also gastrointestinal, cutane-
ous, and cardiovascular/central nervous system problems [128], i.e., the so-called 
MODS [31] [32]. The post-irradiation MODS is very similar to “complications” 
after systemic therapy [81] [129] [130]. Nevertheless, the majority of experts in-
sist on “stimulation of anticancer immunity” when treating patients. Thus, they 
ignore the specific strong deficit of common lymphoid progenitors (CLP) 
Lin-CD34+CD38+CD127+ [131] in the BM after ageing [132] and conventional 
systemic therapy [133], with an obvious dependence on tumor and metastases 
progression from the number of intertumoral CD34+HSC [6], involving a cor-
relation between the microvascular density with the number of intertumoral 
CD3+, CD3+FOXP3+regs lymphocytes [8] [53].  

These data are not compatible with immune explanations, which describe 
“specific rearrangements on dying tumor cells, which render them visible to the 
immune system,” involving either “replenishment of immune cell pools through 
its transient lymphodepletion,” “subverting tumor-induced immunosuppressive 
mechanisms,” or “exerting direct or indirect stimulatory effects on immune ef-
fectors” [134] [135] [136]. A more natural and less controversial suggestion is 
that the temporal benefit from cytotoxic agents is due to destroying the number 
of sensitive trophic HSCs and “regulatory” cells. Depending on the treatment 
agent dose, these trophic cells can not only be destroyed but also distracted from 
growing cancer cells, resulting from reparation/regeneration of numerous forms 
of sublethal damage to cells in other normal tissues, in systemically-treated or-
ganisms. We call such trophic redistribution a “competitive mechanism” [117]. 

6. The Proof for an Indirect and “Competitive” Mechanism 

Even if a cytotoxic factor is insufficient when it comes to diminishing the num-
ber of trophic cells, there remains the possibility of distracting them from the 
growing tumor due to restoring the majority of sublethal injuries of normal cells 
in exposed neighboring tissues. The phenomenon of radiation hormesis demon-
strates this possibility. 

Cancer risk is lower in geographic regions with an abnormally high radiation 
background, which is associated with stimulation of anticancer immune defense 
by radiation and, hence, with the harmlessness of exposures to low doses [137] 
[138] [139] [140] [141]. According to this logic, hormesis is supposed to be the 
missing link to a better cancer treatment [142]. Moreover, “stimulation of im-
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munity” is the main argument of these authors, who base their theory on the 
“hormetic” or “threshold” models [143] [144] [145] [146], to attack officially 
recognized and dominant radiobiology arguments using the linear no-threshold 
model (LNT) [147] [148] [149]. The LNT model assumes that radiation damage 
is directly proportional (“linear”) to the doses at all ranges with no safety thre-
shold, so the term “stimulation” contradicts the idea of the total harmfulness of 
radiation, and is a key part of the current theoretical controversy.  

However, hormesis could be explained without supposing any stimulation. 
Circulating trophic cells take part in tissue reparation and regeneration during 
adaptive response to low dose cytotoxic stress, which involves enhancement of 
DNA repair [150]. A lower cancer risk and concomitant increasing life span 
during hormesis may result from distraction of circulating trophic hemopoietic 
stem cells from the growing tumor to the reparation of numerous forms of sub-
lethal radiation damage to cells in other tissues of the exposed body. Radiation as 
well as cytotoxic drugs both cause similar forms of DNA damage, which are sin-
gle causes for cell cycle arrest and/or cell death, independently of the nature of 
the tissue. Approximately 80% of most representative single strand breaks of 
DNA and 25% - 75% of double strand breaks may be restored by the organism 
[64] [151] [152]. 

The changes in an average life span (LS) were compared in a group of 
whole-life irradiated dogs (a dose 3 mGy/day of Co 60 γ-rays); the weakest ani-
mals in the group died first because they were originally more sensitive to irrad-
iation. At the same time, only the weakest animals kept a constant LS after a 
cumulative dose of 1100 mGy (2700 days vs. the control of 2700 days), while 
healthier animals (the control of 4300 days), had after irradiation at the same 
dose a shorter LS of 4050 days [153]. The same cohorts of control and irradiated 
dogs [data extracted from the γ-Beagle Dog Tissue Archive, hosted by the Wo-
loschak Laboratory (Chicago, IL, USA)] were divided into four subgroups with 
short and long mean LSs (two control and two irradiated) [154], and for each of 
them the sums of personal LSs were calculated. Comparison of data from the 
control and irradiated dogs revealed a significantly higher sum of LSs only in the 
exposed short-living subgroup (integral dog-years by age = 75.5 vs. the control 
of 65.2). Among long-lived animals, there was no radiation hormesis (dog-years 
integral by age = 77.0 vs. the control of 77.2). In contrast with long-lived ani-
mals, hormesis in the short-lived group was accompanied by an increasing per-
centage of animals with tissue atrophy (2.4-fold), body weight loss (2.4-fold), 
and significant reductions in the percentage of anemias and hemoblastoses 
(10-fold). There were no significant differences with controls in both exposed 
subgroups in terms of the incidence of solid malignancies, metaplasia, inflam-
mation, diarrhea, and vomiting. These data confirmed the tendency of hormesis 
only in the weakest animals [155]. Because the frailty syndrome correlated with 
the loss of general somatic health and the loss of body weight [156], the data ex-
clude the notion that radiation was associated with healing or stimulation and, 
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instead, indicate that certain pathologies (e.g., hemoblastoses with high risk of 
quick death) may have only substituted for other nonfatal somatic problems in 
weaker animals [147] [154] [155]. It correlated with the typical “side effects” of 
conventional cytotoxic chemotherapy, which include body weight loss and im-
munosuppression, and was inseparable from the benefits afforded by any cyto-
toxic anti-malignancy treatment [79] [81] [110] [115] [125]. Hormesis, found 
after a dose 3 mGy/day in the short-lived subgroup only, with greater body 
weight loss and tissue atrophy, suggested that the sublethal tissue injuries were 
adequate to the lymphopoietic potential weakened originally. If this is correct, 
the same radiation-induced injures in the long-lived (healthier) subgroup could 
be suboptimal to redistribution of circulating trophic cells from spontaneous 
leukemogenesis in the BM, and to reparation of the inducible sublethal injuries 
in normal tissues [154] [155]. Thus, the proposed explanation does not com-
promise the top priority/pre-eminence of the NLT model [147] [154] [155] and 
shows haw tissues injures mimic the stimulation of the anti-tumor, immune de-
fense. 

The proposed destructive and distractive mechanisms explaining the success-
ful clinical use of low dose TBI and HBI [115] [117] [124] [136] [135] [157] 
[158] [159] were applicable to systemic treatments with any cytotoxic agents, 
without the need for any “stimulation” of immunity [160]. For instance, frac-
tional longitudinal irradiation of the lower part of the body (HBI) in patients 
with relapsed ovarian epithelial cancer (four courses 0.1 Gy ×10 daily; cumula-
tive dose 4 Gy) contributed to longevity more (average life span of patients 42.6 
months), or at least not less, than did conventional chemotherapy with carbopla-
tinum and docetaxel (average life span 29.3 months) [115]. Both schemes could 
not be able to destroy tumor tissue directly. Actually, biologically effective dose 
of HBI in this study was approximately 1 Gy, taking account of changes in 
dose-per-fraction and overall time of tissues reparation/regeneration [161]. 
Therefore, HBI was not be enough for indirect destructive control of tumor 
growth like chemotherapy did, and should be classified, as “distracting” com-
pared to chemotherapy. 

7. Conclusions 

Widely used conventional doses of anticancer drugs as well as TBI/HBI for sys-
temic therapy are too low to control tumor growth directly. The application of 
the trophic/morphogenesis function of HSC and their trophic lymphoid des-
cendants to the main sites of a distant cancer show that temporary benefit arises 
indirectly, due to either destruction or to competitive distraction of circulating 
trophic cells from proliferating quasi-embryonic malignant targets, to repa-
rate/regenerate a multitude of sublethally injured normal cells. Because chemo-
therapy and radiation both induce similar types of DNA damage for cell cycle 
arrest throughout of the body, there is no strong argument for overestimation of 
the therapeutic efficiency of systemic chemotherapy or for the underestimation 
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of TBI/HBI therapeutic approaches. A temporary benefit from all system-
ic/indirect treatments, as well as the subsequent irreversible resistance to them, 
first develops because of temporary and moderate restriction of trophic cell re-
production in lymphopoiesis and, second, results from its steady exhaustion as 
the most amortizable system in the host organism. A lowered resource of gener-
ation of trophic lymphoid stem cells is in agreement with a lowered inci-
dence/mortality/prevalence of cancer during the last decades of life. The trophic 
influence of lymphopoiesis on cancer development eliminates conflict with the 
LNT theory that involves the importance of anti-tumor immunity, when the 
phenomenon of radiation hormesis is explained. The trophic function of circu-
lating cells of BM origin is also compatible with such syndromes as preeclamp-
sia, MODS, frailty at senility, and other infirmities of trophic origin.  

Long-standing controversy surrounding the cancer immunosurveillance hy-
pothesis of Thomas (1959) and Burnet (1970), as well as the concept of Dunn 
and colleagues (2004) that a malignant cell has capacity to evade the suppressor 
functions of the immune system by “immunoediting” do not take into account a 
trophic property of circulating mononuclear cells. This review opens first prin-
cipally new potential for reconsidering of long-lived fundamental doctrine of an-
ticancer immunity on the base of natural function of circulating cells of bone 
marrow-origin to support a growth and regeneration of own body regardless of 
their malignant or non-malignant nature. The overview, despite its fragmentary 
nature, discusses the fundamental and practical applicability of alternative 
trophic mechanisms in a wide range of pathologies. Further comprehensive re-
search is needed at the level of vital physiological systems, which will facilitate 
the discovery of more hidden curative opportunities associated with circulating 
stem cells and immature lymphocytes. 
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