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Copyright © 2019 by autho a disintegration of the canonical representation of G as isometric lattice

to orphisms of Jins) (X ,Zi o ) as an [ -direct integral of order in-

decomposable representations. If (X ',Zj u’ ) are probability space, and,
for some 0<e <o, Gactsin a strongly continuous manner on

1+ (X ',Zj o’ ) as isometric lattice auto orphisms that leave the constants

fixed, then Gacts on ' (X ',zj u’ ) in a similar fashion for all 0 <e<oo.

Moreover, there exists an alternative model in which these representations
originate from a continuous action of G on a compact Hausdorft space. If

(X ’,Zj ,u'j) are separable, the representation of G on L(“E)(X ’,zj ,u'j)
can then be disintegrated into order indecomposable representations. The

notions of L' -direct integrals of Banach spaces and representation is de-
veloped for extend those in the literature.
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1. Introduction and Overview

There is unitary group representation. Apart from an intrinsic interest and ma-

originates

from quantum theory, where the unitary representatio y group

yields a

unitary representation of the pertinent symmet family of

canonical representations on Banach lattic rotatioft group of R’

acts on the 2-sphere in a measures-pres a canonical uni-

tary representation on I’ (Sz,do*’ t, canonical strongly

continuous representations as is ice automorphisms of the Banach
lattice 1" (Sz,daj )

Likewise, for all 0<e i p of R") acts in a strongly

continuous fashion as is@metric lattice jautomorphisms on the Banach lattice

- In spite of this, not much is known about

atter, about the related positive representation

ontext, of the passage from single operator theory to groups
nd their representations—a development that was initially also
and guided by the wish to understand unitary group representa-
it seems promising to develop a similar theory for representations in Ba-
nagh lattices.

One of the highlights in abstract representation theory in Hilbert spaces is the
insight that every strongly continuous unitary representation of a separable lo-
cally compact Hausdorff group on a separable Hilbert space can be disintegrated
into irreducible unitary representations. This follows from a similar theorem for
C'-algebras and the standard relation between the unitary representations of a
group and the non-degenerate representations of its group C'-algebra; every re-
presentation is thus built from irreducible ones. Is something analogous possible
for strongly continuous actions of a locally compact Hausdorff group as isome-
tric lattice automorphisms of Banach lattices? This seems a natural guiding
question when studying representations in an ordered context. It is still very far
from having been answered in general, and presumably one will have to restrict
oneself to a class of suitable Banach lattices. After all, the unitary theory works

particularly well in just one space, namely ¢, and it seems doubtful that there
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can be a uniform answer for the existing diversity of Banach lattices.

What, exactly, should “irreducible” mean in an ordered context? When
searching for the parallel with unitary representations it is actually more conve-
nient to think of irreducible unitary representations as indecomposable unitary
representations, which happens to be the same notion, and look for the analogue
of the latter. Given a representation of a group G as lattice automorphisms of
two vector lattices £, and £E,, there is a natural representation of G as lattice
automorphisms of the vector lattice E =E, @ E, . If a representation of G as lat-

tice automorphisms of a given vector lattice £'is not such a direct sum of

cial case of [[6], Theorem 11.3].

Coming from the other side, if a

definition.

Definition 1.1. Let F
from G into the
p is order indé
bands in F.

lattice is an order direct sum of order indecomposable positive representations,
where the latter can be classified [[7], Theorem 4.10 and Corollary 4.11]. This

answers the question about disintegrating finite dimensional positive represen-
tations of finite groups. The matter is still open for infinite dimensional positive
representations of finite groups.

For positive representations of an abstract group G on a normalized Banach
sequence space £ it is true that the representation is order direct sum of order
indecomposable positive representations; see [[8], Theorem 5.7]. If the group
has compact image in the strong sequence of operators topology, and £ has or-
der continuous norm (this includes the spaces 0" for 0<e<o), then these
order indecomposable positive representations are all finite dimensional. This is
an analogue of the well-known theorem for unitary representations of compact

Hausdorff groups.
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This first main step—omit the necessary conditions for the sake of clari-
ty—consists of a disintegration into order indecomposable representations of the
representations of a locally compact Hausdorff group G as isometric lattice au-

(1+e)

tomorphisms of e -spaces, as canonically associated with an action of Gon a
Bore probability space ( X ,zj o’ ) with invariant measure Z_,- 4’ . Such a re-
presentation is order indecomposable precisely when Zj ' is ergodic. One
might therefore hope that, somehow, a disintegration of Z,— 4’ into ergodic
measures A’ will yield a disintegration of the canonical positive representation

on ' (X ,Zj ! ) in terms of the order indecomposable g ical represen-

tations on L(HE)(X,/V) for ergodic A’. This can b

proof of this result is a
Z}, 4’ in terms of those
In spite of its aesthetic ap

probability space (X ,Z/_ i ) Under mild conditions, it can be shown
that an action of G on L(”‘)(X ,Zj o’ ) as isometric lattice automorphisms

that leave the constants fixed, can be transferred to another model where there is
such an underlying action; see Theorem 5.14. Then back in the ergodic theoreti-
cal context, and combination with the result from the first main step yields a
disintegration result for these representations into order indecomposable repre-
sentations as well. The pertinent Theorem 5.15 should be thought of as an or-
dered relative of the general unitary disintegration result. The key transfer
Theorem 5.14 for this step is strongly inspired by the material in [9].

It seems that, for practical purposes, the main results have a rather broad
range of validity; we will make a few technical remarks to support this statement.

One of the re-occurring hypotheses is that a space is Polish. For a locally

compact Hausdorff space, being Polish is equivalent to be second countable; see
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[[10], Theorem 5.3].

Thus all Lie groups are Polish see [[11], Section 1.3]), and, more generally, so
are all differentiable manifolds. Therefore, the factorization Theorem 4.5 and the
disintegration Theorem 4.9—for which the underlying Polish space X need not
even be locally compact—are applicable to all actions of Lie groups on differen-
tiable manifolds. In a similar vein, note that it follows from the combination of
[[12], Vol. I, Exercise 1.12.102] and [[12], Vol. II, Example 6.5.2] that the meas-

ure space (X ,zj 1’ ) is always separable whenever X is a separable metric

space and Z.l_ 4’ is a Borel probability measure on X. Th he disinte-
gration Theorem 5.15, where this separ ability is assuméd al com-
monly occurring situations as well.

This paper is organized as follows:

In Sec 2, introduce some terminology an i ish a few pre-

(1+¢

representations of groups on o )—s

e disintegration Theorem 4.9 in the case of an action on the
casure space. As a worked example, give a concrete disintegration

L(1+e)

f the repy€sentations of the unit circle on the -spaces of the closed unit

as these are canonically associated with the action of the circle on this disk

Section 5 is concerned with disintegrating representations when there is no
action on an underlying measure space. Its main result, the disintegration Theo-
rem 5.15, is the ordered relative of the general unitary disintegration.

Section 6 contains some remarks on the current status of the theory and on
possible further developments. Even though this paper was motivated by a re-
presentation theoretical question in an ordered context, the interpretation of
the main results as answers to this question is almost just an afterthought.
The reader can find definitions and terminology concerning vector lattices,
but, if so desired, the limited number of occurrences of this terminology in
the sequel that stand beyond the notions of a vector lattice and a lattice ho-
momorphism can also safely be ignored. Then be read from a primarily er-
godic theoretical, functional analytical, or general representation theoretical

perspective.
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2. Preliminaries

In this section, fix terminology and notation, and establish a few preliminary re-

sults on group representations.

2.1. Terminology and Notation

All vector spaces, except the Hilbert spaces, are over the real numbers. This is no
essential restriction, as the results extend to complex 1) -spaces and (in Sect.

3) complex Backspaces and Banach lattices in an obvious manner, but this con-

vention reduces the necessary terminology and size of the pu60

where the topological group

space X such that the map

/ -additive and takes values in[0,00] LIt is

not assumed to bé ite. is a topological space, then a Borel measure is

measure space and 0<e¢<oo, £ (X,Zj ,uj) denotes
ofall (1+¢) -integrable extended functions

, and L(”é)(X ,Zl_ 7 ) denotes the Banach lattice of all
classes of extended functions f; e £ (X,zj ,uf) , under Z‘/_ u

Q
O
——

ement of ') (X,Zj ,uj) for different measures Z,- w4’ on X, and con-
the equivalence classes of f, in ') (X DI ) for these Z‘/_ u It is
essential to keep a clear distinction between these objects, so do not identify
functions that are equal almost everywhere, and, when (1+€) is fixed, denote
the equivalence class in ") (X,Zj ,uj) of an element f e ) (X,zj ,uj)

by L1, |

In the same vein, if V'is a vector space, @’ is an index, and Zj""w, are
semi-norms on V, then denote the equivalence class of x€) in V/ ker(||~||w,- )
by X[,

If Yis a subset of X; then 1, is the characteristic function of Yon X.

If B, are normed space, then ﬁ(B j) denotes the bounded linear sequence

of operators on B, .

2.2. Preliminaries on Group Representations

Suppose that the abstract group G acts as measure preserving transformations
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on the measure spaces (X ,zj 7 ) Then say that Z}, u’ are G-invariant

measure. In this case, for every 0<e <o,

>op, (g)[f] =y [x - f (g‘.lx)] are well-defined representa-
J ,Uj J J Zj‘”j J J J Zl_#,f

tion of G as isometric lattice isomorphism of 7" (X , Z,— yr ) . Refer to this re-

presentation as the canonical representation on 9 (X ,Zj ! ) ; in the literature

this is also called a Koopmans representation.

A measurable subset Y of Xis Z,- 1’ -essentially G-invariant if

Zj,u-’ (ng A Y) =0 for all m, where YAgY = (YUg are the
measures Zj 4’ such that Zj,uj (Y) =0.

Or Zj,uj(Y)zl for all zjyj -essentj inyaMant, megsurable subset
Yof X.

Investigate the relationship betw,

j ..
X,zj,u )) This is es-
tion of the disintegration re-
primarily ergodic theoretical or
xt two results. The following lemma.

-finite measure space, and let 0 <e<oo.

‘J:fj(y):Ofor,uj—almost aller}.

j .
ecall that the measure algebra (Aj )Z_,u-’ of (X ’Z,- U ) consists of the
equivalence classes [Y]z‘ﬂj of measurable subsets Y of X, where Y, and Y,

are equivalent when Y 4/ (YAY,)=0. Lemma 2.1 shows that there is a bisec-

tion between the elements of (Aj )Z , and the projection bands in
ji*

L(1+e)( X,Zj ﬂf), where an element of Z(/_[Y ] of the measure algebra

zl‘ﬂj
corresponds to the well-defined bands Z},(B ) )[Y]z y = zj(Bj)

.

If an abstract group G’ acts as positive sequence of operators on
79 (X,ijj) , then it permutes the projection bands in 1"**) (X,Zj yj) JIf
as is the case for the group G, this positive action originates canonically from an

action as measure preserving transformations on (X ,zj u ) , then G also acts
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canonically on (Aj )Z,-ﬂf :for g, eG and [Y]e (Aj )Zjﬂj , the action
ngj [Y]zjﬂj = zj[ng]zjﬂj is well-defined (see, e.g. by Marcel de Jeu, ]

Rozendaal [1]). These two actions are compatible with the maps
Z/‘[Y]z,uf 2 B, [Y]z]_”j . This is the content of part (1) of the next result,

and it is exploited in parts (2), (3), and (4).
Proposition 2.2. Let G be an abstract group, acting as measure preserving

transformations on a o -finite measure space (X ,zj o’ ) ,andlet 0<e<co.
W 1f ¥ [¥]y e > (4 )2/”/ ,and (B, )[Y]
jection hand in 1) (X,Z > ,,uj) , then

2, pg (@B )y, =X (B, (e

(2) for g; eG, the projection bands i

Z/'}lj

/

g, correspond.

To the fixed points of g, in (

G L(L(X,E ) of G as
isometric lattice automorp *) (X 7 ) is order indecomposable if
and only if Z,- !’
Proof. As for (1 , }Z ) ez ( )[Y]Z ;> so that

Then also ‘ , so that

< Zj(Bj )gfl[gjy]zwf ) Zj(Bj )[Y]Z/ﬂj
Zj(Bj )g_/[Y]Zjﬂj = ijzi”j (gj )(Bj )[Y]Zjﬂ/ ‘

The parts (2) and (3) are immediate from (1).
As for (4), we know from (2) that p . are order indecomposable if and
j .
only if z (@ ]Z , and z [X ] . are the only points of ( )Z i that
are ﬁxed by the G-action. The latter condltlon is equivalent to the ergod1c1ty of
Z j/u :
As a further preliminary, investigate the strong continuity of canonical repre-

sentations of topological groups on spaces of continuous functions with compact
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support and on 1) -spaces, the latter being the principal point of interest.

The matter is usually considered in the context of a locally compact Hausdorff
group and a locally compact Hausdorff space in [14], but more can be said.

The results clarify natural questions concerning the context, and, in view of
possible future study of canonical group actions on L) -spaces, this seems a
natural moment to collect a few basic facts in a sharp formulation.

A reference for the following result would be desirable, but not aware of one
for the statement in this generality. The left and right uniform continuity of

compactly supported continuous functions on a locally Hausdorff

group are special cases.
Lemma 2.3. Let (G,X ) be a topological dynamic4
ical representation p of G as isometric lattice a
(CE (X ),""w) is strongly continuous.
Proof. It is sufficient to prove that g, . nuous at for all

J; eC, (X).
Let €>0.Forall xe X, there@xi metric open neighborhood U, of
e in Gand an open neighbor V. ofxi ugh that

> fj(g;ly)—fj(x)‘<e/ forall g, eU, yeV,. Let |J_V, bea fi-
nite cover of sup, fj andput U = ﬂ;

If xesuppf,,say xe c Uxi0 , then

and xeX are such that gj_.lx esuppf; , Have
(@)=2 11 (e (&%) 1, (g,'%)
n that, forg, e U, Z,- /; (gj'.lx)—fj (x)‘ <¢ whenever

f; (g;.lx)—fj (x)‘ =0 for all remain-

<E€.

pf, org;'xesuppf,. Since >,
ing x, are done.

Proposition 2.4. Let (G,X ) be a topological dynamical system, and assume
that G is locally compact. Let zj 4’ be a Borel measure on X that is finite on
compact subsets of X. Then, for 0 <e <o, the canonical representation p, L
of possibly unbounded lattice automorphisms of (Cc (X ),"-”(m)) is stronlgly
continuous.

If Z,- 4’ are G-invariant, then the canonical representation Ps of Gas
j

isometric lattice Automorphisms of the closure of C, (X ) in 7™ (X ,z/_ o )

are strongly continuous.
Proof. Let f; €C, (X),(gj )o €G, and €>0 be given. Choose an open

neighbourhood V of e in G with compact closure. Then ( g, )0 Vsupp Jf; are

compact, hence has finite measure. By Lemma 2.3, there exist an open neigh-
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bourhood Uof ein Gsuch that
(1+E)

24 ((gf ) Vsuppff)zf Psw ()7, Py ((g" )0) B

g, e(gj)OU.Assume thatU — V. Then, forgj e(gj)OU,

ZHszﬂf (gj)f, TPy ((g./ )o)

J

<™ forall

(1+¢)

(1+¢)
) PR OE PN
(P (2 1))~y ((
;(pz,uf (& )ff)(x)_(pz,uf

< ;J‘(gj )0 V-supp f;

(1+

o) d;,uj (x)

oQ

J

- ;Igjsuppf; U(g; ), supp.f;

< _

ijﬂ’ (gj)fj _pZ,-ﬂj

The final statement follows fro
Proposition 2.4 points at

the G-invariant Borel me ; ' ral representation subspace for

. (1+e i\
Gin [ +)(X,Z:j,u’)
j

equals ') (

—

.,u),a

For such’a measure, C,(X) is dense in 7' (X,Zj ,uj); in [15]. Combi-
ion with Proposition 2.4 gives the following, generalizing the well-known fact
thaf'the left and right regular representations of a locally compact Hausdorff
group Gon [")(G) are strongly continuous for 0<e<w.

Corollary 2.5. Let (G,X ) be a topological dynamical system, and assume
that G is locally compact and that X is a locally compact Hausdorff space. Let
Zj ,uj bea G-invariant regular Borel measure on X. Then, for 0<e <o, the
canonical representation Ps i of G as isometric lattice automorphisms of
i (X ,zj o ) are stronglly continuous.

Although [[14], p. 68]—where it is assumed that G is Hausdorff—mentions
that the above result holds, and it is likewise stated—for locally compact second
countable Hausdorff Gand X—without proof on [[16], p. 875].

If G and X are not both locally compact, the proof of the strong continuity in
Corollary 2.5 breaks down. However, there is an alternative context where a sim-
ilar result can still be established along similar lines.

Lemma 2.6. Let X be a metric space, and let Zj 4’ be a Borel probability
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measure on X. Then C, (X) is dense in  7\"* (X, Z,— ,uj) for 0<e<w.

Proof. It is sufficient to approximate the characteristic function 1, of an ar-
bitrary Borel subset ¥ of X by elements of C, (X ) Since know that, for every
Borel subset Y of X, zj,uf (Y)= inf{zj,uj (U):Yycuu open}, it is suffi-
cient to approximate 1, for an arbitrary open subset U of X. Assume that
U#X . In that case, let (f,) (x)=min(Lnd(x,U))(n=12,) . Then
(£,),€C(X) and 0<(f,) Ty,s0that Y (1) 1] >0 as noe
by the dominated convergence theorem.

(1+e)

Proposition 2.7. Let G be a first countable group, acting 2

transformations on a metric space X with a G-invariant B
j
ure Z,- J
Suppose that, for all xe X, themap g, >
Then, for 0<e <o, the canonical represent . ometric lat-
tice automorphisms of 1" (X 7 )
Proof. In view of Lemma 2.6 and a
the map ngij”j(gj)fj are ,er(X). Since G is

first countable, continuity at a pgi . is the same as sequential continui-

suppose ; are G-invariant Borel probability measure on X. Then, for
amonical representation Ps. of G as isometric lattice
i

*9) (X 2 M ) are strongly continuous.

lary 2.8, Corollary 2.5 is still not applicable here.

1" .Direct Integrals of Banach Spaces
and Representations

This section provides the framework for the disintegration Theorems 4.9 and
5.15. Start by defining 1) _direct integrals of Banach spaces and Banach lat-
tices in the spirit of [[13], Sections 6.1 and 7.2]. The idea roughly, to begin with a

o’ de-
pending on the points @’ of a measure space (Q,vf ) JIf {(B) . are the

Tl ) wica
corresponding family of Banach space completions of V, then one can consider

“core” vector space V that is supplied with a family of norms ,"

sections from to Hm e Q(B j) ; - There is a natural notion of measurable section
[0

s’ and the Zj(B ! )wj are “glued together” by restricting attention to mea-

surable sections and identifying measurable sections that are v’ -almost every-
where equal. For any Kothespace E associated with (Q,v/), one can then re-

s/ (a)’)

quire, for a measurable sections’, that the functions Zja)j - Z/_
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be in E. If E satisfies appropriate additional properties, then the equivalence
classes of such sections form a Banach space, which is called the E-direct integral
of the families {(B ! )w/. }w/ o

In Sect.3.1, this program is carried the for E = 79 (Q,vj),(O <e< oo), but
with two noticeable modifications as compared to [13]. The first is that the fam-
ily of norms figuring is replaced with a family of semi-norms. The need for this
comes up quite naturally in the context, and it seems to the authors that this may
also be the case elsewhere. The second difference is that the measure v’ need

not be complete. Completeness of measures is the standing g ion, but the

cases of the general theory.
In Sect. 3.2, define decom

integral of a decomposabl

presentation of G on the

One way to obtain such a

3.4, sketch a perspective that a more or less obvious exten-

alism could have in representation theory.

(1+¢)

-Direct Integrals of Banach Spaces

Define ') -direct integrals of a suitable family of Banach spaces. These are

(1+¢)

Banach spaces that generalize the Bochner ") -spaces and the direct integrals
of separable Hilbert spaces. Let (Q,vj ) be a measure space, and let V'be a vec-
tor space. For clarity, let us recall that the measures need not be finite (or even

o’ -finite) or complete. Say that a collection {||||w]} are measurable family

e .

of semi-norms on V if Z,llll , is a semi-norm on V for all @’ €Q, and
[0

@ ||x||w, are measurable function on Q for all x eV . For later use, let us

record that this is the same as requiring that the (identical) functions

Zja)j |—>Zj||x||w, are measurable function on for all xelV , where

Zj "[x]wf ol

the equivalence class > [x] , of xin V/ker(zj"."wj ) .

are the value of the induced norm Z,"”mf on V/ker(||~||w, ) at

Let {(Bf)wf} be collections of Banach spaces and suppose that

o’ eQ
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{(Bj )w]} ,, e measurable family of semi-norms on V such that, for all

o eQ, (B ! )wf are the Banach space completion of V/ ker(||~||wj) with re-
spect to the induced norm Y’ |, on V/ ker(||~||wj) . Then say that
{(Bj )a)j }wjeQ are measurable family of Banach spaces over (Q,vj ,V) . For con-
ciseness, usually do not explicitly mention the specific measurable family of

semi- series norms {(B) ,,} . on V that gives rise to {(Bj) j} , s as this
@’ ) o) eQ) " ) @ eQ)

J
family will generally be clear from the context.

Analogously, suppose that 1 is a vector lattice and that

measurable family of lattice semi-norms on V'such that, fg
are the Banachlattice completion of V/ ker(||~||wj) Wi

lattice series norm ||||w ; and the induced orderi

spaces over (Q,vj,V) .

{(BJ )wj }w,-eg if

Let {(Bj )w’ }a)/EQ
Say thatamap S:—> || ;

stj (a)j)e (B/ )wj for

A simple section is a s hich there exist ne N, x,-,x, €V,
and measurable subsets of Q such that
s’ (a)f ) :[ o for all @ €Q. Choosing the (A]) disjoint,

; » so that the function
[0}

have Z/‘ (@’ /l(A,)k (a)f)”[xk]m,
is measurable for all simple section s’ .

j) j} is said to be measurable if there exists a sequence
o" ) ol e

mple sections such that, for all o’ €Q, s} (a)j)—)sj (a)'i ) in

s = (Sj )k (wj) o - Zj s’ (wj)
all’ @ €Q as k — o, and hence, as a consequence of the measurability of the
functions Zj = Zj“(sj )k (a)’)
o =2 (@),

section s’ . The measurable sections form a vector space, and denote the section

for

as k—oo. Then clearly zj

Py

on, the functions

o’

are measurable function on Q for all measurable

that maps every @’ € Q to the zero element of (Bj )wj simply by 0. Also note
that, if 4 , are measurable subset of Q and s’ isa simple section, then 1 48
is again a simple section. It follows easily from this that the measurable sections

area module over the measurable functions on Q under point wise operations.

Define the direct integral ZJ:?(B_/ )zoj dv’ (a)’) of {(B) } o with re-

J )/

spect to v/ to be the space of all equivalence classes [sj ]v/ of measurable

sections s’ of {(B j) ,,} ~, where two measurable sections are equivalent if
@" ) »! eQ
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they agree v/ -almost everywhere on. Say that the Z,-(B j) . are the fibers of

Wl
zj .[ ( )wl dv’ ( ), and introduce a vector space structure on
j ®Z ( )wl dv’ (a)j ) in the usual representative-independent way.

If {( j) J} , are measurable family of Banach lattices over (Q,vj ,V),
@) ol eQ
then, in addition, can meaningfully define a natural partial ordering on

IZ( ) dv’(a)j) by Z[ } 2[(1+e) (a)j)z(l+e)(a)j)

for v/ -almostall @’ €Q for

> [, [0+, €[°X (8,),,dv/ (). Then

are ordered vector space. In fact, it is a vector lattice. B

all (B j) . and the fact that the point wise s
[}
ple sections are simple sections agai

Z_[sj] VZ[ 1+e] :
z [s v 1+e] ,ej
Z(s v(1+e)

) are defined by

e)(a)j)(a)" EQ) . The expression for
1 _direct integral (_[jzjdvj (a)j ))L(HE) of
péct to v/ be the subset of IjZ/(B/ )wjdvj (a)’) con-

j[s/]ejszj(Bj)wjdvj(a)j) such that the functions

> which know to be measurable, is in £+ (Q,Vj ) .

his criterion is evidently independent of the particular representatives of
j j j . . . .
]v , and call Zj [s ]V/. and its representatives (1+€) -integrable (with

respect to v’ ). It follows from the triangle inequality for all Z,""wf that

(EZ/(BI )w_idvj (a’j ))L(“f) are subspace of Ijzj(Bj )wjdvj (a)’) and that

1

T (O (R I

J

(L
defines series norms z ; [SJJ

(ILZ(8),0v (")),

If Vis a vector lattice and {(Bj) /.} ,  is measurable family of Banach lat-
@) ! eQ

s’} . on
vl (14e)
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tices over (Q,vj ,V) , then@it is easily verified that (Ijzj(Bj )mjdvj (a)j ))L(”f>
are vector sub lattice of IQ Z,-(Bj )wjdvj (a)j ), and that (1) supplies it with a
lattice norm.

The 1M -direct integrals of Banach spaces, as defined above, are, in fact,
Banach spaces. To show this, use that the equivalence classes of the (1+e)
-integrable simple sections are dense. This density, which is also a key ingredient
of the proof of the disintegration Theorem 4.9, is established in the following
stronger result, based on a familiar truncation argument as in e.g. [[17], proof of
Proposition 2.16].

Lemma 3.1. Let (Q,vj) be a measure space, let 7 beg

(OSe<oo). Let {(Bf)wf} o be measurable families 6

(Q’Vj,V) , and let Zj[sj ]V/. € (Jf

there exists a sequence ((Sj )k)
ot 3 o7), ()], =149
(') () >/ (@) in
M KRV (NN

(1+

' y e(szj(Bj )wl.dvj (a)j )) e Then there exists a se-

I +)

of simple sections such that, for all o eQ,

~—
’IT 8

(a)j —>sj(a)j) in (Bj)mj as k —>ow.For keN,let

/ A/')k = {a)j eQ:zj”(s'j)k (a)’) ‘zjsj (a)’) a)/} . Then (A-i)k

are measurable subset of, hence the sections (sj )k , defined by

| £(1+6)

[

Zj(sf )k = Z,- I(Aj)k (S,j)k , is simple again. Furthermore,
Z,— (sj )k (a)f) | < (1+6)”2ij (a)’)

(Sj )k is (1+e) -integrable with respect to v/ . For all &' eQ ,

 for all kand all @’ €Q, so that each

!

@

Zj(sj )k (a)j)—>zjs-"(a)j) in (Bj )wj as k —oo. It then follows from the
dominated convergence theorem that Zj[(sj )J L zj[sj ]vf in

(28, 0v (")),

For the second statement, suppose that Zj[sj ] ;20,andlet €>0.Choose
. @© v
a sequence ((S’ )k) of simple sections with the three properties in the first
k=1
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part of the lemma.
There exists a measurable subsets 4; of Q such that zjvj (Aj)=0 and

z/,sj (a)j)ZO for all o’ e 4; . Then the sequences ((sj )k ); , given by

3 (), (0) = X1, (@), (o) +Z 0, (0)) () for xew
and @’ €Q, isas desired.
Establish the completeness of 1) _direct integrals of Banach spaces.

Proposition 3.2. Let (Q,vj) be a measure space, let V'be or space, and

let (0£e<00). If {(B) } o are measurable famil

J )i

(Q,VJ,V) , then (IfZ,(Bj )w.idvj (wj ))L(m) is

(LZ(8),07 (@),

e

Proof. Let (Z, [(Sj )k ]Vf )w—
Zj[(s./)

such that » *

s/ )k (a)f) exists for all @’ € Q. If one

J S )T 3
knew s’ to be a ‘ -‘ e section, then the conclusion of the standard proof
L oA g J J : :
would show that t ries k:lzj [(s )k lf converges to s’ . The point wise

equence \of scalar-valued measurable functions is measurable, and,

ble functions is strongly measurable in [[18], Theorem E.9]. In
owever, have no such result. Fortunately, the following easily veri-
aves the day: If Xis a normed space and Y'is a dense subspace with the
erty that every absolutely convergent series with terms from Y converges in
en Xis a Banach space. With this and Lemma 3.1 in mind, see that it is suf-
ficient to prove convergence of the series when the (sj )k are simple sections. In
that case, s’ is the pointwise limit of simple sections, hence is measurable by
definition.

Remark 3.3. (1) If Vis a Banach space with norm "" , and if take Z/”"wl = ||||

for all @' €Q, then all z/(B-j)wj equal V. Claim that, in this case,

(lLZ(8),07 (@),

1 2re the Bochner space 1™ (Q, /A% ) as it is de-
(e

fined for an arbitrary measure are defined, starting from the strongly measurable

® .
functions, in the same canonical fashion as (J‘n E j(B j) jde ) (o 3T€ defined,
@ L +€

starting from the measurable sections, both spaces coincide.
(2) Although it is usually not observed as such, the direct integrals of separa-
ble Hilbert spaces as they are defined in the literature are Bochner L’ -spaces.
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3.2. Decomposable Operators and 19 -Direct Integrals
of Representations

Define decomposable sequence of operators, and, subsequently, a decomposable
representation of a group on an 1) _direct integral of a measurable family of

Banach spaces, that can be called the 1)

-direct integral of the fiber wise re-
presentations.
Both are a natural generalization of the corresponding notion in the context of

the usual direct integral of separable Hilbert spaces.

Let (Q,vj ) be a measure space, let V'be a vector spacegd

sequence of operators T/

30030, <((5),)(e)

tion s’, the section T’s, define

ded. Then, for 0<e<ow, T’
(1’ )(1 : (also denoted by

_(Bj )wj dv/ (a)j ))L(HE) : for

o let Zj(Tj )(m) [sj lj = Zj [Tjsj lf .

J

2o -3 |r)],

induces a bounded seque

jattices and v/ -almost all T/’ are positive se-
Zf(T-’ )(] ) are appositive sequence of operators. If
g +€
. . ]
are lattice homomorphisms, then zj(T )(m) are a
abstract group. A decomposable representation p of G on

are family {pwj} , > where p ; are representation of G on
o’ eQ "

. (a)i € Q) , such that, forall g, € G, the map ng)j - szmf (gj) are
decomposable the sequence of operators on {(Bj )} -

posable the sequence of operators by p( g, ) . Then, for

; denote this decom-

(0 <e< 00) ,the map p induces representations Pise of G as bounded the
® o
sequence of operators on (IQ Z/,(Bj )w-fdvj (a)f ))L(1+e) , defined by

ij(m) (gj): ;(p(gj ))(1+e) :(Ijszwj (g/.)dv./’ (a;./))L(HF)

(gj € G). If the (Bj) . is Banach lattices and v/ -almost all p,; are posi-
@
tive representations, then Plive) is a positive representation.

Call p,, the 19 _direct integral of the representations { pw,} o with
respect to 1/, and write Plvg = (IQ zj p,dv’ (a)j )) g *

(
L

If Gis a topological group, it is easy to write down various conditions for the
decomposable representations { P, }wjeﬂ of G on {(B ) )wf }a)jeﬂ that are suf-

ficient to ensure the strong continuity of P> together with that of all
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P (a)j € Q). A crude and (1+e) independent one is e.g. that there exists a
constant A such that szpwj (gj) <M forall g,eG and o’ €Q, and

Py

that, for each xe¥ and €> 0, there exists a neighbourhood U, of ein G

such that “z/pwj (gj)[x]w/ —[x],,
deed, for all @’ €Q, this certainly implies that, for all xeV , the map

<e for all g, el and o' €Q. In-

zj g, > Z,- P, ( g, )[x]wj are continuous at e. By density, the uniform
boundedness of the p ; ( g j) then implies that, for all be (Bj )a)j , the maps
Z,- g - Z,- P ( g j)bw , are continuous at & consequently, this is true at all

points of G. Henceall p ; are strongly continuous.

The condition also implies that, for all (1+6) -integrable simple“§€gtion, the

P+ 18 strongly continuous.
There is a natural way to obtain deco of operators on

{(B')wf} o and, consequently, bou

J

(.'fzj(Bj )wjdvf (wj ))L(HE) fo

“core” space V, as follows. S

itable linear map on the
linear map on the abstract vec-
ty that there exist fonstants M (a)j € Q) and M
; ||x||w, (xe , 0 EQ) and M ;<M for v

kerzj||~||wj are 7" -invariant, hence

tor space V with the pro

such Zj||f-’x ¥ Szj

—almost all @’. Then, fo

|,/ » denoted by (Tj) ,» and given by

€V). Then “(T’) j[x] <M [x]w, . for

!

<M for v/

'

oted by (Tj)w,,, and then “Zj(Tj) .

o’

@ . .
eaves the gpace I Z (B) dv’ (a)f ) of measurable section invariant, so that
Q VAN
it es a decomposable the sequence of operators T’ on {(Bj) j} s To
o7 ) @ eQ)

X @ . X
see this, first note that, if s’ e.[n Z,—(Bj )wjdv’ (a)’ ) are simple section, say

28 (a)’) = [Zz:lzjl(mk (a)f)xk} (a)f € Q) for some neN,

Z;(Tjsj )(”)] ) = zj(Tj )w/ [Z::llAk (wj )xk L/’ = [Zzzlzjlf% (wj )fjx" l,,f

Hence 7/ are simple section again. If s’ are measurable section, say

X,,Xx, €V , and measurable subsets (Aj)l,---,(Aj) of Q , then

s/ (a)j )=1imn_>oo (sj )n (a)j )(a)’ GQ) for simple sectionss,, then, as a conse-

quence of the continuity of the (T J )mj on (B . )w]. , see that
3 (7)o )=, (), () =im, (), (), o)
=lim,_ (Tf (sj )n)(a)j)(a)j € Q)

. Hence T’
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are measurable section again if s’ are, as desired, and the families

{(T J ) j} ~are Decomposable the sequence of operators. Conclude that, for
[} @ eQ
0<e<oo, this “core” linear maps 7~ gives rise to bounded the sequence of
J
zj (T )(Hc)

If the (B j.) , is Banach lattices, and T7 are positive operator on V; then all
J J
(T )wj and Z'T/ )(1+5

homomorphism, then all (Tj ) ; and (T ] ) are lattice homomorphisms.

(1+5)

Consequently, there is also a natural way to obtain a deg

operators (Tj )(m) on Jij(B/ )wjdvf (a)f) such that <M.

are positive the sequence of operators. If T’ are lattice

wa,g,- (a)jeQ) and ng such that

all xeV and @’ €Q,and M, <M,
diate from the above, applied to all 3

{p ,-} . of representations of G

@ ) u)cQ

spaces ZB/. ; that constitutes adecom
[

are determined by ZI_ P,

A L(l+e)

Therefore, for 0<e< o, -direct integral

P =(J'jszwjdvf (a) ., of the Fepresentations {pwj} ;. can also be
defined, and it lets G

(Ifzj(Bf )wfd 4

positive represent

B, )wj is Banach lattices, and p are
V, then all p ; are positive representations,

and hence so is

of simple functions on a measurable space, with M - =1
jy

and @’ €Q.

If, still j
e, exists a constant M such that zj”,b(gj)x

this context of a “core” representation, one requires crudely that
_ SMZj||x||w, for all

!

eG,xeV,and @ €Q, and that, for each xeV and €>0), there exists
a neighbourhood U, , of e in G such that Zj”lb(gj)x—x“ , <e for all

g;eU,, and @’ €Q, then the family of representations { P,  satisfies
’ [

cQ

the conditions as mentioned above. Therefore, in that case all representations

(1+¢)

P (a)j eQ) are strongly continuous, and so is their L'
Pise) for (OSe<oo).

-direct integral

3.3. Direct Integrals of Separable Hilbert Spaces

In the spirit of the constant fibers in the first part of Remark 3.3, let V' be a se-
= j
, and take Z/| =|-| forall &’ eQ.

parable Hilbert space with norm ||

o’

Have seen in Remark 3.3 that (Ij Zj(B j) /dvj ) , can be identified with the
@ I

Bochner space I’ (Q, v, ) . If Vis separable, then our L’ -direct integral is al-
so the usual Hilbert space direct integral of copies of V over as defined, and our
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notion of decomposable the sequence of operators also coincides with the usual
one. To see this, first note (see e,g. [1]) that the measurable sections are precisely
the Borel measurable V-valued functions on (2, as a consequence of the sepa-
rability of V. Consequently, the spaces (Jf Z_,-(Bj )mj dv/ )L2 —that can be sup-
plied with an inner product in the obvious way—of square integrable measura-
ble sections coincides with the space of square integrable Borel measurable
V-valued functions, ie. with the Hilbert space direct integral of copies of V'

The decomposable the sequence of operators T’ on this common space, as

considered, are a family of bounded the sequence of ope ' } ;
. . . o’ €Q
such that the map Zj o - sz(T’ )wf are v/ nd such
! j .
that, for all x,y eV, the function Zja) |—>Zj ) el mea-
surable. This notion is the same as ours. To see posable

Zja)j — Zj((Tj )w/ x,y)
quence of operators T J

that 7’/ are decomposa

<

x,y €V, the functions

Ro z]((T’ )mj s’ (a)j),y) is then in fact Borel
gurable sections s’ and all y eV . This implies that the
A7 ) s (a)-’ ) are measurable section in the sense for all
r A0

le sections s’'. Hence 7, are decomposable the sequence of opera-

onclude that the theory of I’-direct integrals and their decomposable the
se ce of operators includes the usual one of direct integrals of copies of a se-
parable Hilbert space and their decomposable the sequence of operators. In the
Hilbert space context, the next step is to piece together such direct integrals for
the dimensions 1,2,---,00. Since this is also possible for the I’ -direct integrals,
the classical theory of direct integrals of separable Hilbert spaces and their de-

composable operators are included n that for the general Banach space case.

3.4. Perspectives in Representation Theory

Although do not need this the selves, note that a natural further generalization of
the material is possible. First one can consider more general Kéthe spaces than
1) -spaces, provided that the proofs of Lemma 3.1 and Proposition 3.2 still work,
or that alternate proofs of completeness can be given that also control the measura-
bility issue. Second, one can work with a decomposition Q=] | proc, Qy,, of the
measure space into measurable parts. At a modest price of some extra remarks
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and notation, one can let the datas Vﬁ%,{(a)-" ) } of vector space
Be (w/) Qg
Pre
VE o) and a measurable family of semi-norms on V( o) depend on the part

. . . 7
B +¢ . If Gis a group, one can work with triples | V., {(a) )/m }(w/) . Ppsic |»

where p, . is a decomposable representation of G, consisting of a family of

representations {p/m} ; of G on the corresponding_members of the
(w )ﬂ+€eﬂﬁ+£

associated family of Banach spaces {(Bj )ﬂ+ }

(),

Zj (gj)x(mj) all ﬂ+£eAj ,

o)

Pre Pre

('),

(a)j ) efB+e,and x . Pg.. Yield a representation of
pre (

G as bounded operators ofiithe entire direct integral of Banach spaces over Q.
This representation can be

ere the‘fibers are to satisfy an additional condition, or are to satisfy such a
condition almost everywhere. Topological irreducibility or algebraic irreducibil-
ity“are natural conditions for general Banach spaces. For Banach lattices and
positive representations, order in decomposability—as in this paper—is likewise
natural. Theorems 4.9 and 5.15 shows that in certain situations a decomposition
of the latter type is possible, where a one-part and a decomposable representa-
tion on this single part that comes from one representation’ on the pertinent

single space V'suffice.

4. Disintegration: Action on Underlying Space

In this section, the principal aim is Theorem 4.9 in Section 4.2, giving a disinte-
gration of canonical representations as isometric lattice automorphisms on
1) -spaces into order indecomposable. The main tool for this is the factoriza-
tion Theorem 4.5 for the integral over the space, as established in Sect. 4.1. Con-

clude with a worked example in Sect. 4.3.
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If Xis a metric space, then let P be the set of Borel probability measures on
X. If the group G acts as Borel measurable transformations on X, then 7is the set
of all G-invariant Borel probability measures on X, and Eis the set of all ergodic
Borel probability measures on X. Hence & < 7 < P . Suppress the space and the
group in the notation, as these will be clear from the context.

Recall that the canonical map from the set of Borel probability measures on a
metric space X into (Cb (X )), the norm dual of the bounded continuous func-

tions on X, is injective; this follows from part of the argument to prove that (ii)

4.1. Disintegrating the Measure

The factorization Theorem 4.5 is based

nary measurability result.
Lemma 4.1. Let X be a sep and let fj X > [O,oo] be a

Borel measurable extend map 'P—)[O,OO], defined by

A '[X 2 1 (x)dA (x . |

Proof. Know that the B o’ -algebra of is also the smallest o’ -algebra of
subsets of P subsets Y of X, the map P — [0,1], de-
fined by A/ — e measurable. Thus the statement holds if f; =1, for

heorem 4.2. Let (G,X) be a Polish topological dynamical system, where G
is ly compact. Suppose that [ # . Then & # ), and there exists a Borel
measurable map f:X — &£,x > f_, with the following properties:

(1) ,ngx =p, forall xeX and g, eG;

@ A (ﬂ-l ({zf})) =1 forall A/ cE;

(3) For all z}, 4’ €1 and all Borel subsets Y of X;

S (1) =], A (1)EZw (),

Amap f asin Theorem 4.2 is called a decomposition map.

Remark 4.3. (1) If B and f' are two decomposition maps, then they agree
outside a Borel subset of X that has zero measure under all invariant Borel
probability measures on X.

(2) Mention for the sake of completeness that also asserts that 7and &£ are
both Borel subsets of P . Furthermore, P is Polish.

(3) It is worth noting that, if, in addition, G'is compact, then the ergodic Borel
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probability measures £ on Xare in one-to-one correspondence with the orbits
of Gin X, as follows. For x, € X, one associates with the G-orbit Gx, the Bo-

rel measure A/, on Xby
Zgéxo (Y);zzzllf({gj eG:gjxoeY}), (2)
7 7

where Yis a Borel subset Xand ,u(-"G) is the normalized Haar measure on G, this
does not depend on the choice of the point x, in the orbit. The A} is the
unique ergodic Borel probability measure supported on Gx,, and the map

Gx, > A, are bijection between the set of G-orbits and

simply the push-forward of z/_ 4l to X via the

(4) If (G,X) is a topological dyn
Hausdorff group and X is a locally ¢

on on X For

xe define Z fl(x J.Z f,(1+€)dB, (1+€). Then f;:X —[0,0]

is Borel megsurable, and the equahty
L ZA ()aE ()= 2 () azu! () @

holds in [0,00].
Proof. The Borel measurability of S and Lemma 4.1 imply that f] is Borel
measurable.

For the equality of the integrals, first suppose that f; =1, for a Borel subset
Yof X. Then

IZf dZu() Y)=[ B.(Y dZu()
=Ld§ff DY (X)

by part 3 of Theorem 4.2. By linearity, this extends to the case where f, >0 isa

simple function. Choose a sequence (( S )k )k of simple functions such that
=1

0< ( S )k 0 J; point wise on X. By the monotone convergence theorem see,

[10], Os(fj')k (x)T f/(x) for all xeX as k. Two more applications
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of the monotone convergence theorem, combined with at we have shown for the
(/7). > yield
L Z(Zw (x)=lim [ (1), (4% ()

k—o

zhmJ‘ Z( ) dz,u —hm.[ Zf dz,u (x).

k—o©

The proof of the factorization theorem for the integral,, is hardly more than a
formality. To this end, let v/ be the push -forward measure of Z ' via the

Borel measurable map f:X — £;thus v/ is the Borel proh measure on
E given by v/ ( j).=zj,u ( ( ])) for a Borel subge

the equality

[, (neB)(x)

Holds in [0,00].

Theorem 4.5. Let (G,X) b
is locally compact, and let

(1 If f :X—)[O,oo]
Zji-’ I—)J‘Xijj(x)dxl x), with values in [O,oo], is a Borel measurable

functionon £&.

ADIAE

X,Z,’).Then If_ eEl(E,vj),and
jZf dZy sz (2)av' (27).

Proof. As to the first statement, define h(/lf ) = IX Z,f, (1+c)d/1’ (l +e) .
Lemma 4.1 shows that A is a Borel measurable function on & . In the notation
of Lemma 4.4, have f]=hof3,so that (4) reads as

I Z f dz 7, ( ) .[ (hOﬁ)(x)dzj,uj (x) An application of (5) com-

pletes the proof of the first part. The second statement follows easily from an ap-

)i/ (x) if f,eL(X,47), and let I, (27):=0 if

plication of the first statement to the positive and negative parts of f;.

Remark 4.6. (1) It follows from part 1 of Remark 4.3 that v’ does not de-
pend on the choice of the decomposition map /.

(2) If S is the characteristic function of a Borel subset Y of X, then Theo-
rem4.5 asserts that Z/_,u j z /1’ dv’ (A’)

Not aware of a reference for the general theorem as above.
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Need the following disintegration of the (1 +e€ ) -norm, valid in the context of
Theorem 4.5.

Corollary 4.7. Let 0<e<o, and let f, e £ (X,Zj,uj). Then the set of
A’ €& such that S e £+ (X,/lj) is Borel subset of & that has v/

-measure Zero.
For ljeg, let Zjnfj(/lj):zzj"ffl

let n, (xlj):=0 otherwise. Then ny, eﬂ””(E,v’), and

o) f,e")(X,27), and

y(ree)
N3
Aw(g,v/):;(f(g,vf)”n (2 - (6)

(1+E)

nj}

5,

Proof. Apply part 2 of Theorem 4.5 to | S

L(He)(X,zjﬂf) = ;‘

4.2. Disintegrating the Representati

B:X —>E. Fix (0<e<

tric lattice isomorphisms,\@nd, using thejframework provided. Proceed to disin-

i ;"Mw)(){,m (/;7)

are measurable family of lattice semi-norms on V. For all ek,
the completion of V/ ker(||-|| N, ) with respect to Z,|||| , is the Banach lattice

11+ (X A ), so that {L(“‘) (X A )} is a measurable family of Banach lat-

ileg

tices over (E,Vj,V).

A section of {L(“E) (X, A )} are maps S :€— Hﬂeg [ (X, /Ij) such

e
that s’/ (ij )eL(”e)(X A ) for all A/ €&. A simple section is a section s’
for which there exist ne N, simple functions ( f, )1 ’...,( f, ) on X, and Borel

subsets (Aj)l,--',(Aj)n of &£ such that
stj</lj)zzj[zzzllk(ﬂj)(fj)k]ﬂj for all 2/ e& . A section s’ of

{ 7+ (X A )}ljeé' are measurable if there exists sequence ((sj )k) of simple

k=1
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sections such that Zj P 0 as k—>oo forall A/ e&.

s ()=(7), ()],

The direct integral L@L(“‘)z (X ,/lj)dvj (Aj) consists of the equivalence

J

classes Zj[sj]  of measurable sections s/ of {L(W)(X,lj)}ﬂ

v/ e

s the [
-direct  integral (J.;B ngj(X A )dvj (lj ))L(m) consists ~ of  those
Zj[sj ]V/. e.[jL(”f)Zj(X,ﬂj)dvj (/7/) for which the (measurable) function
5203 ()

series norms

Z/’I:Sj:lvf(ne)
N P v
(Ll e @) [

B e @ (1+¢)
y Proposition 3.2, L L

are element of £ (5, v/ it carries the

L(““)(X,lj)

supplied with this norm and
Zj[sj]vj 20 s(lj) >
RN (N2 o

e first thing to show that is the Banach lat-
(1+¢) i (1)
L Zj(X’/lj )dv’ (/1] ))L(m)

idea for the pertinent map is quite simple: if

are isometrically

~.

tes, there are two problems here: f, need not be in
J .

or all A4’, and the image of Z,[fj]

* chosen representative f;.

. could conceivably de-
z ,'/ll
e, there exists a solution to the first problem such that the second does
nopfoccur, and such that there are no measurability issues. Make some further
comments on this at the conclusion of the example.

Implementing what will turn out to be the solution, define, for
/€ 0+ (X,zj )7 ) , the sections (sj) of {L(”E) (X,ﬂvj )}

fj e

by

o Zln] it e (x2);
X, (4) =

J
7 >[0],, otherwise.

J

(7)

Know from Corollary 4.7 that the exceptional set in this definition is a Borel

subset of & that has 1/ -measure zero. This easily implies that, for

1.8, € ) (X,Zj,uj) ,
Zj(sj)

(ﬂj)z Zj(sj )f. (/Ij)+(sj )g_ (ﬂj) for v/ -almost A/ €&, (8)

Site)
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and clearly
(B+)Z, (), =(B+IZ,(+'), (Br)er sy e £(X.3 1)) ©

The following result takes care of measurability.
Lemma 4.8. Let f, eﬁ(lﬂ)(X,Zj,uj), and define (sj )f as in (7). Then

J
(sj )f are measurable sections of {L(“e) (X LA )}/1/' .
J e

Proof. There exists a sequence (( f])k) cV such that, for all xe X,

), G <[Z, 7 ()] and (1), (6) = 7, () as

A, :={lf el f, eﬁ(l“)(X,lf)},and, for keN

, then, as the

and Zjlif/}zjyf = Zj[gj JZj/‘tj

)= [0 (X, 27 )av’ (27, given by
s([n, 72|, | (<€ (rz )

By (8) and (9), S'is linear.
If f/ e [ (X A ) , then, in the notation of Corollary 4.7,

£, ()2 ), )],
Corollary 4.7, have Z,S([f] ]Z v ) € (’[:aL(HE) (X y )dv (/1’ )) e . In fact,

L
(6) yields

for all A/ €& . Since n, e 9 (E,vj) by

) EAS

1/(1+¢)
(120, () w0 )
J

J ( X ﬂf
(1+¢) Y(i+e)
L), @) e @) bzl
J ! p J ! (1+¢)
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Conclude that Sis an isometry of 7" (X , Zj o ) into

(L@ L(Hf)zj(x’/lj )dvj (/11 ))L(m) )

In fact, Sis also surjective. To prove this, it is, according to the density state-
ment in Lemma 3.1, sufficient to prove that all v/ -almost everywhere equiva-
lence classes of simple sections are in the range of S. For this, in turn, it is suffi-

cient to prove that the 1’ -almost everywhere equivalence class of every simple
section of the form ), s’ (lj): 2, [lAj (ﬂj)fjlj , where 4, is a Borel sub-

setof £ and f, eV isasimple functionon X; is in the o this end,

consider f}:= lﬂ_1 (1) J;-Then f! isasimple functiop
fie £ (X.u). Since f, e £ (X, ) for
in (7) is empty, and Z/_s"fj’(ﬁ-"): >

(Sj),~< =s’, ie that zj|:1ﬁ"](,4j)'ff

k¥

eptional set

. Claim that

this, use part 2 of Theorem 4. isti ing twd cases. If Y eAj, then

ijj JIf A e 4, then

bat Z}_A’(,B‘I(Aj))=0-Hence

for all A’/ €&. It follows

Eay
(1)

plies that Zj(sj)\fj\ (#)= Zjﬂffﬂﬂ- =2,
form this that Z .

(L, )=z
f, e (X,zj,uf).

Conclude that § is an isometric lattice isomorphism between 10 (X i )

and ([71E (.47 )av! (2))

Show that, under S, the canonical representation of G on the space

) for all

[+

) (X ,z/_ o ) corresponds to the direct integral of the canonical representa-
tions of G on the spaces 1) (X A7 ) for A/ € €. To see this fact, start—in the

terminology—with the canonical representation p of G on the vector space V
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of simple functions on X, defined by

Zj(,b(gj)fj)(x) = ijj(g;lx)(gj €G.f, eV,xeX) . Since
Z,- ,[)(gj) " ZZJ"ff

essentially bounded. As explained, there is then a natural family {p,}

N ( g,€G,f, e V), this representation p is pointwise

Vet of
associated representations of G as bounded sequence of operators on the respec-
tive completions of the spaces (V/kerzj"-"lj AL ) , ie. on the spaces
1) (X A )(ﬂj ef ); these representations are determined by

Z/‘pﬂ' (g,-)[f,-L,- :Zj[lb(gj)f‘j:hl- (g,- €G,f,eV,A ef

the equivalence classes of the simple functions in all

e density of

(/lj )) . Claim that the ca-

L(l+e)

forall A’/ €&, so that

j[[)(gj)fj L/_ forall A’ € £. Unwinding the defini-

1]
™M
—

~
~.

l
—
™
—_—~

5
N
Ry
ill._l

a0 (@)

L1+

By the density of the zl_ 1’ -equivalence classes of the simple functions in

7o) ( X’Z/’ )7 ) , the claim then follows.

Collect some of the main results so far in the following theorem. The added
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final part follows from part 4 of Proposition 2.2, and it shows that the canonical
representation of G as isometric lattice automorphisms of 7" (X ’Z,- )7 )
can be disintegrate edicto order indecomposable similar representations.

Theorem 4.9. Let (G,X) be a Polish topological dynamical system, where G
islocally compact. Suppose that there exists an invariant Borel probability meas-
ure Z,- 4’ on X Let £ be the non-empty set of ergodic Borel probability
measures on X, and supply £ with the weak'-topology induced by C, (X ) .

Let B:X — & be a decomposition map as in Theorem 4.2, and let v’ be

the push-forward measure of Z,- 4’ via f,sothat v’ i probability

measure on & that is independent of the choice of £,
Let (0 <e< oo) .

(1) Let Vbe the vector space of simple functio e are
measurable family of semi-series norms on ing fa of comple-
tions of the spaces (V/ker z,"”/w ,Zj"
{L(“‘) (X A7 )} e which are m i anach lattices over
Me

(5,vj ,V). Therefore, the '™

representation (Jf > P dv’ (Zj )) o O

1% (x4 ) ()

L( +e

(I

ily {p.,¢ = of canonical representations of G as isometric lattice automor-
M) iee

|» which is the 1) direct integral of the fam-

phisms on the Banach lattices [ (X,lj )(/Ij € 5). Thatis, forall g, € G, the

following diagram commutes:
ZPZj ul (27)

trglge) (e

J J

sd si
[£%0,(g;)E (47 ® ) o
J [ ? ( ) ( )]L(“‘) '[L L(HE)Z(X’ 27 )dvj (Z] )J

(4) Forall A’/ €&, the representation p y of Gon the fiber 1 (X A ) is

[ jf LMY (x4 )dv/ (2)
J (1+¢)

b L(1+r)
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order indecomposable.

Remark 4.10.The strong continuity of the 1) _direct integral of representa-
tions was briefly addressed. Although strong continuity played no role in the
proofs, let us still mention that in the present context this is automatic: accord-
. ® (27
ing to Corollary 2.8, Py i and hence (.L: Z,- p,dv (/1 )) ) and all

) L(l+e
P, (/1’ ef ) are strongly continuous representations.

4.3. Worked Example

Conclude this section with a simple example of a representati disintegrate

explicitly.

Let ]I))::{ZE(C:|Z|S1} and let T’/ ::{ZG(C:| ,D) is
Polish topological dynamical system with com pplied with
the rotation action: (z,z,)H> le2<zl el’ the norma-
lized restriction of the Lebesgue measur the B@rel o’ -algebra of
D . Then Z,- ' are T -invarian easure on X. Fix
(0 <e< 00). The aim is to exhibit it disi on of 19 (D,Zj/ﬂ)
and the representation of p is space, as provided in abstract
by Theorem 4.9.

The first step is to dete of ergodic Borel probability measures

that these measures are in one-to-one

1, ((1+¢)e”)do, (10)

orel subset of . More generally, if f,:D—R is a bounded

orel meastirable function, then (3) gives, for (0 <e< oo) ,
) 1 )
ID Z]:f] (Z)d(/lj )(l+f) (Z) - z_nj[o,zn];fj ((1 + e)e ’ )de (11)

The second step is to determine & as a topological space; recall that £ is

endowed with the weak*-topology via the inclusion£ < C, (]D))*. Know that
9, :[0,1] — &, given by ¢, ((1+e)) = (/lj )(HE)

even a homeomorphism. Tosee this, let ((1 +e)n )nEN <[0,1] and let

, is a bijection; we claim that it is

(1+e)n—)(O£eSOO) as n—>o . If ijCb(HD), then, using (11) and the

dominated convergence theorem, see that
. 1 )
LA EH),,, (20 ] S (000),¢)a0

- i-[[o,zn] Z‘fz ((1 +e)e” )d@ = -[D Z‘ff (Z)d(ﬂ )(1+6) (2)

as n—>o . Hence ¢, are continuous. Since [0,1] is compact and & is
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Hausdorff, conclude that ¢, are home omorphism.
The third step is to find a decomposition map £:I) — £. In this case, this

map is uniquely determined by parts 1 and 2 of Theorem 4.2. Indeed, let
(0<e<w). Then part 2 shows that ﬂ’l({z,(/ﬂ )(1 )}) cannot be disjoint

J

from the orbit ’]I‘(He) and subsequently part limplies that this set contains the
. . . —1 i —1 i .

entire orbit. Since [ ({Zj(ﬂ/ )(1+5)1 D and S ({Zj(lf )(l+e)2 D are obviously

disjoint for (1+e)l ¢(1+e)2, must have ﬂ’l({zj(/ij )(

that g ., = (/V )

.Conclude

for (0 <e< 00) and 0eR in fact,

(1+¢)

uniquely determined. Know a priori from The orel mea-
surable, but this can also be seen directly. I i tinuous, be-
cause go;l ofp:D —>[O,l] is continuous i . (1+6) , and

hencesois =g, o((pjf' oﬂ)_
Also know a priori that part 3

4.9 gives a disintegration of the action of T on 1) (]D),Zj o )

san [

it is more intuitive to formulate this with [0,1] , which is homeomorphic to

direct integral of representations with £ as underlying point set,

& s underlying point set.

Therefore, let v/ be the push-forward measure of Z,— i via
¢;'of:D—[0,1]. Thus, if A, isa Borel subset of [0,1], then
Zj"j (Aj) = Z,ﬂ’ (ﬁ_l °P; (Af )) = Z,ﬂj ({Z eClz|e Aj}) :

Using polar coordinates, obtain that
SV (4)=2u ({(1+€)e” :(1+e) e 4,})
J J
1 .
:;j[o,l]j[o,zn](1+6)zlA_f (|(1+€)ele|)d9d(1+€)
J
:I[OJ]ZlAj 2(1+€)d(1+¢)
J

Conclude that v/ is the measure 2(1+€)d(1+€) on the Borel subsets of
[0,1] . For abounded Borel measurable function f, on I, part 2 of the facto-
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rization Theorem 4.5 then takes the form

1 J(s
;fm,;fj(Z)d;u (2) 12)

= I[O’I][%j[o’m;f_, ( +e)ef9)deJ2(1+e)d(1+e)

where (11) has been used. The validity of this formula in itself is, of course, clear;

the point is its interpretation as an instance of the factorization in Theorem 4.5.
Let V'be the vector lattice of simple functions on ). According to Theorem

4.9, {Z/‘"‘"(ﬂ)lﬂ } (0se<x) are measurable family of semi- n V, so that

([0, 1].v/, V) ,and the 1" _direct integral

if ];ed“f)(m),(zf)(m Zj(sf) ((1+¢€))= Z[o]ﬂ } if
£l (]D),(l
2(1+6)d(1+€)-

‘ he latter exceptional set is Borel measurable and has
Ul

gaglire zeyd. Equivalently, it has d(l +6) -measure zero, like-

itten (s’ } for [ s/ } . Then,
Zj|:( )ff d(1+c) zj ( )ff' 2(1+€)d(1+e)

orem 4.9, S is a well-defined isometric lattice isomorphism be-

0,5 4') and U{il]L(“e)(]D),Zj(/lj)(1+E))2(1+e)d(1+e)j If

#9)

1+e

z [f ]Z ; e ™9 (X Z 7 ) is an application of (12) to Z |f

>[A]

1+e

o b I )
“hu Zn(f[o H>
=iy [I >|7,(2)

oozl (o)

([ }z ) ) (140
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Furthermore, Sis an intertwining operator between the canonical representa-

tions Py of T on L(”E)(]D),Z/_ o ) and the [ -direct integral
; .

U[il]zj p(ﬂj)n

tions p(ij)( ) of T on the spaces L(l”)(]D),(},j )(M)). That is, for allzeT,
I+e

the diagram

2 (1 + e)d(l + E)J of the order indecomposable representa-

+€) L(1+e)

y )

L(“f) []D), Z,Uj} J N
j
sl

@ P z)2(1+€)d(1+€
[J[o‘q;p(ﬂ)(m)()(l (1 )Lw) -
[

[J.[il]L(uf) (D,;(ﬂf )(1+5)]2(1+e)d(1 +e)] d(1+ G)J

(13)

1(1+) L(He)

is commutative.

Intuitively, this is certainl i i stricting a function to an orbit”
is clearly a T -equivaria
merely reflects that this ence of operator S tries to do. Write
“tries to do”, and not “dogsk, because Jrestricting” is meaningless for the ele-

ments of the act

are Z,- 4’ -equivalence classes of mea-

al” intertwining statement in Theorem 4.9 is, there-

empty exceptional set in the definition of (sj )f_ for
J

j,uj )) , then, for each fixed (0 <e< oo) , the value
' , (I1+¢€)= I: /; J (v are determined by the restriction of f, to the
7 (1+¢)

corresponding orbit of radius (1+€). Since the characteristic function of this

orbit are z}_ 4’ -almost everywhere zero, it is likewise that Z][ f }(ﬂ.) al-
(1+€)

ways depends on the choice of the representative f; of Z,- [ f } . Never-

J Zj /_,]

theless, the 2 (1 + 6) d (1 +e€ ) -equivalence class of the section
(1 + e) — Zj(sj )fv (1 + e) = Z,[f/ }(ﬂ) does not depend on this choice.

I+e

Moreover, the map S sending Zj [f] JZ , to this 2(1+€)-d(1+¢€)
J

-equivalence class is T -equivariant.
Furthermore, this can still be made to work when there is a non-empty excep-

tional set in the definition of Zj(sj )f, (1+¢€); ie when (1 +6) -integrability of

fj are lost when f] are restricted to certain orbits. For each fixed orbit, there
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are evidently f, e 79 (X ’Z,- o ) for which this is the case, but for all fixed

/i€ £ (X,zj ,uf) there are 2(1+¢)d(1+¢€)-almost none of such orbits.

5. Disintegration: General Case

In section 4, started with a topological dynamical system (G,K ) and a Ginva-

riant Borel probability measure on X. In that context, there existed canonically
associated strongly continuous representations of G as isometric lattice auto-

morphisms of the spaces ') (X,Zl_,uf) , (0 <e< oo) thatd e constants.

similar manner on L(”‘)(X 2 ,uj)

Furthermore, if G is a locally compa

an underlying pei resentation(s) of Gon ") (X ,Zl_ )7

. . (1
nto order indecomposable representations as an i

)

I, Example 6.5.2], and [[12], Vol. I Exercise 4.7.63] that, for

; o’ ) is always separable whenever X is a separable metric space
; 4’ are Borel probability measure on X. Therefore, the representation
spages are all separable. Furthermore, have observed in Remark 4.10 that the re-
presentations on the relevant spaces are all strongly continuous. Neither of the
seproperties has played a role in the proofs so far. Quite to the contrary, in the
current section both properties will be essential in order to be able to exhibit a
model in Theorem 5.14 to which the disintegration Theorem 5.15 can subse-
quently be applied.

Remark 5.2. With the exception of Remark 5.8, the combination of ideas, ar-
guments and results in Lemma 5.3 up to and including Theorem 5.14 is rather
similar to that in [9]. Unfortunately, we cannot directly apply results. The reason
is that the so-called Markov operators on (") (X ,Zj o ) that are considered
are positive operators 7/ that fix the constants and satisfy
[\ X /02w =[5 fdY u' forall f,el")(x,3 u'). The point of
departure, where T preserves the norm rather than the integral, and is a lattice

homomorphism rather than merely a positive sequence of operators, are differ-
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ent. This necessitates an independent, albeit similar, development; see also Re-
mark 5.6.

Begin by showing that representations of an abstract group G as isometric lat-
tice automorphisms that fix the constants come in families. There will be only
one measure section, and happily resort to the usual practice of ignoring the dis-
tinction between equivalence classes of functions and their representatives.

Start with the following key observation.

Lemma 5.3. Let (X ,zj o ) be a probability space, and let

T/ L” (X,Zj,uj) I (X,Z _,uj) be a lattice homomaquf at fixes the

=z

constants. Then TJ (| S

all (0<e<w)
Lemma 5.4. Let (X ! ) be a probab111

RET

(3) There exists (0 <e

for all

=X\

(1+€) (1+¢)

Z " /; " for all

1+e

(1) implies (4), we use Lemma 5.3 to note that
S AN
(1+¢) )dz lu J~ z |f (1+¢) dz ﬂ

. It is clear that (4)

o see that (3) implies (2), invoke Lemma 5.3 to compute as follows:

S -1 S (4 -] 7 o
=], ZTJ[(|f|'/ ”E) ]d;,uj
- Zr (sl ) dyu
> ./M)

Tf(|f

+)

Tf(|f

1+5)

zllf I

1/ l+€)

To see that (2) implies (1), note that the equality in (1) is just the one in (2) if
fj >0 (note that 7/ fj >0 then. For general fj , then have
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J, 27 (7)axu
=IXZ(TJ(,))+dZu -, Z(Tf( 5)) e
=[ 2 (1 )azw JZTf( Jazs
—IZfdu szdu IZfdﬂ

Fix 0<e <o, and consider a lattice homomorphisms
Z 77 1+5)(X z P )_)LHE)(X Z y ) that leaves

If fier(x,3 4') . then Y |f]
(1”)(X >, ,uf) An application of T/ s
again, and also that Z T/ - (X Z '
the supermom-norm. For later use, le
of lattice automorphisms of ' the constants automat-

sequence of Lemma 5.4.
Lemma 5.5. Let (X, ') be a pyobability space, let (0<e<®), and let

ZTJ. 1+f(

leaves 1, fixed.

e )—) , yf) be a lattice homomorphism that
/ leaves L~ (X Z ,u ) invariant, and the restriction

Z,,uj=.[ Z,f.dz.,uj for all f.eLw(X Z_Zj,uj);
(f)du’ =[ 3 fdp’ forall f, eL”f>(Xz ,u)
3) Z T’(f]) Z"f 150 for all feL(”e (Xz,u)

mark 5.6. In the terminology of [[9], Section 13.1], the equivalence of (2)

1+e

and (3) in Lemma 5.5 implies that a lattice homomorphism
T’ :L(”e)(X,Zj,uj)aL(”‘)(X,zj,uj) that leaves the constants fixed is a
Markov operator on 7" (X , zj o ) precisely when it is an isometry.

Note that (1+6) is absent from part 1 of Lemma 5.5, but present in parts 2
and 3.

Lemma 5.4 has similar features. Using restriction to, and extension from, the
common dense subspace L~ (X ,zj e ) of all spaces
) (X DI )(0 < e <), one readily obtains the following result.

Lemma 5.7. Let (X,Zj,uj) be a probability space, let (0<e<w) and let

ZjTj 1) (X,zj yj) — [ (stj yj) be an isometric lattice homomor-

phism that leaves the constants fixed. Then 7/ leaves
70+ ( X, T/ ) c 1) ( x> 1 ) invariant, and the restriction
J
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> T’ 1) (X,z ,T’)—)L(”E) (X,z ,T’) are isometric lattice homomor-
J J J
phism that leaves the constants fixed. Moreover, every isometric lattice homo-

morphism of L(X ’Z,-T / ) that leaves the constants fixed can thus be obtained

from a unique.
Remark 5.8. There is an alternative way to understand why Lemma 5.7 holds.
According to Lamperti’s theorem [[20], Theorem 3.2.5], the isometries of
L('“)(X,Z‘/_Tj) are, for (0<e<w) the composition of a multiplication se-
quence of operators and the sequence of operators that are induced by a regular

> (Y ) 1 (XX 7)

phism that fixes the constants, then the d

. J . .
Since Z‘/_T is an isometry,
preserving. It is then clear
morphisms on all spaces

underlying measure prese

emma 5.7 can thus be given.

ity space, and if (OSe<oo), then, as is well

their separgbility is known to be equivalent to the separability of ', (see e.g.
. As a second consequence, when combined with Lemma 5.7 and with the

ed fact that a lattice homomorphism of 7!'*) (X ,z/_ yr ) , that leaves the

constants fixed, automatically leaves {Zj fiel” ( X ’Z,- u ) : zj" fj"w < 1}

invariant, this (1 +e ) -independence of the topology yvields the statement on the

ob

strong operator topology of the following result.

Proposition 5.9. Let (X,zj,uj) be a probability space, and let (0<e<®).
Then the semigroup/group of isometric lattice homomorphisms/automorphisms
of 19 (X ,zj ! ) into/onto itself that leaves the constants fixed is, via the re-
striction map, isomorphic to the semigroup/group of isometric lattice homo-
morphisms automorphisms of ') (X ,Zj s ) into/onto itself that leaves the
constants fixed. This isomorphism is ahomeomorphism for both the strong and
the weak operator topologies as induced from the bounded sequence of opera-
tors on L(”‘)(X,Zj,uf) and L(l“)(X,Zj,uf).

Thus have the following result concerning the type of representations always
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occurring in families.

Corollary 5.10. Let (X ,zj s ) be a probability space, let Gbe a group, and
let (0£6<00). Suppose that G acts on L(IH)(X,ZJ_;H') as isometric lattice
automorphisms that leave the constants fixed. Then G acts naturally on
"9 (x ,Z}_ i ) as isometric lattice automorphisms that leave the constants
fixed for all (0 <e< 00). These representation spaces are either all separable, or
all non-separable. If G is a topological group, then these representations are ei-
ther all strongly/weakly continuous, or all strongly/weakly discontinuous.

Proceed to show that, if G is a locally compact Hausdo D, there is a

the hypotheses.
Lemma 5.11. Let (X,
p be a strong i

group G on 9 ds isometric lattice automorphisms that leave the

constan there xists a G-invariant closed subalgebra z,«(A-

J )(1+F)
that contains1,, is dense in 7" (X,Zj ,uj) , and is

estricted representation of G on ((Aj) ) are strongly

(1+€) > " ’ "oc

continuousor Z; ' are separable, and Gis o’ -compact, then (Aj)(1 ) can
+e

b to be a separable subalgebra of (L°° (X, Zj,uj ),""w) .

Proof. If }  f, 9 (X,zj,uj ) , and ¢eC,.(G), then, since the inte-
grand is continuous and compactly supported, the 7" (X ,Zl_ 7 ) -valued
Bochner integral p(¢)f, = J.Xqﬁ(gj)p(gj )fjdzj/ﬂG(gj) exists; here
is a left-invariant Haar measure on G. If f; e L” (X,Z/_,uf) , then p(¢) is, in
fact, an element of L” (X,zl_yf). To see this, choose, for n=1,2,---, a disjoint

partition supp¢ = Ul]\i”l E, of the compact set suppg into measurable subsets
E; ,and (gj). € E,, such that

2, ¢(g,)p(gj)fj _¢((gf )i)p((g/. ))f/

¢(gj)—¢((gj)i)‘ﬁl/n for all g, ek . It is easy to see that

<L
(+¢) n

and Z},
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03w (E)d((2),)e((2),) 1 2 p(0)f, i LT ) s

n—> o . Passing to a subsequence, may assume that this convergence is point-
wise almost everywhere. On the other hand, know that G acts as isometrieson

(Lw(X’zf“j)’
¥ a (E)d((2),)ol(2)) 1), <X a (suppg)lol, 1], foralt

Conclude that p(¢) Jf; isan element of L” (X ,zj 7 ) , as claimed. Moreover,

w),so that

> (E)d((s)))o((2),) 1) <ZheT (3

n— o and conclude that Z,||p(¢)f1"w <|4|

from the latter inequality and the strong co

tation of Gon I (G) that the map

(Lw(X’Zfﬂj)’

After these preparations, let

oo) is continuo

w), one sees that
tvariant subalgebra of (L°° (X,Zjluf)’"."w) that

from the preparations that zj(A' ; )(1 , are dense in

éral case, one can take ZJ,(A/. )(m) = ZI(A, )(1+ . If Z,- ' are

rable, and G is ¢’ -compact, select a countable subset S of zj(Aj )(1 )

cofitaining 1, that is dense in ) (X,Zj ,uj) JIf f; €S, then p(G)fj are

o’ -compact, and hence a separable, subset of {( A’j. )B . |w] .

Therefore there exists a countable subset G, of G, containing the identity

element, such that p(G)f, < {p(g,-)fj g, G, }H'Hw - (A,j )(W) ' One take

(/f : )(m) to be the closed subalgebra of (L°° (X Ny ),||||w) that is generated by

the p(gj)fj for f, €S and gjerj.

Note. Deduce that:

, <[l .

Zl)s, 27

00
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Proof. From proof of lemma 5.11 we can get

») HONEAN )

1
2

<ol p[ﬁ(@)zf [;g(ﬁ)ij = Il 14l

=1

2/

o0
0 oo

Remark 5.12. It is worth noting that every separable locally compact Haus-
dorff group Gis o’ -compact. Indeed, there exists an open neighbourhood of ¥

L“”)(X,Zj/ﬂ) for all (k<
tion of G on (Aj,"-”w) a
o’ -compact, the
(Lw(X’Zf'“j)’

Proof. For n=

J ) , and let Aj be the closed subalgebra of
at is generated by the (A ; ) .
ansfer theorem” is a stronger version. Include the short proof

enjence, but hasten to add that it is a modest variation on that of [[9],

eorem 5.14. Let (X,ijf) be a probability space, let(O <e< oo) , and let
p(1+€) be a strongly continuous representation of a locally compact Hausdorff
group Gon [ (X , Z,— yr ) as isometric lattice automorphisms that leave the
constants fixed, so that G acts naturally in a similar fashion on ') (X DI )
forall (0<e<m).

Then there exist

(1) a topological dynamical system (G,K ) , where K'is a compact Hausdorff
space;

(2) a G-invariant regular Borel probability measure Z.l_ i’ on K with
supp) i’ =K ;

(3) a family {(D(He) }(0<5<oo) of isometric lattice isomorphisms

O (XY 0 ) > L (KX ) that

(a)send 1, to 1,;
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(1+f)

(b) are compatible with the inclusions between L' -spaces;

(c) Intertwine the strongly continuous representations of G on the spaces
9 (X ,>. 1’| with the canonical strongly continuous representations of G
on the spaces /') (K, Z,- i’ ) .

If Z_,- u’ is separable, and G is &’ -compact, then K can be taken to be
amortizable.

Proof. Choose an algebra 4; as in Proposition 5.13. By the commutative
Gelfand-Naimark theorem, there exist a compact Hausdorff space K'and a unital

isometric algebra isomorphism @ : ( A j,|| . ||w ) - (C (K ),|| . ||w is separable,

then K'is amortizable. Know that @ is a lattice isomorp
|f/ (1+<) €4, for all /€4, and 0 < € < 0, and that

(1+¢) (1+¢)
o[ )=fo ()" a9
Transfer the strongly continuous actig K ),||||w)
via @ . As is well known, this trans y originates from a
topological dynamical system (G
The Riesz representation th regular Borel probability meas-
ure Y ' on K easilys
P (15)

on C (K ) and 4, by construction, it is
art 1 of Lemma 5.5 that Zl_ 1/ are G-invariant.
4) and (15) shows that

1+e

dz;z /i €4, 1<e<oo)

(1+¢) )dZ# I |f

all (0<e<w), 4; are dense in L(“e)(X,Zj,uj),and C(K) is
n [ K,>  u’), by extension obtain a family of isomerizes

. orl(l+e j 1+¢ ~
1L >(X,ijfj—>L< (KX, i )(0<e<).
Since @ is a lattice isomorphism, so are the CD(M). The statements in parts

—

3b and 3c are routinely verified.

It is clear that Theorems 5.14 can still be used to disintegrate representations
even when there is no initial action on the underlying point set, since—under
mild conditions—the latter is furnished by Theorem 5.14. The result is the fol-
lowing, which should be compared with the general unitary disintegration [21].
Note the separability assumption on the probability space, needed to ensure that
the compact Hausdorff space from Theorem 5.14 is Polish.

Theorem 5.15. Let G be a locally compact Polish group, let (0 <e< oo) , and

let (X z N7 ) be a separable probability space. Let

p(l“ G —>L( (1+) (X Z H )) be a strongly continuous representation of G

as isometric lattice automorphisms that leave the constants fixed. Then, for all
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(0S6<00) there exists a representation p™) of G on L(IH)(X,ZJ_#")
with the same properties, that is obtained from p(m) via restriction to, and
extension from, L” (X ,zl_ yf). Furthermore, there exist a Borel probability
space (Q,vf ) and a vector space V'such that, for all (() <e< oo) , there exist

(1) A measurable family {Z}( B, )(1+s)

; } of Banach lattices over
@ ol cQ
(Q,vj ,V);

(2) A family of strongly continuous and order indecomposable representa-

morphisms of (Bj )(14?5) 3

'

(3) An isometric lattice isomorphism
(1+e

+e +e i @ ) i
S (L ) S ([ (8, 0
diagram commutes forall g, eG:

L(1+e) [X,Z,UJJ
j
s

Kin Theorem 5.14 to the set of ergodic Borel probability meas-

ures, using

fecomposition map for Zj [’ . The families {Zj(Bj )(I;S)} of
@ o’ eQ

ch lattices is then the families {L(“E) (K , @’ )} | of 1) -spaces corres-
o’ eQ

pording to the ergodic Borel probability measures on K, and the representations

p((;e) are then the canonical representations of G on these spaces.

6. Perspective

Put forward the task of disintegrating strongly continuous representations of a
locally compact group as isometric lattice automorphisms of Banach lattices into
similar representations that are order indecomposable. This would be the
analogue of what is known to be possible for strongly continuous unitary repre-
sentations of separable groups on separable Hilbert spaces. The 1) -spaces for
finite (1+€) are arguably the prime examples of Banach lattices that can serve
as representation spaces, and in that cases, the goal was achieved in Theorem
5.15 for a certain class of such representations. As explained, this class includes

e.g. all natural representations on 1) -spaces corresponding to topological ac-
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tions of Lie groups on compact manifolds with an invariant Borel probability
measure.

Consequently, do not only know that the ensuing natural unitary representa-
tion of the group on the pertinent L’ -space is a direct integral of irreducible (Ze.
indecomposable) unitary representations, but also that the natural representa-
tions of the group as isometric lattice automorphisms of the pertinent real L)
-spaces for finite (1+e) are direct integrals of similar representations that are
order indecomposable.

Still, it is clear that Theorem 5.15 is only a first step in the of the disin-

tegration of general strongly continuous group represenfti

tice automorphisms of 1) -spaces. At a conceptud

a probability measure Z‘/_ 4 an
metric lattice automorphisms t
to relax the conditions in
bility space be separable.
then one is “actually” loo

ure algebra (

open to investigation whether such a decomposition at the level of meas-
ure spaces—once actually established for more general G—can be pushed still
further to the G-action on the L'* -spaces themselves, while at the same time
incorporating the direct integral formalism of [13]. There are definitely some
measurability issues to be taken care of, and perhaps the assumptions on G and
Z/_ 4’ in Theorem 5.15 are not only not too restrictive from a practical point
of view, but also not so easy to avoid when needing to ensure measurability in
the proofs. After all, for the disintegration of a strongly continuous unitary
group representation both the group and the Hilbert space are also required to
be separable. On a positive note, since our main sources for the ergodic decom-
position, but concentrate on Borel spaces and group actions.

Another possible development is the bold leap to consider the most general
case of strongly continuous representations as isometric lattice automorphisms

of 1" spaces—for possibly infinite measure Z}, 1’ —that do not necessarily
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arise from an underlying measure preserving action, such operators are—this is
true for o-finite measures—always a composition of a multiplication operator

and an operator that arises from, an action on (A j) ;5 see also Remark 5.8

Xju
for e=1. With this factorization available, or else atte}npt a route via measure

algebras by generalizing the material
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