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Abstract 

In this study, Density Functional Theory including a dispersion correction is 
employed to model and analyze the structural, electronic and local reactivity 
of the (100) surface of felodipine. The surface energy calculated at the Gene-
ralized Gradient Approximation (GGA) level, along with plane waves as basis 
set and ultrasoft pseudopotentials, shows that the (100) surface is the most 
stable as compared to the (010) and (110) ones. In particular, we have focused 
on performing a quantitative study of the reactivity of the surface by means of 
the Fukui function and through the HOMO and LUMO populations. Our 
results can be related to some applications in the pharmaceutical chemistry of 
this compound. 
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1. Introduction 

The chemical reactivity of a compound can be interpreted as the resistance or 
ease with which it attracts or gives away electrons under the action of an external 
potential v(r). In this sense, there are global parameters that allow us to charac-
terize this electron transfer from a theoretical point of view, such as the elec-
tronic chemical potential (μ) [1], the molecular hardness (η) [2] and the elec-
trophilicity index (ω) [3] [4]. Since local descriptors of reactivity, such as the 
Fukui function (FF) [5] [6] [7] and local softness (s), are properties that depend 
on the position (r), they may explain selectivity in certain parts of a molecule.  

Felodipine (FD), (methyl–4-(2,3-dichlorophenyl)-1,4–dihydro-2,6-dimethyl- 

How to cite this paper: Tepech-Carrillo, 
C., Licona-Ibarra, R., Rivas-Silva, J.F. and 
Flores-Riveros, A. (2019) Study of the 
Reactivity of (100) Felodipine Surface 
Model Based on DFT Concepts. Open 
Journal of Physical Chemistry, 9, 1-12. 
https://doi.org/10.4236/ojpc.2019.91001  
 
Received: December 4, 2018 
Accepted: February 12, 2019 
Published: February 15, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/ojpc
https://doi.org/10.4236/ojpc.2019.91001
http://www.scirp.org
https://doi.org/10.4236/ojpc.2019.91001
http://creativecommons.org/licenses/by/4.0/


C. Tepech-Carrillo et al. 
 

 

DOI: 10.4236/ojpc.2019.91001 2 Open Journal of Physical Chemistry 

 

3,5-pyridinedicarboxylate), shown in Figure 1, is a calcium channel blocker and 
an effective and widely prescribed medication in the treatment of hypertension 
and angina [8] [9]. 

Four crystalline forms of FD have been reported [8], all shaping an orthor-
hombic system. Form I, used in some commercialized products, is the most sta-
ble, where its crystalline structure, determined in 1986, has a space group 
P2(1)/c, and a unit cell of a = 12.086 Å, b = 12.077 Å, c = 13.425 Å and β = 
116.13˚ [10]. Many examples have been described in which the compound po-
lymorphs show variation in reactivity [11] [12] [13] [14]. Furthermore, in the 
same polymorph, the reactivity can be anisotropic with respect to the crystalline 
faces where remaining chemicals are different, whereby the reaction rates along 
particular crystallographic directions can vary significantly. Paul and Curtin 
were pioneers in conducting solid state reaction studies, specifically the ac-
id-base character of gas-solid reactions, such as with ammonia gas and 
p-chlorobenzoic anhydride crystals [15] [16]. It was observed that, often, certain 
crystal faces are attacked by gases preferentially and the reactions propagate 
along specific directions. However, there are still few reported studies on the 
solid state reactivity of organic crystals at the electronic level. Currently, the use 
of computational methods as an indispensable tool for the understanding of phys-
ical and chemical properties has led to important advances in the molecular 
sciences, and in the last decades, in particular, there has been an increased inter-
est in the concepts of Density Functional Theory (DFT) [14] [17]-[22]. Impor-
tant examples are the recent study by Luty et al. based on Fukui’s nuclear func-
tions using DFT to investigate the explosive mechanism of RDX (hexahy-
dro-1,3,5-trinitro-1,3,5-triazine) [17], and the study conducted by Shaoxin Feng 
and Tonglei Li, determining that the Fukui nuclear function can be used to cha-
racterize the difference in the chemical reactivity of two polymorphs of flufe-
namic acid [14]. Since a chemical reaction is driven by the change in energy of 
the system and it is accompanied by electron transfer and atomic displacement, 
the Fukui nuclear function, a local function for describing the sensitivity 
 

 
Figure 1. Molecular structure of felodipine (FD), showing the atom-labelling scheme. 
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of the system to a simultaneous disturbance in the number of electrons N, may 
be useful to characterize the reactivity of crystals with respect to crystal packing 
[14]. 

The compounds of the group of 1,4-DHP drugs undergo hepatic metaboliza-
tion (by which the oxidation of 1,4-dihydropyridines in pyridines occurs) cata-
lyzed by the CYP3A enzyme of cytochrome P450 [23] [24]. The metabolization 
reaction takes place in a two-step mechanism: in the first step the hydrogen is 
abstracted from the dihydropyridine, where as in the second a hydroxyl group is 
added to the substrate. 

There are many computational approaches that attempt to explain the process 
of metabolism. Some of them use statistical models in molecular descriptors [25] 
[26], other works use ligands to predict the preferred sites of hydrogen abstrac-
tion by quantum chemistry [27] [28]. Another, simpler, yet computationally ex-
pensive, way is to chemically model the complete process of hydroxylation cata-
lyzed by cytochrome [29] [30] [31]. The hydroxylation reaction has been mod-
eled by coupled quantum/molecular mechanics (QM/MM) [31]. These calcula-
tions strongly support the “two-state reactivity” (TSR) model, in which, the ac-
tive site of the cytochrome—where the oxidation takes place—is a ferro-oxyl 
species called “Compound I” (CpdI) from the current knowledge [32]. Cpd I can 
be seen as an “electrophilic oxidant” [29]. Therefore, the Fukui function ( f − ) 
should help to pinpoint sites in a molecule that prefer to be attacked by Cpd I. 
On the contrary, the Fukui function f + , evaluated for Cpd I prefer to be at-
tacked by dihydropyridine [26].  

Felodipine shows a particularly rich variety of metabolites [33] [34]. Most in-
volve the oxidation of 1,4-dihydropyridine to pyridine, sometimes together with 
the loss of one of the esters, which is well reflected in f −  [26]. For FD and 
other compounds, Singh et al. [28] estimated the abstraction energies of the H in 
a semi-empirical way and its correlation with quite successful hydroxylation 
sites. Several experiments were carried out to study the structure and properties 
of felodipine. However, few investigations on the crystal structure faces are 
available to date.  

In this report we investigate how crystal morphology can relate to properties 
of FD. The novelty of this work lies in studying the surfaces (100), (010) and 
(001), especially the first one, with supercells to model the periodic systems, 
based on DFT with the Generalized Gradient Approximation (GGA) and a dis-
persion correction as formulated by Tkatchenko and Scheffler (TS). By using the 
FF the most reactive sites of the surfaces to electrophilic species are described. 

2. Methodology 

We will lay the basic definitions of the global descriptors according to DFT. The 
energy E is expressed in terms of the number of electrons N and an external po-
tential v(r), so that ( ) ( ),E r E N v rρ ≡       , where ( )rρ  is the electronic den-
sity [35] [36] [37] [38]. The derivatives of ( ),E N v r    with respect to N and 
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v(r) lead to a set of global and local properties that allows us to quantify the 
concept of reactivity and site selectivity. As is well known in the literature, global 
descriptors are properties that explain the stability of a molecule, such as, the 
electronic chemical potential (µ), molecular hardness (η) and electrophilicity 
index (ω) [1]-[7]. The variation of energy with respect to the external potential 
gives local information, i.e., it depends on the position (r), and therefore it is de-
fined as an index of selectivity. Local descriptors such as the Fukui function (FF) 
[39] [40] [41] and the local softness (s) [42] are properties that explain the selec-
tivity of a region in a molecule. The FF is defined as: 

( ) ( )
( )

( )
2

( )v rN

r Ef r
v r N N v r

ρδµ
δ
   ∂  ∂

= = =       ∂ ∂ ∂    
           (1) 

Equation (1) presents a discontinuity problem in atoms and molecules when 
combined with the finite difference approximation, resulting in expressions of 
the FF [43] [44]: 
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          (2) 

when a molecule accepts electrons, they tend to move around places where 
( )f r+  is large because at these locations the molecule is most likely to stabilize 

additional electrons, and therefore, it is susceptible to nucleophilic attack at such 
sites. Likewise, a molecule is susceptible to electrophilic attack at sites where 

( )f r−  is large, since these are the regions where electron removal least destabi-
lizes the molecule. In chemical density functional theory, the FF are the key of 
region selectivity indicators for electron-transfer controlled reactions. The func-
tion quantification is possible through a system of condensation on an atomic 
region, where FF can be written by using population analysis techniques [45]. 
This leads to the following equations: 

( ) ( ) ( ) ( )1 1k N N k kk
f r r q N q Nρ ρ+

+= − = + −      ∫ , 

( ) ( ) ( ) ( )1 1k N N k kk
f r r q N q Nρ ρ−

−= − = − −      ∫            (3) 

where ( )kq N  denotes the electronic population of atom k of the reference sys-
tem, more correctly called ( )0kq N . 

The Fukui functions favourably determinate the reactive sites for most chem-
ical systems. However, the values of the FF rely upon the scheme chosen to cal-
culate the charges and the accuracy of the population analysis used. In this study 
the Hirshfeld method was used [46], which has been proved to be accurate for 
organic systems [47]. 

The evaluation of the surface energies of the crystalline faces can be useful to 
compare how the resistance of different surfaces affects the kinetics of the reac-
tion. As often observed, a solid state reaction can proceed in a specific crystallo-
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graphic direction. Therefore, the study of mechanical properties on different 
faces can give some insight into the solid state reaction. The surface energy can 
be calculated as [14]: 

( )1
2

slab bulk
surf

E nE
E

S
−

=                      (4) 

where Eslab and Ebulk are total energies of the surface and crystal in bulk, respec-
tively, and n is the thickness (or layers of unit cells) of the surface, and S is the 
surface area. In the present study, the surface energies, the electronic structures, 
and Fukui nuclear functions of three surfaces of the crystal form I of FD were 
calculated.  

The crystal structure of FD, form I, was obtained from the Cambridge Struc-
tural Database (CSD) (ref code: DONTIJ). FD crystallizes in an orthorhombic 
lattice with space group P2(1)/c, and cell parameters a = 12.086 Å, b = 12.077 Å, 
c = 13.425 Å and β = 116.13˚, packed with four molecules [10]. 

A periodic solid state program was used, with DFT-D (dispersion correction) 
[48] [49] [50] [51] [52] at the GGA level developed by Perdew-Burke-Ernzerhof 
(PBE) [52], with plane waves as a basis set with a cutting energy of 380 eV and a 
tolerance for the SCF cycle of 10−6 eV/atom. Vanderbilt pseudopotentials [53] 
were used to model ion-electron interactions with: H: 1s1, C: 2s22p2, N: 2s22p3, O: 
2s22p4, Cl: 3s23p5. Surface (100) (a = 12.077 Å, b = 13.425 Å, c = 32.736 Å and α = 
β = γ = 90˚), Surface (010) (a = 13.425 Å, b = 12.086 Å, c = 43.082 Å and α = β = 
90˚, γ = 116.13˚) and Surface (001) (a = 12.086 Å, b = 12.077 Å, c = 42.005 Å and 
α = β = γ = 90˚) of form I were modeled (Figure 2) and their Fukui nuclear 
functions FF were analyzed as they may be linked to their chemical reactivity. 

3. Results and Discussion 

The electronic structure of the three surfaces of Form I of FD was studied. Also, 
the FF and the surface energy for each were calculated. The bulk crystal structure 
was optimized with the same methods that were used to calculate the FF. The 
network parameters were set during the optimization. Surface models of (100), 
(010) and (001) faces, of two unitary cells of thickness were thus constructed. On 
the (100) and (001) faces the rings of the pyridine are exposed on the surface un-
like the face (010) where the benzyl ring together with the methyl ether group 
are more exposed.  

We focus our attention on the (100) surface model which turned out to be the 
most stable, in which there are intermolecular hydrogen bonds formed by 
N-H-O located on the normal plane of the surface (see Figure 3). 

Once the optimization of the geometry of the surface model (100) was carried 
out, it was observed that the hydrogen bonds lying on the surface tend to move 
downwards, along the z-axis. The above can be seen in Table 1, where the values 
corresponding to the midpoint of the hydrogen bonds are given as well as the 
displacement after optimizing such surface of FD form I. The hydrogen bonds 
corresponding to those in the layer in between have a displacement along the  

https://doi.org/10.4236/ojpc.2019.91001


C. Tepech-Carrillo et al. 
 

 

DOI: 10.4236/ojpc.2019.91001 6 Open Journal of Physical Chemistry 

 

 
Figure 2. Surfaces (100), (010) and (001) of form I of the felodipine. The light blue dotted 
line shows the hydrogen bonds of the surface models. 
 

 
Figure 3. Intermolecular hydrogen bonds of the surface (100) of FD. 

 
Table 1. Midpoint coordinates of the hydrogen bonds and their displacement after opti-
mizing surface (100) of felodipine form I.  

 (100) opt Å (100) Å 

Hbond X Y Z ΔX ΔY ΔZ 

1 −19.040 −2.761 20.663 −0.042 0.092 −0.347 

2 −18.892 4.204 20.663 0.044 0.093 −0.347 

3 −19.041 11.168 20.663 −0.043 0.092 −0.347 

4 −7.072 2.414 11.860 −0.019 −0.031 −0.010 

5 −13.092 3.037 10.810 −0.024 0.006 0.029 

6 −12.807 10.002 10.810 0.024 0.025 0.029 

7 −18.826 9.379 11.860 0.020 −0.030 −0.010 

8 −13.092 16.966 10.810 0.006 0.029 0.029 

9 −19.107 16.343 11.860 0.020 −0.031 −0.010 

10 −24.842 10.002 10.810 0.023 0.025 0.029 
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z-axis lower than those on the surface. From the above it can be observed that 
surface molecules, having no interaction with other molecules in the upper part, 
tend to flatten the surface. This displacement of the hydrogen bonds causes an 
activation of the carbon atoms C2 and C4, which favors the reactivity of these 
atoms as shown by Fukui functions (Table 2), making them more susceptible to 
nucleophilic substitutions. 

Figure 4 shows the boundary orbitals HOMO (Highest Occupied Molecular 
Orbital) and LUMO (Lowest Unoccupied Molecular Orbital), from which a high 
density of unoccupied states in the three surfaces can be seen, located mainly in 
the carbon atoms 1 and 5 of the 1,4-pyridine ring, which gives us an idea of the 
places most likely to interact with electron donor atoms. 

The FF of each atom was obtained from the calculations of the neutral and 
anionic forms of the surface models. The molecular structure of the anionic 
form remained the same as its neutral counterpart. The quantitative results of 
the FF for faces (100), (010) and (001) are listed in Table 2. The electrophilic at-
tack of the crystalline faces is illustrated in Figure 5. Fukui nuclear functions of  
 
Table 2. Calculated Nuclear Fukui Functions of the (100), (010) and (001) slab models of 
Form I of felodipine with DFT-D. 

Fukui Indices for Electrophilic Attack (Fukui ( f − )) 

Molecule Slab (001) Slab (010) Slab (100) 

atom f −  atom f −  atom f −  atom f −  

C2 0.080 C2 0.017 C4 0.028 N1 0.014 

N1 0.079 Cl1 0.016 N1 0.023 C2 0.014 

C4 0.078 C4 0.014 C2 0.022 C4 0.014 

O3 0.055 N1 0.013 O3 0.021 Cl1 0.010 

O1 0.054 O1 0.012 Cl2 0.017 O3 0.007 

C1 0.039 Cl2 0.010 Cl1 0.015 C9 0.007 

 

 
Figure 4. HOMO and LUMO orbitals of surfaces (100), (010) and (001) of FD form I. 
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Figure 5. Illustration of Fukui nuclear function ( f −  blue and f +  red) for (001), (010) 
and (100) surfaces of felodipine Form I. 
 
the atoms N1, C1 and C4 of the pyridinic ring and the atoms O1 and O3 of the 
carbonyls groups in the three surfaces are larger than those of other atoms. 
These results agree with those reported by Michael E. Beck [34]. 

In Figure 5 it can be seen that the (100) surface has a distribution of mole-
cules favoring electrophilically reactive sites, thus making this surface susceptible 
to greater reactivity to agents such as Cpd I, which, as already mentioned, is the 
active site of the cytochrome, where the oxidation of dihydropyridine to pyri-
dine is carried out. 

To elucidate the influence of mechanical resistance on chemical reactivity, the 
surface energies of the surface models of Form I were calculated by the DFT-D 
with the functional GGA, obtaining the following Esurf: −0.2303 eV/Å2 for (100), 
0.0222 eV/Å2 for (010) and 0.0302 eV/Å2 for (001) surfaces. The latter energies 
remain significantly above the one for (100) surface, thus indicating a closer 
bond between the molecules on the faces (010) and (001). As the reaction begins 
on the surfaces, it is expected that their propagation and penetration in the bulk 
are limited by forces of intermolecular nature. The surface energy characterizes 
the intermolecular interactions within a crystallographic plane, specifying the 
mechanical resistance. Therefore, the lower surface energy of (100) may facilitate 
a faster reaction rate than the other two surfaces 

4. Conclusions 

The reaction capacity of the three analyzed surfaces of form I of felodipine was 
investigated by studying their electronic structures, nuclear Fukui functions and 
their surface energies. The present findings show that Fukui nuclear functions 
constitute a useful tool in the analysis of surface reactivity for a crystal such as 
FD. In addition, due to the highly heterogeneous nature of a molecular crystal 
reaction, the surface intermolecular forces ought to be taken into account to elu-
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cidate chemical reactions occurring on this type of crystals. 
These results can provide information on experimental work in surface catal-

ysis as based on theoretical knowledge of local reactivity of the compound here 
analyzed, thereby saving efforts when selecting the best sites a priori. Our find-
ings may also be useful in some pharmaceutical applications of felodipine. 
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