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1. Introduction

It is well known that several types of topological defects may have been
created by the vacuum phase transitions in the early universe. [1,2]
These include domain walls, cosmic strings and monopoles. These
topological defects have been extensively studied in many kinds of
gravity theories, notably as scalar-tensor and f(R) gravities [3-5] where
many aspects and applications were developed.

Although there exist many effective theories of gravity which come
from the unification process [6], each of them must, of course, satisfy
some predictions. Actually, with the advent of the recent LIGO de-
tections could be, in principle, an important and useful tool to test
the alternative theories of gravity as it has been pointed out by Corda
in ref. [7]. Here, in this paper, we will deal with one of the extended
gravity theory, the so-called NDL theory [8,9] which is based on a
Born-Infeld theory [10].

One important assumption in General Relativity is that all fields
interact in an universal way with gravity. This is the so called Strong
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Equivalence Principle (SEP). It is well known, with good accuracy,
that this is true when it concerns to matter-gravity interaction, i.e.,
the Weak Equivalence Principle(WEP). But, until now, there is no
direct observational confirmation of this assumption in what concerns
the gravity-gravity interaction. In [8], an extension of the field the-
oretical approach of General Relativity built by [11,12] proposes an
alternative field theory of gravity. In this theory, gravitons propagate
in a different spacetime of the matter fields. The velocity of propa-
gation of the gravitational waves does not coincide with the General
Relativity predictions because of the violation of the SEP and the
self-interaction graviton-graviton predicts a massive graviton in this
theory.

In this paper, our main purpose is to investigate the properties of a
straight cosmic string in the NDL theory. We anticipate, however, that
such a solution does not exist. This manuscript is organized as follows.
In Section 2, we furnish a brief review of the NDL theory based on the
original paper [8]. In Section 3, we write down the detailed calculations
to find the exterior metric of a local cosmic string and finally in Section
4 we summarize and discuss our results.

2. The NDL Theory: A Brief Review

In this section we review the NDL theory following the references [8,9].
A more detailed presentation can be find in the ref. [8]. To start with,
the main lines of the NDL theory are:

e The gravitational interaction is represented by a symmetric ten-
sor ,,, that obeys a nonlinear equation of motion.

e The matter (but not gravity) couples to gravity through the
metric g, = Yuw + @, Where 7, is the flat background metric.

e The self interaction of the gravitational field breaks the universal
modification of the space time geometry, i.e., the gravity couples
to gravity in a special way distinct from all different forms of
energy.

We begin defining the tensor F,g,, which is anti-symmetric in the

two first indices, called the gravitational field:

1
Fopu = 9 (‘Pu[a;ﬁ} + F[oﬁﬁ}u) ) (1)

where [z,y] = a2y — yx and the covariant derivative is constructed
with the background metric. Indices are raised and lowered with that
metric also, and

Foz - a,ul/")//“/ - Qo,oz - Spa,u;uf}/uy (2)

In order to have a nonlinear theory of the gravitational field F,g,,
with the correct weak field limit, we assume that the interaction of
gravity with itself is described by a functional of A and B which are
invariants built from the gravitational field Fi,g,,:

A= F,5,F*" and B = F,F°.

In our case we will use the Born-Infeld Lagrangian:

b2 A-B
=—y/1- ~1
L= b2 ’
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where k is the Einstein’s constant. Thus, the gravitational action will
be:

S = / d*z /AL, (3)

where v is the determinant of the Minkowski metric in an arbitrary
coordinate system. Taking the variation of the action (3) with respect
to the potential ¢,,,, we obtain the following equations of motion:

(/_:UFA(W)> — _lTIW
A 2

where (m7y) :xy—'—y.’l?, U=A-Band £U = %

3. The Cosmic String Solution in NDL
Theory: An Attempt

We consider here the exterior region of a local cosmic string in the NDL
theory. In this case our energy momentum tensor will be identically
zero in the region outside the string and our source has a cylindrical
symmetry. Thus, we begin with the following ansatze:

e The background metric, 4.e. 7,,, will be Minkowski in cylindri-
cal coordinates, following Vilenkin in [2]:

ds® = dt* —dr® — r?d6* — dz*. 4)
e The potential ¢, will be :
pu=a(r) , ps3=—c(r) and @aa = —5(r). (5)

In a way that our cylindrical metric for the straight cosmic string
in the NDL theory is:

ds®* = (1 + a(r))dt* —dr? — (r* + c(r))d6* — (1 + B(r))dz*.  (6)

In order to obtain the equations of motion, first we need to compute
some elements. The trace and the covariant derivatives of the potential
are, respectively:

v = our +eaP +our™ =a+p+ 7%
P12 = P2 =d(r),
P332 = sz — 200 =~ + 2%,
Yaaz = Ppaz=—0,
323 = IPap33 = ;

The only non vanishing component of F,, is Fs:

- c' cC c 1 C,
T T r T r

With these, we can start calculating the F*** components:

1 d ¢
F211 - _F — / -
211 5 B+ 23
j2 1/a §
233 233
F 1 — 3 (Tz + r2>
1 c c
244 BN N SV
F = —Ihy 5 (a + - r3>
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To write explicitly the Lagrangian we must find the invariants A
and B for our particular metric:

2 2 1 / 1 / e
2 2 c , ., ad add B Bc
e e R e e i
B:
/2 ’ 2 1 'e! /
—<a’2+2o/5’+ﬁ’2+c4—2cf_)+06+20‘c—2+2ﬁ —2ﬁ>,
T T T 7‘ 7"
B// Blec e
U=A—-B= R S

And, finally, the covariant derivatives of the gravitational tensor

Py,
F244;2 — 1:244’2 = % (o/’ + i—;/ - 3% + 3:4> )
1;1344;3 — % (a/—i—:;—rcg,)a
1 / /
o (eae)
F322;3 = % (o +7),

233 ﬂ”
F<, = =
;2 9 (7"2 + T.2>

The non vanishing equations of motion are:

Ly F?" + Ly F?5 + Ly F?5 = 0, (7)
LyF®% 0, (8)
Ly F* 4 Ly F%3 0, (9)
Ly F** + Ly F?5 + Ly FP5 = 0. (10)
Knowing that,
Ly =
vT T k: /
v’
Ly =Ly
221 -0

where prime means % these equations can be written by:

U’ U -1 ’
B0 (N w

1 2 ek
Lo (=) (8"+5 -5
+ U( 2)<B + T3+r4+r> 0,

1/a +p B

LU2< ! )—o, (12)
U’ U 1 1 I+B/ 1 //+5//

o (17) () (57) +0 (5) (7)o
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U’ AN ¢ e
Lo—(1-= - L 14

1 A 2 2¢ o
Loz (a"+S -2 402802 ) 2,
+ UQ(a +5 r3+r4+r>

From (12) we have o/ = —f’ and Equation (13) is identically satis-
fied.

If we add Equation (11) to the Equation(14) and use 8’ = —a/ we
have:

v’ + Ly (0// + O:) =0. (15)
Since / o
Ly = LU2Ub211£]2 = _LUab(;Hl(if
we finally have:
O;/—Fa”—k:z/::& (16)

The solution of this equation is

k (P T k)kiVE
o(r) = byl in P EVZCE HRORVE L gy
Vi

where k1 is a positive constant and ks is an arbitrary real constant.
We have to find the equation for ¢(r). Making now the difference
(14)-(11) we have:

oo’ (a')? e e 2 2

Using the fact that o” = — (”‘7/ + O‘T’&) we have:

A"t =203 + 2er? — ki 'r? + 3ki'r — 3kie = 0, (19)

which give the solution:
o(r) = ksr + kar\/r? — ky. (20)
We know that 8’ = —a’. Thus:
B(r) = —al(r) + ks, (21)

where k3, k4 and ks are constants to be determined. k5 can be incor-
porated into a new coordinate z’ in the metric (6) by a straightforward
reparametrization of the coordinate z. Then,

p(r) = —al(r),

which indicates that our local string is invariant under Lorentz boost.
However, the other integration constants can be determined only after
relating them with the internal structure of the cosmic string and
making a proper match between the internal and the exterior solutions
of the metric.
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Figure 1. «a(r) for k1 = 1.
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Figure 2. «a(r) for k1 = 10.

4. Summary and Analysis of the Solution

Since the expressions (17) and (20) are complicated, we will make some
numerical analysis in order to understand their behavior for various
values of the parameter k;. These are represented in Figures 1-3 and
we labeled k; as k1 = 1,10 and 100, respectively. These graphs show
that the solution is not regular and is singular when r tends to infinity.

We remind the reader that the main goal of this paper was to con-
sider a straight and neutral cosmic string in the NDL theory. This
result has been presented in Section 3. At a first sight, it could ap-
pear that we reached our goal. However, a careful look at the behavior
of the functions «a(r) (it is straightforward to do the same with the
function ¢(r)) shows that this metric is singular for large r. It could
represent a string if one introduces a cut-off in the parameter k; but
there is no reason, a priori, to do that, unless we include here also
the internal structure of the string. Therefore, what we got here is
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infinity

infinity

Figure 3. «a(r) for k1 = 100.

an exact cylindrically symmetric vacuum metric in the NDL theory
but this metric definitively does not represent the exterior region of a
cosmic string and it is singular at infinity.

Finally, we must stress that, looking at the expressions for the solu-
tions of a(r) and ¢(r), we conclude that r must satisfy r > k1, other-
wise we obtain imaginary values for the position . We conjecture that
it might be possible to separate the exterior metric into two regions,
the r < k; and the r > k; in an analogous way as in the Rindler space.
We plan to return to this point in a forthcoming paper.
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