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Abstract 
In this study, Inverse Problem for Dupire’s Equation with nonlocal boundary 
and integral conditions is studied. Then, by means of the some transforma-
tion, this equation is converted to diffusion equation. The conditions for the 
existence and uniqueness of a classical solution of the problem under consid-
eration are established and continuous dependence of ( ),vρ  on the data is 

shown. It is emphasized that this problem is well-posed. 
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1. Introduction 

In mathematical finance, Dupire’s formula (local volatility) is expressed in the 
following form 
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The Dupire formula enables us to deduce the volatility function in a local vo-
latility model from quoted put and call options in the market. In a local volatility 
model the asset price model is under a risk-neutral measurement. For the rele-
vant formula, reference [1]. 

Non-homogeneous Dupire’s equation is shown as follows, 
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( )2 21 ,
2t SS SV S V rSV F S tσ +⋅ ⋅= −  

The Dupire equation is a forward equation for the call option price V as a 
function of the strike price S and the time to maturity t. The local volatility of the 
underlying assets is a deterministic function of assets price and the time t. 

( ),tS tσ σ=  

Therefore under local volatility model, the stochastic process followed by the 
stock price is 

( )d d , dt t t tS S t S t Wµ σ= +  

tW : The randomness from the stock price: [2]. 
In the 1970s, when Black-Scholes formula was initially derived, most people 

were convinced that the volatility of a certain asset given the current circums-
tance was a constant number. Then, later on, after the economic crash in 1987, 
people were starting to doubt the constant volatility assumption. Especially after 
more and more evidence of volatility smile was collected, people tend to believe 
that the implied volatilities cannot remain constant during the whole time. They 
probably have some dependent relationships with some other factors in the op-
tion pricing model as well. One of such guesses is that, the implied volatility 
could be depending on the stock price S(t) and time t. And if we study a model 
of price processes with a volatility that depends on the stock price S(t) and time 
t, we can try to explore the inner connection between the implied volatility, and 
the local volatility. The volatility in such models depends on the σ imply 

( )( ),S t tσ  stock price S(t) and time t [3].  
In mathematical physics, one of the most famous diffusion equations is a par-

tial differential equation that describes the flow of heat and is given by 
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where ( ),u u x t=  is a function of space x and time t and k is an arbitrary real 
constant known as the diffusion coefficient. The above is called a heat equation. 
Black-Scholes PDE, even though explicitly not a heat equation, can be trans-
formed into a heat equation like the above with suitable transformation of va-
riables. To be exact, the heat equation is not the most generalized form of diffu-
sion equation that arises in physics, but we shall currently limit our discussion to 
the heat equation because that will suffice for our understanding of dynamics of 
financial derivatives. 

We can think of a call option (on a financial asset) being governed by an equ-
ation similar to the above, where ( ),u u S t=  will be the call option price as a 
function of a spatial variable, S the asset price (here, x S= ) and time, t. The 
diffusion coefficient, k can be thought as the volatility of the asset price. 

Formerly studies related to inverse problem for parabolic equations can be 
examined in [4]-[12]. 

We handle inverse problem for some partial differential equations in finance 
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(i.e., Black-Scholes-Merton Equation, Backward Kolmogorov Equation, and Du-
pire’s Equation, etc.) 

In this study, we take into consideration the following equation  

( ) ( )2 21 ,
2t SS SV S V rSV p t F S tσ ⋅ ⋅ ⋅= − + ,            (1.1) 

( ){ }, :1 ,0 .TD S t S e t T= < < < <  

with the initial condition, 

( )( ) ( ) ( ) ( ), ; ln ; 1V S O S S S S eω φ ω= = < <           (1.2) 

The periodic boundary condition 

( ) ( ) ( )1, , , , 0; 0sV t V e t V e t t T= = ≤ ≤             (1.3) 

And the over determination condition 
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=∫                      (1.4) 

The problem of finding a pair ( ) ( ){ }, ,p t V S t  in (1.1)-(1.4) is called inverse 
problem for Dupire’s Equation. 

2. Converting the Dupire’s Equation to the Diffusion  
Equation  
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Differentiation yields 
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When 2 2 rσ = ⋅  taken, we get, 

( ) ( ),xxv v f xτ ρ τ τ⇒ = +  
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( ) ( ),xxv v f xτ ρ τ τ= +                     (2.1) 

( ) ( ),0 Ψ , 0 1v x x x= ≤ ≤                   (2.2) 

( ) ( ) ( )0, 1, , 1, 0; 0xv t v t v t Tτ= = ≤ ≤              (2.3) 

( ) ( )1

0
, d , 0v x x E Tτ τ τ= ≤ ≤∫                 (2.4) 

3. Existence and Uniqueness of the Solution of the  
Transformed Inverse Problem [13] 

There are the following assumptions on the data of problem (2.1)-(2.4). 
(v1) ( ) [ ]1 0,E C Tτ ∈  
(v2) ( ) [ ]4Ψ 0,1 ;x C∈  
1) ( ) ( ) ( ) ( ) ( )Ψ 0 Ψ 1 ,Ψ 1 0,Ψ 0 Ψ 1 ,′ ′′ ′′= = =  

2) ( ) ( )1

0
Ψ d 0x x E=∫  

(v3) ( ) ( ) ( ) [ ] [ ]4, Δ ; , 0,1 , 0, ;Tf x C f x C Tτ τ τ∈ ∈ ∀ ∈   
1) ( ) ( ) ( ) ( ) ( )0, 1, , 1, 0, 0, 1, ;x xx xxf f f f fτ τ τ τ τ= = =  

2) ( ) [ ]1

0
, d 0, 0,f x x Tτ τ≠ ∀ ∈∫  

Then the so-called inverse problem (2.1)-(2.4) has a unique solution. 
Proof:  
Take into consideration the following function system on [0,1]. 
Riesz bases in [ ]2 0,1L  

( ) ( ) [ ] ( ) ( ) [ ]0 2 1 22, 4cos 2π , 4 1 sin 2π , 1,2,n nx x nx x x nx nχ χ χ−= = = − =   (3.1) 

( ) ( ) [ ] ( ) [ ]0 2 1 2, cos 2π , sin 2π , 1,2,n ny x x y x x nx y x nx n−= = = =       (3.2) 

It is easy to verify that each systems (3.1) and (3.2) are biorthogonal on [0,1]. 
Applying the standard procedure of the Fourier method, we get the following 
presentation for the solution (2.1)-(2.3) for arbitrary ( ) [ ]0,t C Tρ ∈ : 
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   (3.3) 
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where ( ) ( )1

0
dk nx y x xΨ = Ψ∫  and ( ) ( ) ( )1

0
, dn nf f x y x xτ τ= ∫ , 0,1,2,n =   

The assumption ( ) ( )0 1Ψ = Ψ , ( )1 0′Ψ = , ( ) ( )0, 1,f fτ τ= , ( )1, 0xf τ =  
are consistent conditions for the presentation (3.3) of the solution ( ),v x t  to be 
valid. Besides, under the smoothness assumptions ( ) [ ]4Ψ 0,1x C∈ ,  
( ) ( ), ΔTf x Cτ ∈  and ( ) [ ]4, 0,1f x Cτ ∈ , [ ]0,Tτ∀ ∈ , the series (3.3) and its x-  

partial derivative (
x
∂
∂

) uniformly convergent in ΔT  because their majorizing  

sums are absolutely convergent. So, their sums ( ),v x τ  and ( ),xv x τ  are con-  

tinuous in ΔT . Additionally, the τ -partial derivative (
t
∂
∂

) and xx-second or-

der partial derivative (
2

2x
∂
∂

) series are uniformly convergent for 0τ ε≥ >  (ε  

is an arbitrary constant-positive number). Thus,
 

( ) ( ) ( )2,1 1,0, Δ ΔT Tv x C Cτ ∈   

and satisfies conditions (2.1)-(2.3). Additionally, ( ),tv x τ  is continuous in ΔT  

since the majorizing sum of τ -partial derivative (
t
∂
∂

) series is absolutely con-

vergent according to the conditions ( ) ( )0 1′′ ′′Ψ = Ψ   

and ( ) ( )0, 1,xx xxf fτ τ=  in ΔT . [13] 
Equation (2.4) could be differentiated according to (v1) to obtain; 

( ) ( )1

0
, dv x x Eτ τ τ′=∫                         (3.4) 

Besides, under the consistency assumption ( ) ( )1

0
d 0x x EΨ =∫  the formulas 

(3.3)-(3.4) result the following Volterra integral equation (Second kind): 
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Consider that the dominator in (3.6) and (3.7) is never equal to zero, since the 
assumption ( )1

0
, d 0f x xτ ≠∫ , [ ]0,Tτ∀ ∈ . In the light of the assumptions 

(v1)-(v3), the function ( )F τ  and the kernel ( ),K τ ς  are continuous functions 
on [ ]0,T  and [ ] [ ]0, 0,T T× , respectively. So, we get a unique function ( )tρ  
which is continuous on [ ]0,T  and together with the solution of the so-called 
problem (2.1)-(2.3) given by Fourier series (3.3), forms the unique solution of 
the inverse problem (2.1)-(2.4) [13]. 

4. Continuous Dependence of (P,v) on the Data 

Theorem [1]: Let Λ  be class of triples in the form { }, ,f Eϕ = Ψ  satisfying 
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the assumptions (v1)-(v3) and let 

( )2,0 0ΔTCf M≤ , [ ]2 10,1C MΨ ≤ , 
[ ]1 20,1C

E M≤ , ( ) ( )3 , Δ0 min ,
Tx tM f x τ

∈
< ≤  

for some positive constants , 0,1, 2,3iM i = . 
Then, the solution pair { },P v  of the so-called problem (2-1)-(2.4) depends 

on the data in Λ  for small T. 
Proof: { }, ,f Eϕ = Ψ  and { }, ,f Eϕ = Ψ  be two data in Λ . Let’s demon-

strate 

( ) [ ]2,0 2 1Δ [0,1] 0,1TC C C
f Eϕ = + Ψ +  and ( ) [ ]

22,0 1[0,1]Δ 0,1T CC C
f Eϕ = + Ψ +  

Let { },P v  and { },P v  be solutions of the inverse problem (2.1)-(2.4) cor-
responding data ϕ  and ϕ , respectively. It is apparent from (3.5)-(3.7) there 
are positive constants , 4,5iM i =  such that 

[ ] [ ] [ ]( ) [ ]
4

4 50, 0, 0, 0,
5

, ,
1C T C T T C T

Mf M K M P
TM×

≤ ≤ ≤
−

, where 

0
4 2 1 5

3

2 2,
6 6

MM M M M
M

= + = . 

It infers from (3.6)-(3.7) that 
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From (3.5), we get that 

[ ] [ ] [ ] [ ] [ ]( )
4

5 0,0, 0, 0, 0,
51C TC T C T C T T

MP P F F TM P P T K K
TM ×

− ≤ − + − + −
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( ) [ ]5 100,
1

C T
TM P P M ϕ ϕ− − ≤ − , where  

4 9
10 6 7 8

5
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1
M MM M T M M
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 
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 ( )5 1TM <  for small. Eventually, we get, 

[ ] 110,C T Mρ ρ ϕ ϕ− ≤ − , 10
11

51
MM
TM

=
−

. 

In a similar way, we get the difference v v−  from (3.3) 

( ) 12ΔTCv v M v v− ≤ −  [13]. 

5. Conclusion 

In this paper, inverse Problem of Dupire’s Equation Type with Nonlocal Boun-
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dary and Integral Conditions has been examined. In the theoretical, the condi-
tions for the existence, uniqueness and continuous dependence on the data of 
the problem have been established. Then it is shown that the problem is 
well-posed problem (in the sense of Hadamard). 
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